+ All Categories
Home > Documents > FE Simulation of a Double-bottom Grounding on a Conical Rock

FE Simulation of a Double-bottom Grounding on a Conical Rock

Date post: 02-Jun-2018
Category:
Upload: kristjan-tabri
View: 221 times
Download: 0 times
Share this document with a friend

of 122

Transcript
  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    1/122

    HELSINKI UNIVERSITY OF TECNOLOGYShip Laboratory / Kristjan Tabri

    FE simulation of a double-bottom grounding on a conical rock

    Report

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    2/122

    2

    CONTENTS:

    1. INTRODUCTION .......................................................................................................................................4

    2. MODELING OF THE DOUBLE-BOTTOM............. ............ .............. ............. .............. ............ .............. 43. SIMULATION PROCEDURE............ ............. ............. ............. .............. ............. ............ .............. ........... 8

    4. DATA PROCESSING ............................................................................................................................... 11

    5. RESULTS AND DISCUSSION ................................................................................................................ 11

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    3/122

    3

    ABSTRACT

    Current simulations are a part of a research project FSAKARI. The objective of the

    simulations is to investigate how double-bottoms with different designs behave in case of a

    grounding on a conical rock. To evaluate the effect of the different factors like double-bottom

    construction and rock penetration to the double bottom five different double-bottom designs

    are modeled. The simulations are carried out with different rock penetrations. After post-

    processing the simulation data will be used in FSA analysis. Simulations are carried out in the

    Ship Laboratory of the Helsinki University of Technology. For FE simulation explicit finite

    element code LS-Dyna is used.

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    4/122

    4

    1. Introduction

    To estimate the risks in a case of a ship grounding on a rock it should be possible to estimate

    how the ship behaves in grounding event. (As there is straight connection between the ship

    and its double-bottom behaviour, also behaviour of the double-bottom should be known. To

    investigate the behaviour of the double-bottom several FE simulations, where a rigid obstacle

    (rock) penetrates to the double-bottom, are carried out. As it is too laborious to carry out a FE

    simulation for the whole double-bottom of the ship only a small part of the ship is modelled.

    During the simulation the model is fixed on the sides and is not moving, but the rock has a

    horizontal and a vertical displacement. By the simulation, contact force and extent of the

    damage are determined for the model. Based on that information forces and extent of the

    damage can also be estimated for the whole ship. In current simulations main interest are on

    the following points: How the depth of the rock penetration affects the contact force and the damage

    Rock penetration needed for tearing

    Average contact force

    Extent of the tearing in outer and inner bottom plating

    Force history during the contact event

    This report includes descriptions of the different double-bottom models and FE simulation

    process. Resulting data is presented for every simulation.

    2. Modeling of the double-bottom

    For the simulation five different double-bottom models are created. For modelling and three-

    dimensional meshing FE program LS-Ingrid is used. LS-Ingrid is also used as a translator to

    convert a database into LS-Dyna input file. Part of the ship is modelled according to the

    structural drawings for a RO-RO vessel.

    Main particles of the vessel are:

    LWL: 150.47 [m]

    LPP: 146.27 [m]

    B: 25.35 [m]

    T: 7.35 [m]

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    5/122

    5

    Main particles of the double-bottom of the ship:

    Girder spacing: 4.26 [m]

    Floor spacing: 2.4 [m]

    Height: 1.6 [m]

    For the simulation, a small part from the middle of the ship is modeled (Figure 1). The model

    included 4 floors and 3 girders, and its length was 12 meters and width 17 meters. Height of

    the model depends on a particular case and varies from 1.6 [m] to 2.4 [m]. Altogether five

    different double-bottom designs were used. The basic case is denominated as a case A. Cases

    B, C, D are created by changing only one parameter in the case A. Case E has a different

    designs than other cases. In the case E model has longitudinal girders instead of longitudinal

    stiffeners and also transversal floors are removed. General picture of the cases A, B, C and Dis given in figure 2 and for the case E in figure 3.

    Figure 1. Modeled part

    Main parameters and particles for the different double-bottom models:

    1. CASE A

    Length 12 [m]

    Breath 17 [m]

    Height 1.6 [m]

    Thickness:

    floors 11 [mm]

    girders 11 [mm]

    Modeled part

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    6/122

    6

    external plating 12 [mm]

    internal plating 17 [mm]

    Rock radius 1.1 [m]

    Mass of the bottom model 75.7 [ton]

    2. CASE B (db height)

    Height of the double-bottom increased by 50% 1.62.4 [m]

    Rock radius 1.1 [m]

    Mass of the bottom model 82.6 [ton]

    3. CASE C (plating)

    Bottom plating thickness increased by 50 % 12 18 [mm]

    Rock radius 1.1 [m]

    Mass of the bottom model 85.6 [ton]

    4. CASE D (stiffeners)

    Bottom stiffeners moment of inertia increased by 90 % 2477 4720 [cm4]

    Moment of inertia is increased by changing cross-

    sectional area of the stiffener. Stiffener type is

    changed from HP 260x10 to HP 300x13.

    Rock radius 1.1 [m]

    Mass of the bottom model 78.6 [ton]

    5. CASE E (girders)

    Longitudinal stiffeners are replaced by longitudinal girders. Transversal floors are removed.

    Longitudinal girders:

    Thickness 10 [mm]

    Girder spacing 710 [mm]

    Rock radius 1.1 [m]

    Mass of the bottom model 84.6 [ton]

    6. CASE A2

    Same as the case A, but rock radius is 2 metres

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    7/122

    7

    7. CASE A3

    Same as the case A, but rock radius is 3 metres

    The model depending on a particular case has 70,000- 85,000 elements. The size of the

    prevailing element is 10x10 [mm2]. For the precise simulation of tearing, fracture criteria for

    the prevailing element size is calculated. For that we modelled a specimen and carried out

    several tensile tests and looked for correct failure criteria by comparing real and calculated

    stress curves. The model had boundary conditions at both ends and on both sides (Figure.2),

    where all degrees of freedom are fixed.

    Figure 2.Double-bottom model (Cases A, B, C, D)

    As it can be seen from the figure 2, x-axis points to longitudinal direction and z-axis points to

    vertical direction. Same notifications are later used in appendices with time-histories.

    Longitudinal direction,

    boundary conditions

    Breath,

    boundary conditions

    Floor

    Centre girder

    Tank-top (inner plating)

    Outer plating

    X

    Z

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    8/122

    8

    Figure 3.Double-bottom model (Case E)

    3. Simulation procedure

    To simulate the grounding event a conical rock is modelled. Cone angle is 45 and radius ofthe top cone of the rock is 1.1 meters for the cases A, B, C and D, and 2 and 3 meters for the

    cases A2 and A3. In figure 4, modelled rock is shown graphically. The rock is given a

    horizontal and a vertical displacement as a function of time as follows (figure 5):

    vertical displacement =15t

    horizontal displacement = MAXPt

    0.026-0.24

    026.0cos1

    2

    1

    where

    t -time

    PMAX -maximum (final) rock penetration to the double-bottom

    0.026 -time when rock starts to penetrate to the double-bottom

    0.24 -time when rock attains its final penetration

    As forces close to boundary conditions may cause some disturbances and inaccuracy, the rock

    starts to penetrate the double-bottom not exactly at the first end of the model but 0.39 [m]

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    9/122

    9

    (t=0.026 [s]) from it. In the same reason longitudinal displacement of the rock terminates 2.4

    [m] before the end of the model. Total longitudinal displacement of the rock is 9.6 [m]

    (tTOTAL=0.64 [s]). The simulations are carried out for 7 different rock penetrations- from 0.5 to

    3.5 [m] with 0.5 [m] spacing. In every case the rock attained final penetration value 3.6

    meters (t=0.24 [s]) from the first end of the model. Centre of the rock is always moving along

    the centre girder. Horizontal velocity of the rock is 15 [m/s], but as the force calculation

    process is quasi-static, velocity of the rock does not have any effect to the force values. In

    figure 5 rock movements with corresponding temporal values are presented graphically.

    The double-bottom model, the shape and the movements of the rock are described in input file

    for LS-Ingrid. For the simulation initial input file is converted into input file for explicit finite

    element code LS-Dyna. In LS-Dyna calculations contact force between rock and the double-

    bottom is calculated by usingpenalty method. In thepenalty methodnormal interface springs

    are placed between all penetrating nodes and surfaces, and forces are calculated by using

    springs. Better description of thepenalty methodand other matters concerning the simulation

    procedure are given in LS-Dyna theoretical manual [1].Computer used for simulation is dual

    195 MHz processor Silicon Graphics Octane2 UNIX Workstation with 512 MB memory.

    Operation system used in workstation is IRIX.

    Figure 4. Modeled rock

    45

    R

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    10/122

    10

    Figure 5. Rock movements respect to the double-bottom

    Rock displacement

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    0.00 0.80 1.60 2.40 3.20 4.00 4.80 5.60 6.40 7.20 8.00 8.80 9.60

    Horizontal displacement (m)

    Verticaldisplacement(m)

    Figure 6. Rock displacement

    Maximum penetration

    t=0.24 [s]

    Termination of the

    rock displacement

    Rock starts to penetrate to

    the double-bottom t=0.026

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    11/122

    11

    4. Data processing

    Resulting data is given in time domain after every 1.29E-3 seconds (1.93E-2 [m]). Single

    simulation takes about 20-35 hours depending on a particular case and rock penetration. The

    amount of the resulting data in single simulation is about 100 KB in text files and 30 MB in

    video files. Videos of outer and inner bottom plating damages are taken for every simulation.

    For more convenient and comprehensible processing, the simulation data is converted from

    time domain into displacement domain. To evaluate the effect of different design, force

    histories are analysed after each simulation. Forces needed for tearing both in outer and inner

    bottom plating and also average grounding force were calculated and presented in every

    simulation. Average force is calculated during the time when rock has attained its final

    penetration value and moves horizontally in longitudinal direction. To evaluate the extent of

    the damage average breath of the tearing is measured as well as temporal initiation of the

    tearing. In some simulations also deformation energy is measured.

    5. Results and discussion

    According to recorded time histories and above-mentioned calculated values some general

    conclusions can be drawn and behaviour of the different designs can be presented. On

    analysis cases are divided into two halves- cases with same rock radius (cases A, B, C and D)

    and cases with different rock radius (cases A, A2 and A3). Both halves are investigated

    separately. On comparison main interests are on following points:

    Average vertical and horizontal grounding forces

    Tearing width

    Penetration depth and force values at the moment of tear initiation

    Cases A, B, C, D

    First the results for the cases A, B, C and D are presented and analysed. Results are both

    presented on graphical and numerical mode.

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    12/122

    12

    Average vertical and horizontal impact forces

    Values for the average vertical grounding force are presented on graphs 1 and 2, and

    numerically on table 1. Graphs 3, 4 and table 2 present the values for horizontal forces. On the

    graphs 1 and 3 vertical and horizontal impact forces are presented as a function of final

    penetration depth as it gives good overview how are the relations between the different

    designs on different final penetration values. Graphs 2 and 4 basically present the same

    values, but on mode where it is easier to see how much the values on different penetration

    values differ from the average value. Average values on graphs 1 and 3 are presented with

    dots in corresponding colour and on graphs 2 and 4 with blue rectangles.

    -3,0E+07

    -2,5E+07

    -2,0E+07

    -1,5E+07

    -1,0E+07

    -5,0E+06

    0,0E+00

    0 0,5 1 1,5 2 2,5 3 3,5 4

    Penetration [m]

    Force[N]

    CASE A

    CASE B

    CASE C

    CASE D

    CASE E

    Graph 1. Average vertical forces for cases A, B, C, D

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    13/122

    13

    -3,0E+07

    -2,5E+07

    -2,0E+07

    -1,5E+07

    -1,0E+07

    -5,0E+06

    0,0E+00

    CASE A CASE B CASE C CASE D CASE E

    Force[N]

    3,5

    3

    2,5

    2

    1,5

    1

    0.5

    Average

    Graph 2. Average vertical forces for cases A, B, C, D (sorted by cases)

    Average force values shown in the graphs are calculated by using force values from the

    middle range.

    In the middle range only three penetration values are considered- 1.5, 2.0 and 2.5 metres.

    Therefore average force value on the graphs is simply average of the three force values on

    mentioned penetration depths. The middle range reflects the situation where outer plating of

    the double-bottom is widely damaged and inner plating is slightly damaged or still intact.

    From the graphs it can be seen that case B gives lowest average force value in the middle

    range. Reason is that compared to other cases case B gives much lower force values on

    penetration depths from 1.5 to 3.0 metres. It can be explained by the fact that on mrntioned

    range (1.5-3.0) other cases (except B) are already deforming (lower penetration values) or

    tearing (higher values) the inner plating, but in case B rock contacts with the inner plating no

    before the penetration value 2.5.

    If the beginning of the graph is considered it can be seen that on penetration value 0.5 case B

    gives quite average value. Only cases D (stiffeners) and C give higher value, which can be

    explained by their higher stiffness. It can be seen that on penetration value 1.0 case B gives

    almost highest value (equal to case C).

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    14/122

    14

    Case C gives highest average force values and has also highest values in most of the

    penetration values. On penetration value 0.5 case C is the only double-bottom version, which

    stays intact. It reflects also on its high force value on that point.

    Case E (girders) has second highest average force value. As its construction is quite stiff,

    tearing on penetration value 0.5 occurs very early and because of that also force value on that

    penetration depth is the lowest.

    Table 1. Vertical force values

    Penetration/ case A B C D E

    0,5 -5,448E+06 -5,824E+06 -8,592E+06 -7,444E+06 -4,538E+06

    1 -6,349E+06 -7,261E+06 -7,413E+06 -6,757E+06 -6,794E+06

    1,5 -9,320E+06 -8,631E+06 -1,053E+07 -9,657E+06 -1,120E+07

    2 -1,424E+07 -1,090E+07 -1,658E+07 -1,482E+07 -1,547E+07

    2,5 -1,868E+07 -1,437E+07 -2,212E+07 -2,022E+07 -2,007E+07

    3 -2,065E+07 -1,992E+07 -2,277E+07 -2,155E+07 -2,387E+07

    3,5 -2,232E+07 -2,316E+07 -2,641E+07 -2,335E+07 -2,391E+07

    Average (1.5-2.5 [m]) -1,408E+07 -1,130E+07 -1,641E+07 -1,490E+07 -1,558E+07

    -2,0E+07

    -1,8E+07

    -1,6E+07

    -1,4E+07

    -1,2E+07

    -1,0E+07

    -8,0E+06

    -6,0E+06

    -4,0E+06

    -2,0E+06

    0,0E+000 0,5 1 1,5 2 2,5 3 3,5 4

    Penetration [m]

    Force[N]

    CASE A

    CASE B

    CASE C

    CASE D

    CASE E

    Average

    Graph 3. Average horizontal forces for cases A, B, C, D

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    15/122

    15

    -2,0E+07

    -1,6E+07

    -1,2E+07

    -8,0E+06

    -4,0E+06

    0,0E+00

    CASE A CASE B CASE C CASE D CASE E

    Force[N]

    3,5

    3

    2,5

    2

    1,5

    1

    0.5

    Average

    Graph 4. Average horizontal forces for cases A, B, C, D (sorted by the cases)

    As it can be seen, graphs for horizontal force values (graphs 3 and 4) are quite similar to those

    in case of vertical forces. On penetration values 0.5 to 1.5 all cases give quite similar results.

    On higher penetrations it can be seen that case B gives clearly lower values (average 13%) on

    all penetration depths. Reason for that is quite same as it was on case of the vertical forces.

    From the table 3 comes out that in case B tearing in inner plating occurs not before the

    penetration depth 3.5, which indicates that contact between the inner plating, and rock occurs

    later compared to other cases.

    Cases C and D give average force values equal to each other and slightly higher than cases D

    and A.

    Table 2. Horizontal force valuesPenetration/ case A B C D E

    0,5 -2,977E+06 -3,245E+06 -3,657E+06 -3,303E+06 -2,773E+06

    1 -4,606E+06 -5,206E+06 -5,237E+06 -4,854E+06 -4,796E+06

    1,5 -6,496E+06 -6,152E+06 -7,163E+06 -6,775E+06 -7,394E+06

    2 -9,157E+06 -7,562E+06 -1,040E+07 -9,348E+06 -1,062E+07

    2,5 -1,275E+07 -9,928E+06 -1,456E+07 -1,356E+07 -1,407E+07

    3 -1,500E+07 -1,291E+07 -1,577E+07 -1,498E+07 -1,713E+07

    3,5 -1,734E+07 -1,550E+07 -1,903E+07 -1,679E+07 -1,806E+07

    Average (1.5-2.5 [m]) -9,466E+06 -7,881E+06 -1,071E+07 -9,894E+06 -1,069E+07

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    16/122

    16

    Tearing width

    Flowingly tear widths are analysed. For every simulation tearing width was measured using

    measures only from that part of the model where rock was moving only horizontally and

    width of the rupture changing only slightly or was almost constant. It is necessary to do it so

    as in some cases at the very beginning of the rupture tearing width is several times higher than

    it is at the constant part. So conclusively it can be said that tear widths given in graphs x to x

    and on tables x and x describes only that part of the rupture where rock was moving only

    horizontally and not the very beginning of the rock. On appendices 1 to 6 measures are given

    both for constant width of the tearing as well as for the widest breath. Figure 7 helps to

    understand the above-described phenomena.

    Figure 7.Tearing width

    Values for the tearing widths are given in graphs 5 (outer plating) and 6 (inner plating).

    Numerically results are presented in table 3.

    CONSTANT PART

    WIDEST BREATH

    DIRECTION OF

    THE ROCK

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    17/122

    17

    1,490 1,4661,349

    1,506

    1,654

    0

    0,5

    1

    1,5

    2

    2,5

    3

    CASE A CASE B CASE C CASE D CASE E

    Rockpenetration[m]

    3.5

    3

    2.5

    2

    1.5

    1

    0.5

    Average

    Graph 5. Average breaths of the outer plating tears

    1,647

    0,490

    1,377

    0,824

    1,070

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    3,5

    CASE A CASE B CASE C CASE D CASE E

    Rockpenetration[m]

    2.5

    3

    3.5

    Average

    Graph 6. Average breaths of the inner plating tears

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    18/122

    18

    Outer plating tearing

    As it can be seen from the graph 5 differences in average tearing width values are quite small.

    Cases A, B and D give nearly similar values. Case C (plating) gives little smaller (9 %) and

    case E (girders) higher values (11 %) than other 3 cases. In case E higher tearing width can be

    explained by the higher stiffness of the double-bottom. In case of double-bottom version E

    greater number of longitudinal girders increases stiffness of the double-bottom and also rock

    causes greater damage to the double-bottom, as bottom does not follow rock movements as

    well as in other cases. In case C greater plating thickness (18 [mm]) does not ruptures as

    easily as in case of thinner (12 [mm]) plates and stronger plating also deforms inner

    constructions more easily.

    Inner plating tearing

    In case of inner bottom tearing, differences between the tearing widths are bigger. Values forthe case B (higher double-bottom) are not straight comparable to the other cases as double-

    bottom heights are different and so it gives clearly the slowest tear width value. If other four

    cases are compared it can be seen that case D (stiffeners) gives smallest and case A highest

    value. Average tear width for the case A is twice as big as it is in case of the D version. Also

    the case E (girders) gives good values compared to the cases A (35 % narrower tear) and C

    (22 % narrower). In case of the bottom version D stronger stiffeners are dividing contact force

    into a larger area and plating is deformed more widely and smoothly.

    Table 3. Values for tearing widths

    FINAL PENETRATION [m] CASE

    Outer plating A B C D E

    0,5 0,36 0,23 0,00 0,30 0,40

    1,0 0,95 0,95 0,93 0,94 0,98

    1,5 1,13 1,17 1,09 1,19 1,48

    2,0 1,47 1,46 1,27 1,46 1,70

    2,5 1,90 1,90 1,75 1,69 2,09

    3,0 1,87 2,10 2,17 2,16 2,20

    3,5 2,75 2,45 2,23 2,80 2,73

    Average 1,49 1,47 1,35 1,51 1,65Inner plating A B C D E

    0,5 0 0 0 0 0

    1 0 0 0 0 0

    1,5 0 0 0 0 0

    2 0 0 0 0 0

    2,5 0,32 0 0,28 0,141 0,31

    3 1,87 0 1,05 0,78 1,25

    3,5 2,75 0,49 2,8 1,55 1,65

    Average 1,647 0,490 1,377 0,824 1,070

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    19/122

    19

    Penetration depth and force values at the moment of tear initiation

    In every simulation rock achieves its final penetration value during the same period of time,

    but as the final penetration value is different for every simulation, rock meets structural

    members like floors, girders and stiffeners in every simulations at different positions. That is

    the reason why there is a quite big scatter in penetration values necessary to cause tearing to

    the plating. To smooth the effect the above described problem average penetration values are

    calculated and compared. Same applies also to force values at the moment of tear initiation. It

    should be noted that average values are calculated using only those values where tearing has

    already occurred.

    0,5270,493

    0,619

    0,556

    0,460

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    CASE A CASE B CASE C CASE D CASE E

    Roc

    kpenetration[m]

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    Average

    Graph 7. Penetration needed to cause tearing to the outer plating

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    20/122

    20

    -1,25E+07-1,17E+07

    -1,96E+07

    -1,38E+07

    -1,10E+07

    -2,5E+07

    -2,0E+07

    -1,5E+07

    -1,0E+07

    -5,0E+06

    0,0E+00CASE A CASE B CASE C CASE D CASE E

    Force[N]

    3.5

    3

    2

    2.5

    1.5

    10.5

    Average

    Graph 8. Force values at the moment of outer plating tear initiation

    Table 4. Penetrations at the moment of outer plating tear initiation

    Finalpenetration A B C D E

    0,5 0,47 0,479 - 0,472 0,306

    1 0,534 0,482 0,561 0,533 0,435

    1,5 0,529 0,504 0,722 0,636 0,424

    2 0,524 0,473 0,555 0,524 0,483

    2,5 0,509 0,529 0,59 0,604 0,451

    3 0,541 0,534 0,654 0,541 0,608

    3,5 0,582 0,448 0,6313 0,581 0,510

    Average 0,527 0,493 0,619 0,556 0,460

    Outer plating

    It can be seen from the graphs 7 and 8 that case E has lowest value for the penetration

    necessary to cause tearing to the outer plating. Case E is very weak especially at low final

    penetration values- 0.5 to 1.5 [m], where it ruptures in much lower penetration values

    compared to other cases. Scatter between the case E and the other cases is large-

    approximately 39 % on lower final penetration values. Scatter is decreasing when higher final

    penetration values are considered and at the end it is roughly 10 %. Cases C and D are having

    highest values for penetration before cracking occurs.

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    21/122

    21

    Table 5. Force values at the moment of outer plating tear initiation

    Final

    penetration A B C D E

    0,5 -6,91E+06 -7,80E+06 - -7,26E+06 -6,385E+06

    1 -1,13E+07 -1,00E+07 -1,52E+07 -1,26E+07 -1,030E+07

    1,5 -1,24E+07 -1,29E+07 -1,88E+07 -1,49E+07 -1,034E+07

    2 -1,25E+07 -1,22E+07 -1,67E+07 -1,38E+07 -1,028E+072,5 -1,35E+07 -1,43E+07 -1,93E+07 -1,61E+07 -1,273E+07

    3 -1,50E+07 -1,34E+07 -2,34E+07 -1,54E+07 -1,225E+07

    3,5 -1,58E+07 -1,15E+07 -2,40E+07 -1,65E+07 -1,447E+07

    Average -1,25E+07 -1,17E+07 -1,96E+07 -1,38E+07 -1,10E+07

    If forces at the moment of outer plating tear initiation are under the consideration it can be

    seen that case C (plating) gives 1.4 to 1.8 times higher force level than the other cases. Result

    is quite obvious as it indicates that to cause tearing to the 18 [mm] plating needs much higher

    force level than to cause tearing to the same type of material, but 12 [mm] in thickness. Case

    E has lowest force values and scatter between the case E and other cases is approximately

    25%. Reason for that is in small penetration values structure in case E does not bend so

    widely as it does in other cases and tearing occurs easily.

    Inner plating

    Results for the necessary penetration values and forces at the moment of tear initiation are

    given at graphs 9 and 10. Numerical results are in table 6.

    Penetration needed to cause tearing to the inner plating is quite same for all the cases except

    case B, which is obvious as case B has 50% higher double-bottom. Scatter between the cases

    A, C, D, E is approximately 5% and again case E has the lowest value.

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    22/122

    22

    2,363

    3,100

    2,351 2,3432,221

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    3,5

    CASE A CASE B CASE C CASE D CASE E

    Rockpenetration[m]

    0.5

    1

    1.5

    2

    2.5

    33.5

    Average

    Graph 9. Penetration needed to cause tearing to the inner plating

    -2,89E+07

    -3,13E+07

    -3,85E+07

    -3,35E+07

    -3,85E+07

    -5,0E+07

    -4,5E+07

    -4,0E+07

    -3,5E+07

    -3,0E+07

    -2,5E+07

    -2,0E+07

    -1,5E+07

    -1,0E+07

    -5,0E+06

    0,0E+00CASE A CASE B CASE C CASE D CASE E

    Force[N]

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    Average

    Graph 10.Forces at the moment of inner plating tear initiation

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    23/122

    23

    In case of the force values at the moment of tear initiation differences are much bigger. Also

    relations between the cases are different as they were in case of the penetrations. Case A gives

    the lowest value and cases C and E are having equal force value, which is also the highest

    value. In both cases (C and E) it can be explained by the fact that amount of the deformation

    work to be done in order to cause tearing to the inner plating is higher and the double-bottom

    still has high resistance against further rock movements.

    Table 6. Penetration needed to cause tearing to the inner plating

    Finalpenetration A B C D E

    0,5 - - - - -

    1 - - - - -

    1,5 - - - - -

    2 - - - - -

    2,5 2,36 - 2,35 2,43 2,36

    3 2,3 - 2,4 2,3 2,42

    3,5 2,43 3,1 2,302 2,3 1,88

    Average 2,363 3,100 2,351 2,343 2,221

    Table 7. Force values at the moment of inner plating tear initiation

    Finalpenetration A B C D E

    0,5 - - - - -

    1 - - - - -1,5 - - - - -

    2 - - - - -

    2,5 -2,33E+07 - -2,86E+07 -2,56E+07 -3,379E+07

    3 -3,63E+07 - -4,33E+07 -3,55E+07 -4,556E+07

    3,5 -2,72E+07 -3,13E+07 -4,37E+07 -3,93E+07 -3,625E+07

    Average -2,89E+07 -3,13E+07 -3,85E+07 -3,35E+07 -3,85E+07

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    24/122

    24

    CASES A, A2, A3

    In cases A, A2 and A3 double-bottom design remains the same, but rock radius is changed

    and has values 1.1, 2 and 3 [m]. By comparing those 3 cases it is possible to evaluate what

    kind of effect rock radius has to tearing properties and force values.

    Average vertical and horizontal forces

    Average vertical and horizontal forces are presented on graphs 11, 12 and in table 8.

    -3,5E+07

    -3,0E+07

    -2,5E+07

    -2,0E+07

    -1,5E+07

    -1,0E+07

    -5,0E+06

    0,0E+00

    0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0

    Penetration (m)

    Force(N)

    CASE A (r=1.1)

    CASE A2 (r=2)

    CASE A3 (r=3)

    Graph 11.Average vertical forces

    If vertical force values are considered (graph 11) it can be seen that increasing rock radius

    from 1.1 [m] to 2 [m] increases force level approximately 1.25 times and increasing radius

    from 1.1 to 3 [m] increases force level 1.6 times.

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    25/122

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    26/122

    26

    Tear width

    If tear width values are considered it can be seen that in case of outer plating it is hard to find

    some trend how rock radius affects the tear width. Average tear width values are 1.49, 1.38,

    1.54 [m] for rock radiuses respectively 1.1, 2.0 and 3.0 [m]. As it can be seen from the results

    that increasing the rock radius decreases the tear width or vice versa. It can be explained by

    the fact that rocks with different radiuses meet the structural members (especially girders) on

    different positions and girders and plates are deformed by different mechanisms.

    0

    0,5

    1

    1,5

    2

    2,5

    3

    CASE A CASE A2 CASE A3

    Penetration[m]

    3,5

    3

    2,5

    2

    1,5

    1

    0,5

    Average

    Graph 13. Average breaths of the outer plating tears

    In case of inner plating tearing it is easy to see that higher rock radiuses decrease the tear

    width. In case of larger rock double-bottom is bended more heavily and rock also does not

    start to cut the inner plating so early.

    1.49

    1.38

    1.54

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    27/122

    27

    0

    0,5

    1

    1,5

    2

    2,5

    3

    CASE A CASE A2 CASE A3

    Penetration[m]

    3,5

    3

    2,5

    Average

    Graph 14.Average breaths of the inner plating tears

    Numerical results for the outer and inner plating tear breaths are given in table 9.

    Table 9. Tear breaths

    OUTER PLATING INNER PLATINGPenetration A A2 A3 A A2 A3

    0,5 0,36 - - - - -

    1,0 0,95 0,61 - - - -

    1,5 1,13 1,09 0,84 - - -

    2,0 1,47 1,356 1,25 - - -

    2,5 1,9 1,56 1,48 0,32 - -

    3,0 1,87 1,256 1,935 0,6687 0,69 0,49

    3,5 2,75 2,4 2,21 2,73 1,66 1,27

    Average 1,49 1,38 1,543 1,24 1,18 0,88

    1.241.18

    0.88

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    28/122

    28

    Penetration depth and force values at the moment of tear initiation

    Penetration and force values at the moment of outer plating tear initiation are given on graphs

    15, 16 and in table 10.

    0,527

    0,881

    1,341

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    CASE A CASE A2 CASE A3

    Pe

    netration[m]

    3,5

    3

    2,5

    2

    1,5

    1

    0,5

    Average

    Graph 15.Necessary penetration values to cause tearing to the outer plating

    From the graphs for the outer plating penetration and forces comes out that increasing rock

    radius clearly increases force level and also rock goes deeper to the double-bottom before its

    plating starts tearing. Reason for that is obviously larger deformable volume and wider

    bending of the whole double-bottom.

    In case of penetration values there is almost linear correlation between the rock radius and the

    necessary penetration. When rock radius is increased 1.8 times (2/1.1) average necessary

    penetration value increases 1.67 times (0.881/0.527) and when rock radius is increased 2.7times (3/1.1) average necessary penetration value increases 2.55 times (1.341/0.527).

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    29/122

    29

    -1,25E+07

    -2,20E+07-2,32E+07

    -3,5E+07

    -3,0E+07

    -2,5E+07

    -2,0E+07

    -1,5E+07

    -1,0E+07

    -5,0E+06

    0,0E+00

    CASE A CASE A2 CASE A3

    Force[m]

    3,5

    3

    2,5

    2

    1,5

    1

    0,5

    Average

    Graph 16.Forces at the moment of outer plating tear initiation

    In case of the force values linear correlation does not apply anymore and changing radius

    from 1.1 to 2 [m] increases average force level 1.76 times, but increase from 1.1 to 3 [m]

    increases it only 1.86 times.

    Table 10. Penetration depths and force values at the moment of outer plating tear

    initiation

    Penetration Force

    Finalpenetration A A2 A3 A A2 A3

    0,5 0,470 - - -6,91E+06 - -

    1,0 0,534 0,776 - -1,13E+07 -1,84E+07 -

    1,5 0,529 0,836 0,905 -1,24E+07 -2,16E+07 -3,13E+07

    2,0 0,524 0,852 1,298 -1,25E+07 -2,64E+07 -2,49E+07

    2,5 0,509 0,815 1,042 -1,35E+07 -2,56E+07 -1,76E+07

    3,0 0,541 0,926 1,250 -1,50E+07 -2,01E+07 -1,85E+07

    3,5 0,580 1,080 2,210 -1,58E+07 -1,97E+07 -2,37E+07

    Average 0,527 0,881 1,341 -1,25E+07 -2,20E+07 -2,32E+07

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    30/122

    30

    Inner plating

    Penetration depths and force values at the moment of inner plating tear initiation are given on

    graphs 17, 18 and in table 11.

    2,365

    2,564

    2,754

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    CASE A CASE A2 CASE A3

    Penetration[m]

    3,5

    3

    2,5

    Average

    Graph 17.Necessary penetration values to cause tearing to the inner plating

    As it can be seen from the graph 17 rock radius clearly increases the necessary penetration

    values, but not as strongly as it was in case of the outer plating tear. Increasing radius from

    1.1 to 2 or to 3[m] necessary penetration values increase respectively 1.08 or 1.16 times.

    In case of the force values (graph 18) appear that effect of the rock radius is different from the

    effect in case of the outer plating. Changing rock radius from 1.1 to 2 [m] increases the force

    level 1.5 times and when radius is changed to 3 [m] force level rises 2.0 times.

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    31/122

    31

    -2,90E+07

    -4,40E+07

    -5,90E+07

    -7,0E+07

    -6,0E+07

    -5,0E+07

    -4,0E+07

    -3,0E+07

    -2,0E+07

    -1,0E+07

    0,0E+00

    CASE A CASE A2 CASE A3

    Force[m]

    3,5

    3

    2,5

    Average

    Graph 18.Forces at the moment of inner plating tear initiation

    Table 11. Penetration depths and force values at the moment of inner plating tear

    initiation

    Necessary penetration Forces at the moment of tear initiationFinal

    penetration A A2 A3 A A2 A3

    0,5 - - - - - -

    1,0 - - - - - -

    1,5 - - - - - -

    2,0 - - - - - -

    2,5 2,362 - - -2,33E+07 - -

    3,0 2,304 2,643 2,712 -3,63E+07 -4,55E+07 -5,47E+07

    3,5 2,430 2,486 2,796 -2,72E+07 -4,24E+07 -6,32E+07

    Average 2,365 2,564 2,754 -2,90E+07 -4,40E+07 -5,90E+07

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    32/122

    32

    Literature

    1. LS-Dyna theoretical manual

    2. LS-Dyna user manual

    Appendices

    Appendix 1 Case A

    Appendix 2 Case B

    Appendix 3 Case C

    Appendix 4 Case D

    Appendix 5 Case A2

    Appendix 6 Case A3

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    33/122

    A1.1 APPENDIX 1. Case A (Basic)

    DB I CASE A (Basic)

    Measures

    Cone top radius 1.1 [m]Double-bottom

    Lenght 12 [m]

    Breath 17 [m]Height 1.6 [m]

    Girders

    Thickness 0.011 [m]

    Spacing 4.26

    Girder stiffeners

    Thickness 0.012 [m]

    Breath 0.15 [m]

    Spacing0.8

    [m]

    Floors

    Thickness 0.011 [m]

    Spacing 2.4 [m]

    Floor stiffeners

    Thickness 0.012 [m]

    Breath 0.15 [m]

    Spacing 0.71 [m]

    External platingThickness 0.012 [m]

    Internal plating

    Thickness 0.017 [m]

    Plating stiffeners

    bottom

    Height 0.26 [m]

    Thickness 0.00361/0.26 [m]

    Spacing 0.71 [m]

    tank-top

    Height 0.26 [m]

    Thickness 0.00361/0.26 [m]

    Spacing 0.71 [m]

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    34/122

    A1.2 APPENDIX 1. Case A (Basic)

    DB I CASE A (Basic)

    Velocity of the ship 15 m/s

    Approach of the rock to db 0.5 m

    Tear to outer plating (values in the moment ofinitiation)

    time 2.18E-01 sec

    x-disp 3.25E+00 m

    z-disp 4.70E-01 m

    x-force -2.56E+06 N

    z-force -6.91E+06 N

    Average breath of the tear 3.60E-01 m

    Average X- force -2.98E+06 N

    Average Z-force -5.45E+06 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    35/122

    A1.3 APPENDIX 1. Case A (Basic)

    X-force (H=0.5 m)

    -6.E+06

    -5.E+06

    -4.E+06

    -3.E+06

    -2.E+06

    -1.E+06

    0.E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    x-force

    (N)

    Initiation of op tear

    x-force

    Average

    Z- force (H=0.5 m)-1.E+07

    -9.E+06

    -8.E+06

    -7.E+06

    -6.E+06

    -5.E+06

    -4.E+06

    -3.E+06

    -2.E+06

    -1.E+06

    0.E+00

    0 1 2 3 4 5 6 7 8 9 10

    x- displacement (m)

    z-force(N)

    Z-force

    Initiation of op tear

    Average

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    36/122

    A1.4 APPENDIX 1. Case A (Basic)

    DB I CASE A

    Velocity of the ship 15 m/s

    Approach of the rock to db 1.0 m

    Tear to outer plating (values in themoment of initiation)

    time 1.40E-01 sec

    x-disp 2.08E+00 m

    z-disp 5.34E-01 m

    x-force -3.37E+06 N

    z-force -1.13E+07 N

    Average breath of the tear 9.50E-01 m

    Average X- force -4.61E+06 N

    Average Z-force -6.35E+06 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    37/122

    A1.5 APPENDIX 1. Case A (Basic)

    X-force (H=1.0 m)

    -8.E+06

    -7.E+06

    -6.E+06

    -5.E+06

    -4.E+06

    -3.E+06

    -2.E+06

    -1.E+06

    0.E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    x-force

    (N)

    x-force

    Initation of op tear

    Average

    Z- force (H=1.0 m)

    -1.25E+07

    -1.05E+07

    -8.50E+06

    -6.50E+06

    -4.50E+06

    -2.50E+06

    -5.00E+05

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    z-force(n)

    z-force

    Initation of op tear

    Average

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    38/122

    A1.6 APPENDIX 1. Case A (Basic)

    DB I CASE A

    Velocity of the ship 15 m/s

    Approach of the rock to db 1.5 m

    Tear to outer plating (values in the moment ofinitiation)

    time 1.13E-01 sec

    x-disp 1.69E+00 m

    z-disp 5.29E-01 m

    x-force -3.74E+06 N

    z-force -1.24E+07 N

    Average breath of the tear 1.13E+00 m

    Average X- force -6.50E+06 N

    Average Z-force -9.32E+06 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    39/122

    A1.7 APPENDIX 1. Case A (Basic)

    X-force (H=1.5 m)

    -9.E+06

    -8.E+06

    -7.E+06

    -6.E+06

    -5.E+06

    -4.E+06

    -3.E+06

    -2.E+06

    -1.E+06

    0.E+000 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    x-force(N)

    X-force

    Initation of op tear

    Average

    Z- force (H=1.5 m)

    -1.3E+07

    -1.1E+07

    -9.0E+06

    -7.0E+06

    -5.0E+06

    -3.0E+06

    -1.0E+06

    0 1 2 3 4 5 6 7 8 9 10

    x-displaceme nt (m )

    z-force

    (N)

    Z-force

    Initation o f op tear

    Average

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    40/122

    A1.8 APPENDIX 1. Case A (Basic)

    DB I CASE A

    Velocity of the ship 15 m/s

    Approach of the rock to db 2.0 m

    Tear to outer plating (values in the moment of initiation)

    time 9.98E-02 sec

    x-disp 1.49E+00 m

    z-disp 5.24E-01 m

    x-force -3.23E+06 N

    z-force -1.25E+07 N

    Average breath of the tear 1.47E+00 m

    Average X- force -9.16E+06 N

    Average Z-force -1.42E+07 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    41/122

    A1.9 APPENDIX 1. Case A (Basic)

    X-force (H=2.0 m)

    -1.35E+07

    -1.15E+07

    -9.50E+06

    -7.50E+06

    -5.50E+06

    -3.50E+06

    -1.50E+06

    0 1 2 3 4 5 6 7 8 9 10

    x-displaceme nt (m)

    x-force

    (N)

    x-force

    Initiation of op tear

    Average

    Z- force (H=2.0 m )

    -2.5E+07

    -2.0E+07

    -1.5E+07

    -1.0E+07

    -5.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    z-force(N)

    Z-force

    Initiation of op tear

    Average

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    42/122

    A1.10 APPENDIX 1. Case A (Basic)

    DB I CASE A

    Velocity of the ship 15 m/s

    Approach of the rock to db 2.5 m

    Tear to outer plating (values in the moment ofinitiation)

    time 9.09E-02 sec

    x-disp 1.35E+00 m

    z-disp 5.09E-01 m

    x-force -2.33E+06 N

    z-force -1.35E+07 N

    Average breath of the op tear 1.90E+00 m

    Tear to inner bottom (values in the moment ofinitiation)

    time 2.11E-01 sec

    x-disp 3.15E+00 m

    z-disp 2.36E+00 m

    x-force -1.03E+07 N

    z-force -2.33E+07 N

    Average breath of the ib tear 3.20E-01 m

    Average X- force -1.27E+07 N

    Average Z-force -1.87E+07 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    43/122

    A1.11 APPENDIX 1. Case A (Basic)

    x-force (H=2.5 m)

    -1.8E+07

    -1.6E+07

    -1.4E+07

    -1.2E+07

    -1.0E+07

    -8.0E+06

    -6.0E+06

    -4.0E+06

    -2.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacem ent (m)

    x-force(N)

    X-force

    Initation of op tearInitation of ib tear

    Average

    Z- force (H=2.5 m)-2.6E+07

    -2.1E+07

    -1.6E+07

    -1.1E+07

    -6.0E+06

    -1.0E+06

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    z-force

    (N)

    Initation of op tear

    Initation of ib tear

    Average

    z-force

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    44/122

    A1.12 APPENDIX 1. Case A (Basic)

    DB I CASE AVelocity of the ship 15 m/s

    Approach of the rock to db 3.0 m

    Tear to outer plating (values in the moment ofinitiation)

    time 8.58E-02 sec

    x-disp 1.29E+00 m

    z-disp 5.41E-01 m

    x-force - N

    z-force -1.50E+07 N

    Average breath of the op tear 5,178x1,87 m

    Tear to inner bottom (values in the moment ofinitiation)

    time 1.72E-01 sec

    x-disp 2.57E+00 m

    z-disp 2.30E+00 m

    x-force - N

    z-force -3.63E+07 N

    Average breath of the ib tear 6.69E-01 m

    Average X- force 0.00E+00 N

    Average Z-force -2.06E+07 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    45/122

    A1.13 APPENDIX 1. Case A (Basic)

    Z- force (H=3.0 m)

    -3.9E+07

    -3.4E+07

    -2.9E+07

    -2.4E+07

    -1.9E+07

    -1.4E+07

    -9.0E+06

    -4.0E+06

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    z-displacement(N)

    Initation of op tear

    Initation of ib tear

    Average

    z-force

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    46/122

    A1.14 APPENDIX 1. Case A (Basic)

    DB I CASE A

    29-Nov-01

    Velocity of the ship 15 m/sApproach of the rock to db 3.5 m

    Tear to outer plating (values in the moment ofinitiation)

    time 8.32E-02 sec

    x-disp 1.25E+00 m

    z-disp 5.82E-01 m

    x-force -1.17E+06 N

    z-force -1.58E+07 NAverage breath of the op tear 6.91x2.75 m

    Tear to inner bottom (values in the moment ofinitiation)

    time 1.60E-01 sec

    x-disp 2.40E+00 m

    z-disp 2.43E+00 m

    x-force -9.64E+06 N

    z-force -2.72E+07 NAverage breath of the ib tear 2.73 m

    Average X- force -1.73E+07 N

    Average Z-force -2.23E+07 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    47/122

    A1.15 APPENDIX 1. Case A (Basic)

    x-force (H=3.5 m)

    -2.2E+07

    -2.0E+07

    -1.7E+07

    -1.5E+07

    -1.2E+07

    -9.5E+06

    -7.0E+06

    -4.5E+06

    -2.0E+06

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    x-force(N)

    X-force

    Initation of op tear

    Initation of ib tear

    Average

    Z- force (H=3.5 m)

    -4.0E+07

    -3.5E+07

    -3.0E+07

    -2.5E+07

    -2.0E+07

    -1.5E+07

    -1.0E+07

    -5.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    z-force

    (N)

    Initation of op tearInitation of ib tear

    Average

    z-force

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    48/122

    A2.1 APPENDIX 2. Case B (DB height)

    DB I CASE B

    Measures

    Double-bottom

    Lenght 12 [m]

    Breath 17 [m]

    Height 2.4 [m]

    Girders

    Thickness 0.011 [m]

    Spacing 4.26

    Girder stiffeners

    Thickness 0.012 [m]

    Breath 0.15 [m]

    Spacing 0.8 [m]

    FloorsThickness 0.011 [m]

    Spacing 2.4 [m]

    Floor stiffeners

    Thickness 0.012 [m]

    Breath 0.15 [m]

    Spacing 0.71 [m]

    External plating

    Thickness 0.012 [m]

    Internal plating

    Thickness 0.017 [m]

    Plating stiffeners

    bottom

    Height 0.3 [m]

    Thickness 0.00361/0.26 [m]

    Spacing 0.71 [m]

    tank-top

    Height 0.26 [m]

    Thickness 0.00361/0.26 [m]

    Spacing 0.71 [m]

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    49/122

    A2.2 APPENDIX 2. Case B (DB height)

    DB I CASE B

    Velocity of the ship 15 m/s

    Approach of the rock to db 0.5 m

    Tear to outer plating (values in the moment of initiation)

    time 2.47E-01 sec

    x-disp 3.69E+00 m

    z-disp 4.79E-01 m

    x-force -3.18E+06 N

    z-force -7.80E+06 N

    Average breath of the tear 2.30E-01 m

    Average X- force -3.24E+06 N

    Average Z-force -5.82E+06 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    50/122

    A2.3 APPENDIX 2. Case B (DB height)

    X-force (H=0.5 m)-6.E+06

    -5.E+06

    -4.E+06

    -3.E+06

    -2.E+06

    -1.E+06

    0.E+00

    0 1 2 3 4 5 6 7 8 9 10x-displacement (m)

    x-force

    (N)

    Initiation o f op tear

    x-forceAverage

    Z- force (H=0.5 m )-1.E+07

    -9.E+06

    -8.E+06

    -7.E+06

    -6.E+06

    -5.E+06

    -4.E+06

    -3.E+06

    -2.E+06

    -1.E+06

    0.E+00

    0 1 2 3 4 5 6 7 8 9 10

    x- displacement (m)

    z-force

    (N)

    Z-force

    Initiation of op tear

    Average

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    51/122

    A2.4 APPENDIX 2. Case B (DB height)

    DB I CASE B

    Velocity of the ship 15 m/s

    Approach of the rock to db 1.0 m

    Tear to outer plating (values in the moment ofinitiation)

    time 1.32E-01 sec

    x-disp 1.97E+00 m

    z-disp 4.82E-01 m

    x-force -3.41E+06 N

    z-force -1.00E+07 N

    Average breath of the tear 9.50E-01 m

    Average X- force -5.21E+06 N

    Average Z-force -7.26E+06 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    52/122

    A2.5 APPENDIX 2. Case B (DB height)

    X-force (H=1.0 m)

    -8.E+06

    -7.E+06

    -6.E+06

    -5.E+06

    -4.E+06

    -3.E+06

    -2.E+06

    -1.E+06

    0.E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacem ent (m)

    x-force

    (N)

    x-force

    Initation of op tearAverage

    Z- force (H=1.0 m)

    -1.25E+07

    -1.05E+07

    -8.50E+06

    -6.50E+06

    -4.50E+06

    -2.50E+06

    -5.00E+05

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement(m)

    z-force

    (n)

    z-force

    Initation of op tear

    Average

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    53/122

    A2.6 APPENDIX 2. Case B (DB height)

    DB I CASE B

    Velocity of the ship 15 m/s

    Approach of the rock to db 1.5 m

    Tear to outer plating (values in the moment ofinitiation)

    time 1.11E-01 sec

    x-disp 1.66E+00 m

    z-disp 5.04E-01 m

    x-force -3.91E+06 N

    z-force -1.29E+07 N

    Average breath of the tear 1.17E+00 m

    Average X- force -6.15E+06 N

    Average Z-force -8.63E+06 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    54/122

    A2.7 APPENDIX 2. Case B (DB height)

    X-force (H=1.5 m)

    -9.E+06

    -8.E+06

    -7.E+06

    -6.E+06

    -5.E+06

    -4.E+06

    -3.E+06

    -2.E+06

    -1.E+06

    0.E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    x-force

    (N)

    X- force

    Initation of op tear

    Average

    Z- force (H=1.5 m)

    -1.4E+07

    -1.2E+07

    -1.0E+07

    -8.0E+06

    -6.0E+06

    -4.0E+06

    -2.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    z-force

    (N)

    Z-force

    Initation of op tear

    Average

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    55/122

    A2.8 APPENDIX 2. Case B (DB height)

    DB I CASE B

    Velocity of the ship 15 m/s

    Approach of the rock to db 2.0 m

    Tear to outer plating (values in the moment ofinitiation)

    time 9.60E-02 sec

    x-disp 1.43E+00 m

    z-disp 4.73E-01 m

    x-force -2.88E+06 N

    z-force -1.22E+07 N

    Average breath of the tear 1.46E+00 m

    Average X- force -7.56E+06 N

    Average Z-force -1.09E+07 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    56/122

    A2.9 APPENDIX 2. Case B (DB height)

    X-force (H=2.0 m)-1.1E+07

    -9.0E+06

    -7.0E+06

    -5.0E+06

    -3.0E+06

    -1.0E+06

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    x-force

    (N)

    x-force

    Initiation o f op tear

    Average

    Z- force (H=2.0 m)

    -1.6E+07

    -1.4E+07

    -1.2E+07

    -1.0E+07

    -8.0E+06

    -6.0E+06

    -4.0E+06

    -2.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacem ent (m)

    z-force(N)

    Z-force

    Initiation of op tear

    Average

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    57/122

    A2.10 APPENDIX 2. Case B (DB height)

    DB I CASE B

    Velocity of the ship 15 m/s

    Approach of the rock to db 2.5 m

    Tear to outer plating (values in the moment ofinitiation)

    time 9.22E-02 sec

    x-disp 1.37E+00 m

    z-disp 5.29E-01 m

    x-force -2.41E+06 N

    z-force -1.43E+07 N

    Average breath of the tear 1.90E+00 m

    Average X- force -9.93E+06 N

    Average Z-force -1.44E+07 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    58/122

    A2.11 APPENDIX 2. Case B (DB height)

    X-force (H=2.5 m)

    -1.30E+07

    -1.10E+07

    -9.00E+06

    -7.00E+06

    -5.00E+06

    -3.00E+06

    -1.00E+06

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    x-force

    (N)

    x-forceInitiation of op tear

    Average

    Z- force (H=2.5 m)

    -2.0E+07

    -1.8E+07

    -1.6E+07

    -1.4E+07

    -1.2E+07

    -1.0E+07

    -8.0E+06

    -6.0E+06

    -4.0E+06

    -2.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    z-force

    (N)

    Z-force

    Initiation of op tear

    Average

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    59/122

    A2.12 APPENDIX 2. Case B (DB height)

    DB I CASE B

    Velocity of the ship 15 m/s

    Approach of the rock to db 3.0 m

    Tear to outer plating (values in the moment of initiation)

    time 8.58E-02 sec

    x-disp 1.28E+00 m

    z-disp 5.34E-01 m

    x-force -1.88E+06 N

    z-force -1.34E+07 N

    Average breath of the tear 2.10E+00 m

    Average X- force -1.29E+07 N

    Average Z-force -1.99E+07 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    60/122

    A2.13 APPENDIX 2. Case B (DB height)

    X-force (H=3.0 m)

    -1.7E+07

    -1.5E+07

    -1.3E+07

    -1.1E+07

    -9.0E+06

    -7.0E+06

    -5.0E+06

    -3.0E+06

    -1.0E+06

    0 1 2 3 4 5 6 7 8 9 10

    x-displacem ent (m)

    x-force

    (N)

    X- force

    Initation of op tear

    Average

    Z- force (H=3.0 m)

    -2.5E+07

    -2.3E+07

    -2.0E+07

    -1.8E+07

    -1.5E+07

    -1.3E+07

    -1.0E+07

    -7.5E+06

    -5.0E+06

    -2.5E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    z-force

    (N)

    Z- force

    Initation of op tear

    Average

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    61/122

    A2.14 APPENDIX 2. Case B (DB height)

    DB I CASE B

    23-Oct-01

    Velocity of the ship 15 m/sApproach of the rock to db 3.5 m

    Tear to outer plating (values in the moment ofinitiation)

    time 7.68E-02 sec

    x-disp 1.14E+00 m

    z-disp 4.48E-01 m

    x-force -1.73E+06 N

    z-force -1.15E+07 NAverage breath of the op tear 2.45E+00 m

    Tear to inner bottom (values in the moment ofinitiation)

    time 1.95E-01 sec

    x-disp 2.89E+00 m

    z-disp 3.10E+00 m

    x-force -1.17E+07 N

    z-force -3.13E+07 NAverage breath of the ib tear 4.90E-01 m

    Average X- force -1.55E+07 N

    Average Z-force -2.32E+07 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    62/122

    A2.15 APPENDIX 2. Case B (DB height)

    X-force (H=3.5 m)

    -1.9E+07

    -1.7E+07

    -1.5E+07

    -1.3E+07

    -1.1E+07

    -9.0E+06

    -7.0E+06

    -5.0E+06

    -3.0E+06

    -1.0E+06

    0 1 2 3 4 5 6 7 8 9 10

    x-displacem ent (m)

    x-force

    (N)

    X- force

    Initiation of op tear

    Average

    Initiation of IB tear

    Z- force (H=3.5 m)

    -3.6E+07

    -3.1E+07

    -2.6E+07

    -2.1E+07

    -1.6E+07

    -1.1E+07

    -6.0E+06

    -1.0E+06

    0 1 2 3 4 5 6 7 8 9 10

    x-displacem ent (m)

    z-force

    (N)

    Z- force

    Average

    Initiation of op tear

    Initiation of IB tear

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    63/122

    A3.1 APPENDIX 3. Case C (Plating thickness)

    DB I CASE C

    Measures

    Double-bottom

    Lenght 12 [m]

    Breath 17 [m]

    Height 1.6 [m]

    Girders

    Thickness 0.011 [m]

    Spacing 4.26

    Girder stiffeners

    Thickness 0.012 [m]

    Breath 0.15 [m]

    Spacing 0.8 [m]

    FloorsThickness 0.011 [m]

    Spacing 2.4 [m]

    Floor stiffeners

    Thickness 0.012 [m]

    Breath 0.15 [m]

    Spacing 0.71 [m]

    External plating

    Thickness 0.018 [m]

    Internal plating

    Thickness 0.017 [m]

    Plating stiffeners

    bottom

    Height 0.26 [m]

    Thickness 0.00361/0.26 [m]

    Spacing 0.71 [m]

    inner bottom

    Height 0.26 [m]

    Thickness 0.00361/0.26 [m]

    Spacing 0.71 [m]

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    64/122

    A3.2 APPENDIX 3. Case C (Plating thickness)

    DB I CASE C

    Velocity of the ship 15 m/s

    Approach of the rock to db 0.5 m

    Tear to outer plating (values in the moment of initiation)

    time no tear to op. sec

    x-disp no tear to op. m

    z-disp no tear to op. m

    x-force no tear to op. N

    z-force no tear to op. N

    Average breath of the tear no tear to op. m

    Average X- force -3.66E+06 N

    Average Z-force -8.59E+06 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    65/122

    A3.3 APPENDIX 3. Case C (Plating thickness)

    X-force (H=0.5 m)

    -6.0E+06

    -5.0E+06

    -4.0E+06

    -3.0E+06

    -2.0E+06

    -1.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacem ent (m)

    x-force

    (N)

    x-force

    Average

    Z- force (H=0.5 m)

    -1.1E+07

    -9.0E+06

    -7.0E+06

    -5.0E+06

    -3.0E+06

    -1.0E+06

    0 1 2 3 4 5 6 7 8 9 10

    x- displacement (m)

    z-force

    (N)

    Z-force

    Average

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    66/122

    A3.4 APPENDIX 3. Case C (Plating thickness)

    DB I CASE C

    Velocity of the ship 15 m/s

    Approach of the rock to db 1.0 m

    Tear to outer plating (values in the moment ofinitiation)

    time 1.43E-01 sec

    x-disp 2.14E+00 m

    z-disp 5.61E-01 m

    x-force -3.77E+06 N

    z-force -1.52E+07 N

    Average breath of the tear 9.30E-01 m

    Average X- force -5.24E+06 N

    Average Z-force -7.41E+06 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    67/122

    A3.5 APPENDIX 3. Case C (Plating thickness)

    X-force (H=1.0 m)

    -8.E+06

    -7.E+06

    -6.E+06

    -5.E+06

    -4.E+06

    -3.E+06

    -2.E+06

    -1.E+06

    0.E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    x-force

    (N)

    x-force

    Initation of op tear

    Average

    Z- force (H=1.0 m )

    -1.6E+07

    -1.4E+07

    -1.2E+07

    -1.0E+07

    -8.0E+06

    -6.0E+06

    -4.0E+06

    -2.0E+06

    0.0E+00

    0 2 4 6 8 10

    x-displacem ent (m)

    z-force

    (n)

    z-force

    Average

    Initation of op. tear

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    68/122

    A3.6 APPENDIX 3. Case C (Plating thickness)

    DB I CASE C

    Velocity of the ship 15 m/s

    Approach of the rock to db 1.5 m

    Tear to outer plating (values in the moment of initiation)

    time 1.32E-01 sec

    x-disp 1.96E+00 m

    z-disp 7.22E-01 m

    x-force -3.86E+06 N

    z-force -1.88E+07 N

    Average breath of the tear 1.09E+00 m

    Average X- force -7.16E+06 N

    Average Z-force -1.05E+07 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    69/122

    A3.7 APPENDIX 3. Case C (Plating thickness)

    X-force (H=1.5 m)

    -1.0E+07

    -9.0E+06

    -8.0E+06

    -7.0E+06

    -6.0E+06

    -5.0E+06

    -4.0E+06

    -3.0E+06

    -2.0E+06

    -1.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    x-force

    (N)

    X-force

    Initation of op tear

    Average

    Z- force (H=1.5 m)

    -2.0E+07

    -1.8E+07

    -1.6E+07

    -1.4E+07

    -1.2E+07

    -1.0E+07

    -8.0E+06

    -6.0E+06

    -4.0E+06

    -2.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    z-force

    (N)

    Z-force

    Initation of op tear

    Average

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    70/122

    A3.8 APPENDIX 3. Case C (Plating thickness)

    DB I CASE C

    Velocity of the ship 15 m/s

    Approach of the rock to db 2.0 m

    Tear to outer plating (values in the moment of initiation)

    time 1.02E-01 sec

    x-disp 1.52E+00 m

    z-disp 5.55E-01 m

    x-force -3.96E+06 N

    z-force -1.67E+07 N

    Average breath of the tear 1.27E+00 m

    Average X- force -1.04E+07 N

    Average Z-force -1.66E+07 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    71/122

    A3.9 APPENDIX 3. Case C (Plating thickness)

    X-force (H=2.0 m)

    -1.5E+07

    -1.3E+07

    -1.1E+07

    -9.0E+06

    -7.0E+06

    -5.0E+06

    -3.0E+06

    -1.0E+06

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    x-force

    (N)

    x-force

    Initiation of op tearAverage

    Z- force (H=2.0 m)

    -2.5E+07

    -2.0E+07

    -1.5E+07

    -1.0E+07

    -5.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    z-force

    (N)

    Z-force

    Initiation of op tear

    Average

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    72/122

    A3.10 APPENDIX 3. Case C (Plating thickness)

    DB I CASE C

    Velocity of the ship 15 m/s

    Approach of the rock to db 2.5 m

    Tear to outer plating (values in the moment ofinitiation)

    time 9.60E-02 sec

    x-disp 1.43E+00 m

    z-disp 5.90E-01 m

    x-force -4.05E+06 N

    z-force -1.93E+07 N

    Average breath of the op tear 1.75E+00 m

    Tear to inner bottom (values in the moment ofinitiation)

    time 2.11E-01 sec

    x-disp 3.14E+00 m

    z-disp 2.35E+00 m

    x-force -1.16E+07 N

    z-force -2.86E+07 N

    Average breath of the ib tear 2.80E-01 m

    Average X- force -1.46E+07 N

    Average Z-force -2.21E+07 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    73/122

    A3.11 APPENDIX 3. Case C (Plating thickness)

    x-force (H=2.5 m)

    -2.1E+07

    -1.9E+07

    -1.6E+07

    -1.4E+07

    -1.1E+07

    -8.5E+06

    -6.0E+06

    -3.5E+06

    -1.0E+06

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    x-force

    (N)

    X-force

    Initation of op tearInitation of ib tear

    Average

    Z- force (H=2.5 m)-3.1E+07

    -2.6E+07

    -2.1E+07

    -1.6E+07

    -1.1E+07

    -6.0E+06

    -1.0E+06

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    z-force

    (N)

    Initation of op tear

    Initation of ib tear

    Average

    z-force

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    74/122

    A3.12 APPENDIX 3. Case C (Plating thickness)

    DB I CASE C

    Velocity of the ship 15 m/s

    Approach of the rock to db 3.0 m

    Tear to outer plating (values in the moment of initiation)

    time 9.216E-02 sec

    x-disp 1.382E+00 m

    z-disp 6.54E-01 m

    x-force -1.822E+06 N

    z-force -2.34E+07 N

    Average breath of the op tear 6.01x2,1725 m

    Tear to inner bottom (values in the moment of initiation)

    time 1.766E-01 sec

    x-disp 2.650E+00 m

    z-disp 2.40E+00 m

    x-force -1.242E+06 N

    z-force -4.33E+07 N

    Average breath of the ib tear 1.05E+00 m

    Average X- force -1.58E+07 N

    Average Z-force -2.28E+07 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    75/122

    A3.13 APPENDIX 3. Case C (Plating thickness)

    x-force (H=3.0 m)

    -2.3E+07

    -2.1E+07

    -1.8E+07

    -1.6E+07

    -1.3E+07

    -1.1E+07

    -8.0E+06

    -5.5E+06

    -3.0E+06

    -5.0E+05

    0 1 2 3 4 5 6 7 8 9 10

    x-displaceme nt (m)

    x-force

    (N)

    X-force

    Initation of op tear

    Initation o f ib tear

    Average

    Z- force (H=3.0 m)

    -4.5E+07

    -4.0E+07

    -3.5E+07

    -3.0E+07

    -2.5E+07

    -2.0E+07

    -1.5E+07

    -1.0E+07

    -5.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    z-force

    (N)

    Initation of op tear

    Initation of ib tear

    Average

    z-force

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    76/122

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    77/122

    A3.15 APPENDIX 3. Case C (Plating thickness)

    x-force (H=3.5 m)

    -2.5E+07

    -2.3E+07

    -2.0E+07

    -1.8E+07

    -1.5E+07

    -1.3E+07

    -1.0E+07

    -7.5E+06

    -5.0E+06

    -2.5E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displaceme nt (m)

    x-force(N)

    X-force

    Initation of op tear

    Initation of ib tear

    Average

    Z- force (H=3.5 m)

    -5.0E+07

    -4.5E+07

    -4.0E+07

    -3.5E+07

    -3.0E+07

    -2.5E+07

    -2.0E+07

    -1.5E+07

    -1.0E+07

    -5.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displaceme nt (m)

    z-force

    (N)

    Initation of op tear

    Initation of ib tear

    Average

    z-force

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    78/122

    A4.1 APPENDIX 4. Case D (Stiffeners)

    DB I CASE D

    Measures

    Double-bottom

    Lenght 12 [m]

    Breath 17 [m]

    Height 1.6 [m]

    Girders

    Thickness 0.011 [m]

    Spacing 4.26

    Girder stiffeners

    Thickness 0.012 [m]

    Breath 0.15 [m]

    Spacing 0.8 [m]

    FloorsThickness 0.011 [m]

    Spacing 2.4 [m]

    Floor stiffeners

    Thickness 0.012 [m]

    Breath 0.15 [m]

    Spacing 0.71 [m]

    External plating

    Thickness 0.012 [m]

    Inner bottom plating

    Thickness 0.017 [m]

    Plating stiffeners

    bottom

    Height 0.3 [m]

    Thickness 0.00528/0.30 [m]

    Spacing 0.71 [m]

    inner bottom

    Height 0.26 [m]

    Thickness 0.00361/0.26 [m]

    Spacing 0.71 [m]

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    79/122

    A4.2 APPENDIX 4. Case D (Stiffeners)

    DB I CASE D

    Velocity of the ship 15 m/s

    Approach of the rock to db 0.5 m

    Tear to outer plating (values in the moment of initiation)

    INITATION

    time 3.07E-01 sec

    x-disp 4.59E+00 m

    z-disp 4.72E-01 m

    x-force -3.67E+06 N

    z-force -7.26E+06N

    TERMINATION

    time 3.14E-01 sec

    x-disp 4.68E+00 m

    z-disp 4.72E-01 m

    x-force -2.86E+06 N

    z-force -6.81E+06 N

    Average breath of the tear 1.15E-01 m

    Length of the tear 3.04E-01 m

    Average X- force -3.30E+06 N

    Average Z-force -7.44E+06 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    80/122

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    81/122

    A4.4 APPENDIX 4. Case D (Stiffeners)

    DB I CASE D

    Velocity of the ship 15 m/s

    Approach of the rock to db 1.0 m

    Tear to outer plating (values in the moment ofinitiation)

    time 1.40E-01 sec

    x-disp 2.08E+00 m

    z-disp 5.33E-01 m

    x-force -3.72E+06 N

    z-force -1.26E+07 N

    Average breath of the tear 9.40E-01 m

    Average X- force -4.85E+06 N

    Average Z-force -6.76E+06 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    82/122

    A4.5 APPENDIX 4. Case D (Stiffeners)

    X-force (H=1.0 m )

    -8.0E+06

    -7.0E+06

    -6.0E+06

    -5.0E+06

    -4.0E+06

    -3.0E+06

    -2.0E+06

    -1.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacemen t (m)

    x-force

    (N)

    x-force

    Initation of op tear

    Average

    Z- force (H=1.0 m)

    -1.3E+07

    -1.1E+07

    -9.0E+06

    -7.0E+06

    -5.0E+06

    -3.0E+06

    -1.0E+06

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement(m)

    z-force

    (n)

    z-force

    Initation of op tear

    Average

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    83/122

    A4.6 APPENDIX 4. Case D (Stiffeners)

    DB I CASE D

    Velocity of the ship 15 m/s

    Approach of the rock todb

    1.5 m

    Tear to outer plating (values in the moment ofinitiation)

    time 1.24E-01 sec

    x-disp 1.85E+00 m

    z-disp 6.36E-01 m

    x-force -4.43E+06 N

    z-force -1.49E+07 N

    Average breath of the

    tear

    1.19E+00 m

    Average X- force -6.77E+06 N

    Average Z-force -9.66E+06 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    84/122

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    85/122

    A4.8 APPENDIX 4. Case D (Stiffeners)

    DB I CASE D

    Velocity of the ship 15 m/s

    Approach of the rock to db 2.0 m

    Tear to outer plating (values in the moment of initiation)

    time 9.98E-02 sec

    x-disp 1.49E+00 m

    z-disp 5.24E-01 m

    x-force -3.56E+06 N

    z-force -1.38E+07 N

    Average breath of the tear 1.46E+00 m

    Average X- force -9.35E+06 N

    Average Z-force -1.48E+07 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    86/122

    A4.9 APPENDIX 4. Case D (Stiffeners)

    X-force (H=2.0 m)

    -1.3E+07

    -1.1E+07

    -9.0E+06

    -7.0E+06

    -5.0E+06

    -3.0E+06

    -1.0E+06

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    x-force

    (N)

    x-force

    Initiation of op tear

    Average

    Z- force (H=2.0 m)

    -2.0E+07

    -1.8E+07

    -1.6E+07

    -1.4E+07

    -1.2E+07

    -1.0E+07

    -8.0E+06

    -6.0E+06

    -4.0E+06

    -2.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displaceme nt (m)

    z-force

    (N)

    Z-force

    Initiation of op tear

    Average

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    87/122

    A4.10 APPENDIX 4. Case D (Stiffeners)

    DB I CASE D

    Velocity of the ship 15 m/s

    Approach of the rock to db 2.5 m

    Tear to outer plating (values in the moment of initiation)

    time 9.60E-02 sec

    x-disp 1.44E+00 m

    z-disp 6.04E-01 m

    x-force -2.63E+06 N

    z-force -1.61E+07 N

    Average breath of the op tear 1.69E+00 m

    1 st tear to inner bottom (values in the moment ofinitiation)

    time 2.18E-01 sec

    x-disp 3.26E+00 m

    z-disp 2.43E+00 m

    x-force -1.04E+07 N

    z-force -2.56E+07 N

    length of the tear 2.20 m

    Average breath of the ib tear 0.50m

    2nd tear to inner bottom (values in the moment ofinitiation)

    time 5.03E-01 sec

    x-disp 7.55E+00 m

    z-disp 2.50E+00 m

    x-force -1.24E+07 N

    z-force -1.93E+07 N

    length of the tear 2.25 mAverage breath of the ib tear 0.14 m

    Average X- force -1.36E+07 N

    Average Z-force -2.02E+07 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    88/122

    A4.11 APPENDIX 4. Case D (Stiffeners)

    x-force (H=2.5 m)

    -1.7E+07

    -1.5E+07

    -1.3E+07

    -1.1E+07

    -9.0E+06

    -7.0E+06

    -5.0E+06

    -3.0E+06

    -1.0E+06

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    x-force

    (N)

    X-forceInitation of op tear

    Initation of1st ib tear

    Average

    Z- force (H=2.5 m)-3.0E+07

    -2.5E+07

    -2.0E+07

    -1.5E+07

    -1.0E+07

    -5.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacem ent (m)

    Z-force

    (N)

    Initation of op tear

    Initation of ib tear

    Average

    z-force

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    89/122

    A4.12 APPENDIX 4. Case D (Stiffeners)

    DB I CASE D

    Velocity of the ship 15 m/s

    Approach of the rock todb

    3.0 m

    Tear to outer plating (values in the moment ofinitiation)

    time 8.58E-02 sec

    x-disp 1.29E+00 m

    z-disp 5.41E-01 m

    x-force -1.53E+06 N

    z-force -1.54E+07 N

    Average breath of the op

    tear

    5.05x2,16 m

    Tear to inner bottom (values in the moment ofinitiation)

    time 1.72E-01 sec

    x-disp 2.57E+00 m

    z-disp 2.30E+00 m

    x-force -1.02E+07 N

    z-force -3.55E+07 N

    Average breath of the ibtear

    7.80E-01 m

    Average X- force -1.50E+07 N

    Average Z-force -2.15E+07 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    90/122

    A4.13 APPENDIX 4. Case D (Stiffeners)

    x-force (H=3.0 m)

    -2.0E+07

    -1.8E+07

    -1.6E+07

    -1.4E+07

    -1.2E+07

    -1.0E+07

    -8.0E+06

    -6.0E+06

    -4.0E+06

    -2.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    x-force

    (N)

    X-force

    Initation of op tear

    Initation o f ib tear

    Average

    Z- force (H=3.0 m)-3.9E+07

    -3.4E+07

    -2.9E+07

    -2.4E+07

    -1.9E+07

    -1.4E+07

    -9.0E+06

    -4.0E+06

    0 1 2 3 4 5 6 7 8 9 10x-displacem ent (m)

    z-force

    (N)

    Initation of op tear

    Initation of ib tear

    Average

    z-force

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    91/122

    A4.14 APPENDIX 4. Case D (Stiffeners)

    DB I CASE D

    Velocity of the ship 15 m/s

    Approach of the rock to db 3.5 m

    Tear to outer plating (values in the moment ofinitiation)

    time 8.32E-02 sec

    x-disp 1.25E+00 m

    z-disp 5.81E-01 m

    x-force -1.39E+06 N

    z-force -1.65E+07 N

    Average breath of the op tear 6.7x2.8 m

    Tear to inner bottom (values in the moment ofinitiation)

    time 1.55E-01 sec

    x-disp 2.32E+00 m

    z-disp 2.30E+00 m

    x-force -1.01E+07 N

    z-force -3.93E+07 N

    Average breath of the ib tear 1.55 m

    Average X- force -1.68E+07 N

    Average Z-force -2.33E+07 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    92/122

    A4.15 APPENDIX 4. Case D (Stiffeners)

    x-force (H=3.5 m)

    -2.2E+07

    -2.0E+07

    -1.7E+07

    -1.5E+07

    -1.2E+07

    -9.5E+06

    -7.0E+06

    -4.5E+06

    -2.0E+06

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    x-force

    (N)

    X-force

    Initation of op tear

    Initation of ib tear

    Average

    Z- force (H=3.5 m)

    -4.0E+07

    -3.5E+07

    -3.0E+07

    -2.5E+07

    -2.0E+07

    -1.5E+07

    -1.0E+07

    -5.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    z-force

    (N)

    Initation of op tear

    Initation of ib tear

    Average

    z-force

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    93/122

    A5.1 APPENDIX 5. Case A2 (rock radius=2 [m])

    DB I CASE A2 (rock radius= 2[m])

    Measures

    Cone top radius 2 [m]Double-bottom

    Lenght 12 [m]

    Breath 17 [m]

    Height 1.6 [m]

    Girders

    Thickness 0.011 [m]

    Spacing 4.26

    Girder stiffeners

    Thickness 0.012 [m]

    Breath 0.15 [m]

    Spacing 0.8 [m]

    Floors

    Thickness 0.011 [m]

    Spacing 2.4 [m]

    Floor stiffeners

    Thickness 0.012 [m]

    Breath 0.15 [m]

    Spacing 0.71 [m]

    External plating

    Thickness 0.012 [m]

    Internal plating

    Thickness 0.017 [m]

    Plating stiffeners

    bottom

    Height 0.26 [m]

    Thickness 0.00361/0.26 [m]

    Spacing 0.71 [m]

    tank-top

    Height 0.26 [m]

    Thickness 0.00361/0.26 [m]

    Spacing 0.71 [m]

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    94/122

    A5.2 APPENDIX 5. Case A2 (rock radius=2 [m])

    DB I CASE A2

    Velocity of the ship 15 m/s

    Approach of the rock to db 0.5 m

    Tear to outer plating (values in the momentof initiation)

    time #N/A sec NO TEAR

    x-disp #N/A m

    z-disp #N/A m

    x-force #N/A N

    z-force #N/A N

    Average breath of the op tear m

    Tear to inner bottom (values in themoment of initiation)

    time #N/A sec NO TEAR

    x-disp #N/A m

    z-disp #N/A m

    x-force #N/A N

    z-force #N/A N

    Average breath of the ib tear m

    Average X- force -3.05E+06 N

    Average Z-force -8.22E+06 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    95/122

    A5.3 APPENDIX 5. Case A2 (rock radius=2 [m])

    x-force (H=0.5 m)

    -5.0E+06

    -4.5E+06

    -4.0E+06

    -3.5E+06

    -3.0E+06

    -2.5E+06

    -2.0E+06

    -1.5E+06

    -1.0E+06

    -5.0E+05

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    x-force

    (N)

    X-force

    Initation of op tear

    Initation of ib tear

    Average

    Z- force (H=0.5 m)

    -1.2E+07

    -1.0E+07

    -8.0E+06

    -6.0E+06

    -4.0E+06

    -2.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    z-force

    (N)

    Initation of op tearInitation o f ib tear

    Average

    z-force

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    96/122

    A5.4 APPENDIX 5. Case A2 (rock radius=2 [m])

    DB I CASE A2

    Velocity of the ship 15 m/s

    Approach of the rock to db 1 m

    Tear to outer plating (values in the moment ofinitiation)

    time 1.728E-01 sec

    x-disp 2.592E+00 m

    z-disp 7.757E-01 m

    x-force -2.701E+06 N

    z-force -1.840E+07 N

    Average breath of the op tear 6.10E-01 m

    Tear to inner bottom (values in the moment ofinitiation)

    time #N/A sec NO TEAR

    x-disp #N/A m

    z-disp #N/A m

    x-force #N/A N

    z-force #N/A N

    Average breath of the ib tear m

    Average X- force -4.93E+06 N

    Average Z-force -7.40E+06 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    97/122

    A5.5 APPENDIX 5. Case A2 (rock radius=2 [m])

    x-force (H=1.0 m)

    -8.0E+06

    -7.0E+06

    -6.0E+06

    -5.0E+06

    -4.0E+06

    -3.0E+06

    -2.0E+06

    -1.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    x-force(N)

    X-force

    Initation of op tea rInitation o f ib tear

    Average

    Z- force (H=1.0 m)-1.9E+07

    -1.7E+07

    -1.5E+07

    -1.3E+07

    -1.1E+07

    -9.0E+06

    -7.0E+06

    -5.0E+06

    -3.0E+06

    -1.0E+06

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    z-force

    (N)

    Initation of op tear

    Initation of ib tear

    Average

    z-force

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    98/122

    A5.6 APPENDIX 5. Case A2 (rock radius=2 [m])

    DB I CASE A2

    Velocity of the ship 15 m/s

    Approach of the rock to db 1.5 m

    Tear to outer plating (values in the moment ofinitiation)

    time 1.408E-01 sec

    x-disp 2.112E+00 m

    z-disp 8.356E-01 m

    x-force -1.770E+06 N

    z-force -2.155E+07 N

    Average breath of the op tear 1.09E+00 m

    Tear to inner bottom (values in the moment ofinitiation)

    time #N/A sec NO TEAR

    x-disp #N/A m

    z-disp #N/A m

    x-force #N/A N

    z-force #N/A N

    Average breath of the ib tear m

    Average X- force -7.13E+06 N

    Average Z-force -1.09E+07 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    99/122

    A5.7 APPENDIX 5. Case A2 (rock radius=2 [m])

    x-force (H=1.5 m)

    -1.0E+07

    -9.0E+06

    -8.0E+06

    -7.0E+06

    -6.0E+06

    -5.0E+06

    -4.0E+06

    -3.0E+06

    -2.0E+06

    -1.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    x-force

    (N)

    X-force

    Initation of op tear

    Initation of ib tear

    Average

    Z- force (H=1.5 m )

    -2.3E+07

    -2.1E+07

    -1.8E+07

    -1.6E+07

    -1.3E+07

    -1.1E+07

    -8.0E+06

    -5.5E+06

    -3.0E+06

    -5.0E+05

    0 1 2 3 4 5 6 7 8 9 10

    x-displacem ent (m)

    z-force

    (N)

    Initation of op tear

    Initation of ib tear

    Average

    z-force

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    100/122

    A5.8 APPENDIX 5. Case A2 (rock radius=2 [m])

    DB I CASE A2

    Velocity of the ship 15 m/s

    Approach of the rock to db 2 m

    Tear to outer plating (values in the momentof initiation)

    time 1.229E-01 sec

    x-disp 1.843E+00 m

    z-disp 8.519E-01 m

    x-force -1.263E+06 N

    z-force -2.640E+07 N

    Average breath of the op tear 3.52x1.356 m

    Tear to inner bottom (values in the momentof initiation)

    time #N/A sec NO TEAR

    x-disp #N/A m

    z-disp #N/A m

    x-force #N/A N

    z-force #N/A N

    Average breath of the ib tear m

    Average X- force -1.03E+07 N

    Average Z-force -1.73E+07 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    101/122

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    102/122

    A5.10 APPENDIX 5. Case A2 (rock radius=2 [m])

    DB I CASE A2

    Velocity of the ship 15 m/s

    Approach of the rock to db 2.5 m

    Tear to outer plating (values in the moment ofinitiation)

    time 1.088E-01 sec

    x-disp 1.632E+00 m

    z-disp 8.150E-01 m

    x-force -1.070E+06 N

    z-force -2.559E+07 N

    Average breath of the op tear 5.22x1.56 m

    Tear to inner bottom (values in the moment ofinitiation)

    time #N/A sec NO TEAR

    x-disp #N/A m

    z-disp #N/A m

    x-force #N/A N

    z-force #N/A N

    Average breath of the ib tear m

    Average X- force -1.42E+07 N

    Average Z-force -2.41E+07 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    103/122

    A5.11 APPENDIX 5. Case A2 (rock radius=2 [m])

    x-force (H=2.5 m)

    -1.8E+07

    -1.6E+07

    -1.4E+07

    -1.2E+07

    -1.0E+07

    -8.0E+06

    -6.0E+06

    -4.0E+06

    -2.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    x-force

    (N)

    X-force

    Initation of op tear

    Initation of ib tear

    Average

    Z- force (H=2.5 m )

    -3.5E+07

    -3.0E+07

    -2.5E+07

    -2.0E+07

    -1.5E+07

    -1.0E+07

    -5.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    z-force

    (N)

    Initation of op tear

    Initation of ib tear

    Average

    z-force

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    104/122

    A5.12 APPENDIX 5. Case A2 (rock radius=2 [m])

    DB I CASE A2

    Velocity of the ship 15 m/s

    Approach of the rock to db 3 m

    Tear to outer plating (values in the moment of initiation)

    time 1.062E-01 sec

    x-disp 1.594E+00 m

    z-disp 9.258E-01 m

    x-force -4.875E+06 N

    z-force -2.013E+07 N

    Average breath of the op tear 6.78x2.08 m

    Tear to inner bottom (values in the moment of initiation)

    time 1.920E-01 sec

    x-disp 2.880E+00 m

    z-disp 2.643E+00 m

    x-force 0.000E+00 N

    z-force -4.554E+07 N

    Average breath of the ib tear 0.69 m

    Average X- force -1.57E+07 N

    Average Z-force -2.32E+07 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    105/122

    A5.13 APPENDIX 5. Case A2 (rock radius=2 [m])

    x-force (H=3.0 m)

    -2.0E+07

    -1.8E+07

    -1.6E+07

    -1.4E+07

    -1.2E+07

    -1.0E+07

    -8.0E+06

    -6.0E+06

    -4.0E+06

    -2.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    x-force

    (N)

    X-force

    Initation of op tear

    Initation of ib tear

    Average

    Z- force (H=3.0 m )

    -5.0E+07

    -4.5E+07

    -4.0E+07

    -3.5E+07

    -3.0E+07

    -2.5E+07

    -2.0E+07

    -1.5E+07

    -1.0E+07

    -5.0E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacem ent (m)

    z-force(N)

    Initation of op tear

    Initation of ib tear

    Average

    z-force

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    106/122

    A5.14 APPENDIX 5. Case A2 (rock radius=2 [m])

    DB I CASE A2

    Velocity of the ship 15 m/s

    Approach of the rock to db 3.5 m

    Tear to outer plating (values in the moment of initiation)

    time 1.062E-01 sec

    x-disp 1.594E+00 m

    z-disp 1.080E+00 m

    x-force -6.371E+06 N

    z-force -1.969E+07 N

    Average breath of the op tear 5.32x2.4 m

    Tear to inner bottom (values in the moment of initiation)

    time 1.626E-01 sec

    x-disp 2.438E+00 m

    z-disp 2.486E+00 m

    x-force 0.000E+00 N

    z-force -4.237E+07 N

    Average breath of the ib tear 3.84x1.66 m

    Average X- force -1.80E+07 N

    Average Z-force -2.64E+07 N

  • 8/11/2019 FE Simulation of a Double-bottom Grounding on a Conical Rock

    107/122

    A5.15 APPENDIX 5. Case A2 (rock radius=2 [m])

    x-force (H=3.5 m)-2.5E+07

    -2.3E+07

    -2.0E+07

    -1.8E+07

    -1.5E+07

    -1.3E+07

    -1.0E+07

    -7.5E+06

    -5.0E+06

    -2.5E+06

    0.0E+00

    0 1 2 3 4 5 6 7 8 9 10

    x-displacement (m)

    x-force

    (N)

    X-force

    Initation o f op tear

    Initation o f ib tear

    Average

    Z- force (H=3.5 m)-4.8E+07

    -4.3E+07

    -3.8E+07

    -3.3E+07

    -2.8E+07

    -2.3E+07

    -1.8E+07

    -1.3E+07

    -8.0E+06


Recommended