+ All Categories
Home > Documents > Fi re Resistance of Sti of Steel Structures Stee -...

Fi re Resistance of Sti of Steel Structures Stee -...

Date post: 02-Apr-2018
Category:
Upload: buique
View: 220 times
Download: 3 times
Share this document with a friend
6
ECCS N° 89 Fi re Resistance of Sti (On the basis of ENV 1993 par11-2 .Design of steel structur 1. Introdúction The requlred fire resistance of stHI stNCtures - In tenns of fire ~ dasses ~ etc. . is given by nationaJ regUlations. These requlrements should consider the number of ftoors. the use of the bui~. the fire k)ad. the nlNrtJer of peopIe and the favourable effect of active measures. such es sprinklers, automatk: fire detec1lon.and type and proxirrWty of the fWe brigade. The assessment of the fire resistara d' stNCtural ai6o ,iA is ba8ed either on standard fire tests in fumaces or on calculatlon. Thls Technic8/ Note ;:je&...~ouas calculation ",aIt-,,-)d5 for u.-~~ and protected internal steelwork besed on the European prestandard ENV 1993-1-2 [1).[2). 2. Principles 01 Calculation 2.1 Steel temperature The increase in steel temperature is given by the folk)wk)g factors: a) The section factor (A..,/V): i.e. the relatk>nbetween the surface area exposed to the heat flux and the voIume of the member per unllengtf1. CaIcuIation methods and vaJues of (AmfV) for common sectIons are given in Sectlon 5. b) The thefm8I propertles ~ a fire proIection material: i.8. thermal conductivity ~, its specific heat Cp and Its thickness dp. Thermal propertIes for various protec(k)n materials are ~ in Section 4. At present no European Nonn Is available to detennine ~. Therefore product specifications rnust be obtaIned In each country from approved testing laboratorles, or other expert institutes on condition lhat they are based on officially approved tests (Section 10). c) For fire protectlon material containing water, the evaporation of the water causes a deJay of the temperature iroease of the steel when the temperature of the steel reacheS 100.C (Example A1). 2.2 Mechanical propertiesof steel at elevated temperatures Steel properties change with temperature (Fig. 1). For a menmer at a unifonn temperature, called critical temperature 9cr' the Ioad bearing capacity becomes equal to the effect of the appiled Ioads. Failure will then occur. The critlcal tempet'ature is detennined by the IeveI of the appied Ioad (action), expressed as the degree of utilisatlon in flre, given by ~ = EIi.d I Rn.d,O E..,d : the design eIect of aCIions ., flre Rn.d.O : the design resistance In fire, for time t = O (i.e. room t~ture,"YM = "YM,fi = 1.0, SUWOft cordtions for the fire situatk>n: 0.5 l for intem'8date. 0.7 l for top storey coIumns) .. ,. , v 2.3 TemJ)er'ature distribJtion An adaptation factor K is introduced to take account of 8 ncx1- unifOf'Tn temperature distribution over the height and aIongside the steel section. The value 01the adaptation factor K 8tK)uIdbe taken as toIlows: - beams: . exposed on aJl four sides: K 8 1.0 . exposed on three sides. with a ~e or coocrete sIabon skte rour: K . 0.7 - statically indeterminate beams at support: . exposed on .11 four sides: K 8 0.85 . exposed onthree sIdes, with a composlte or concrete sIabon sKie rour: K ~ 0.8 Stability ~ (to account for Iower strain 1eveI)K ~ 1.2 Safety of Steel Structures ECCS - Technical Committee 3 - Fire ECCS CECM E K S of Steel Structures of steel structures - Structural fire design") Sept. 1995 Stee "Design Rt1 ... AI OA 0.1 8 O O - - - - 1~ ,~ an rq Fig. 1: Reduction lactors for steel strength and stiffness st elevsted temperatures 2.4 Ge.-ISf-alassumptions The calculation 01 the lire resistance is based on the loIk)wing sssumptions: - the temperature íncrease foIlows the standard fire curve \'~~I un1form heating of the steel member. A non-unlform heat clstribulion is CX)n8id8r8d by the factor K (SectIon 2.3) steel grades ~ng to EN 10025 (8 235,8275,8355) and EN 10113 (8 420, 8460) for ~r anaIysis, Ihe effects of thermaJ expansIon of the member may be neglected steeI 88dions of dasses 1, 2 or 3 (wIIh A,./V > 10 mol). For sections of class 4 see example C. T8fT1)8rature increase curves caJaAted for Yn,r = Yn.c . 1.0 accordlng to ENV 1991-2-2. (If the National Applícation Oocument giws other YakIeS,see Sedion 10) Te~ture Increase curves for Insulated steel calculated wlth . = O (Mod~tion factors for other vakJes see Section 4). , Calculation Procedure Calculate the degree of utiHsati<X111() (Section 2.2). For a prelimlnary design I!o rnay be taken ss 0.6. Thís ís normally a conservative assu"1'tion. The non-dlmensiooal slendemess of a coIUnW1 Is a furK:tion of the temperatura 8 and has to be adapted for the calculation of 110= A..e.max = ~O' .Jky.e.- I ke.e,-. wIIh 8-. the steeI t8n1)erature st faBure II() = E..d I ~.d.O Rt.d.O Is calculated uslng A..e~ as given above, the yield strength fy at room temperature BOO buckling curve c. The V8kIeSof -Jky.e~ I ke,e.-. are given In TBbIe 1 a. The calculatioo procedure for coIurms is MhJstrated in Exampie D. TBbIe 1 b gives ciI'ectIy the critical temperatur8S for interme<iate columns and Table 1 c for tQPstorey columns. For a preikninary ~ "A..e~ = 1.2. A..o rnay be assurned. Determine the section factor. A,./V for unprotected steel members BOO Ar/V for steel members ínsulated by fire protection rnateriat (Section 5). The thermal section lactor [(Ar/V).CVdp») can be derived eccording to Section 4 and 7.1 ExampIe A 1. The fire resistance ,jme ~ is assessed by making use of the nomogram (see Section 6 BOO ~ in Section 7). A serles of adaptation factors K are consldered by special curves on the 18ft side of the nonM>graIn. - - 3. - -
Transcript
Page 1: Fi re Resistance of Sti of Steel Structures Stee - cvut.czpeople.fsv.cvut.cz/~wald/edu/134OK33-pozar/ECCS_No_89_Fire...ECCS N° 89 Fi re Resistance of Sti (On the basis of ENV 1993

ECCS N° 89

Fi re Resistance of Sti(On the basis of ENV 1993 par11-2 .Design of steel structur

1. IntrodúctionThe requlred fire resistance of stHI stNCtures - In tenns of fire~ dasses ~ etc. . is given by nationaJ

regUlations. These requlrements should consider the number offtoors. the use of the bui~. the fire k)ad. the nlNrtJer of peopIeand the favourable effect of active measures. such es sprinklers,automatk: fire detec1lon. and type and proxirrWty of the fWe brigade.

The assessment of the fire resistara d' stNCtural ai6o ,iA isba8ed either on standard fire tests in fumaces or on calculatlon.Thls Technic8/ Note ;:je&...~ouas calculation ",aIt-,,-)d5 for u.-~~and protected internal steelwork besed on the Europeanprestandard ENV 1993-1-2 [1).[2).

2. Principles 01 Calculation2.1 Steel temperatureThe increase in steel temperature is given by the folk)wk)g factors:

a) The section factor (A..,/V): i.e. the relatk>n between the surfacearea exposed to the heat flux and the voIume of the member

per unllengtf1. CaIcuIation methods and vaJues of (AmfV) for

common sectIons are given in Sectlon 5.b) The thefm8I propertles ~ a fire proIection material: i.8. thermal

conductivity ~, its specific heat Cp and Its thickness dp.Thermal propertIes for various protec(k)n materials are ~ in

Section 4. At present no European Nonn Is available to

detennine ~. Therefore product specifications rnust be

obtaIned In each country from approved testing laboratorles, or

other expert institutes on condition lhat they are based onofficially approved tests (Section 10).

c) For fire protectlon material containing water, the evaporation ofthe water causes a deJay of the temperature iroease of thesteel when the temperature of the steel reacheS 100.C

(Example A1).

2.2 Mechanical properties of steelat elevated temperatures

Steel properties change with temperature (Fig. 1). For a menmerat a unifonn temperature, called critical temperature 9cr' the Ioad

bearing capacity becomes equal to the effect of the appiled Ioads.

Failure will then occur.

The critlcal tempet'ature is detennined by the IeveI of the appied

Ioad (action), expressed as the degree of utilisatlon in flre, given

by ~ = EIi.d I Rn.d,O

E..,d : the design eIect of aCIions ., flreRn.d.O : the design resistance In fire, for time t = O

(i.e. room t~ture,"YM = "YM,fi = 1.0, SUWOft cordtions

for the fire situatk>n: 0.5 l for intem'8date. 0.7 l for topstorey coIumns)

.. ,. ,v

2.3 TemJ)er'ature distribJtionAn adaptation factor K is introduced to take account of 8 ncx1-unifOf'Tn temperature distribution over the height and aIongsidethe steel section. The value 01 the adaptation factor K 8tK)uId betaken as toIlows:- beams:

. exposed on aJl four sides: K 8 1.0

. exposed on three sides. with a ~eor coocrete sIab on skte rour: K . 0.7

- statically indeterminate beams at support:. exposed on .11 four sides: K 8 0.85. exposed on three sIdes, with a composlteor concrete sIab on sKie rour: K ~ 0.8

Stability ~ (to account for Iower strain 1eveI) K ~ 1.2

Safetyof Steel StructuresECCS - Technical Committee 3 - Fire

ECCSCECME K S

of Steel Structuresof steel structures - Structural fire design") Sept. 1995

Stee"Design

Rt1

...

AI

OA

0.1

8O

O - - - - 1~ ,~an rq

Fig. 1: Reduction lactors for steel strength and stiffness stelevsted temperatures

2.4 Ge.-ISf-alassumptionsThe calculation 01 the lire resistance is based on the loIk)wingsssumptions:- the temperature íncrease foIlows the standard fire curve

\'~~I

un1form heating of the steel member. A non-unlform heatclstribulion is CX)n8id8r8d by the factor K (SectIon 2.3)

steel grades ~ng to EN 10025 (8 235,8275,8355) andEN 10113 (8 420, 8460)for ~r anaIysis, Ihe effects of thermaJ expansIon of themember may be neglectedsteeI 88dions of dasses 1, 2 or 3 (wIIh A,./V > 10 mol). Forsections of class 4 see example C.T8fT1)8rature increase curves caJaAted for Yn,r = Yn.c . 1.0

accordlng to ENV 1991-2-2. (If the National ApplícationOocument giws other YakIeS, see Sedion 10)Te~ture Increase curves for Insulated steel calculated wlth. = O (Mod~tion factors for other vakJes see Section 4).

, Calculation ProcedureCalculate the degree of utiHsati<X111() (Section 2.2).For a prelimlnary design I!o rnay be taken ss 0.6. Thís ísnormally a conservative assu"1'tion.The non-dlmensiooal slendemess of a coIUnW1 Is a furK:tion ofthe temperatura 8 and has to be adapted for the calculation of

110=

A..e.max = ~O' .Jky.e.- I ke.e,-.

wIIh 8-. the steeI t8n1)erature st faBure

II() = E..d I ~.d.O

Rt.d.O Is calculated uslng A..e~ as given above, the yieldstrength fy at room temperature BOO buckling curve c.

The V8kIeS of -Jky.e~ I ke,e.-. are given In TBbIe 1 a.The calculatioo procedure for coIurms is MhJstrated in Exampie D.TBbIe 1 b gives ciI'ectIy the critical temperatur8S for interme<iatecolumns and Table 1 c for tQP storey columns.For a preikninary ~ "A..e~ = 1.2. A..o rnay be assurned.

Determine the section factor. A,./V for unprotected steelmembers BOO Ar/V for steel members ínsulated by fireprotection rnateriat (Section 5). The thermal section lactor[(Ar/V).CVdp») can be derived eccording to Section 4 and 7.1ExampIe A 1 .

The fire resistance ,jme ~ is assessed by making use of thenomogram (see Section 6 BOO ~ in Section 7).A serles of adaptation factors K are consldered by specialcurves on the 18ft side of the nonM>graIn.

-

-3.

-

-

Page 2: Fi re Resistance of Sti of Steel Structures Stee - cvut.czpeople.fsv.cvut.cz/~wald/edu/134OK33-pozar/ECCS_No_89_Fire...ECCS N° 89 Fi re Resistance of Sti (On the basis of ENV 1993

For a preliminary design the increase of the fire resistance timecaused by the effecls of moIsture in the protectlon materialmay be added (fr = ft + t.,), if data is taken from Table 2.Evaporation tlme t.,= fp. Ppodp2) / (5 . ~) [min]. No increase is

allowed if the moIsture Is already oonsidered implicitly in thenational ~-values of the tabIe in Section 10.

Ta 1. 3I5.-~,~ mocIftcatIon f-*X ~ I kE at~t&o~-alures

e.rCJ - G - -,. --.'k, /~ 1.12 1.- 1.14 1.23 1'» 1.11 0.84

TM». 1b Cr8caI ... .~~... of In8maI ~ forI - 0.5 L, K . 1.2

'-.. ~tom 0.40 o.. 0.8) 1.- 1.- 1.40 1.8 1.8 2..

.. - '" - 781 n1 ,. 'M4 ,..G.8 111 - - .. .. m ., - no naQ.4O .., - 815 - .. - m - - -~ m , 111 - 844 .., - m mo., 181.. ~ - 113 ~ 142 882 - .,0.56 545 553 185 ~ - 815 - .. 848 ~1O.~ 528 68 550 581 - - 811 .., .. 840

Teb. 1C ~ ... ,.", ~. *'8Y ---, forL..u-0.7L,K-1.2

'-.. ~o.- 0.40 o.m 0.8) 1.00 1.- 1.40 1.. 1.. 2.00

... _840841" 1-Q.8 1M 111 ., - 831 - - 840 .. 842o..- ... - ." - 113 111 ., - .. -~ ml7l_-_m1_--8100.8) .., 181 - m .1 - .1 - - ..,~ 14O144550_l88mm~ 0.8) m572

JIo,o - d88Ign Io8d In t\te I design buckling resistance for:e - 20°. ". 1.0 L. buQ(Hng curve c. 1M ft = 1.0

"Ao,c = non dimensional slendemess of colum~ for" = 1.0 L

4. Properties of Fire ProtectionMaterial

Table 2: General properties for prellminary design", The followingmaterial propetties may be used to calculate the modified sectionfactor: Ap Ap 1. Cp . dp . Pp . Ap

V' -ap-' 1 + ./2' . = c. 'P.' V

-~ simpllflcation. may be taken equal to O (this leads to conser-vative resuJts). The deiay Iv caused by the moisture content of theprotection matenal may be considered according to Exampie A 1.The protection material must be fixed in such a way that it will keepits protective function during the required fire resistance tirne.

contour Apinner contour Ap

5.5.1

factorsUnprotected steel members

Secti f ci Am exposed surface area per unit lengthon a or: _V =01 f the be it Iengthv ume o mem rperun

concr8tell8b

Section

I ..tIC8 8XJIOIed to flre

aO8s-I8CIIon area of

IteeIprofiIe

5.2 Steel members insulated by firematerial

-&-v cross-sectIonc~~~ I

~ n~ ,

-o,~

~RIer oontour of~1)CIO8HedIon ... of--prom.

dpt-& c.

Ex-.:o.;.~oj:IIc IV

~..-~ : HaIowa-~ :" Ca1kxIrof wibm ;---~. of ~ ;---~. ..-~ ~:I- ~y yyy j It88I perirneter

'<1 '& 1tMi~~ I -*on area

h~ ' HaIow., ~ ,:

- - _: ~~x: ; ~ c, 2 (b + h) 1)

--- b__. -- ~b . :na:Contour ~ or HoIow ~ " of C«murunbm th~. expo- unIfomI :-.k:kr expo- 8I1C8Hm8nt:led ti ftre ~ IkJ88 led ti .,. ~ 8kI88. 8teeI perImeter - b

~ -a:oe.--1eeUon1r88

hHalow..-~ o:

c, (2h + b) 1)b o. b ~-~

- . -*n--

t) n.. - ~ ':'~'c, 8wJo. ~ ..,."., -=-d IV.

Legend: ~"J insulation ( with thlckness dp )

steel cross sectIon

Inner contour Ap

i/ff//7~"A

inner contour Ap

Page 3: Fi re Resistance of Sti of Steel Structures Stee - cvut.czpeople.fsv.cvut.cz/~wald/edu/134OK33-pozar/ECCS_No_89_Fire...ECCS N° 89 Fi re Resistance of Sti (On the basis of ENV 1993

5.3 Section factors ArrIV (resp. Ar/V)in [m-1] for hol rolled profiles

Page 4: Fi re Resistance of Sti of Steel Structures Stee - cvut.czpeople.fsv.cvut.cz/~wald/edu/134OK33-pozar/ECCS_No_89_Fire...ECCS N° 89 Fi re Resistance of Sti (On the basis of ENV 1993

6.

,.'!i(11 ' 1.

t~t.1-1111-t41

::1

J

Nomogram

Page 5: Fi re Resistance of Sti of Steel Structures Stee - cvut.czpeople.fsv.cvut.cz/~wald/edu/134OK33-pozar/ECCS_No_89_Fire...ECCS N° 89 Fi re Resistance of Sti (On the basis of ENV 1993

7. Worked Examples

7.1 Example AInput: degree of utilísatíon, thlckness of fire protectlon and sectionfactor.To determine: fire reslstance tirne.

ex8mple A 1 Column HEA 300, encased with flbre-calcium-silicateboard (dp = 25 mm, ~= 0.15 W/(m.K), p = 3 %. from TabIe 2).

110 . 0.6. Obtained after íteration (588 Exarnple E and Section 3).Ar/" E 104 m.l, taken from Section 5.The thermal sectíon factor (for. simplífled to 0.0) is calculated ss:

A, 'Ap04 .~ =824W/(m3.K)

y. ~ =1 0.025

The flre resistance time It can be dervied from the nomogram wiIh1&0 = 0.6 and K = 1.2, as It = 101 minu1es.Taking into account .:. = 1200 . 0.025.600 . 104 = 0.397

600.7850the modified thermal seclk>n factor is calculated as

Ap ~ 1-.- . =521W/(m3. K)V dp 1+.'2

The flre resistance time It can be found from the nomogram with~ = 0.6 and K = 1.2, as 117 mlnutes (a sOOstantial Increasecompared to the slmpUfIed assumption . = O).The increase in fire resistance due to the moisture content of theprotection can be calculated 85 foIlows:

2 0252P . Pp . dp 3. «XJ .0. 8 1 minuleIv: 5.>.". 5 .0.15

NB: If the influence of moisture has already been included In the~-values. ty cannot be oonsidered agaln.

The protected column fulfils the R90 requirement.

Ex.mple A2 Same conditions ss Example A 1, but a lower degreeof utilisation (Ilo = 0.4). From the nomogram the fire resistance time

is extrapolated to be ~ = 121 minutes (for. simplified to O). ~ = 140

minutes for actual value oJ . = 0.397.

7.2 Example BInput: degree of utilisation and requíred fire resistance time.To determine: required saction factor and/or fire protection (typeand thíckness dp of the fire protectíon rnaterial).

Beam IPE 300, requíred fire resistance R901. Degree of utlllutlon Ilo: Design bendíng moment (fromstatic anatysis, no lateral torsíonal buckling of the beam becauseit is stabilísed by a concrete slab. steel grade S 235)M'I,d = 67.5 kNm

MIi,O,Ad = 148 kNm (for 1M.1i = 1.0)

~ = Mli,d / MIi,O,Ad = 0.456

The critical temperature is 8cr = 654 'C. derived from thenomogram for ~ = 0.459 and K = 0.7.

2. Enca"ment: Beam with a concrete or composite slab onside four, i.e. section factor ApN = 139 m-1

For a critical temperature of 654 'C. It is found from the nomogramthat the thermaJ section factor shoutd be srnaller than 1150W/(m3.K) to reach R90.For ApN = 139 mo', the light and dry encasement (for simplification

. !Men as O on safe side) must fulfil the following condition:

dp Ap/V 139 m2. K""A; ?; ""1""1-so- E 11"5ii = O. 1 21 --w-

The required thickness dp of a fibre cement board encasement(Table 2) with a thermal conductivity of "" = 0.15 W/(m.K) is:dp ~ "".0.121 = 0.15.0.121 = 0.018m = 18mm.

7.3 Example CInput: section factor, critical temperature 8cr. fire resistance time.To determine: Insulation thickness.

Note: A llmitation of the steel temperature can be directtyoonsidered using the nomogram, e.g. for class 4 sections. 9« =350°C, or for strengthening of ooncrete with epoxy bonded fiatsteel reintoroement, 9« - 90 °C.Beam with cIass 4 section, A,IV = 200. tire resistanoe R60, 9« =350 °C (see ENV 1993-1.24.2.4).Mblimal thickness of protection by tibre-sllicate board8:According to the nomogram the thermal section tactor(ApI V).( A"/~ must be lesa then 610W/(ffi3.K).WIth Ap I V - 200 m-1 the encasement must fultil the followingconditlon:

~~~

~200810 - m- 0.33ma-Kw

The required thickness dp of fibre-sllk:ate boards (Table 2) with thethenna/ conductlvity ~ = 0.15 W/(m.K) results in dp ~ ~ . 0.33 =0.15.0.33 = 0.049 m = 49 mm.

7.4 Example DInput: sedlon factor, coIumn length, actlon in fire.To determlne: fire resistance time.

Solid intermediate coIumn 250 mm diameter, L = 4.0 m, steelgrade S 235, oompression force in fire NIi,d = 3OOOkN;

section factor: Am 1 V z 41 d = 16m-', A = 49'100mm2

Assessment using TabIe 1b:Non-dimensional-slendemess :

~.c ~"I (i .Jr. -.JE;Tf;): 4000 1 (62.5. Jr. "21010.235) = 0.68Bucj(ling resistance for 20 .C, 1M.Ii: 1.0, buckling curve c:Buckling factor X z 0.7370; Design buckllng resi8tance:NAd = X . fy' A = 0.7370.0.235 . 49'100: 8504 kN

lIo.c: 3000 18504 = 0.35 (as defined after table 1 c)

CriIk:a/ ia.TIj)6,~ from T~ 1b (Iinear Inte~): 8a= 640"C.

Frorn the nomogram the fire resistance tlme for the sectIon factor

of 16 m-' is found to be 63 minutes.

7.5 Example EInput: section factor, column length, action in fire.To determine: fire resistance time.

Solid column 250 mm diameter, L = 2.0 m, support conditions in

fire 4Í = 1.0 L, steel grade S 235, action in fire Nfi.d = 3000 kN

Assessment using an iterative procedure:The non-dimensional-slendemess is temperature dependanttherefore the foIlowing iterative procedure must be used if thesupport conditions are not covered by Tables 1b (4Í = 0.5 L) or 1c(4j = 0.7 L) (see Example D).

1. Step: normal terl1f)erature "ky.e~ / ke.e~ . 1.0:Non-dlmenslonal-slendemess for 20 .C; 841Pport conditions for fire.fi= 1.0 L:

~.o =" / (i .Jt . .J~) = 2000 / (62.5 . Jt . .J 210/0.235) = 0.34

Buckling resistance for ~.fi = 1.0, buckling curve c: Buckling

lactor X = 0.929; BudtHng resistance:NAd = X . fy. A = 0.9286.0.235 . 49100 = 10715 kN

J.Io = 3000 /10715 = 0.28

CriticaI ~re from the ~ with J.Io = 0.28 and K = 1.2:

8Cf = 647"C.

2. Step: 8a" = 647"C = emax -> ,Iky.e.max / kE.e~ = 1.28

(interpolation from Tab. 1 a) ~.e.max = 1.28 .0.34 = 0.44

Buckling resi8tance for ~.fi = 1.0, buckling curve c: Bucklingfactor X = 0.876; BuckHng resistance:NAd = X . ly . A = 0.876 . 0.235 . 49100 = 10108 kN

J.Io = 3000 110108 kN = 0.30

CriOOal ~re from the MmOgram with ~ = 0.30 and IC = 1.2:

8a" = 64OOC. The itefation process can be ~. Fire resistance

time for the nomogram for 8cr = 64OOC and a section factor Am/V

0116 m-1 is found to be 63 minutes.

Page 6: Fi re Resistance of Sti of Steel Structures Stee - cvut.czpeople.fsv.cvut.cz/~wald/edu/134OK33-pozar/ECCS_No_89_Fire...ECCS N° 89 Fi re Resistance of Sti (On the basis of ENV 1993

8.Symbols and Units8.1 Symbol sA the cross-sectlon area [ ml ]Am the surface area of a member per unit Iength [ m ]Ap the area of the Inner surface of the fire

protectlon matenal per unit length of the rnember [ m ]V the voIurne of a member per unit length [mi ]E. the modulus of elasticlty of steel for normal tem-

perature design 20°C (E. = 210.103 N/mm2) [ N/mm2]E..e the sIope of the linear elastic range for steel st

elevated temperature e [ N/mm2 ]Cp the speclflC heat of flre protection matenal [ J/(kg.K) ]c. the speciflc heat of steel, c. e 600 J/(kg.K) [J/(kg.K)]dp the thlckness of fire protection matena! [m]'y the yield strength of steel at room temperature [N/mm2 ]Iy.e the ettective yIeId strength 01 steel at elevated

temperature e [ N/mm2]i the radus of gyration [ m )kv.e the relatlve value for the effective yield strength,

kv.e = fy,f:lfy

kE.e the relative value for the slape of the linearelastic range, ke,e=E..e/E.

L system length [ m ),(; the bucl<ling Iength in flre [ m )~ /' the rnoisture content of fire protection materiaJ [ % )t the thickness of steel [ m )Ir the total flre resistance tirne [ min )~ the flre resistance time neglecting the inftuence

of the rnoisture content [ "*' )Iv the Increase of flre resistance tirne due to the

moisture content of the fire protection material [ min )

10. Rules given in the National Application Document and Properties cfProprietary Are Protection Material According to National Test Results

Ir*m1atioo 00 acdiooaI rules ~ ~ a ooxed vakJes 9ven in the NaIKJnaI ~k:atioo Document (NAD) ~ the thermaJ properties derivOO from~ ~ lim ~ can 00 ~ from the foIot\t1g ~:

AUMr8 G- Turkeyo.t-tctI~ SIahIJ8w8Ib8nd F8dM8tkIn 01 o...k In$I8III88 T Turldsh ~ SI88MOIkL8n)d,.g888e 28 Xend.; 5 ~A.11~ Wien GR-105 57 Mt8fta B8h8riye, s.8' LaIIi SoIc8k 29

TR-81310 Kadkoy. ~

88Igh8n It8IyCRIF . ~ C«18tI\M:tb1 ~ A88OCiazIone fI8 I ~ ~ Kk'8domu .. ~ in Aa:i8/o lldanl The SI.- Con8IrucIkIn kd\M~ ~ G6ni8 CM VI8I8 AbNzzj 66 SIwood ~Oolei B8nnk1g 8 1-20131 MiI8no ~.A8COI8e1t8 Sl5 7QN

:XJ~J LuX8mburg BCSA~ Plollt ~D ~ :-. 4 ~ CaJIt~ z za M8I8N ~ 66 rue.. Luxembourg I BP 141 ~-la1don SW1A 2ES

~ 1 L-4221 E8c1VAJZ8118CR>-41 ~ ZIgr8b

~~Cz8dl SIe8IwoIk F8bricaIOf8 .A~~ . CWA~58CZ-710 00 011-

~D8n1k~o-g8d8 21-2DK-5000 ~ C

FkII8IdF8def8IWJn of F~ Metel. Engw-ring 8IIdE~~P.O. Box 10--10FI.ooI~ H.-w.i

~CTK:MDom818 de s.n.peut ap &4F- 78470 SaJnI-~"'..c

o-Myo.ut8d1ef ~v..bund DSTVEb8/IpI8tz1D-~ 1<0..

1M,fi the par1iaJ matenal safety factor in fire designe the temperatureecr the critical steef temperature

K adaption factor

~.o the non dimensional slendemess for endconditions in fire and room temperature

~the non dimensional slendemess for endconditions in fire BOO steel temperature at fallure

Ap the thermal condJctivity of the fire protectionmatenal

~ the degree of utilisatlon: ~ = e..ct'Rll.d,O. [(~ ' Pp , dp)/(c. ' p.)J . ApN. (see sectton 4)Pa the density of steel (p. = 7850 kg/m3)Pp the density bf fire protection matenal

( -c ]( -c ]

(W/(m.K)][ - ]

kWmS]kg/m']

8.2 UnitsSI-units are generally used.

Temperatures in Celsius [.C] are mar1<ed with 8. For oonversiontemperature the toIlowIng relation hoids: O .C = 273 K, and theoonversion factor between .C and K is 1.Between Joule [J], Watt (W) and the former unit caIorie [caij thefollowlng relation holds: 1 W = 1 J/sec, 1 cal = 4.18 J.

9. References[1J ENV 1993-1-2 rGeneral rules, Structural flre design"),

CEN, Brussels 1995[2J ECCS Tedlnical Note 92, Explanatory Docurnent to ECCS

No 89,Fire resistarK:e of steel structures, Brussels 1996

~~da~.POI.OISTDepa..- da EngeoNria CivI

HeC - TN().Bouw. c...nIm voor Bl8nclveiligheid

P08Cbu8 48Nl-2eQO AA DeII

In8tihAo Superior T~o,oAv. Rovi8co P8i8PT . 1~ U8bo8 codex

Nocw8JDenNor8ll8~Poacboka 7072.~N-0006 0.10 3

~.~ za MeI8N ~Mlr-*lgefl8V87~~~SP8kI

Empr88a N8Ci0n8I Siderurgica SA (Ensidesa)Dilecc*)n de ~ . ProyectO8Pueo de.. ~ 81,18 ~E8-28046 MadrId

~The SW8CIIh ~ 01 SI88I Con8IrudionBox 277518-11582 ~

s..":I-.~ :Sd.-izerisdw Z8ntf8I8t8I8 ... Sl8NbeuSeefeld8lrU8e2SCH.8034 ZOItd1


Recommended