+ All Categories
Home > Documents > Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro and José-Manuel Zaldívar Comenges

Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro and José-Manuel Zaldívar Comenges

Date post: 05-Jan-2016
Category:
Upload: sook
View: 38 times
Download: 4 times
Share this document with a friend
Description:
APPLICATION OF NON-LINEAR TIME SERIES ANALYSIS TECHNIQUES TO THE NORDIC SPOT ELECTRICITY MARKET DATA. Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro and José-Manuel Zaldívar Comenges. Update on WP5: Task 5.2 Deliverable 5.3. DATA. - PowerPoint PPT Presentation
Popular Tags:
39
APPLICATION OF NON-LINEAR TIME SERIES ANALYSIS TECHNIQUES TO THE NORDIC SPOT ELECTRICITY MARKET DATA Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro and José-Manuel Zaldívar Comenges Update on WP5: Task 5.2 Deliverable 5.3
Transcript
Page 1: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

APPLICATION OF NON-LINEAR TIME SERIES ANALYSIS TECHNIQUES TO THE NORDIC SPOT ELECTRICITY

MARKET DATA

Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro

and José-Manuel Zaldívar Comenges

Update on WP5:Task 5.2

Deliverable 5.3

Page 2: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Hourly spot prices in the Nordic electricity market (Nord Pool)

from May 1992 until December 1998. (NOK/MWh)Hourly spot prices in the Nordic electricity market (Nord Pool)

from January 1997 until January 2007. (EUR/MWh)

SwedenNord Pool

Finland W Denmark E Denmark KontekNorway

Statnett Market

DATA

1996- EU Electricity Directive starts to have impact: EU countries open their electricity markets to competition ( high consumers can choose their provider).1993- Nord Pool (Nordic Electricity Market) was created by Norway.……2005-KT area. (Kontek cable connection Zealand-Germany). A competition starts between Nord Pool and European Energy Exchange (EEX)

Page 3: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Electricity Price

• Participants trade power contract one day for each hours of the next day• At the end of the trade all possible congestions or insufficient capacities are checked.• If some congestion or insufficient capacities occurs with these flows the market system established different “prices area” and TSOs ask to generators to increase (reduce) production or to buyer to increase (decrease) demand.• Then sometimes prices are the price of all Nordic region (“system price”) sometimes different “areas prices” exist.

• In this work we will consider “System price”: the price if no transmission constrains are considered

• Nordic Market has a single price less than half of the time (due to congestions)

Page 4: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Electricity Price: dependencies

• The variation of the prices in the Nord Pool system is well correlated with the variations in precipitations because of its dependence from hydropower generation.• In the “dry” periods the price and its volatility increase due to the dependence from other source of energy (petrol)

Page 5: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Electricity Price

Page 6: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Goals

1. Characterizing time series spot price dynamicscomparing them with- Linear Gaussian dynamic with the same fft testing nonlinearity- Time series with the same probability distribution but not temporally correlated (shuffled)2. Detect important events using nonlinear time series analysis

Page 7: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Data treatment

)(

)(ln)(

ttx

txtr tHourly logarithmic return

Page 8: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Hurst exponent: H

H is a tool for studying long-term memory and fractality of a time series

A long memory process is a process with a random component, where a past event has a slow decaying effect on future events.

H provides a measure of whether the data are a pure random walk or have some trend (i.e. some degree of correlation exists)

Page 9: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Hurst exponent: R/S analysis

Hurst measures how the range of cumulative deviations from the mean of the series is changing with the time

n

tn

ntnt

n rtrn

ntXntX

S

R

1

2

11

))((1

),(min),(max

(R/S)0 is a constant, n is the number of years to calculate the mean value H is the Hurst exponent

t

in

rirntX1

))((),(.

(R/S)n→(R/S)0 nH

A variety of techniques exist for estimating H but the accuracy of estimation is a complicate issue

as n →log2(R/S)n

log2n

Page 10: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Hurst exponent: properties

0 H 1 H=0.5 for random walk time series

fractional Brownian motion (fBm) is a random walk with H≠0.5 H < 0.5 for anticorrelated time seriesH > 0.5 for positively correlated series

.

Data set H

NOK 0.4406

EUR 0.2673

Page 11: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Power Spectral Density

deR f

fPSD2

)( )(

PSD describes how the power of the signal is distributed with frequency

The PSD is the Fourier transform of the autocorrelation function R() of the signal s(t) if the signal con be treated as a stationary random process

Data set

NOK 1.4612

EUR 1.4562

f

1fPSD )(

Page 12: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Stable Distribution

0,2

1 ,2/1

0 ,1

A stable probability distribution is defined by the Fourier transform of its characteristic function t

:

dtetxf itx

2

1),,,;(

)sgn(1||exp tititt

1 t

1

)log()/2(

)2/tan(

Gaussian22 2

Chauchy

Levy

(0,2], [-1,1] [0,) (-,)

Page 13: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Stable Distribution

Page 14: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Stable distribution

Data set

NOK 0.412 -0.365 0.035 -0.00018

NOK(0) 1.116 0.127 0.242 -0.0514

EUR 1.308 0.164 0.268 -0.068

EUR(0) 1.315 0.173 0.272 -0.069

Nord Pool data fitted parameters using STABLE (Nolan, 1999).

Fitted density plot for the Nord Pool Norwegian Krone and Euro time series data (blue line): a/Original time series, first difference; b/ without zero values (23962 values).

Page 15: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Surrogate datak S..., S ,1

Surrogate data is an ensemble of data sets similar (same mean, variance, etc) to the observed data and consistent with some null hypothesis

A discriminating statistic Q is chosen

If only a single realization exists for the original data we cannot compare the distributions of Q then we define a level of “significance”

If the null hypothesis is not true for k=19 surrogate data sets we can reject it with a probability of =0.05 (95% level of significance)

Page 16: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Surrogate data: Null hypothesis

1. Temporally uncorrelated noise. The null hypothesis: any correlation at all. Surrogate data are generated by a random shuffling of the original time series.

2. Linearly correlated noise. The null hypothesis : the time series are originated by a linear random process with the same autocorrelation function or, equivalently, with the same Fourier Power Spectrum.

t

q

kktkt

exax

1

et is un uncorrelated Gaussian noise of unit varianceis chosen so that the variance of the surrogates matches with the one of original dataak contain information on Correlation function

Page 17: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Surrogate data: discriminating statistic Q

The dynamic is chaotic? Q = Correlation dimensionQ = Lyapunov exponentQ = Forecasting error

The structures of recurrence plots?Q = RQA measures

Page 18: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

State Space reconstruction

),...,,( 21 nxxxx ),( xFx

dt

d

),...,,( 21 Edyyyy ),( yGy

dt

d

,.../,/, 21

211 dtxddtdxxy

)(),.....2(),(),( 1111 Edtxtxtxtx ydE=embedding dimension

=time delay

Page 19: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Embedding Parameters

First minimum of the Average Mutual Information

Tnn nxPnxP

nxnxPnxnxPI

,2 ))(())((

)(),((log))(),(()(

NOK/MWh time series occurs at =15 EUR/MWh time series for =13.

=time delay

dE=embedding dimension

NOK/MWh dE=10 EUR/MWH dE=10

E1=relative increment of the mean distance between nearest points

E2=another way to measure relative

increment .

Cao (1997)

Page 20: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Stationarity test: space time separation plot

Sn=Random walkRn=Gaussian Random Number

Stp=Contour plot of Probability Density Function in the space: separation in space versus separation in time in the reconstructed space

Stationary = flat profile

Separation in time

Random walk

The reconstruction parameters do not change in the time if the series is stationary

Provenzale et al. (1992)

Page 21: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Stationarity test: space time separation plot

Space-time separation plot of the Nord Pool spot prices (NOK/MWh).

Space-time separation plot of the Nord Pool spot prices (EUR/MWh).

Space-time separation plot of Australian-US dollar foreign exchange time series.

Space-time separation plot Belgium Franc-US dollar foreign exchange time series.

Page 22: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Stationarity test: space time separation plot

Page 23: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Recurrence Plots: Introduction

N1,...,ji, xx

xx

ji

ji

ji

:0

,:1,R

N

i

ix1

Recurrence: Henri Poincaré 1890. when a system recurs many times as close as one wish to its initial state

Recurrence Plots (RPs): Eckmann, 1987.A trajectory of a system in its phase space

can produce a RP

i.e. a matrix given by:

Real data

Page 24: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Recurrence Plots

EUR/KMh =13, dE =10, =10 NOK/MWh =15, dE=10, =40

Page 25: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Recurrence Plots: Surrogate linearly correlated

EUR/KMh =13, dE =10, =10 NOK/MWh =15, dE=10, =40

Page 26: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Recurrence Plots: Surrogate Temporally uncorrelated

EUR/KMh =13, dE =10, =10 NOK/MWh =15, dE=10, =40

Page 27: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Recurrence Quantification Analysis

a/ Measures based on recurrence density

N

jijiN

RR1,

,2)(

1)( R

where )(, jiR is one if the state of the system at time i and the one at time j have a distance less than

and zero otherwise.

b/ Measures based on diagonal lines

N

l

N

ll

llP

llP

DET

1

)(

)(min%determinism (DET) is then the percentage of recurrent points forming diagonal line structures

lmin=100

%recurrence

lN

iilL 1max max max

1

LDIV

the length maxL of the longest diagonal line found in the RP, or its inverse, the divergence (DIV)

N

ll

lplpENTRmin

)(ln)(

Shannon entropy of the probability lNlPlp /)()( to find a diagonal line of length l in RP.

Page 28: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Recurrence Quantification Analysis

c/ Measures based on vertical lines

% vertical lines of length in RP

N

v

N

vv

vvP

vvP

LAM

1

)(

)(min

The average length of vertical structures is given by

N

vv

N

vv

vP

vvP

TT

min

min

)(

)(

Page 29: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Data set %recur %deter maxline entropy trend % laminar TrapTime

Bnok 16.095 67.13 3545 8.593 -8.687 69.994 308.044

Surr001 8.150 6.129 4808 6.740 2.306 1.796 123.511

Surr002 1.926 4.521 1355 4.913 -0.142 0.000 -1

Surr003 2.807 8.026 4808 6.028 -1.616 0.000 -1

Surr004 30.218 36.309 4808 7.994 -3.360 35.521 214.805

Surr005 1.735 13.216 1844 6.117 -0.983 0.055 110

Surr006 1.007 32.018 1178 6.287 -0.752 16.980 166.134

Surr007 4.785 13.279 2674 6.895 -0.802 7.533 153.511

Surr008 14.122 17.880 4350 7.357 -4.479 9.293 154.815

Surr009 5.934 13.528 3130 7.195 -2.458 6.301 159.498

Surr010 1.193 5.900 1064 4.696 -0.677 0.347 119.500

Surr011 4.860 51.638 4808 7.918 -1.542 52.444 266.162

Surr012 31.899 52.675 4808 8.415 12.407 54.522 218.168

Surr013 4.795 9.417 4808 6.880 0.524 0.724 143.393

Surr014 5.725 9.169 4154 6.783 -2.980 1.774 144.963

Surr015 4.972 6.340 2370 6.606 -2.341 1.720 114.988

Surr016 18.050 23.404 4808 7.678 -4.183 12.845 161.470

Surr017 10.846 43.188 4614 8.799 -7.222 38.298 338.899

Surr018 4.956 8.523 4808 6.596 -2.654 3.484 141.553

Surr019 6.323 4.462 4808 6.184 -1.989 0.375 114.208

Surrogate: linear surrogate

Page 30: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Data set %recur %deter maxline entropy trend % laminar TrapTime

Beur 7.12 35.33 2094 7.658 -4.587 33.94 263.525

Surr001 12.524 3.665 3340 6.355 -6.259 2.539 149.367

Surr002 1.643 5.894 2238 5.270 -1.100 1.872 119.367

Surr003 3.840 1.397 2150 4.533 -0.998 0.000 -1

Surr004 4.377 1.105 1324 3.970 -0.286 0.000 -1.000

Surr005 10.677 1.825 4187 5.730 -5.483 1.527 126.613

Surr006 8.658 18.813 4826 7.538 -5.638 9.854 146.364

Surr007 0.491 3.888 690 2.807 -0.346 0.000 -1.000

Surr008 23.790 11.105 4826 7.509 -7.639 9.252 162.159

Surr009 30.269 10.831 4826 7.393 -1.830 7.108 151.053

Surr010 20.536 4.700 4826 6.845 -7.466 6.416 150.611

Surr011 2.336 3.777 1888 5.094 -1.160 1.529 134.161

Surr012 3.715 1.475 3517 4.059 -1.627 0.108 117.250

Surr013 4.994 3.736 3721 5.972 -3.343 1.886 135.457

Surr014 21.649 9.020 4826 7.162 -2.900 9.664 154.810

Surr015 20.052 8.142 2669 7.247 -4.243 4.171 146.484

Surr016 6.811 5.384 3998 6.574 -4.098 0.758 125.312

Surr017 3.161 4.113 1964 5.641 -2.076 0.715 131.650

Surr018 7.809 3.369 2429 6.204 -0.473 2.766 132.437

Surr019 12.185 1.330 4826 5.429 1.503 0.088 125.600

Surrogate: linear surrogate

Page 31: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Data set %recur %deter maxline entropy trend % laminar TrapTime

Bnok 16.095 67.13 3545 8.593 -8.687 69.687 308.044

Surr001 0 0 -1 -1 0 0 -1

Surr002 0 0 -1 -1 0 0 -1

Surr003 0 0 -1 -1 0 0 -1

Surr004

Surr005

Surr006

Surr007

Surr008

Surr009

Surr010

Surr011

Surr012

Surr013

Surr014

Surr015

Surr016

Surr017

Surr018

Surr019

Surrogate: temporally uncorrelated

Page 32: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

RQE analysis

RQE analysis is able to detect important changes?

RQE=RQA quantities on moving windows

Norway SwedenFinland W Denmark E Denmark Kontek

NOK/MWh EUR/MWh

720 point window (one month), data are shifted 720 points

Page 33: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Volatility

Inverse of standard deviation and %determinism (top) and %laminarity (bottom) for NOK/MWh

Inverse of standard deviation and %determinism (top) and %laminarity (bottom) for EUR/MWh

Page 34: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Volatility: EUR/MWh

RQA measures of EUR/MWh: Values are computed from a 720 point window (one month), shifted of 720 points. RQA parameters: =13, dE=10, distance cutoff: max. distance between points/10, line

definition: 100 points (~4 days). Vertical lines correspond to the following dates: 1 st October 2000, 5th October 2005 (see historical background).

Page 35: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Volatility: NOK/MWh

Nonlinear metrics of the Nord Pool spot prices time series in NOK/MWh: Values are computed from a 720 point window (one month), data are shifted 720 points. RQA parameters: t =15, dE=10, distance cutoff: max. distance between points/10, line definition: 100 points (~4 days). Vertical lines correspond to the following dates: 1st January 1993, 1st January 1996, 29th December 1997 and 1st July 1999 (see historical background).

Page 36: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Conclusions and Future Developments

• H < 0.5 anticorrelation

RQE: (RQA measures on moving windows) are able to detect changesRQE→%determ, %Lam give a new measure of volatility

New Developments: analyse the possible correlation between the volatility of energy market and blackouts

Characterize the underlying dynamics using surrogates:

• Space Time Separation Plot: the data seems stationary •RQA Measures (%determ, %Lam) are able to distinguish between data: - surrogate linearly correlated - temporally uncorrelated

Detect important changes in the time series not evident from their time representation

Measuring long term correlation of the time series:

• Stable distribution

Page 37: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Bibliography

Data History:

Amundsen, E.S. and Bergman, L., 2007, Integration of multiple national markets for electricity: The case of Norway and Sweden, Energy Policy, doi.1016/j.enpol.2006.12.014.

Byström H.N. E. 2005. Extreme value theory and extremely large electricity price changes. International Review of Economics and Finance 14, 41-55.

Hsieh, D. A., Chaos and nonlinear dynamics: Application to financial markets, 1991, The Journal of Finance 46, 1839-1887Kristiansen, T., 2007. Pricing of monthly contracts in the Nord Pool market. Energy Policy 35, 307-316.

Kristiansen, T., 2006, A preliminary assessment of the market coupling arrangement on the Kontek cable, Energy Policy (in press)

Perelló, J., Montero, M., Palatella, L., Simonsen, I. and Masoliver, J., 2007. Entropy of the Nordic electricity market:anomalous scaling, spikes, and mean-reversion. J. Stat. Physics (in press).

Vehviläinen I. and Pyykkönen, T. 2005. Stochastic factor model for electricity spot price-the case of the Nordic market. Energy Economics 27, 351-357.

Weron, R., Bierbrauer, M. and Truck, S. 2004. Modelling electricity prices: Jump diffusion and regime switching. Physica A 336, 39-48.

Page 38: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Hurst:Cannon, M. J. Percival, D. B., Caccia, D. C., Raymond, G. M. and Bassingthwaighte, J. B., 1997, Evaluating scaled windowedvariance methods for estimating the Hurst coefficient of time serie

Haldrup, N., Nielsen, M. Ø., 2006. A regime switching long memory model for electricity prices. Journal of econometrics 135,349-376.

Hurst, H. E., 1951, Long-term storage capacity of reservoirs, Trans. Am. Soc. Civ. Eng. 116, 770-779.

Simonsen, I., 2003. Measuring anti-correlations in the Nordic electricity spot market by wavelets. Physica A 322, 597-606.Weron, R. and Przybyłowicz, B., 2000. Hurst analysis of electricity price dynamics. Physica A 283, 462-468.

Embedding parametersCao, L., 1997, Practical method for determining the minimum embedding dimension of a scalar time series, Physica D 110, 43-50.

Bibliography

Surrogate data:

Schreiber, T. and Schmitz, A., 2000, Surrogate time series, Physica D 142, 346-382.

Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., and Farmer, J. D., 1992, Testing for nonlinearity in time series: the method of surrogate data. Physica D 58, 77-.

Space time separation plot:Hegger, R., Kantz, H., Schreiber, T., 1999, Practical implementation of nonlinear time series methods: The TISEAN package. CHAOS 9, 413-. The software package is publicly available at http://www.mpipks-dresden.mpg.de/~tisean .

Provenzale, A., Smith, L. A., Vio, R. and Murante, G., 1992, Distinguishing between low-dimensional dynamics and randomness in measured time series. Physica D 58, 31-49.

Page 39: Fernanda Strozzi, Eugénio Gutiérrez Tenrreiro   and José-Manuel Zaldívar Comenges

Stable distributions:

Nolan, J.P., 1999. Fitting data and assessing goodness of fit with stable distributions. In Proceedings of the Conference on Applications of Heavy Tailed Distributions in Economics, Engineering and Statistics , American University, Washington DC, June 3-5.

Nolan, J.P., 1997. Numerical computation of stable densities and distribution functions. Commun. Stat.: Stochastic models 13, 759-774.

PSD

Theiler, J., 1991, Some comments on the correlation dimension of noise. Phys. Lett A 155, 480-493.f/1

Recurrence plot:

Eckmann, J. P., Kamphorst, S. O. and Ruelle, D., 1987, Recurrence plots of dynamical systems, Europhys. Lett. 4, 973-977.

Marwan, N., Romano, M. C., Thiel, M. and Kurths, J., 2007. Recurrence plots for the analysis of complex systems. Physics Reports 438, 237-329.

Strozzi, F., Zaldivar, J, M., Zbilut, J., P., 2007, Recurrence quantification analysis and state space divergence reconstruction for financial time series analysis. Physica A 376, 487-499

Strozzi, F., Zaldívar, J. M., & Zbilut, J. P., 2002. Application of nonlinear time series analysis techniques to high frequency currency exchange data, Physica A 312, 520-538.

Zbilut, J. P. and Webber Jr. C. L., 1992, Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171, 199-203

Bibliography


Recommended