+ All Categories
Home > Documents > Final Diagram

Final Diagram

Date post: 04-Jun-2018
Category:
Upload: mailstonaik
View: 217 times
Download: 0 times
Share this document with a friend

of 32

Transcript
  • 8/13/2019 Final Diagram

    1/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    1

    Semiconductor Manufacturing Processes

    Design

    Wafer Preparation

    Front-end Processes

    Photolithography

    Etch

    Cleaning

    Thin Films

    Ion Implantation

    Planarization Test and Assembly

    Thin Films

    Photo-

    lithography

    Cleaning

    Front-End

    Processes

    EtchIon

    Implantation

    Planarization

    Test &

    Assembly

    DesignWafer

    Preparation

  • 8/13/2019 Final Diagram

    2/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    2

    Design

    Thin Films

    Photo-

    lithography

    Cleaning

    Front-End

    Processes

    EtchIon

    Implantation

    Planarization

    Test &

    Assembly

    DesignWafer

    Preparation

    Establish Design Rules

    Circuit Element Design

    Interconnect Routing

    Device Simulation

    Pattern Preparation

  • 8/13/2019 Final Diagram

    3/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    3

    Wafer Preparation

    Thin Films

    Photo-

    lithography

    Cleaning

    Front-End

    Processes

    EtchIon

    Implantation

    Planarization

    Test &

    Assembly

    DesignWafer

    Preparation

    Polysilicon Refining

    Crystal Pulling Wafer Slicing & Polishing

    Epitaxial Silicon Deposition

  • 8/13/2019 Final Diagram

    4/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    4

    Polysilicon Refining

    Chemical Reactions

    Silicon Refining: SiO2+ 2 CSi + 2 CO

    Silicon Purification: Si + 3 HClHSiCl3+ H2

    Silicon Deposition: HSiCl3+ H2Si + 3 HCl

    Reactants

    H2

    Silicon Intermediates

    H2SiCl2

    HSiCl3

  • 8/13/2019 Final Diagram

    5/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    5

    Crystal Pulling

    Quartz Tube

    Rotating Chuck

    Seed Crystal

    Growing Crystal

    (boule)

    RF or Resistance

    Heating Coils

    Molten Silicon

    (Melt)

    Crucible

    Materials

    Polysilicon Nodules *

    Ar *H2

    *High proportion of the total product use

    Process Conditions

    Flow Rate: 20 to 50 liters/min

    Time: 18 to 24 hours

    Temperature: >1,300 degrees C

    Pressure: 20 Torr

  • 8/13/2019 Final Diagram

    6/32

  • 8/13/2019 Final Diagram

    7/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    7

    Epitaxial Silicon Deposition

    Gas

    Input Lamp

    Module

    Quartz

    Lamps

    Wafers

    Susceptor

    Exhaust

    *High proportion of the total product use

    Chemical Reactions

    Silicon Deposition: HSiCl3+ H2Si + 3 HClProcess Conditions

    Flow Rates: 5 to 50 liters/min

    Temperature: 900 to 1,100 degrees C.

    Pressure: 100 Torr to Atmospheric

    silicon wafer

    p- silicon epi layer

    p+ silicon substrate

    DopantsAsH3

    B2H6

    PH3

    EtchantHCl

    Carriers

    Ar

    H2*

    N2

    Silicon SourcesSiH4

    H2SiCl2

    HSiCl3*

    SiCl4*

  • 8/13/2019 Final Diagram

    8/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    8

    Thin Films

    Photo-

    lithography

    Cleaning

    Front-End

    Processes

    EtchIon

    Implantation

    Planarization

    Test &

    Assembly

    DesignWafer

    Preparation Thermal Oxidation

    Silicon Nitride Deposition

    - Low Pressure Chemical Vapor

    Deposition (LPCVD) Polysilicon Deposition

    - Low Pressure Chemical Vapor

    Deposition (LPCVD)

    Annealing

    Front-End Processes

  • 8/13/2019 Final Diagram

    9/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    9

    Front-End Processes

    *High proportion of the total product use

    Polysilicon

    H2N2

    SiH4*AsH3

    B2H6

    PH3

    Exhaust ViaVacuum Pumps

    and Scrubber

    3 Zone

    Temperature

    Control

    Gas Inlet

    Vertical LPCVD Furnace

    Quartz TubeChemical Reactions

    Thermal Oxidation: Si + O2SiO2

    Nitride Deposition: 3 SiH4+ 4 NH

    3Si

    3N

    4+ 12 H

    2

    Polysilicon Deposition: SiH4Si + 2 H2Process Conditions (Silicon Nitride LPCVD)

    Flow Rates: 10 - 300 sccm

    Temperature: 600 degrees C.

    Pressure: 100 mTorr

    silicon dioxide (oxide)

    p- silicon epi layer

    p+ silicon substrate

    Nitride

    NH3*H2SiCl2*

    N2

    SiH4*

    SiCl4

    Oxidation

    ArN2H2O

    Cl2

    H2

    HCl *

    O2*Dichloroethene*

    Annealing

    ArHe

    H2N2

  • 8/13/2019 Final Diagram

    10/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    10

    Photolithography

    Thin Films

    Photo-

    lithography

    Cleaning

    Front-End

    Processes

    EtchIon

    Implantation

    Planarization

    Test &

    Assembly

    DesignWafer

    Preparation

    Photoresist Coating Processes

    Exposure Processes

  • 8/13/2019 Final Diagram

    11/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    11

    Photoresist Coating Processes

    p- epi

    p+ substrate

    field oxide

    photoresist

    PhotoresistsNegative Photoresist*

    Positive Photoresist*

    Other Ancillary Materials (Liquids)Edge Bead Removers*

    Anti-Reflective Coatings*

    Adhesion Promoters/Primers (HMDS)*

    Rinsers/Thinners/Corrosion Inhibitors*

    Contrast Enhancement Materials*

    DevelopersTMAH*

    Specialty Developers*

    Inert GasesAr

    N2

  • 8/13/2019 Final Diagram

    12/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    12

    Exposure Processes

    p- epi

    p+ substrate

    field oxide

    photoresist

    ExposeKr + F2(gas)*

    Inert GasesN2

  • 8/13/2019 Final Diagram

    13/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    13

    Ion Implantation

    Thin Films

    Photo-

    lithography

    Cleaning

    Front-End

    Processes

    EtchIon

    Implantation

    Planarization

    Test &

    Assembly

    DesignWafer

    Preparation

    Well Implants

    Channel Implants

    Source/Drain Implants

  • 8/13/2019 Final Diagram

    14/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    14

    Ion Implantation

    180 kV

    Resolving

    Aperture

    Ion Source

    Equipment Ground

    Acceleration Tube

    90 Analyzing Magnet

    Terminal Ground

    20 kV

    Focus Neutral beam and

    beam path gated

    Beam trap and

    gate plate

    Wafer in wafer

    process chamber

    X - axis

    scanner

    Y - axis

    scanner

    Neutral beam trap

    and beam gate

    GasesAr

    AsH3

    B11

    F3*He

    N2

    PH3

    SiH4

    SiF4GeH4

    SolidsGa

    In

    SbLiquids

    Al(CH3)3

    *High proportion of the total product use

    junction

    depthp- epi

    p+ substrate

    field oxide

    photoresist mask

    n-w ell

    p-channel transistor

    phosphorus

    (-) ions

    Process Conditions

    Flow Rate: 5 sccm

    Pressure: 10-5Torr

    Accelerating Voltage: 5 to 200 keV

  • 8/13/2019 Final Diagram

    15/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    15

    Etch

    Thin Films

    Photo-

    lithography

    Cleaning

    Front-End

    Processes

    EtchIon

    Implantation

    Planarization

    Test &

    Assembly

    DesignWafer

    Preparation

    Conductor Etch

    - Poly Etch and Silicon Trench

    Etch

    - Metal Etch

    Dielectric Etch

  • 8/13/2019 Final Diagram

    16/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    16

    Conductor Etch

    *High proportion of the total product use

    EtchChambers

    Cluster ToolConfiguration

    Transfer

    Chamber

    Loadlock

    Wafers

    RIE Chamber

    Transfer

    Chamber

    Gas Inlet

    Exhaust

    RF Power

    Wafer

    p+ substrate

    p-well

    n-channel transistor

    n-w ell

    p-channel transistor

    source-drain areas

    gate linew idthgate oxide

    Polysilicon EtchesHBr *

    C2F6

    SF6*

    NF3*

    O2

    Aluminum EtchesBCl3 *

    Cl2

    DiluentsAr

    He

    N2

    Chemical Reactions

    Silicon Etch: Si + 4 HBrSiBr4

    + 2 H2

    Aluminum Etch: Al + 2 Cl2AlCl4Process Conditions

    Flow Rates: 100 to 300 sccm

    Pressure: 10 to 500 mTorr

    RF Power: 50 to 100 Watts

  • 8/13/2019 Final Diagram

    17/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    17

    Dielectric Etch

    *High proportion of the total product use

    EtchChambers

    Cluster ToolConfiguration

    Transfer

    Chamber

    Loadlock

    Wafers

    RIE Chamber

    Transfer

    Chamber

    Gas Inlet

    Exhaust

    RF Power

    Wafer

    Contact locations

    n-w ell

    p-channel transistor

    p-well

    n-channel transistorp+ substrate

    Chemical Reactions

    Oxide Etch: SiO2+ C2F6SiF4+ CO2+ CF4+ 2 CO

    Process Conditions

    Flow Rates: 10 to 300 sccm

    Pressure: 5 to 10 mTorr

    RF Power: 100 to 200 Watts

    Plasma Dielectric EtchesCHF3*

    CF4

    C2F6

    C3F8

    CO *

    DiluentsAr

    He

    N2

    CO2

    O2SF6

    SiF4

  • 8/13/2019 Final Diagram

    18/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    18

    Cleaning

    Thin Films

    Photo-

    lithography

    Cleaning

    Front-End

    Processes

    EtchIon

    Implantation

    Planarization

    Test &

    Assembly

    DesignWafer

    Preparation

    Critical Cleaning

    Photoresist Strips

    Pre-Deposition Cleans

  • 8/13/2019 Final Diagram

    19/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    19

    Critical Cleaning

    11 22 33 44 55

    1 Organics 2 Oxides 3 Particles 4 Metals 5 Dry

    H2SO4+ HF + NH4OH + HCl + H2O or IPA +

    H2O2 H2O H2O2+ H2O H2O2+ H2O N2

    H2O Rinse H2O Rinse H2O Rinse H2O Rinse

    Contact locations

    n-w ell

    p-channel transistor

    p-well

    n-channel transistorp+ substrate

    RCA CleanSC1 Clean (H2O + NH4OH + H2O2)*

    * SC2 Clean (H2O + HCl + H2O2)*

    Piranha Strip* H2SO4+ H2O2*

    Nitride StripH3PO4*

    Oxide StripHF + H2O*

    Solvent CleansNMP

    Proprietary Amines (liquid)

    Dry CleansHF

    O2Plasma

    Alcohol + O3

    Dry StripN2O

    O2

    CF4+ O2

    O3

    Process Conditions

    Temperature: Piranha Strip is 180 degrees C.

  • 8/13/2019 Final Diagram

    20/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    20

    Thin Films

    Thin Films

    Photo-

    lithography

    Cleaning

    Front-End

    Processes

    EtchIon

    Implantation

    Planarization

    Test &

    Assembly

    DesignWafer

    Preparation Chemical Vapor Deposition

    (CVD) Dielectric

    CVD Tungsten

    Physical Vapor Deposition(PVD)

    Chamber Cleaning

  • 8/13/2019 Final Diagram

    21/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    21

    Chemical Vapor Deposition (CVD) Dielectric

    *High proportion of the total product use

    CVD DielectricO2

    O3TEOS *

    TMP *

    TEOS

    Source

    LPCVD

    Chamber

    Transfer

    Chamber

    Gas Inlet

    Exhaust

    RF Power

    Wafer

    Metering

    Pump

    Inert Mixing

    Gas

    Process Gas

    Vaporizer

    Direct

    Liquid

    Injection

    n-well

    p-channel transistor

    p-well

    n-channel transistorp+ substrate

    Metal 1insulator layer 2

    Chemical Reactions

    Si(OC2H5)4+ 9 O3SiO2+ 5 CO + 3 CO2+ 10 H2O

    Process Conditions (ILD)

    Flow Rate: 100 to 300 sccm

    Pressure: 50 Torr to Atmospheric

  • 8/13/2019 Final Diagram

    22/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    22

    Chemical Vapor Deposition (CVD) Tungsten

    *High proportion of the total product use

    CVD DielectricWF

    6*

    Ar

    H2

    N2

    Output

    Cassette

    InputCassette

    Wafer

    HanderWafers

    Water-cooled

    Showerheads

    Multistation Sequential

    Deposition Chamber

    Resistively

    Heated Pedestal

    n-w ell

    p-channel transistor

    p-well

    n-channel transistorp+ substrate

    titanium tungsten

    Chemical Reactions

    WF6+ 3 H2W + 6 HFProcess Conditions

    Flow Rate: 100 to 300 sccm

    Pressure: 100 mTorr

    Temperature: 400 degrees C.

  • 8/13/2019 Final Diagram

    23/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    23

    Physical Vapor Deposition (PVD)

    Barrier MetalsSiH

    4

    Ar

    N2

    N2Ti PVD Targets *

    Physical

    VaporDeposition

    Chambers

    Cluster ToolConfiguration

    Transfer

    Chamber

    Loadlock

    Wafers

    PVD Chamber

    Transfer

    Chamber

    Cryo Pump

    Wafer

    N S N

    +

    e -

    Backside

    He Cooling

    Argon &

    Nitrogen

    Reactive

    Gases

    DC Power

    Supply (+)

    *High proportion of the total product use

    n-w ell

    p-channel transistor

    p-w ell

    n-channel transistorp+ substrate

    Process Conditions

    Pressure: < 5 mTorrTemperature: 200 degrees C.

    RF Power:

  • 8/13/2019 Final Diagram

    24/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    24

    Chamber Cleaning

    *High proportion of the total product use

    Chamber CleaningC2F6*

    NF3ClF3

    Water-cooled

    Showerheads

    Multistation Sequential

    Deposition Chamber

    Resistively

    Heated Pedestal

    Chemical Reactions

    Oxide Etch: SiO2+ C2F6SiF4+ CO2+ CF4+ 2 CO

    Process ConditionsFlow Rates: 10 to 300 sccm

    Pressure: 10 to 100 mTorr

    RF Power: 100 to 200 Watts

    Aluminum

    Surface Coating

    Process Material Residue

    Chamber Wall Cross-Section

  • 8/13/2019 Final Diagram

    25/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    25

    Planarization

    Thin Films

    Photo-

    lithography

    Cleaning

    Front-End

    Processes

    EtchIon

    Implantation

    Planarization

    Test &

    Assembly

    DesignWafer

    Preparation

    Oxide Planarization

    Metal Planarization

  • 8/13/2019 Final Diagram

    26/32

  • 8/13/2019 Final Diagram

    27/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    27

    Test and Assembly

    Thin Films

    Photo-

    lithography

    Cleaning

    Front-End

    Processes

    EtchIon

    Implantation

    Planarization

    Test &

    Assembly

    DesignWafer

    Preparation

    Electrical Test Probe

    Die Cut and Assembly

    Die Attach and Wire Bonding

    Final Test

  • 8/13/2019 Final Diagram

    28/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    28

    Electrical Test Probe

    Defective IC

    Individual integrated circuits

    are tested to distinguish good

    die from bad ones.

    n-well

    p-channel transistor

    p-well

    n-channel transistorp+ substrate

    bonding pad

    nitrideMetal 2

  • 8/13/2019 Final Diagram

    29/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    29

    Die Cut and Assembly

    Good chips are attached

    to a lead frame package.

  • 8/13/2019 Final Diagram

    30/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    30

    Die Attach and Wire Bonding

    lead frame gold wire

    bonding pad

    connecting pin

  • 8/13/2019 Final Diagram

    31/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    31

    Final Test

    Chips are electrically

    tested under varying

    environmental conditions.

  • 8/13/2019 Final Diagram

    32/32

    NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

    Sorenson

    32

    References

    1. CMOS Process Flow in Wafer Fab, Semiconductor Manufacturing Technology, DRAFT,

    Austin Community College, January 2, 1997.

    2. Semiconductor Processing with MKS Instruments, Inc.

    3. Worthington, Eric. New CMP architecture addresses key process issues, Solid State

    Technology, January 1996.

    4. Leskonic, Sharon. Overview of CMP Processing, SEMATECH Presentation, 1996.5. Gwozdz, Peter. Semiconductor Processing Technology SEMI, 1997.

    6. CVD Tungsten, Novellus Sales Brochure, 7/96.

    7. Fullman Company website. Fullman Company - The Semiconductor Manufacturing

    Process, http://www.fullman.com/semiconductors/index.html, 1997.

    8. Barrett, Craig R. From Sand to Silicon: Manufacturing an Integrated Circuit,Scientific

    American Special Issue: The Solid State Century, January 22, 1998.


Recommended