+ All Categories
Home > Documents > Feasibility(of(implemenEng(a(laser0distancing( Poster’PrintSize: ’ … · 2016. 1. 5. ·...

Feasibility(of(implemenEng(a(laser0distancing( Poster’PrintSize: ’ … · 2016. 1. 5. ·...

Date post: 21-Sep-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
1
Feasibility of implemenEng a laserdistancing system for an unmanned aerial vehicle Junyi Dai; Supervised by Dominic Robillard, Charles Blouin, and Eric Lanteigne Department of Mechanical Engineering, University of Okawa Junyi Dai Mechanical Engineering Student Email: [email protected] Phone: 6138161177 Contact 1. Dai, Junyi (Photographer). (2014, November 19 th ). Sonar, camera, and laser setup. 2. Dai, Junyi (Photographer). (2014, December 28 th ). Laser dot through a cameralens at close range and at farrange. 3. Dai, Junyi (Photographer) with permission from Tyto Robo?cs. (2015, January 30 th ). Small helicopter UAV. 4. Danko, Todd (Ar?st). (2009, August 25 th ). Laser Ranger Drawing. Retrieved from hkp://www.codeproject.com/KB/cs/ range_finder/laserrangefinder1.gif 5. Wiora, Georg (Ar?st). (2005, October 5 th ). Principle of a sonar or radar distance measurement. Retrieved from hkp:// www.kerrywong.com/blog/wpcontent/uploads/2011/01/2000pxSonar_Principle_EN.svg_.png References One of the fundamental parameters during the flight of an unmanned aerial vehicle (UAV) is the al?tude at which it is flying at. One method is to use sonar sensors, which emit a pulse of sound and uses the ?meofflight of the echo to calculate the distance. It is however unreliable due to slow refresh rates and erroneous readings caused by interfering echoes. This research project aims to determine the feasibility of implemen?ng a laserdistancing system for a small UAV in order to determine its al?tude. It is known that the distance between a projected laser dot on a camera focal plane and the center of the focal plane can be related through triangula?on. This can be used to find the distance to the surface that the laser was projected onto. The results from this research project will provide a proofof concept for the laserdistancing system, which can poten?ally replace current unreliable sonar distancing implementa?ons. IntroducEon The measured experimental distances were accurate when compared to the actual distances. The percent error ranged from 3.76% to 9.97%, and the average percent error was 5.46% (see Table 1 and Figure 3). As seen in Figure 2, when the camera and laser set up was farther away from the wall along the same axis, the laser appeared closer to the center of the focal plane. Similarly, the laser would appear farther away from the center of the focal plane as the camera and laser setup is moved closer to the wall. To determine the feasibility of using this laser system, MATLAB will be used to develop a model to test the system. A webcam will send real?me video of the laser projec?on to the computer, and the distance from the wall to where the laser was projected from will be calculated. The webcam and laser setup will then be moved around to vary the distance. See Figure 1 for a picture of the webcam and laser setup as well as the theory behind the measurements. Specifically, the live video stream from the webcam will be displayed on the computer screen. Since the display area will be known, it will be possible to see how many pixels away the laser dot is from the center of the screen (pfc). Thus, also knowing the distance between the center of the camera lens and the center of the laser lens, triangula?on can be used to determine the distance to the wall. The experimental results will be compared to the actual distances to determine the accuracy of the laser system. Methods and Materials The black background used during the experiment was necessary because of the difficulty recognizing the laser through the Matlab soAware. There were not enough parameters to filter out the excess noise; the main parameter used to siA through the noise was a red threshold that would only take pixel values above a certain value. As a result, other red objects that were not intended to get detected were uninten?onally detected. The implica?on of this is that in reallife situa?ons, the background of the laser projec?on will not always be a perfectly uniform colour, thus further measures must be taken. To improve the reliability of the laser setup, further parameters could have been implemented. For instance, the detec?on size could have been reduced to sizes near the laser dot size, which would filter out a lot of unintended red objects. As well, since the laser is fixed to the camera, the laser dot projec?on on the computer screen will only shiA in a linear fashion in one axis. This means that the detec?on area could be reduced to only a rectangular sliver along the axis of movement. Finally, infrared lasers should be used in order to completely filter out most of the visible spectrum, which would simplify the detec?on of the laser dot. Discussion Through this research project it was determined that implemen?ng a laserdistancing system is feasible. The average percent error of 5.46% indicated that the triangula?on method used for calcula?ng the distance between the laser and the wall was accurate. Future improvements to laserdistancing systems would include implemen?ng more parameters to filter out the laser dot. A possible parameter would be to reduce the detec?on size to near the size of the laser dot. As well, an infrared laser could be used to completely filter out the visible spectrum, thus simplifying the detec?on process. The next step would be to apply this model from Matlab to create an actual implementa?on on the small helicopter UAV from Tyto Robo?cs (see Figure 4). This would require hardcode to be wriken for the specific microchip of the UAV. The en?re laserdistancing system for the UAV would have to meet the requirements of being both lightweight and energyefficient, in addi?on to being able to share the same camera as the one used for detec?ng the op?cal flow. Conclusions PFC (pix) Experimental D (cm) Actual D (cm) % Error 109 32.99 30 9.97 84 52.62 50 5.23 70 78.87 75 5.16 63 105.08 100 5.08 59 129.70 125 3.76 56 157.36 150 4.90 54 183.43 175 4.82 52 219.85 200 9.93 Results Figure 1. Sonar, camera, and laser setup (leA) 1 ; Sonar distancing (top right) 4 ; laser distancing using a camera (bokom right) 5 . Table 1. Experimental distances compared to actual distances measured at different pixels from center (PFC). Figure 3. Graphical representa?on of experimental vs. actual distance. 0 50 100 150 200 250 109 84 70 63 59 56 54 52 Distance (cm) Pixels From Centre (pix) Experimental D (cm) Actual D (cm) Figure 2. Laser dot through a cameralens at close range (leA) and at far range (right) 2 . Figure 4. The UAV being developed by Tyto Robo?cs that would benefit from implemen?ng a laserdistancing system (no?ce the small size) 3 . Acknowledgements University of Okawa Faculty of Engineering Undergraduate Research Opportunity Program Sonar
Transcript
Page 1: Feasibility(of(implemenEng(a(laser0distancing( Poster’PrintSize: ’ … · 2016. 1. 5. · Poster’PrintSize: ’ This’poster’template’is’44”’high’by’ 44”’wide.’Itcan’be’used’to’printany’

Poster  Print  Size:  This  poster  template  is  44”  high  by  44”  wide.  It  can  be  used  to  print  any  poster  with  a  1:1  aspect  ra?o.  

Placeholders:  The  various  elements  included  in  this  poster  are  ones  we  oAen  see  in  medical,  research,  and  scien?fic  posters.  Feel  free  to  edit,  move,    add,  and  delete  items,  or  change  the  layout  to  suit  your  needs.  Always  check  with  your  conference  organizer  for  specific  requirements.  

Image  Quality:  You  can  place  digital  photos  or  logo  art  in  your  poster  file  by  selec?ng  the  Insert,  Picture  command,  or  by  using  standard  copy  &  paste.  For  best  results,  all  graphic  elements  should  be  at  least  150-­‐200  pixels  per  inch  in  their  final  printed  size.  For  instance,  a  1600  x  1200  pixel  photo  will  usually  look  fine  up  to  8“-­‐10”  wide  on  your  printed  poster.  To  preview  the  print  quality  of  images,  select  a  magnifica?on  of  100%  when  previewing  your  poster.  This  will  give  you  a  good  idea  of  what  it  will  look  like  in  print.  If  you  are  laying  out  a  large  poster  and  using  half-­‐scale  dimensions,  be  sure  to  preview  your  graphics  at  200%  to  see  them  at  their  final  printed  size.  Please  note  that  graphics  from  websites  (such  as  the  logo  on  your  hospital's  or  university's  home  page)  will  only  be  72dpi  and  not  suitable  for  prin?ng.  

 [This  sidebar  area  does  not  print.]  

Change  Color  Theme:  This  template  is  designed  to  use  the  built-­‐in  color  themes  in  the  newer  versions  of  PowerPoint.  To  change  the  color  theme,  select  the  Design  tab,  then  select  the  Colors  drop-­‐down  list.                    The  default  color  theme  for  this  template  is  “Office”,  so  you  can  always  return  to  that  aAer  trying  some  of  the  alterna?ves.  

Prin?ng  Your  Poster:  Once  your  poster  file  is  ready,  visit  www.genigraphics.com  to  order  a  high-­‐quality,  affordable  poster  print.  Every  order  receives  a  free  design  review  and  we  can  deliver  as  fast  as  next  business  day  within  the  US  and  Canada.    Genigraphics®  has  been  producing  output  from  PowerPoint®  longer  than  anyone  in  the  industry;  da?ng  back  to  when  we  helped  MicrosoA®  design  the  PowerPoint®  soAware.      US  and  Canada:    1-­‐800-­‐790-­‐4001  Email:  [email protected]  

 [This  sidebar  area  does  not  print.]  

Feasibility  of  implemenEng  a  laser-­‐distancing  system  for  an  unmanned  aerial  vehicle  

Junyi  Dai;  Supervised  by  Dominic  Robillard,  Charles  Blouin,  and  Eric  Lanteigne    Department  of  Mechanical  Engineering,  University  of  Okawa  

Junyi  Dai  Mechanical  Engineering  Student    Email:  [email protected]  Phone:  613-­‐816-­‐1177  

Contact  1.  Dai,  Junyi  (Photographer).  (2014,  November  19th).  Sonar,  camera,  and  laser  set-­‐up.  2.  Dai,  Junyi  (Photographer).  (2014,  December  28th).  Laser  dot  through  a  camera-­‐lens  at  close  range  and  at  far-­‐range.  3.  Dai,  Junyi  (Photographer)  with  permission  from  Tyto  Robo?cs.  (2015,  January  30th).  Small  helicopter  UAV.  4.  Danko,  Todd  (Ar?st).  (2009,  August  25th).  Laser  Ranger  Drawing.  Retrieved  from  hkp://www.codeproject.com/KB/cs/

range_finder/laser-­‐range-­‐finder-­‐1.gif  5.  Wiora,  Georg  (Ar?st).  (2005,  October  5th).  Principle  of  a  sonar  or  radar  distance  measurement.  Retrieved  from  hkp://                          

www.kerrywong.com/blog/wp-­‐content/uploads/2011/01/2000px-­‐Sonar_Principle_EN.svg_.png  

References  

One   of   the   fundamental   parameters   during   the   flight   of   an  unmanned  aerial  vehicle  (UAV)  is  the  al?tude  at  which  it  is  flying  at.  One  method   is   to  use   sonar   sensors,  which   emit   a   pulse  of   sound  and  uses  the  ?me-­‐of-­‐flight  of  the  echo  to  calculate  the  distance.  It  is  however   unreliable   due   to   slow   refresh   rates   and   erroneous  readings  caused  by  interfering  echoes.    This   research   project   aims   to   determine   the   feasibility   of  implemen?ng  a  laser-­‐distancing  system  for  a  small  UAV  in  order  to  determine   its   al?tude.   It   is   known   that   the   distance   between   a  projected   laser  dot  on  a   camera   focal  plane  and   the   center  of   the  focal  plane  can  be  related  through  triangula?on.  This  can  be  used  to  find   the  distance   to   the  surface   that   the   laser  was  projected  onto.  The   results   from   this   research   project   will   provide   a   proof-­‐of-­‐concept   for   the   laser-­‐distancing   system,   which   can   poten?ally  replace  current  unreliable  sonar  distancing  implementa?ons.  

IntroducEon  

The   measured   experimental   distances   were   accurate   when  compared   to   the   actual   distances.   The   percent   error   ranged   from  3.76%  to  9.97%,  and  the  average  percent  error  was  5.46%  (see  Table  1  and  Figure  3).  As  seen  in  Figure  2,  when  the  camera  and  laser  set-­‐up  was   farther   away   from   the  wall   along   the   same   axis,   the   laser  appeared  closer  to  the  center  of  the  focal  plane.  Similarly,  the  laser  would  appear  farther  away  from  the  center  of  the  focal  plane  as  the  camera  and  laser  set-­‐up  is  moved  closer  to  the  wall.  

To  determine  the  feasibility  of  using  this  laser  system,  MATLAB  will  be  used  to  develop  a  model  to  test  the  system.  A  webcam  will  send  real-­‐?me   video   of   the   laser   projec?on   to   the   computer,   and   the  distance  from  the  wall  to  where  the  laser  was  projected  from  will  be  calculated.  The  webcam  and  laser  set-­‐up  will  then  be  moved  around  to  vary  the  distance.  See  Figure  1  for  a  picture  of  the  webcam  and  laser  set-­‐up  as  well  as  the  theory  behind  the  measurements.    Specifically,   the   live   video   stream   from   the   webcam   will   be  displayed   on   the   computer   screen.   Since   the   display   area   will   be  known,  it  will  be  possible  to  see  how  many  pixels  away  the  laser  dot  is   from   the   center   of   the   screen   (pfc).   Thus,   also   knowing   the  distance  between   the  center  of   the  camera   lens  and   the  center  of  the   laser   lens,  triangula?on  can  be  used  to  determine  the  distance  to  the  wall.  The  experimental  results  will  be  compared  to  the  actual  distances  to  determine  the  accuracy  of  the  laser  system.  

Methods  and  Materials  

The   black   background   used   during   the   experiment   was   necessary  because   of   the   difficulty   recognizing   the   laser   through   the   Matlab  soAware.  There  were  not  enough  parameters  to  filter  out  the  excess  noise;   the  main  parameter  used   to   siA   through   the  noise  was   a   red  threshold  that  would  only  take  pixel  values  above  a  certain  value.  As  a  result,  other  red  objects  that  were  not  intended  to  get  detected  were  uninten?onally   detected.   The   implica?on   of   this   is   that   in   real-­‐life  situa?ons,  the  background  of  the  laser  projec?on  will  not  always  be  a  perfectly  uniform  colour,  thus  further  measures  must  be  taken.    To  improve  the  reliability  of  the  laser  set-­‐up,  further  parameters  could  have  been   implemented.  For   instance,   the  detec?on  size  could  have  been  reduced  to  sizes  near  the  laser  dot  size,  which  would  filter  out  a  lot  of  unintended   red  objects.  As  well,   since   the   laser   is  fixed   to   the  camera,  the  laser  dot  projec?on  on  the  computer  screen  will  only  shiA  in   a   linear   fashion   in   one   axis.   This   means   that   the   detec?on   area  could   be   reduced   to   only   a   rectangular   sliver   along   the   axis   of  movement.   Finally,   infrared   lasers   should   be   used   in   order   to  completely   filter   out   most   of   the   visible   spectrum,   which   would  simplify  the  detec?on  of  the  laser  dot.  

Discussion  

Through  this  research  project  it  was  determined  that  implemen?ng  a  laser-­‐distancing  system  is  feasible.  The  average  percent  error  of  5.46%  indicated   that   the   triangula?on   method   used   for   calcula?ng   the  distance  between  the  laser  and  the  wall  was  accurate.      Future   improvements   to   laser-­‐distancing   systems   would   include  implemen?ng  more  parameters  to  filter  out  the  laser  dot.  A  possible  parameter  would  be  to  reduce  the  detec?on  size   to  near   the  size  of  the   laser  dot.  As  well,  an   infrared   laser  could  be  used   to  completely  filter  out  the  visible  spectrum,  thus  simplifying  the  detec?on  process.    The  next  step  would  be  to  apply  this  model  from  Matlab  to  create  an  actual   implementa?on   on   the   small   helicopter   UAV   from   Tyto  Robo?cs  (see  Figure  4).  This  would  require  hardcode  to  be  wriken  for  the  specific  microchip  of  the  UAV.  The  en?re  laser-­‐distancing  system  for   the   UAV   would   have   to   meet   the   requirements   of   being   both  lightweight  and  energy-­‐efficient,  in  addi?on  to  being  able  to  share  the  same  camera  as  the  one  used  for  detec?ng  the  op?cal  flow.  

Conclusions  

PFC  (pix)   Experimental  D  (cm)   Actual  D  (cm)   %  Error  

109   32.99   30   9.97  

84   52.62   50   5.23  

70   78.87   75   5.16  

63   105.08   100   5.08  

59   129.70   125   3.76  

56   157.36   150   4.90  

54   183.43   175   4.82  

52   219.85   200   9.93  

Results  

Figure  1.  Sonar,  camera,  and  laser  set-­‐up  (leA)1;  Sonar  distancing  (top  right)4;  laser  distancing  using  a  camera  (bokom  right)5.  

Table  1.  Experimental  distances  compared  to  actual  distances  measured  at  different  pixels  from  center  (PFC).  

Figure  3.  Graphical  representa?on  of  experimental  vs.  actual  distance.  

0  

50  

100  

150  

200  

250  

109   84   70   63   59   56   54   52  

Distan

ce  (cm)  

Pixels  From  Centre  (pix)  

Experimental  D  (cm)  Actual  D  (cm)  

Figure  2.  Laser  dot  through  a  camera-­‐lens  at  close  range  (leA)  and  at  far-­‐range  (right)2.        

Figure  4.  The  UAV  being  developed  by  Tyto  Robo?cs  that  would  benefit  from  implemen?ng  a  laser-­‐distancing  system  (no?ce  the  small  size)3.  

Acknowledgements  University  of  Okawa  Faculty  of  Engineering  Undergraduate  Research  Opportunity  Program  

Sonar  

Recommended