+ All Categories
Home > Documents > FIBER OPTIC GYRO / THEORY & APPLICATIONS - …ainegypt.org/event/papers/Presentation - MELAHA...

FIBER OPTIC GYRO / THEORY & APPLICATIONS - …ainegypt.org/event/papers/Presentation - MELAHA...

Date post: 24-Apr-2018
Category:
Upload: dinhtuyen
View: 230 times
Download: 2 times
Share this document with a friend
29
FIBER OPTIC GYRO / THEORY & APPLICATIONS Yves PATUREL, MELAHA Alexandria, September 2014
Transcript

FIBER OPTIC GYRO / THEORY &

APPLICATIONS

Yves PATUREL, MELAHA Alexandria, September 2014

2

Melaha 2014 Alexandria

Contents

Long term navigation key parameter

FOG principle

Key orders of magnitude

Key features

Comparison with other technologies

IXBLUE catalog examples

3

Melaha 2014 Alexandria

Earth rotation vector module error

Composite bias : bias + effect of scale factor error on

moduleComposite bias

Earth Rotation

4

Melaha 2014 Alexandria

Earth rotation vector module error

Composite bias : bias + effect of scale factor error on

moduleComposite bias

Earth Rotation

5

Melaha 2014 Alexandria

Longitude error during a 60 hour navigation

6

Melaha 2014 Alexandria

FOG - Sagnac effect

Digital Signal

Processing

COIOptical

source

Optical

Coupler

« All-Digital »

Processing

Function

Modulation

Module

Optical Fiber

Coil

Optical

detector

Detection

Module

Digital Signal

Processing

« All-Digital »

Processing

Function

Modulation

Module

Optical

detector

Detection

Module

NO ROTATION

7

Melaha 2014 Alexandria

FOG - Sagnac effect

Digital Signal

Processing

COIOptical

source

Optical

Coupler

« All-Digital »

Processing

Function

Modulation

Module

Optical Fiber

Coil

Optical

detector

Detection

Module

Digital Signal

Processing

« All-Digital »

Processing

Function

Modulation

Module

Optical

detector

Detection

Module

8

Melaha 2014 Alexandria

Response of the interferometer

9

Melaha 2014 Alexandria

The « sensing sub-assembly »

One fundamental principle : reciprocity

10

Melaha 2014 Alexandria

Single-axis fiber gyro

11

Melaha 2014 Alexandria

Light source

980nm laser FBG

Er-doped fiber

Isolator

980 nm

1550 nm

12

Melaha 2014 Alexandria

Some interesting orders of magnitude

Best present results for fiber gyro :

Wavelength : l = 1550 nm

Fiber length L few km few 109 l

Bias stability : 0.001 deg/h over 28 deg/second (p phase shift) i.e. 10-8 of the wavelength

Relative detection of optical path length : few 10-18 !

With a relative variation of 7 x 10-6 / ºC for light velocity in the silica fiber !

RECIPROCITY (perfect common-mode rejection)

13

Melaha 2014 Alexandria

Actual configuration of a fiber gyro

Polarization-preserving fiber coil with typically 100 m to 10 km (manufactured by iXBlue).

Proton-exchanged LiNbO3 integrated-optic circuit very high polarizer rejection (manufactured by

iXBlue).

Y-junction and pair of push-pull low-voltage phase modulators.

Broad-spectrum source : unpolarized erbium ASE source for best performance (manufactured by

iXBlue).

All-digital processing electronics (invented by iXblue).

Fiber

Coil

Broadband Light

Source

Coupler

Multi-function

IOC

Detector

A

/

D

Digital

LogicsD

/

A

Rotation signal

14

Melaha 2014 Alexandria

FOG comparison with other technologies

FOG has no lock-in zone

Always true in open-loop design.

In closed loop design, no dead zone in principle, but a “dead zone “ may appear

if electronics design is not perfect (cross talk between modulation & detection

chains)

In RLG (Ring Laser Gyro), lock-in is by-passed with dithering : this increases

ARW, and provides acoustic noise

FOG has not (yet ?) reached a performance limit , while RLG faces a “non

reciprocity”

15

Melaha 2014 Alexandria

FOG is easily scalable

QUADRANSOCTANS

AHRS

PHINS

INS

MARINS

INS

IMU 50 IMU 90 IMU 120 IMU 200

Average Diameter (mm) 45 68 94 171

Bias Stability* (°/h) 0,05 0,025 0,01 0,001

Typical ARW (10-4 °/√h) 60 35 10 2

* Bias stability over the temperature range, -10 to +80°C à 1 σ

16

Melaha 2014 Alexandria

FOG 50

IMU 50

17

Melaha 2014 Alexandria

FOG 50 APPLICATIONS

Marine and Navy IMO gyrocompass

Land survey, stabilization

Military land navigation

Airborne survey

18

Melaha 2014 Alexandria

FOG 90

OCTANS

ADVANS

LANDINS

19

Melaha 2014 Alexandria

FOG 90 APPLICATIONS

Navy & marine gyrocompass

Land survey

Military land navigation

Artillery (qualified on 105 mm gun)

20

Melaha 2014 Alexandria

FOG 120

PHINS

ASTRIX 120

ADVANS

21

Melaha 2014 Alexandria

FOG 120 APPLICATIONS

Navy & Marine navigation system

Land military navigation

Artillery (on 155 mm gun)

Airborne survey

22

Melaha 2014 Alexandria

FOG 200

MARINS

ASTRIX 200

23

Melaha 2014 Alexandria

FOG 200 APPLICATIONS

Submarine navigation and high-end surface vessels

24

Melaha 2014 Alexandria

25

Melaha 2014 Alexandria

Construction

complexity

decreases

Computing

complexity

increases

26

Melaha 2014 Alexandria

27

Melaha 2014 Alexandria

28

Melaha 2014 Alexandria

CONCLUSION

FOG technology is very reliable, very robust and has extremely long life time

44 FOG axes are on orbit around Earth cumulating more than 9300000

hours (106 years) without failure

FOG technology provides navigation for many marine applications :

Reliable and no maintenance gyrocompass,

Low power consumption inertial navigation system (especially suitable for AUV)

High performance navigation system for surface vessels and submarines

29

Melaha 2014 Alexandria

Come and visit us at our booth in exhibition hall

شكرا


Recommended