+ All Categories
Home > Documents > Figure 7.UN01

Figure 7.UN01

Date post: 08-Jan-2016
Category:
Upload: zorina
View: 37 times
Download: 3 times
Share this document with a friend
Description:
Figure 7.UN01. becomes oxidized (loses electron). becomes reduced (gains electron). Figure 7.UN03. becomes oxidized. becomes reduced. Figure 7.5. ½. ½. H 2 . O 2. . 2 H. O 2. Controlled release of energy. 2 H   2 e −. ATP. ATP. Explosive release. - PowerPoint PPT Presentation
Popular Tags:
28
Transcript
Page 1: Figure 7.UN01
Page 2: Figure 7.UN01

Figure 7.UN01

becomes oxidized(loses electron)

becomes reduced(gains electron)

Page 3: Figure 7.UN01

Figure 7.UN03

becomes oxidized

becomes reduced

Page 4: Figure 7.UN01

Figure 7.5

Explosiverelease

(a) Uncontrolled reaction (b) Cellular respiration

H2O

Fre

e en

erg

y, G

Fre

e en

erg

y, G

Electro

n tran

spo

rt

chain

Controlledrelease of

energy

H2O

2 H

2 e−

2 H 2 e−

ATP

ATP

ATP

½

½

½H2 O2 O2

O2

2 H

Page 5: Figure 7.UN01

Figure 7.UN05

Glycolysis (color-coded teal throughout the chapter)

Pyruvate oxidation and the Krebs (citric acid)cycle(color-coded salmon)

1.

Oxidative phosphorylation: electron transport andchemiosmosis (color-coded violet)

2.

3.

Page 6: Figure 7.UN01

Figure 7.6-1

Electronsvia NADH

Glycolysis

Glucose Pyruvate

CYTOSOL

ATP

Substrate-level

MITOCHONDRION

Page 7: Figure 7.UN01

Figure 7.6-2

Electronsvia NADH

Glycolysis

Glucose Pyruvate

Pyruvateoxidation

Acetyl CoA

Krebscycle

Electronsvia NADH and

FADH2

CYTOSOL

ATP

Substrate-level

ATP

Substrate-level

MITOCHONDRION

Page 8: Figure 7.UN01

Figure 7.6-3

Electronsvia NADH

Glycolysis

Glucose Pyruvate

Pyruvateoxidation

Acetyl CoA

Krebscycle

Electronsvia NADH and

FADH2

Oxidativephosphorylation:electron transport

andchemiosmosis

CYTOSOL

ATP

Substrate-level

ATP

Substrate-level

MITOCHONDRION

ATP

Oxidative

Page 9: Figure 7.UN01

Intermembrane space

Matrix

Inner membraneOuter membrane

5 Cristae

Page 10: Figure 7.UN01

Figure 7.UN06

Glycolysis Pyruvateoxidation

Krebscycle

Oxidativephosphorylation

ATP ATP ATP

Page 11: Figure 7.UN01

Figure 7.8

Energy Investment Phase

Energy Payoff Phase

Net

Glucose

Glucose

2 ADP 2 P

4 ADP 4 P

2 NAD 4 e− 4 H

2 NAD 4 e− 4 H

4 ATP formed − 2 ATP used

2 ATP

4 ATP

used

formed

2 NADH 2 H

2 Pyruvate 2 H2O

2 Pyruvate 2 H2O

2 NADH 2 H

2 ATP

Page 12: Figure 7.UN01
Page 13: Figure 7.UN01

Figure 7.UN07

Glycolysis Pyruvateoxidation

Krebscycle

Oxidativephosphorylation

ATP ATP ATP

Page 14: Figure 7.UN01

Figure 7.10a

CYTOSOLPyruvate(from glycolysis,2 molecules per glucose)

CO2

CoANAD

NADH

MITOCHONDRION CoAAcetyl CoA H

Page 15: Figure 7.UN01

Figure 7.10b

CoA

Krebscycle

FADH2

FAD

ADP Pi

ATP

NADH

3 NAD

3

3 H

2 CO2

CoAAcetyl CoA

Page 16: Figure 7.UN01

Figure 7.11-6

NADH

NAD

H

8

Malate

Succinate

FAD

FADH2

Fumarate

H2O7

6

Acetyl CoA

Oxaloacetate

Citrate

H2O

Isocitrate

NADH

NAD

H

CO2

-Ketoglutarate

Krebscycle

CoA-SH

CO2NAD

NADH

H

ATP formation

SuccinylCoA

ADP

GDPGTP

Pi

ATP

5

4

1

CoA-SH

3

CoA-SH

2

Page 17: Figure 7.UN01

Figure 7.UN09

Glycolysis Pyruvateoxidation

Krebscycle

Oxidativephosphorylation:electron transportand chemiosmosis

ATP ATP ATP

Page 18: Figure 7.UN01
Page 19: Figure 7.UN01

Figure 7.14

Proteincomplexof electron carriers

H

HH

H

Q

I

II

III

FADH2 FAD

NADNADH

(carrying electronsfrom food)

Electron transport chain

Oxidative phosphorylation

Chemiosmosis

ATPsynthase

H

ADP ATPPi

H2O2 H ½ O2

IV

Cyt c

1 2

Page 20: Figure 7.UN01

Figure 7.15

Electron shuttlesspan membrane

CYTOSOL2 NADH

2 NADH

2 FADH2

or

2 NADH

Glycolysis

Glucose 2Pyruvate

Pyruvateoxidation

2 Acetyl CoA

Krebscycle

6 NADH 2 FADH2

Oxidativephosphorylation:electron transport

andchemiosmosis

about 26 or 28 ATP 2 ATP 2 ATP

About30 or 32 ATPMaximum per glucose:

MITOCHONDRION

Page 21: Figure 7.UN01

Figure 7.UN11

Inputs

GlucoseGlycolysis

2 Pyruvate 2

Outputs

ATP NADH 2

Page 22: Figure 7.UN01

Figure 7.UN12

Inputs

2 Pyruvate 2 Acetyl CoA

2 OxaloacetateKrebscycle

Outputs

ATP

CO2

2

6 2

8 NADH

FADH2

Page 23: Figure 7.UN01

Bell Work: Draw a flow diagram depicted how reactants and products flow through the 3 steps of cellular respiration

Page 24: Figure 7.UN01
Page 25: Figure 7.UN01

Alcoholic Fermentation• Pyruvate releases CO2

• Resulting compound reduced by NADH to ethanol

• Bacteria

Page 26: Figure 7.UN01

• Pyruvate reduced by NADH to lactate

• Animals, fungi, and bacteria

• Buildup causes muscle fatigue (ATP use outpaces O2 supply)

Lactic Acid Fermentation

Page 27: Figure 7.UN01

Animation: Fermentation OverviewRight click slide / Select play

Page 28: Figure 7.UN01

In respect to evolution, why is glycolysis so important?

Ancient prokaryotes are thought to have used glycolysis long before there was oxygen in the atmosphere

Very little O2 was available in the atmosphere until about 2.7 billion years ago, but bacteria have been dated back 3.5 billion years

Early prokaryotes likely used only glycolysis to generate ATP

Glycolysis is a very ancient process


Recommended