+ All Categories
Home > Documents > Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in...

Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in...

Date post: 09-Mar-2018
Category:
Upload: lamquynh
View: 262 times
Download: 9 times
Share this document with a friend
36
1 UPC Field Oriented Control in Permanent Magnet Synchronous Motors m r d q JCEE 06. Novembre 2006 Dr. Antoni Arias. Universitat Politècnica de Catalunya. Catalonia
Transcript
Page 1: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

1

UPC

Field Oriented Control in Permanent Magnet Synchronous Motors

m

r

dq

JCEE 06. Novembre 2006

Dr. Antoni Arias. Universitat Politècnica de Catalunya.

Catalonia

Page 2: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

2

UPCINDEX

• Electrical Motors Classification• Permanent Magnet Synchronous Machine Model• Field Oriented Control

– Torque, speed and position control

• Sensorless Field Oriented Control

Page 3: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

3

UPCClassification

• Types of electrical machines– DC – Universal – AC

• Single-phase AC Induction Motors• Single-phase AC Synchronous Motors• Three-phase AC Induction Motors• Three-phase AC Synchronous Motors

– Stepper– Permanent Magnet

• PMDC – Brushless • PMAC – SMPM, IPM

– Linear– Nano

Most important and used

Page 4: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

4

UPCPermanent Magnet Machines

• Magnetic material to establish the rotor flux.• Most common magnetic material are samarium-cobalt (SmCo) and

neodymium-iron-boron (NdFeB) introduced in 1983 having superior magnetic characteristics at room temperature.

• Advantages:• No rotor currents => no rotor losses. • Higher efficiency => energy saving capability.• Smaller rotor diameters, higher power density and lower rotor

inertia.• Higher torque per ampere constant.• Weight and volume less than other type of machine for the same

power. Attractive for aerospace applications such as aircraft actuators.

• Other applications: machine tools, position servomotors (replacing the DC motors).

• Inconvenience: • synchronous machines => need for rotor position.• Price

Page 5: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

5

UPCPM Motor Types

• Considering the shape of the back EMF• PMDC – brushless - trapezoidal• PMAC – sinusoidal

– Surface Mount PM– Interior Mount PM

SMPM IPM

Page 6: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

6

UPCPMSM Dynamic Equations

• Space vector transformation– combines the individual phase quantities in to a single

vector in the complex plane

– Similar transformation are applied to• Stator voltages • Stator flux linkage

3

43

2

)()()(32

j

c

j

ba etietitii

( ))t(i)t(i33

i;)t(ii cbβaα ==

svs

ψ

a

b

c

i

ib

ic

b

c

a

i

ava +-vc

+

-

-

+vb

Page 7: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

7

UPCPMSM Dynamic Equations

• Basic equation for phase windings voltages

• Total flux linkage

flux produced by the rotor magnet

Leakage inductance

Magnetising inductance

Self inductance

Mutual inductance

c

b

a

c

b

a

s

c

b

a

dtd

iii

rvvv

)cos()cos(

)cos(

343

2

r

r

r

m

c

b

a

ccbca

bcbba

acaba

c

b

a

ψiii

LMMMLMMML

ψψψ

lLmL

mlcba LLLLL

2m

cabcabLMMM baab MM; = cbbc MM; = acca MM; =

a

b

c

i

ib

ic

b

c

a

ava +-

vc+

-

-

+vb

m

r

Page 8: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

8

UPCPMSM Dynamic Equations

• voltage vector equation in the stationary - frame • Replacing the inductances values and applying the space vector transformation

)cos(

)cos(23

2

r

rmmls dt

dψii

dtdLL

ii

rvv

i

v +-

m

r

i

v

+

-

a

b

c

i

ib

ic

b

c

a

ava +-

vc+

-

-

+vb

m

r

Clarketransformation

Page 9: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

9

UPCPMSM Dynamic Equations

• Saliency– Variation of the stator phase inductance as function of the rotor position.

– For example

)2cos(

)2cos(

)2cos(

32

34

rmmla

rmmlb

rmmla

LLLL

LLLL

LLLL

)2cos(2

)2cos(2

)2cos(2

34

32

rmm

ca

rmm

bc

rmm

ab

LLM

LLM

LLM

m

d

q

mml

rmmla

LLL

)θ2cos(LLLL

Δ-+=

=Δ-+=

m

r

dq

ml

rmmla

LL

)θ2cos(LLLL

+=

=Δ-+=

m

r

d

q

mml

rmmla

LLL

)θ2cos(LLLL

Δ++=

=Δ-+=

Page 10: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

10

UPCPMSM Dynamic Equations

• voltage vector equation in the stationary - frame considering saliency

• Where

• If there is no saliency and it is obtained the previous equation.

)cos()cos(

)2cos()2sin()2sin()2cos(

2

r

rm

rssrs

rsrsss

dtdψ

ii

LLLLLL

dtd

ii

rvv

ms

mls

LL

LLL

23

23

0mL

Page 11: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

11

UPCPMSM Dynamic Equations

• voltage vector equation in the synchronous reference d/q frame fixed on the rotor – Angle chosen equal to the PM position

differential operator ; direct axis and quadrature axis inductances pssd LLL Δ= - ssq LLL Δ+=

m

r

d

id+

-vd

vq

+

-

iq

q

Parktransformation

i

v +-

m

r

i

v

+

-

10

rmq

d

qrd

rqd

q

ds

q

d ψii

pLLLpL

ii

rvv

Page 12: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

12

UPCPMSM Dynamic Equations

• expression for the instantaneous torque for the PM synchronous machine

• first term, usually called as magnet torque, is directly proportional to and independent of .

• second term, or reluctance torque, is only present in salient machines where and is proportional to the current product .

– Motion equation: • J rotor inertia. • D friction

)(2

3qdqdqme LLiiiψ PT

qidi

0 qd LL qdii

Page 13: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

13

UPC

Field Oriented Control of PMSM

Page 14: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

14

UPCFOC in PMSM

• instantaneous torque for the PM synchronous machine

• Id will be kept to zero, for not demagnetizing the PM machine. Therefore, the reluctance torque will be zero.

• Electromagnetic torque will be regulated with Iq.

)(2

3qdqdqme LLiiiψ PT

m

r

dq

Iq>0

m

r

dq

Iq<0

Te > 0 Te < 0

Page 15: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

15

UPCFOC Scheme

+- PI

SMPMSMSVM PowerConverter

dq

dq

PI

id*=0

PI +-

+-

iq*r

*

id

iq

32

i

i

e

vd*

vq*

pddt

r

r

v

v

• 3 PI control loops– 2 identical inner current loops, d and q axis.– 1 outer speed loop.

Page 16: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

16

UPCCurrent PI Control

• Inner faster loop.• D and Q current loops are closed by identical PI.• From

• Eliminating d-q coupling terms

sdqdq

dq

rsL1

)s(v)s(i

+=

10

rmq

d

qrd

rqd

q

ds

q

d ψii

pLLLpL

ii

rvv

Page 17: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

17

UPCCurrent PI Control

45.9 (Nm)Peak:

15.3 (Nm)Continuous stall:

8.3 (mH)L (ph-ph):

0.94 (Ohms)R (ph-ph):

20.5 (kgcm²)Inertia:

98.0 (Vrms/krpm):Ke:

1.6 (Nm/Arms)Kt:

3.82 (kW)Rated power

12.2 (Nm)Rated torque:

3000 (rpm)Rated speed:

6Number of poles:

142UMC30Model:

Manufacturer’s data for the PM machine from Control Techniques under the commercial name

UNIMOTOR.

47.01015.41

)()(

3 ssv

si

dq

dq

sdqdq

dq

rsL1

)s(v)s(i

+=

Page 18: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

18

UPCCurrent PI Control

• The plant can be simplified as follows• First order with one pole

• PI transfer function:

+- PI

i dq*

vdq*

sdqdq

dq

rsL1

)s(v)s(i

+=

dqs

Lr-s =

sKsK

sKK)s(PI IPI

P

+=+=

Page 19: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

19

UPC

• Root locus and step response with a P controller• E0. Position Error• Slow dynamics.

• Solution: add a PI controller• Add a zero and a pole

-400 -350 -300 -250 -200 -150 -100 -50 0-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1Root Locus Editor (C)

Real Axis

Imag

Axi

s

Step Response

Time (sec)

Ampl

itude

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.0160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

dqs

Lr-s =

0K;1K IP ==

PI

KK

IP

-s:zero0s:pole

;s

KsK)s(PI

==

+

Current PI Control

Page 20: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

20

UPCCurrent PI Control

-1600 -1400 -1200 -1000 -800 -600 -400 -200 0-800

-600

-400

-200

0

200

400

600

800Root Locus Editor (C)

Real Axis

Imag

Axi

s

Step Response

Time (sec)

Ampl

itude

0 1 2 3 4 5 6 7 8

x 10-3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

• Root locus and step response with a PI controller • E0=0• 2nd order system and response• Damping factor equal to 0,707

800-KK5,5;pK

p

I ==

Page 21: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

21

UPCCurrent PI Control

• Implementing PI in a DSP– From S to Z domain

– Ts=100us

Step Response

Time (sec)

Ampl

itude

0 1 2 3 4 5 6 7 8

x 10-3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1-z)Ts-1(-z

K)z(PIs

sK)s(PI P

IP

IK

K

P

KK

P =→+

=

1-z,920-z

5,5)z(PIs800s

5,5)s(PI =→+

=

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1Root Locus Editor (C)

Real Axis

Imag

Axi

s

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2Root Locus Editor (C)

Real Axis

Imag

Axi

s

Page 22: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

22

UPCCurrent PI Control

// start iq PI controlleriq_error = iq_ref-iq;

vq_ref = vq_ref_last+c_Kp*(iq_error-c_Ki_Kp*iq_error_last);iq_error_last = iq_error;

if (vq_ref > VPI_MAX) vq_ref = VPI_MAX;if (vq_ref < -VPI_MAX) vq_ref = -VPI_MAX;vq_ref_last = vq_ref;// end iq PI controller

• Implementing a PI Controller in a DSP– From Z to discrete time domain

– C code for the TI DSP 6711

1-z)Ts-1(-z

K)z(error_iq

)z(ref_vq)z(PI P

IK

K

P==

))]Ts-1(-z(K)[z(error_iq)1-z)(z(ref_vq PI

KK

P=

))]K_K_c(z-1(K)[z(error_iq)z-1)(z(ref_vq pi-1

P-1 =

))K_K_c(last_error_iq-error_iq(Klast_ref_vqref_vq piP+=

Page 23: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

23

UPCSpeed PI Control

• The plant can be simplified as follows• First order with one pole • Mechanical time constant might be 50 times slower than the

electrical one. Current loop is neglected.• Typical sampling time 5ms.

JD-s =

+- PI

T e*

DsJ1+

r*

Page 24: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

24

UPC

Sensorless FOC by High Frequency Injection

Page 25: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

25

UPCGeneral Scheme

HF Injection Vector

)tcos()tsin(

V̂vv

i

ii

i

i

kHz 1V 20V̂

i

i

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

-0.1

-0.05

0

0.05

0.1

0.15

Compensated Position Signals

Time [s]

I' al

pha,

I' b

eta

[A]

Page 26: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

26

UPCDynamic HF PMSM model

• An AC machine is said to be salient if Ld Lq

• In SMPMSM, the geometric saliency is very small. Therefore, it is track the saturation saliency.

)sin()cos(

)2cos()2sin()2sin()2cos(

00

00

r

rm

rssrs

rsrss

s

s

ii

LLLLLL

ss

ii

rr

vv

α

β

dqa

a'

b

b'

c

c' θ r

PM

Saturation

Where: ; 2dq

sLL

L

2LL

LΔ dqs

Page 27: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

27

UPC

α

β

dq

a

a'

b

b'

c

c' θr

PM

Saturation

HF

1kHz

• Injecting a rotating HF voltage vector:

)cos()sin(ˆ

tt

Vvv

i

ii

i

iiv

)2sin()sin()2cos()cos(

10

10

tItItItI

ii

iri

iri

i

iii

• The following HF current is obtained:

• The amplitude of the negative sequence is proportional to the saliency L = (Ld - Lq)/2:

iqd

i

LLLVI

ˆ

0iqd

i

LLΔLVI

ˆ1 ;

• Frequency domain representation: fe 1kHz-2fe 1kHz

I1

I0

Dynamic HF PMSM model

Page 28: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

28

UPC

i

BPF

j(-w i t)e

j(2wi t)e

2fe

I1

2kHz-2fe

I1

1kHz-2fe 1kHz

I1

I0

fe 1kHz-2fe 1kHz

I1

I0

2kHz-2feDC

I1

I0

Homodyne Signal Processing

• Frequency domain

Page 29: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

29

UPC

( )tω2θ2j

γδi

sidqif

ieeLLωLV̂

i~ -Δ=

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5-10

-5

05

10

i alp

ha, i

bet

a [A

]0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

-1

-0.50

0.51

i alp

ha

i, i be

tai [

A]

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.50.2

0.4

0.6

0.8i d

i, i qi

[A]

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5-0.2

-0.10

0.1

0.2

i dif,

iq

if [A

]

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5-0.2

-0.10

0.10.2

i alph

ap

os, i

bet

apo

s [A

]

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.50

24

6

8

Time [s]

thet

ae [r

ad]

1 1.002 1.004 1.006 1.008 1.01-10

-50

510

i alp

ha, i

be

ta [A

]

1 1.002 1.004 1.006 1.008 1.01-1

-0.50

0.51

i alp

hai

, ib

eta

i [A]

1 1.002 1.004 1.006 1.008 1.010.2

0.4

0.6

0.8

i di, i

qi [A

]

1 1.002 1.004 1.006 1.008 1.01-0.2

-0.10

0.10.2

i dif, i

qif [A

]

1 1.002 1.004 1.006 1.008 1.01-0.2

-0.10

0.10.2

i alp

ha

pos

, ib

eta

po

s [A

]

1 1.002 1.004 1.006 1.008 1.010

2

4

68

Time [s]

thet

ae [r

ad]

Processing Signals ZoomProcessing SignalsProcessing

Steps

e

BPF

( ){ }tω2θ2jss

γδi

idqi

ieeLLLLω

V̂i~ -Δ+=

tωj ie -

αβi~

( ){ }tωθ2js

tωjs

γδi

iiαβ

iδi eLLLLω

V̂i~ -Δ+=

HPF

tω2j ie

atan/2

eθ2j

γδi

sipos_αβ e

LLωLV̂

i~Δ

=

• Time domain

Homodyne Signal Processing

Page 30: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

30

UPCImproving the position signals

• Harmonics exist on resolver signals– Non-sinusoidal distribution of saturation– Inverter effects – dead time & device voltage drop

0 3 6 9 12 15 180

0.025

0.05

0.075

0.1

0.125

Sampled Alpha Position

Am

plitu

de

[A

]

0 3 6 9 12 150

0.025

0.05

0.075

0.1

0.125Sampled Beta Position

Frequency [Hz]

Am

plitu

de

[A

]

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

I alp

ha,

I b

eta

[A]

Sampled Position Signals

Time [s]

0 3 6 9 12 15 180

0.025

0.05

0.075

0.1

0.125

Compensated Alpha Position

Am

plitu

de

[A]

0 3 6 9 12 15 180

0.025

0.05

0.075

0.1

0.125Compensated Beta Position

Frequency [Hz]

Am

plitu

de

[A

]

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

Compensated Position Signals

Time [s]I'

alph

a, I

' bet

a [A

]

Cleaning process

SMP Tables

Page 31: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

31

UPCExperimental results

4kW SMPM machine sensorless Position Control – 0% load

• Response to 180 position demand

Page 32: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

32

UPCExperimental results

4kW SMPM machine sensorless Position Control – 100% load

• Response to 180 position demand

- no integrator in control loop (incremental position only)

- isq (torque current) limited to 1.3 x rated

Page 33: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

33

UPC

Experimental Set up

● Matrix Converter 7.5kW

● Surface Mount Permanent Magnet Motor 4kW

Sensorless Control with Matrix Converter

- Basics for DSP implementation C:\MATLAB7\work\foc File: foc.mdl

Page 34: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

34

UPCConclusions

• Permanent Magnet Synchronous Motors– Features / Advantages

• No rotor currents => no rotor losses. • Higher efficiency => energy saving capability.• Smaller rotor diameters, higher power density and lower rotor

inertia.• Weight and volume less than other type of machine for the same

power. Attractive for aerospace applications such as aircraft actuators.

• Other applications: machine tools, position servomotors (replacing the DC motors).

– Inconvenience: • synchronous machines => need for rotor position.• Price

Page 35: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

35

UPCConclusions

• PMSM motor model has been obtained• Field Orineted Control for PMSM has been presented

– PI control loops

• HF injection Sensorless vector control has been introduced. – Scheme and principles.– Saturation saliency has been tracked to estimate the rotor position.– 4 step homodyne demodulation. – Position signal improvements:

• Dead time compensation.• SMP.

Page 36: Field Oriented Control in Permanent Magnet Synchronous · PDF fileField Oriented Control in Permanent Magnet Synchronous Motors ... • Sensorless Field Oriented Control. 3 UPC ...

36

UPC

Questions / Debate

• JCEE 06. Novembre 2006

Moltes gràcies


Recommended