+ All Categories
Home > Documents > Feb 16 Perevozskaya Inna - Rutgers...

Feb 16 Perevozskaya Inna - Rutgers...

Date post: 01-Sep-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
32
Bayesian Optimal Designs Bayesian Optimal Designs Bayesian Optimal Designs Bayesian Optimal Designs Bayesian Optimal Designs Bayesian Optimal Designs Bayesian Optimal Designs Bayesian Optimal Designs for Phase I Clinical Trials for Phase I Clinical Trials for Phase I Clinical Trials for Phase I Clinical Trials for Phase I Clinical Trials for Phase I Clinical Trials for Phase I Clinical Trials for Phase I Clinical Trials in Oncology in Oncology Inna Perevozskaya Merck & Co, Inc. Collaborators: William Rosenberger, Linda Haines, Kip Canfield
Transcript
Page 1: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

Bayesian Optimal Designs Bayesian Optimal Designs Bayesian Optimal Designs Bayesian Optimal Designs Bayesian Optimal Designs Bayesian Optimal Designs Bayesian Optimal Designs Bayesian Optimal Designs

for Phase I Clinical Trialsfor Phase I Clinical Trialsfor Phase I Clinical Trialsfor Phase I Clinical Trialsfor Phase I Clinical Trialsfor Phase I Clinical Trialsfor Phase I Clinical Trialsfor Phase I Clinical Trials

in Oncologyin Oncology

Inna Perevozskaya

Merck & Co, Inc.

Collaborators:

William Rosenberger, Linda Haines, Kip Canfield

Page 2: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 2

References: References:

Rosenberger WF, Haines LM. Competing designs for phase I clinical trials: a review. Statistics in Medicine, 2002; 21; 2757-2770

Haines LM, Perevozskaya I, Rosenberger WF. Bayesian optimal designs for phase I clinical trials. Biometrics 2003; 59,561-600

Rosenberger WF, Canfield GC, Perevozskaya I, Haines LM, Hausner P. Development of interactive software for Bayesian optimal phase I clinical trial design. Drug Information Journal Vol. 39, pp. 89–98, 2005.

Page 3: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 3

OutlineOutline

Introduction: phase I clinical trials

Summary of available methods

Bayesian optimal design

Model description and assumptions

Methodology and theory

Major considerations

Building user interface

Example

Conclusions

Page 4: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 4

Phase I Clinical Trials Phase I Clinical Trials

Typically small, uncontrolled sequential studies

Designed to determine the maximum tolerated dose (MTD) of the experimental drug

Design considerations are particularly important in cancer studies (severe side effects of cytotoxic drugs)

Certain degree of side effects is acceptable

Accurate determination of the MTD is of grave importance since it is passed for further testing in Phase II clinical trials.

Balance between individual and collective ethics: maximum information from the minimal number of patients.

Page 5: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 5

Statistical Modeling of Phase I Statistical Modeling of Phase I

Clinical TrialsClinical Trials

Monotone relationship between the dosage and response

Two different philosophies in MTD definition: 1.Risk of toxicity is a sample statistic

2.Risk of toxicity is a probability (MTD is a quantile of a monotonic dose-response curve).

Two different approaches in designing phase I clinical trials

Page 6: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 6

Summary of available methods for phase I clinical Summary of available methods for phase I clinical

trials (Rosenberger and Haines, 2002)trials (Rosenberger and Haines, 2002)

1. Conventional (standard) method

2. MTD as a quantile vs. conventional methoda) Continual reassessment method (CRM)

O’Quigley, Pepe, Fisher (1990)

b) Escalation with overdose control (EWOC)Babb, Rogatko, Zacks (1998)

c) Decision-theoretic approachesWhitehead and Brunier (1995)

d) Random walk rules (RWR) Durham and Flournoy (1994)

e) Bayesian sequential optimal designHaines, Perevozskaya, Rosenberger (2003)

Page 7: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 7

1. Conventional (standard) method1. Conventional (standard) method

Designed under philosophy that MTD is identifiable from the data

Patients treated in groups of 3

Designed to screen doses quickly; no estimation involved

Probability of stopping at incorrect dose level is higher than generally believed (Reiner, Paoletti, O’Quigley; 1999)

First 3 patients treated at initial dose

If no toxicities,moves to next

higher dose

If ≥2 toxicities,moves to next

lower dose

If 1 toxicity,stays at the

current dose

If 1 toxicity out of 6 treated, movesto next higher dose

If ≥2 toxicities outof 6 treated, moves to next lower dose

Page 8: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 8

2. The MTD as a quantile2. The MTD as a quantile

Dose space:

Binary indicators of toxicity: Y1….Yn for n patients

Y=1 if toxicity, Y=0 otherwise

MTD defined as quantile corresponding to prespecified probability of toxicity Γ∈(0,1)

Kd dd ,,1 …=Ω

( )njKi

dFpdYP i

iij

…… 1,1

0,1

==

>

−=== ββ

α

( )Γ+= −F

1βαµ

Page 9: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 9

2a. The CRM method2a. The CRM method

Based on a one-parameter model: pi=Ψ(di ,a), i=1,…,K

Curves cannot cross for different a ∈(0,∞)

CRM uses Bayes theorem with accruing data to update a prior distribution of a based on previous responses

After each patient’s response, posterior probabilities of a toxic response at each dose pi , i=1…kare updated

The dose level for next patient is selected as the one with pi closest to Γ in some metric

Procedure stops after n patients enrolled

Last patient’s dose selected is taken to be the estimate of MTD

The method is designed to converge to the MTD

Page 10: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 10

2b. Escalation with overdose 2b. Escalation with overdose

controlcontrol Assumes a location-scale family:

The dose-response curve can be uniquely defined by two quantiles: µ = MTD and ρ = Pr (toxicity at dose d1 )

one-to-one transformation (µ, ρ)↔(α, β)

EWOC updates posterior distribution of µ based on two-parameter model

Introduces overdose control: predicted probability of next assignment exceeding µ is equal to ε (Bayesian feasible design)

EWOC is optimal in the class of the feasible designs

( ) njKid

FpdYP iiij …… 1,1,0,1 ==>

−=== ββ

α

Page 11: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 11

2c. Decision theoretic 2c. Decision theoretic

approachesapproaches

First introduced by Whitehead and Brunier (1995)

Incorporates elements of Bayesian Decision Theory

Actions: assigned dose levels d1, …dK

Two-parameter model with priors on (α, β)

Loss function: minimizing asymptotic variance of

Posterior means of α and β are substituted into the above equation

( )Γ+= −F

1βαµ

( ) ( ) ( ) ( ) ( ) ( )Γ+Γ+= −−− FFdxx j

121

,11ˆ,ˆcov2ˆvarˆvar,ˆvar βαβαµ …

Page 12: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 12

2d. Random Walk Rules2d. Random Walk Rules

Nonparametric approach;

Generalizes the up-and-down approach of the conventional method

Creates a unimodal distribution around the target quantile

Consequently, some patients will be assigned above the MTD

Patient j-1 assigned to

dose di

Toxic response

Non-toxic response

Patient j assigned

to dose di-1

Flip a biasedcoin

Pr (heads)=b<1/2

HEADS: next assignment di+1

TAILS: next assignment at di

Page 13: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 13

Bayesian Optimal Sequential Bayesian Optimal Sequential

DesignDesign

The methodology is similar to decision-theoretic approach, i.e. principally concerned with efficiency of estimation

Based on formal theory of optimal design (Atkinson and Donev, 1992)

Similar to EWOC, a constraint is added to address the ethical dilemma of avoiding extremely toxic doses

General methodology developed for the case when the dose space is unknown (continuous dose space)

Case when doses are fixed in advance is particularly important in practice (discrete dose space)

Sequential procedure is developed based on discrete designs

Page 14: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 14

Model and Assumptions Model and Assumptions

Y1,…Yn binary indicators of toxicity for n patients

d1,…, dK-distinct doses of administered drug

A two parameter model is used with logistic link function defining the dose response curve:

njKi

dFdYPrp

eid

iiji

…… ,1,,1

,0,1

1|1

==

>+

=

−=== −−β

βα

βα

Page 15: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 15

Model and Assumptions (cont.)Model and Assumptions (cont.)

Quantile of interest:

Design: n patients assigned to K distinct doses d1,…, dk ∈Ωd

( ) ( )Γ+=∈ΓΓ== logit,1,0,1:MTD βαµµYPr

weightsdesign/

1,doseeachtoassignednumber

,,,,, 11

−==−

=

NNw

KiN

wwdd

ii

i

KK

……ξ

Page 16: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 16

Information Matrix and Optimality Information Matrix and Optimality

CriterionCriterion

Fisher’s information matrix for θ=(α,β) at a design point d:

Full design information matrix:

Optimization criterion:

( ) ( ) βα

βθ −=

+= d

zzz

z

e

edI

z

z

,1

1, 222

( ) ( )∑ == K

i ii dIwM1

,, θθξ

( ) ( )[ ] ( ) ( ) θθθξθξξφ dgMMED

,detlog,detlog ∫Θ

==

Page 17: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 17

ConstraintsConstraints

Let µR be quantile corresponding to undesirable probability of toxicity ΓR

Dose space restriction:

Constraint function:

( ) ( ) εµξφ ≤≤=∑ =

K

i iRiR dw1

Pr

RR dd µ≤=Ω :

Page 18: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 18

Constrained Bayesian Optimal DesignConstrained Bayesian Optimal Design

Maximize

Subject to the constraint

Pilot phase: allocate first n0 patients according to the optimal design given prior information

Rounding algorithm by Pukelsheim (1993) used to achieve integer allocation of n0 patients to K doses

( ) ( ) εµξφ ≤≤=∑ =

K

i iRiR dw1

Pr

( ) ( )[ ] ( ) ( ) θθθξθξξφ dgMMED

,detlog,detlog ∫Θ

==

Page 19: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 19

Sequential Stage of the Optimal Sequential Stage of the Optimal

DesignDesign

Pilot phase data D0(responses and dose assignments) of first n0

patients obtained

Prior density is updated with posterior density

Second stage: stepwise allocation of patients to the doses that maximize

Subject to the constraint evaluated over the posterior density

( )θg ( )0Dθg

( )0Dθg

( ) ( )( ) ( ) θθθθξ dgdIMn D 0*

0 ,,detlog D∫Θ

+

( ) εµ ≤≤ dRPr

Page 20: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 20

Major ConsiderationsMajor Considerations

Prior elicitation

Constraints

Numerical integration

Pilot phase of the sequential design

Creating the user interface

Page 21: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 21

Prior ElicitationPrior Elicitation and Constraintsand Constraints

Physician’s pharmacologic and toxicologic knowledge is critical in determining prior distributions

Our procedure: uniform prior placed either directly on (α,β) or on two nominated quantiles (µ1, µ2) based on physician’s range guess

Constraints: Bayesian version of d ≤ µR:

Involves choice of ΓR ↔ µR (undesirable toxicity) and ε (tolerance level)

If ΓR = Γ, no patients are assigned above MTD ⇒ loss of efficiency

If ΓR > Γ, allows more flexibility:

Example: Γ = 0.25, ΓR = 0.5, ε = 0.01

If ε = 0, all dose assignments are below min of the range of µR

If ε = 0.5, all dose assignments are below median of µR

( ) εµ ≤≤∑ =

K

i iRi dw1

Pr

Page 22: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 22

Numerical IntegrationNumerical Integration

Numerical integration is crucial for implementation of any Bayesian procedure

Gaussian quadrature and MCMC are standard methods

Quadrature can be problematic when the denominator integral value is small

MCMC is more accurate and efficient but less straightforward toimplement

Caveat: In the sequential optimal design procedure both were inappropriate

Multiple integral evaluations fed into optimization routine

Adaptive nature of quadrature and MCMC makes the results highly variable

This variability causes lack of convergence of the optimization routine

Easy work-around: discrete prior on a uniformly spaced grid

Page 23: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 23

Pilot PhasePilot Phase

The goal of the pilot phase is to provide a starting point for sequential procedure

Size of the pilot phase N0 is user specified

Should be as small as possible

Avoid assigning many patients based on prior which could be wrong

More patients should be assigned based on updated posterior reflecting accruing information

Simulation studies: N0=5, N0=10 , and N0=15provided comparable results

Page 24: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 24

Creating UserCreating User--Friendly Interface: Friendly Interface:

iDose (Interactive Doser) Software iDose (Interactive Doser) Software

//http:/haggis.umbc.edu/cgi//http:/haggis.umbc.edu/cgi--bin/dinteractive/inna1.htmlbin/dinteractive/inna1.html

Web-based application is available to any workstation equipped with a web browser

High availability and simple deployment

Ease of integration with patient record systems

The ability to support long transactions

Ease of use for clinicians

An example: screen shots from actual web application are shown

Page 25: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 25

Figure1: Initial data entry screen for iDoseFigure1: Initial data entry screen for iDose

Page 26: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 26

Figure2: Data entry for the initial phaseFigure2: Data entry for the initial phase

Page 27: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 27

Figure3: Entering the dose for a patientFigure3: Entering the dose for a patient

Page 28: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 28

Figure 4: Final SummaryFigure 4: Final Summary

Page 29: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 29

Figure 5: Final Summary graphicFigure 5: Final Summary graphic

Page 30: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 30

ConclusionsConclusions

A web-based interface implemented

Uses powerful Bayesian optimal design theory

Patients assigned sequentially according to the procedure allowing efficient estimation of MTD with as few patients as possible.

Only guessed ranges of LD25 and LD50 are required to start Bayesian updating

Width of ranges should incorporate clinician’s degree of uncertainty as well as best judgment on the dose-response relationship

User can override the suggested dose assignment, the procedure will no longer be optimal

Flexibility of the software:

Progress of the trial can be monitored (parameter estimates, prior updates)

(α,β) estimates provide complete information about the dose-response curve ⇒ Any quantile of interest can be estimated

Page 31: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 31

Conclusions (cont.)Conclusions (cont.)

Patient consent: formal constraint on dose space should be attractive to patients concerned about toxicity

Patients in the initial phase will be allocated strictly on the basis of the clinicians prior knowledge about dose-response curve

This allocation should be conservative if there is little prior knowledge about the dose-response relationship

Page 32: Feb 16 Perevozskaya Inna - Rutgers Universitystat.rutgers.edu/iob/bioconf07/slides/Perevozskaya.pdf · 2007. 2. 19. · Title: Microsoft PowerPoint - Feb_16_Perevozskaya_Inna.ppt

02/16/2007 Rutgers Biostatistics Day 32

Questions?Questions?


Recommended