+ All Categories
Home > Documents > Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf ·...

Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf ·...

Date post: 09-Sep-2018
Category:
Upload: trannhi
View: 218 times
Download: 0 times
Share this document with a friend
79
Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet Tensile stress - strain tests are carried out by applying a tensile load in a tensile test machine. Figure 2-2 Test of mechanical properties
Transcript
Page 1: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Tensile stress - strain tests are carried out by applying a tensile load in a tensile test machine.

Figure 2-2

Test of mechanical properties

Page 2: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

http://www.youtube.com/watch?v=E5-hwTspJK0&feature=related

http://www.youtube.com/watch?v=PaMnJxsV0qM

Tensile tests

Page 3: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Elastic deformation

F=0

F=0

L0D0

Sample shape varies in reproducible way

Page 4: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Elastic deformation

LD L0D0

Sample shape varies in reproducible way

Page 5: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Plastic deformation

LD L0D0

The variation of shape becomes irreproducible

Page 6: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Necking

LD L0D0

The appearance of “neck”. The changes are irreproducible.

Page 7: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Fracture

LD L0D0

The specimen is broken at the neck

BANG!

Page 8: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

= engineering/nominal

tensile stress

0AF

0

0

0 LLL

LL −=

Δ=ε

= engineering strain

Stress and strain

Page 9: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Tensile stress-strain tests are carried out by applying a tensile load in a tensile test machine

Figure 2-2

Strain

Stress

Fracture

Plastic deformation

Elastic deformation

Necking

0AFStress =

0

0

LLLStrain −

=

Page 10: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

= engineering/nominal

tensile stress

= true tensile stress

0AF

AF

t =σ

0

0

0 LLL

LL −=

Δ=ε

= engineering strain

= incremental true strainLL

tδδε =

= true strain∫∫ +====L

L

L

Lt L

LLL

00

)1ln()ln(0

εδδεε

True stress and true strain

Page 11: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Strain

Stress

True stress-strain curve

True stress-strain in the neck

Onset of necking

Necking

Fracture

M′

M

F

F′

Y′

Y

A

O O′ B

σfσy

(0.2%)

σTS

σy

εpl εf0.0020

Typical engineering stress - engineering strain characteristics from a tensile test on a ductile polycrystalline metal (e.g. aluminum alloys, brasses, bronzes, nickel etc.)

Figure 2-3

= tensile strength

= yield strength

P

stress at fracture

= plastic fracture strain

Page 12: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Tensile stress-strain tests are carried out by applying a tensile load in a tensile test machine

Figure 2-2

Strain

Stress

Fracture

Plastic deformation

Elastic deformation

Necking

0AFStress =

0

0

LLLStrain −

=

Page 13: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Hooke’s law and Young’s modulusσ = stress, ε = strain, E= Young’s modulusσ = Eε

Poisson’s ratio

Poissson’s ratio v = 1/3 for metals and v > 1/3 for rubber and polymers

strainalLongitudinstrainLateralv

z

x

__

−=−=εε

0

0

0 DDD

DD

x−

=ε ≡

lateral strain

Page 14: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

= sheer stressAFt=τ

Θ≈Θ=Δ

= )tan(Lxγ = sheer strain

γτ G= = sheer modulus

Shear stress, strain and modulus

Page 15: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

VVΔ

=γ = volume strain

γKP −= = bulk modulus

Volume strain and bulk modulus

Page 16: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Table 1-1

Types of Elastic Deformation

Page 17: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Table 1-3Relationship between Elastic moduli and Poisson’s ratio for homogeneous and isotropic materials, for example, polycrystalline solids.

KGE 91

311

+=

Page 18: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Table 1-2Typical values of elastic moduli, Poisson’s ratio and melting temperatures for a variety of materials.

Page 19: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

r0

r

Uni

t are

a

σσ

Elastic deformation on atomic level

Page 20: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

r0

r

Uni

t are

a

σσ

E0 –bond energyr0 – bond length

( ) ( )0002

2

0

rrSrrdr

EdFr

−=−=⇒

( )000

)( rrdrdFrFF

r

−+=

drdEF = } ⇒

The connection between Young’s modulus and atomic bonding

0

2

2

0rdr

EdS = spring constantwhere

20

1_

__rareaUnit

bondsofNumberN ==

( ) ( ) εσ0

0

0

0

0

02

0

00

rS

NrrrN

rS

NrrrNS

ANF

=−

=−

==

0

0

rSE =Young’s modulus

Microscopic approach

Macroscopic approach

Page 21: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile
Page 22: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile
Page 23: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Typical stress - strain characteristics of ductile, moderately ductile and brittle materials.

Figure 2-4

Comparison of brittle and ductile materials

Ductility = amount of plastic deformation that is exhibited by the material at fracture

%100%100 -

%0

0 ×=×= ff

LLL

EL ε

percent elongation

%100 -

%0

0 ×=A

AAAR f

percent area reduction

Strain

Stre

ss

Brittle fracture Ductile fracture

Ductile

Moderately ductileBrittle

εfεf

<2%

Fbrittlr M

F

Ductility is measured as

Page 24: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Strain

Definitions of (a) resilience and (b) toughnessFigure 2-3

Stress

M

F

B

σTS

εfStrain

Stress

Y′

Y

A

O

σy

(0.2%)

σy

0

= yield strength

εy εy(0.2%)

= tensile strength

Modulus of

resilience

B’

Toughness

= the total amount of work done per unit volume to fracture

Resilience and toughness

= the extent of elastic energy stored per unit volume in the solid

Page 25: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

EE y

yyy

22

21

21

21 σ

εσε ===

Modulus of resilience =

εσ E=

dWvol - “elementary” workF - applied forcedL - “elementary” elongationA0 - sample cross-section Strain

Stress

Y′

Y

A

O

σy

(0.2%)

σy

0 εy εy(0.2%)

Resilience, yield strength and Young’s modulus

εσdLA

FdLdWvol ==00

εσε

dWvol ∫=0

L0 - sample lengthσ - stressε- strainE – Young’s modulus

Page 26: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Typical stress - strain characteristics of ductile, moderately ductile and brittle materials and comparison of their toughness.

Figure 3-2

Strain

Stress

00

A

BC

D

Comparison of toughness of brittle and ductile materials

Strength

Ductility

Toughness

Page 27: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Typical stress - strain characteristics of ductile, moderately ductile and brittle materials and comparison of their toughness.

Figure 3-2

Strain

Stress

00

A

BC

D

Comparison of toughness of brittle and ductile materials

Strength A < B < C < D

DuctilityD < C < A=B

ToughnessD < C ≈

A < B

Page 28: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Typical mechanical properties obtainable from a tensile stress

Table 3.1

Page 29: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

We want to make a spring. Which material to chose?

Page 30: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Table 3-3Strength

classification of metal alloys

Strength

Ductility

Toughness

Page 31: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Atomic mechanisms of plastic deformation

Page 32: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

= sheer stressAFt=τ

Θ≈Θ=Δ

= )tan(Lxγ = sheer strain

γτ G= = sheer modulus

Definition of shear stress

Page 33: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

An applied tensile stress gives rise to shear stresses !

)2sin(21

0 θστ =

Page 34: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Plastic deformation caused by shear stress “under microscope”

Page 35: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Plastic deformation in Metals and Dislocations

Edge dislocation line

(a) Dislocation is a line defect. The dislocation shown runs into the paper.

CompressionTension

(b) Around the dislocation there is a strain field as the atomic bonds have beencompressed above and stretched below the islocation line

Fig. 1.46: Dislocation in a crystal is a line defect which is accompaniedby lattice distortion and hence a lattice strain around it.From Principles of Electronic Materials and Devices, Second Edition, S.O. Kasap (© McGraw-Hill, 2002)http://Materials.Usask.Ca

Edge dislocation

A

D

B

C

Atoms in theupper portion.

Atoms in thelower portion.

Dislocationline

(b) The screw dislocation in (a) as viewed from above.

(a) A screw dislocation in a crystal.

A

C

D

Dislocation line

From Principles of Electronic Materials and Devices, Second Edition, S.O. Kasap (© McGraw-Hill, 2002)http://Materials.Usask.Ca

Fig. 1.47: A screw dislocation involves shearing one portion of a perfectcrystal with respect to another portion on one side of a line (AB).

Screw dislocation

Page 36: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Plastic deformation is due to movement of dislocations

Page 37: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

b – Burger’s vector

Slip direction, slip plane and Burger’s vector

τ

τ τ

τ

Page 38: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Contribution of screw dislocations into plastic deformation

z

z

Page 39: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Which crystalline structure is the most ductile? Slip planes and slip directions

The glide is easiest along the plane that is most densely packed !!!

critical shear stress

12

68Filling Factor, % 74 74

Page 40: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Interaction of dislocations

“Pinning” of dislocations on the grain boundaries and impurities

Page 41: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

What can stop the movement of dislocations?

Page 42: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Interaction of dislocations

“Pinning” of dislocations on

the grain boundaries and

impurities

Page 43: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Strain (work) hardeningdue to plastic deformation of polycrystalline material

Page 44: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Temperature stimulates the movement of dislocations

Page 45: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Cold work

Cold work : yield strength tensile strength

resilience ductility

Page 46: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Practical realization of cold work

Page 47: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

%100%0

0 ×−

=A

AACW Cold work is the percentage change in the cross- sectional area as a result of plastic deformation

Volume = const no change in material density

Numerical definition of cold work

Page 48: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Copper Brass

Iron Steel

Page 49: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Plastic deformation of polycrystalline material

Page 50: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

)exp(0 RTH

RR recryst−=

where R- gas constant andT - absolute temperature

Recrystallization Rate

Trecryst ≅

0.4 T melting

Ductility

Yield strength

Recrystallization

Recrystallization temperature =recrystallization is complete in

1 hour

Page 51: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Trecryst ≅

0.4 T melting

<= above 4500C – hot working

Typical recrystallization temperatures

Page 52: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Impurity or Solid Solution Hardening

Dispersion or Precipitation Hardening

dK

yy +=0

σσ

where d- average grain size (diameter)σy0

,K -parameters of material

(Hall-Petch equation)

Grain Size Hardening

Strain Hardening (Cold Work)

Mechanical strengthening / hardening mechanisms

Page 53: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

2

2

854.1

)21sin(2

_ dF

d

FAreaSurface

LoadVHN =

⎥⎥⎥

⎢⎢⎢

Θ

== where F is the load (kgf)d=(d1 +d2 )/2

is average diagonal (mm)Θ -apex angle

Vicker Hardness Number

Hardness = resistance to indentation or penetration

Indenter

Impression

Page 54: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

( )⎥⎦⎤

⎢⎣⎡ −−

==22

2_ dDDD

FAreaSurface

FBHNπ

where F is the load (kgf)D is the diameter of the ball (mm)d is indentation number

Brinell Hardness Number

1000 kgf / 30 sec

Page 55: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Hardness and Strength

VHN ≅

3 σyVicker hardness

σTS ≅ 3.45 BHN Brinell hardness

[σTS ] = MPa [BHN] = kgf/mm2

Page 56: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

t measured in function of load

Rockwell Hardness Test

Page 57: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Mechanical Failure

Page 58: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Strain

Stress

True stress-strain curve

True stress-strain in the neck

Onset of necking

Necking

Fracture

M′

M

F

F′

Y′

Y

A

O O′ B

σfσy

(0.2%)

σTS

σy

εpl εf0.0020

Typical engineering stress - engineering strain characteristics from a tensile test on a ductile polycrystalline metal (e.g. aluminum alloys, brasses, bronzes, nickel etc.)

Figure 2-3

= tensile strength

= yield strength

P

stress at fracture

= plastic fracture strain

Page 59: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Typical stress - strain characteristics of ductile, moderately ductile and brittle materials.

Figure 2-4

Strain

Stress

Brittle fracture

Ductile fracture

Ductile

Moderately ductileBrittle

εfεf

<2%0

Fbrittle M

F

0

Page 60: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Two Mechanisms of Fracture : Brittle and Ductile Fracture

Typical stress - strain characteristics of ductile, moderately ductile and brittle materials.

Figure 2-4Strain

Stre

ss

Brittle fracture Ductile fracture

Ductile

Moderately ductileBrittle

εfεf

<2%

Fbrittle M

F

Page 61: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Brittle Fracture. Stress amplification on the crack

0σσ tm K=Kt = strength concentration factor

σ0 = stress inside the volume

σm = maximum stress factor

Page 62: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Mechanical Properties II (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

rc

m 02σσ ≈

for sharp crack withc>>r

Brittle Fracture. Stress amplification on the crack

c = 0.2 μm or 200 nmr = 0.1 nm ⇒

Kt ≈

90Example:

Page 63: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

cE

cb πγσ 2

=

where σcb = critical applied stress E = Young’s modulus

c = length of the crack

γ = surface tension (surface energy per unit surface area)

Critical applied stress

Griffith’s theory

Page 64: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

where σcb = critical applied stress E = Young’s modulus

c = length of the crack

γ = surface tension (surface energy per unit surface area)

Crack propagation

cE

cb πγσ 2

=

Griffith’s theory

rc

m 02σσ ≈

for sharp crack withc>>r

Page 65: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Mechanical Properties II (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Ductile fracture

τ >τcr

Page 66: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Mechanical Properties II (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

cE

cb πγσ 2

=

γ– surface tension(surface energy per unit

surface area)

Critical applied stressIn brittle material

cEGc

cd πσ 2

=

Gc– toughness(plastic work done per unit

surface area)

In ductile material

Page 67: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Mechanical experiments

tensile experiment = reaction under varying stressfatigue = reaction to cyclic stresscreep = reaction to constant applied stressimpact = reaction to impact

Page 68: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Mechanical Properties II (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Fatigue = failure under cyclic stress

Page 69: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Mechanical Properties II (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Endurance limit

Endurance limit = maximum amplitude of stress that can be cycledinfinitely without fracturing the specimen

Page 70: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Mechanical Properties II (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Fatigue in Metals

Page 71: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Mechanical Properties II (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Creep

Creep = slow permanent deformation with time under permanent load

Page 72: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Creep regions

Strain hardening

Page 73: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Creep regions

Strain hardening

Page 74: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Creep regions

Disentanglement and un-pinning of dislocations

Page 75: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Creep regions

Propagation of Cracks

Page 76: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Mechanical Properties II (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Temperature dependence of creep rate

TB > TA

Page 77: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Mechanical Properties II (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Stress dependence of creep rate

σB > σA

Page 78: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Mechanical Properties II (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Impact Energy and Toughness

Impact Energy = the energy absorbed by a metal specimen to fracture in a standard impact test

Toughness = the total amount of plastic work done per unit volume to fracture

Page 79: Figure 2-2 - University of Saskatchewankasap13.usask.ca/EE271/files/06_Mechanical-08.pdf · Essential Mechanical Properties (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet. Tensile

Mechanical Properties II (© S.O. Kasap, 1990-2001: v.1.5) An e-Booklet

Impact Energy vs. Temperature


Recommended