+ All Categories
Home > Documents > Femtochemistry: A theoretical overview

Femtochemistry: A theoretical overview

Date post: 23-Jan-2016
Category:
Upload: sonora
View: 35 times
Download: 1 times
Share this document with a friend
Description:
Femtochemistry: A theoretical overview. II – Transient spectra and excited states. Mario Barbatti [email protected]. This lecture can be downloaded at http://homepage.univie.ac.at/mario.barbatti/femtochem.html lecture2.ppt. Energy (eV). Singlet. Triplet. 10. VR. Ph. Fl. PA. - PowerPoint PPT Presentation
Popular Tags:
49
Femtochemistry: A theoretical overview Mario Barbatti [email protected] – Transient spectra and excited states This lecture can be downloaded at http://homepage.univie.ac.at/mario.barbat ti/femtochem.html
Transcript
Page 1: Femtochemistry:  A theoretical overview

Femtochemistry: A theoretical overviewFemtochemistry: A theoretical overview

Mario [email protected]

II – Transient spectra and excited states

This lecture can be downloaded athttp://homepage.univie.ac.at/mario.barbatti/femtochem.html lecture2.ppt

Page 2: Femtochemistry:  A theoretical overview

SingletTriplet

Photoinduced chemistry and physicsPhotoinduced chemistry and physics

avoided crossing 102-104 fs

conical intersection 10-102 fsPA – photoabsorption 1 fs

VR – vibrational relaxation 102-105 fs

Energy (eV)

0

10

Nuclear coordinates

PhFl

PA

VR

Fl – fluorescence 106-108 fs

intersystem crossing 105-107 fs

Ph – phosforescence 1012-1017 fs

Femtosecond phenomenaFemtosecond phenomena

Page 3: Femtochemistry:  A theoretical overview
Page 4: Femtochemistry:  A theoretical overview

4

time-resolved experiments

Page 5: Femtochemistry:  A theoretical overview

5Static spectrum: information is integrated over time

Conventional UV absorption spectrumConventional UV absorption spectrum

0

absorptionade

gua

thy

cyt

Page 6: Femtochemistry:  A theoretical overview

Ultra-short laser pulsesUltra-short laser pulses

Transient spectrum: information is time resolved

Page 7: Femtochemistry:  A theoretical overview

7

450 500 550 600 650 700

0.0

0.2

0.4

0.6

0.8

1.0

Flu

ore

sce

nce

sp

ect

rum

(nm)

Time resolved spectraTime resolved spectra

static

transient

Page 8: Femtochemistry:  A theoretical overview

Transient (time-dependent) spectra: pump-probeTransient (time-dependent) spectra: pump-probe

Mestdagh et al. J. Chem. Phys. 113, 240 (2000)

Page 9: Femtochemistry:  A theoretical overview

t

+

t

pump

and probe

Page 10: Femtochemistry:  A theoretical overview

d ~2000 fs

d < 200 fs

d < 200 fs

Page 11: Femtochemistry:  A theoretical overview

Mathies et al. Science 240, 777 (1988)

probe wavelength

= 618 nm

= 60 fs

= 560 - 710 nm

= 6 fs

Pump

Probe

Page 12: Femtochemistry:  A theoretical overview

0

absorption

1

transmission

2

stimulated emission

0

excited state absorption (ionization)

1

transmission

1

spontaneous emission (fluorescence)

Page 13: Femtochemistry:  A theoretical overview

Transmission due to ground state depletion

11

Excited stateabsorption

00

22

Stimulated emission

00

Ground state absorption

Page 14: Femtochemistry:  A theoretical overview

14

Page 15: Femtochemistry:  A theoretical overview

15

BacteriorhodopsinBacteriorhodopsin

Page 16: Femtochemistry:  A theoretical overview

16

geometry optimization

Page 17: Femtochemistry:  A theoretical overview

17

Topography of the potential energy surfaceTopography of the potential energy surface

Page 18: Femtochemistry:  A theoretical overview

18

Topography of the excited-state potential energy surfaceTopography of the excited-state potential energy surface

We want determine:• minima• saddle points• minimum energy paths• conical intersections

Page 19: Femtochemistry:  A theoretical overview

19

Newton-RaphsonNewton-Raphson

A bit of basic mathematics: The Newton-Raphson’s Method

0xR

x

f(x)

x1x2x3

n

nnn xf

xfxx

'1

Numerical way to get the root of a function

Prove it!

Page 20: Femtochemistry:  A theoretical overview

20

To find the extreme of a function, apply Newton-Raphson’s Method to the first derivative

0xe

f(x)

0 x

df/dx

xxe

x1x2x3

n

nnn xf

xfxx

''

'1

Newton-RaphsonNewton-Raphson

Page 21: Femtochemistry:  A theoretical overview

21

kkkTkkkkTkkk EE xxxHxxxxxgxx 1111

21

Taylor expansion:

221

2

22

212

21

221

221

2

//

//

///

NN

N

EE

EE

EEE

rrr

rrr

rrrrr

xH

Hessian matrix:

NE

E

r

r

xg

/

/ 1

Gradient vector:

iiii

N

zyx ,,,1

r

r

r

x

Geometry optimizationGeometry optimization

Szabo and Ostlund, Modern Quantum Chemistry, Appendix C

Page 22: Femtochemistry:  A theoretical overview

22

Geometry optimizationGeometry optimization

At xe, g(xe) = 0

kkke xgxHxx 1 Prove it!

xe xk

If H-1 is exact: Newton-Raphson MethodIf H-1 is approximated: quasi-Newton Method

When g = 0, an extreme is reached regardless of the accuracy of H-1, provided it is reasonable.

Page 23: Femtochemistry:  A theoretical overview

23

Problem 1:Problem 1:

• Get the gradient g

Numerical

Expensive, unreliable, however available for any method for which excited-state energies can be computed

x

xxExxExxE

211

1

1

1 gradient = 2 x 3N energy calculations!

Analytical

Fast, reliable, but not generally available

xdxdx

22

x

xxxxdxdx

2

222

Two ways to get the derivative of x2

Page 24: Femtochemistry:  A theoretical overview

24

Method Single/Multi Reference

Analytical gradients

Coupling vectors

Computational effort

Typical implementation

MR-CISD MR Columbus EOM-CC SR Aces2 SAC-CI SR Gaussian CC2 / ADC SR Turbomole CASPT2 MR Molpro MRPT2 MR Gamess CISD/QCISD SR Molpro / Gaussian MCSCF MR Columbus / Molpro DFT/MRCI MR S. Grimme (Münster) OM2 MR W. Thiel (Mülheim) TD-DFT SR Turbomole TD-DFTB SR M. Elstner (Braunschweig) FOMO/AM1 MR Mopac (Pisa)

Present situation of quantum chemistry methodsPresent situation of quantum chemistry methods

Methods allowing for excited-state calculations:

Page 25: Femtochemistry:  A theoretical overview

25

Problem 2:Problem 2:

• Get the Hessian H (or H-1)

Hessian has NxN = N2 elementsNormally second derivatives are computed numericallyHessian matrix is too expensive!

Use approximate Hessian:1. Compute H in inexpensive method (3-21G basis, e.g.)2. Do not compute. Use guess-and-update schemes (MS, BFGS)

11

111

11

kkTkk

TkkkkT

kkggxx

xxxxΛΛHH

11

11

kkTkk

Tkkkk

kggxx

ggxx1Λ

Example: update in the BFGS method:

Page 26: Femtochemistry:  A theoretical overview

26excited state relaxation

Page 27: Femtochemistry:  A theoretical overview

27

The electronic configuration changes quickly after the photoexcitation

Page 28: Femtochemistry:  A theoretical overview

28

Minima in the excited statesMinima in the excited states

E

X

“Spectroscopic” minimum

Globalminimum

• “Spectroscopic” minima are close to the FC region• Global minima often are counter-intuitive geometries

Page 29: Femtochemistry:  A theoretical overview

29

Minima in the excited statesMinima in the excited states

0 2 4 6 8 10

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

En

erg

y (e

V)

LIICMin S1

MXS 3

V.Exc.

S0

S1

S2

Page 30: Femtochemistry:  A theoretical overview

30

Minima in the excited statesMinima in the excited states

NH

O

NH

CH

O

Ground state minimum S1 “spectroscopic” minimum

Page 31: Femtochemistry:  A theoretical overview

31

0 20 40 60 80 1000

2

4

6

8

10

12

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.35

1.40

1.45

1.50

0 50 100 150 2001.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.600 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

Tot

al n

umbe

r of

hop

ping

s

Time (fs)

S2 S1 S1 S2

Ene

rgy

(eV

)

S1-S2 Gap

R(C6-N)

Bon

d le

ngth

)

R(C2-C3) R(C4-C5) R(C2-O)

Bon

d le

ngth

)

Time (fs)

Fra

ctio

n of

traj

ecto

ries

S2

NH

CHO

NH

O(a)

(c)

(b)

(d)

(1)

(2)

0 20 40 60 80 1000

2

4

6

8

10

12

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.35

1.40

1.45

1.50

0 50 100 150 2001.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.600 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

Tot

al n

umbe

r of

hop

ping

s

Time (fs)

S2 S1 S1 S2

Ene

rgy

(eV

)

S1-S2 Gap

R(C6-N)

Bon

d le

ngth

)

R(C2-C3) R(C4-C5) R(C2-O)

Bon

d le

ngth

)

Time (fs)

Fra

ctio

n of

traj

ecto

ries

S2

NH

CHO

NH

O(a)

(c)

(b)

(d)

(1)

(2)

0 20 40 60 80 1000

2

4

6

8

10

12

0 20 40 60 80 1000.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.35

1.40

1.45

1.50

0 50 100 150 2001.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.600 50 100 150 200

0.0

0.2

0.4

0.6

0.8

1.0

Tot

al n

umbe

r of

hop

ping

s

Time (fs)

S2 S1 S1 S2

Ene

rgy

(eV

)

S1-S2 Gap

R(C6-N)

Bon

d le

ngth

)

R(C2-C3) R(C4-C5) R(C2-O)

Bon

d le

ngth

)

Time (fs)

Fra

ctio

n of

traj

ecto

ries

S2

NH

CHO

NH

O(a)

(c)

(b)

(d)

(1)

(2) NH

CHO

NH

O(a)

(c)

(b)

(d)

(1)

(2)

Relaxation in the excited statesRelaxation in the excited states

Barbatti et al., in Radiation Induced Molecular Phenomena in Nucleic Acid ( 2008)

Page 32: Femtochemistry:  A theoretical overview

32Merchan and Serrano-Andres, JACS 125, 8108 (2003)

Surface can have different diabatic charactersSurface can have different diabatic characters

Page 33: Femtochemistry:  A theoretical overview

33

Minima may have different diabatic charactersMinima may have different diabatic characters

E

X

n

Change of diabatic character

Adiabatic surface

n

n

Page 34: Femtochemistry:  A theoretical overview

34

Initial relaxation may involve several statesInitial relaxation may involve several states

E

Page 35: Femtochemistry:  A theoretical overview

35

Relaxation keeping the diabatic characterRelaxation keeping the diabatic character

Merchán et al. J. Phys. Chem. B 110, 26471 (2006)

Page 36: Femtochemistry:  A theoretical overview

36

Relaxation changing the diabatic characterRelaxation changing the diabatic character

Barbatti et al. J.Chem.Phys. 125, 164323 (2006)

[1 .7 7 2 ]

1 .7 3 2

[1 .7 7 2 ]

1 .7 3 2

[1 .7 7 2 ]

1 .7 3 2

Page 37: Femtochemistry:  A theoretical overview

37

In general, multiple paths are available In general, multiple paths are available

Page 38: Femtochemistry:  A theoretical overview

38

Common reaction paths: Common reaction paths: efficiencyefficiency

*/csn

X C

R1

R2R3

R4

n*/cs

Ene

rgy

n

Reaction path

C O

R1

R2

*/cs

X C

R1

R2R3

R4

-1s-3s

n-1s

N H

R1

R2

Page 39: Femtochemistry:  A theoretical overview

39

0 90 180 270 3600

90

180

(°)

)

0 90 180 270 3600

90

180

(°)

)

0 fs

120 fs

170 fs

200 fs

The trapping effectThe trapping effect9H-adenine

Ene

rgy

Reaction path

Ene

rgy

Reaction path

0 90 180 270 3600

90

180

(°)

(°)

2-pyridone

Ene

rgy

Reaction path

Ene

rgy

Reaction path

Page 40: Femtochemistry:  A theoretical overview

40

4

6

8

4

6

0 5 10

4

6

3T1

*/cs*

n*

Ene

rgy

(eV

)

6E

*/cs*

n*out-of-plane O

n*/cs*

n*

dMW

(Å.amu1/2)

E5

*/cs*

n*

6,3B

n*/cs*

n*

Radiationless decay:Radiationless decay: thyminethymine

Zechmann and Barbatti, J. Phys. Chem. A 112, 8273 (2008)

Page 41: Femtochemistry:  A theoretical overview

41

Radiationless decay:Radiationless decay: lifetimelifetime

0 50 100

0.00

0.25

0.50

0.75

1.00

0 50 100 0 50 100 150

S3

S2

S1

S0

S4

Occ

upat

ion

S2

Time (fs)

S3 S

1

S0

S2

S1

S0

pyridonepyrrole

NH

adenine

N

N

NH2

NH

N NH O

0 50 100

0.00

0.25

0.50

0.75

1.00

0 50 100 0 50 100 150

S3

S2

S1

S0

S4

Occ

upat

ion

S2

Time (fs)

S3 S

1

S0

S2

S1

S0

pyridonepyrrole

NH

adenine

N

N

NH2

NH

N

adenine

N

N

NH2

NH

N NH O

*/cs

*/cs

n*/csn n*/csn-1s

-3sn-1s

-1s-3s

n-1s

Page 42: Femtochemistry:  A theoretical overview

42

excited-state intramolecular proton transferESIPT

Page 43: Femtochemistry:  A theoretical overview

43

Proton Transfer in 2-(2'-Hydroxyphenyl)benzothiazole (HBT)

Elsaesser and Kaiser, Chem. Phys. Lett. 128, 231 (1986)

Page 44: Femtochemistry:  A theoretical overview

44

ESIPT reaction schemes

pump

ketoform

NOH

S1

S0

emission

tN

OHNOH

N

OH

reaction path

electronicconfigurationchange

several modes contribute

Page 45: Femtochemistry:  A theoretical overview

45

T/T

Lochbrunner, Wurzer, Riedle, J. Phys. Chem. A 107 10580 (2003)

Emission signal at the keto wave number appears after only 30 fs

Page 46: Femtochemistry:  A theoretical overview

46

Page 47: Femtochemistry:  A theoretical overview

47

Internal conversion should play a role

Page 48: Femtochemistry:  A theoretical overview

48

ESIPTESIPT

probe = 570 nmResolution: 30 fs

Schriever et al., Chem. Phys. 347, 446 (2008)Barbatti et al., PCCP 11, 1406 (2009)

Page 49: Femtochemistry:  A theoretical overview

49

Next lecture

• Adiabatic approximation• Non-adiabatic corrections

[email protected]

This lecture can be downloaded athttp://homepage.univie.ac.at/mario.barbatti/femtochem.html lecture2.ppt


Recommended