+ All Categories
Home > Documents > Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final...

Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final...

Date post: 31-Aug-2018
Category:
Upload: danganh
View: 218 times
Download: 0 times
Share this document with a friend
55
Field Observations of Building Damage & Cellulose Insulation John Certuse P.E. ISE Engineering Inc. Presentation to Owens Corning Inc. 15 October 2009 Intended for private viewing to Owens Corning Inc. Only
Transcript
Page 1: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Field Observations of

Building Damage & Cellulose Insulation

John Certuse P.E.ISE Engineering Inc.

Presentation to Owens Corning Inc.

15 October 2009

Intended for private viewing to Owens Corning Inc. Only

Page 2: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

John Certuse P.E.• President/Owner of ISE Engineering, Attleboro MA. Forensic Engineering firm investigating

causes of damage to buildings as a result of frozen pipes, mold, fires, construction deficiencies and appliance failures.

• BS Marine Engineering Massachusetts Maritime Academy

• Registered Professional Engineer (Mechanical) MA, ME, NH, VT, RI, CT, NY, VA, MD

• Certified Fire and Explosion Investigator (CFEI)

• Licensed Pipe-fitter, Oil Burner Technician, Stationary Engineer.

• Author of several articles for plumbing & heating trade publications as well as technical paper entitled “Forensic Engineering Investigation into Freeze Damage to Buildings” for the National Academy of Forensic Engineers.

15 Extension StreetAttleboro, MA 02703

(508) 226 [email protected]

Page 3: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Cellulose Insulation and Indoor Air Quality (IAQ) Issues

Page 4: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

What is cellulose and what does it contain?Paper fibers from:

Recycled newspapers magazines etc but also:

Ink

Binders

PreservativesAnd possible unknown substances as well.

Page 5: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Recycled paper contaminates reportedly also include:

Food Waste

Hazardous Products (Hydrogenated terphenyls (HTP),diisopropylnaphthalane DIPN)

Adhesives

Plastics

Pet Waste

Page 6: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Forced Hot Air System ductwork Contamination of Cellulose fibers

Page 7: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Cellulose insulation in ductwork

Page 8: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Depressurization induced transport of contaminates

Negative Air Pressure causes an inward flow of air taking cellulose dust with it.

This accumulates over time

Cellulose Insulation

- Negative Pressure

+ Positive Pressure

Page 9: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Pressure Graph of Building Depressurization

Page 10: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Depressurization Induced IAQ Problems

• Pressure magnitudes will cause air and entrained particle movement to allow unintended migration into homes.

Page 11: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Our investigations have found that Laboratory Analysis of contaminates are often products of combustion from the heating appliance re-entering and accumulating within the structure.

There is however also a large number of tests where the lab samples show that in addition to soot, Cellulose is contaminating the living spaces of the home.

Fiberglass particles are rarely seen to the levels of cellulose.

Convective Air Current Flow distributes airborne contaminate through baseboard. Temperature differences cause contaminate to adhere to wall.

Page 12: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

“25% Cellulose Fibers”

Future Tests will seek presence of Boric Acid and other cellulose insulation identifiers

Lab report of analysis of debris contributing to poor IAQ in home.

Page 13: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Cellulose Insulation and

Mold Formation in Buildings

Page 14: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Moisture

+ Food (Digestible Material)

+ Heat

Mold

Regardless of the building material

However….

Page 15: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Moisture is caused by:Water leaks & Condensation

Any home utilizing any building material will be susceptible to mold formation in the event of a water leak caused by building envelope (roofing) failures or leaking or burst pipes.

Condensation however is often caused by the method in which a building is insulated. Air gaps and voids within wall cavities leads to enhanced heat loss and condensation within wall cavities leading to mold growth.

Page 16: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

One study has shown that cellulose insulation will settle

over time as much as 16 to 21 percent.

Page 17: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Installation Error or Product Settling?

It depends on who you ask…

Page 18: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Cellulose more susceptible

to Moisture Problems than Fiberglass

Shrinkage & Settlement

Lower R Value

Air Gaps & Voids

Mold formation

Before and After Test of equal masses of fiberglass and cellulose insulation after contact with equal volumes of water.

Shrinkage was extensive in cellulose after contact with moisture.

Page 19: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Cellulose Insulation

and Fire Propagation Observations

Page 20: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Cellulose Insulation in contact with metal chimney fire,

Cape Cod MA

Page 21: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab
Page 22: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Cellulose Insulation was in contact with the metal zero clearance chimney flu and had been installed the day of the fire.

Page 23: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

The point of ignition was identified as cellulose insulation that was in contact with the metalbestos II zero clearance chimney flue. The insulating contractors mistakenly

allowed the cellulose to fill the area around the chimney metal flue.

Page 24: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

The cellulose that ignited was new the day of the fire. The chimney had been used for years prior. Clearly, the addition of the insulation caused the fire regardless of manufacturers claims of inflammability. This is one of three fires ISE has investigated of this type.

Page 25: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

In this fire, spilling of the cellulose into the airspace of the chimney chase-way caused the cellulose to char and for heat to build up between the insulation and chase way framing eventually igniting the framing and plywood.

Page 26: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab
Page 27: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

“Missing The Target”

Major Contributing Factor in Cellulose Insulation Related Fires Cellulose being placed in areas of an ignition heat source

Page 28: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Messy

Difficult to Control

Difficult to fully contain without movement

Page 29: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

What if the chimney was in contact with fiberglass blown in insulation and not

cellulose blown in insulation?

Would the fire have still occurred?

Page 30: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Cellulose Insulation

Owens Corning Fiberglass Insulation

Side by Side Hot Surface Test (As Per ASTM Standard) compared conductive heat effects of Cellulose and Fiberglass Insulation. This

mode of heat transfer has been identified in fires our firm has investigated involving cellulose insulation.

Page 31: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Ignition Quality Comparison

Flash Point Cellulose > 550F

Flash Point Fiberglass… Does Not Exist

Heat Release Ratio (HRR) – The rate of which heat energy is generated by burning.

Page 32: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

As this basic hot surface test shows, The property of the insulation’s Heat Release Ratio (HRR) caused the cellulose to consume itself, since it’s mass, when ignited released heat. This added to the process of it’s combustion and in turn, generated more heat. This heat could (and has) ignited building structural components.

The Fiberglass however contained no combustible material and even as it melted due to contact with the hot surface created a dense layer that had more resistance to conduction. The latent heat of fusion property of melting the fiberglass absorbed heat as opposed to producing heat, lowering the Heat Release Ratio.

Page 33: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Forensic Engineering and Fire InvestigationPublished Documents addressing

Age Related Degradation and Flammability of Cellulose Insulation

Page 34: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Forensic Engineering and Fire Investigation

Publications and references to

Cellulose Insulation and Fires

The Ignition Handbook - Vytenis Babrauskas, Ph.D

Scientific Protocols for Fire Investigation (Protocols in Forensic Science) - John J. Lentini

“A Field Study of the Fire Resistance Characteristics of Aged Loose-Fill Insulations: An Update” T.J. Dowds, L.J. Infante and E. Pentz, (Certainteed Corporation)

Journal of Thermal Insulation Volume 15 July 1991

Fire Findings – Special Report Nathan Dwyer, Volume 15, No. 4 Cellulose Insulation Tests

Page 35: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

The Ignition Handbook - Vytenis Babrauskas, Ph.D Cited several studies that found that aged in place insulation, when tested, failed present day flamability tests. Also notes an NIST study that stated the effectiviness of flame retardent is reduced by settling, subliming,or moisture.

Scientific Protocols for Fire Investigation (Protocols in Forensic Science) - John J. Lentini

Case study where a doorbell transformer buried in cellulose insulation shorted and started a fire. Goes on to state that contributing factor may have been a prior roof leak that wetted cellulose insulation making it more prone to igniting later on.

“A Field Study of the Fire Resistance Characteristics of Aged Loose-Fill Insulations: An Update” T.J. Dowds, L.J. Infante and E. Pentz, (Certainteed Corporation)Journal of Thermal Insulation Volume 15 July 1991

Concluded that fiberglass and rockwool samples easily met the smoldering and critical radiant flux and flaming requirements of the testing.Concluded that of 23 cellulose samples tested, 15 (65%) failed smoldering tests while 53% failed critical radiant flux tests.Only 17% passed both tests

Fire Findings – Special Report Nathan Dwyer, Volume 15, No. 4 Cellulose Insulation Tests

Fire Investigation Forum that addresses particular fire cause issues. Performed several tests of cellulose insulation ignition properties with modified ASTM testing procedures. Attempted to create accelerated aged cellulose for testing.Concluded that thermal aging did effect cellulose insulation performance

Forensic Engineering/Fire Investigation references to Cellulose Insulation Fires

Page 36: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Working together, a common theme!

Poor placement of cellulose and qualities of Cellulose Insulation as well as possible degradation of fire retardant capabilities work together to

enhance possibility of building fires

Fire!

Difficulty in pinpoint application of cellulose blown in insulation allowing flow into potential ignition sources

Reported degradation of fire resistant qualities over time

Page 37: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Industry reports From Cellulose Insulation Manufacturers are very prevalent!

Pro Cellulose Insulation Publications

CIMA Special Report No. 1 “The Truth about Cellulose Insulation and Fire

Page 38: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Proposed independent field study of

Cellulose Installations and properties

From the forensic engineering perspective

Page 39: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Seek additional real life data regarding Cellulose Insulation Related Fires from outside sources within

the Fire Investigation and Forensic Engineering Community

National Academy of Fire Investigators (NAFI)

Independent Association of Arson Investigators (IAAI)

National Law Firms dealing with fire litigation

National Academy of Forensic Engineers (NAFE)

International Symposium on Fire Investigation Science & Technology

IDENTIFY SPECIFIC CAUSES AND PROGREESSION OF FIRE

Page 40: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Independent Analysis of Cellulose Insulation in:

Existing Homes

Accelerated Aged Insulation

Page 41: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Cellulose Insulation

Existing Samples from various homes

New Cellulose subjected to simulated aging by long term low heat application

Page 42: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Random Sampling of Existing Cellulose InsulationThrough ISE’s normal course of business in investigating building

problems with IAQ or mold issues, random samples can be obtained.

Requests for samples can also be solicited.

Identify-Age of Home

-Age of Insulation

-Location of Sample

-Properties of sample (chemical additive) and chemical content.

Conditions of Installation (Settling etc.. Infrared Imaging study)

Fire Resistance TestingA) Perform basic tests for ignition capability such as Cigarette Ignition,

Hot Surface, Radiant Heat and High Resistance

Page 43: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Random Sampling of New Cellulose Insulation

IdentifyChemical Content for comparison to listed materials

Extend aging simulation

Prepare in oven however exceed aging length

as set forth by Dwyer’s testing.

Report on findings

Consider submitting technical paper to appropriate publication depending on results of study

Page 44: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Cigarette Ignition Test

Hot Surface Test

Radiant Heat Test

High Resistance Connection Test

As part of ASTM C739, this test determines insulations ability to be lit by a cigarette

Examine differences when exposed to hot surfaces such as a chimney flue

Examine differences when exposed to a radiant heat source

Examine performance when exposed to direct contact with a high resistance connection

Perform tests with actual aged cellulose insulation and also with accelerated aged insulation.

Consider thicknesses and geometric shapes of test samples outside of established test procedures.

Simplified and modified tests demonstrating insulation’s fire resistance capability in various modes of heat transfer

Established ASTM and other tests should be recognized however independent testing should also consider real life conditions that are not

represented by existing testing procedures that could or have lead to fires.

Page 45: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Existing ASTM Tests for Cellulose Insulation Testing

ASTM C739 - 08 Standard Specification for Cellulosic Fiber Loose-Fill Thermal Insulation ASTM E84 - 09b Standard Test Method for Surface Burning Characteristics of Building MaterialsE970 Test Method for Critical Radiant Flux of Exposed Attic Floor Insulation Using a Radiant Heat Energy SourceC1363 Test Method for Thermal Performance of Building Materials and Envelope Assemblies by Means of a Hot Box ApparatusB152/B152M Specification for Copper Sheet, Strip, Plate, and Rolled Bar C1045 Practice for Calculating Thermal Transmission Properties Under Steady-State Conditions C1114 Test Method for Steady-State Thermal Transmission Properties by Means of the Thin-Heater Apparatus C1338 Test Method for Determining Fungi Resistance of Insulation Materials and Facings C1374 Test Method for Determination of Installed Thickness of Pneumatically Applied Loose-Fill Building Insulation C1485 Test Method for Critical Radiant Flux of Exposed Attic Floor Insulation Using an Electric Radiant Heat Energy Source C168 Terminology Relating to Thermal Insulation C177 Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus C518 Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus C687 Practice for Determination of Thermal Resistance of Loose-Fill Building Insulation E691 Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method

Page 46: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

ASTM C739 - 08 Standard Specification for Cellulosic Fiber Loose-Fill Thermal Insulation

AbstractThis specification covers the composition and physical requirements of chemically treated, recycled cellulosic fiber loose-fill type thermal insulation for installation in attics or enclosed spaces in housing and other buildings by pneumatic or pouring method. While the products are used in various constructions, they are adaptable primarily, but not exclusively, to wood joists, rafters, and stud constructions. The basic material shall be made from selected paper, paperboard stock, or ground wood stock, excluding contaminated materials, which may reasonably be expected to be retained in the finished product. Suitable chemicals are introduced to provide properties such as flame resistance, processing, and handling characteristics.

Products shall be prepared suitably to undergo test methods, for which they should comply with the following physical and chemical property requirements: corrosiveness;

critical radiant flux; fungi resistance; moisture vapor sorption; odor emission; smoldering combustion; and thermal resistance.

Page 47: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

Fire Investigation Publications regarding fires involving Cellulose

Building Insulation

Page 48: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab
Page 49: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab
Page 50: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab
Page 51: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab
Page 52: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab
Page 53: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab
Page 54: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab
Page 55: Field Observations of Building Damage & Cellulose Insulationiseengineering.com/Final Images/cellulose.pdf · Field Observations of . Building Damage & Cellulose Insulation. ... Lab

This publication contained substantially more technical information that was omitted from presentation.


Recommended