+ All Categories
Home > Documents > Final Meeting of the contracts TW3-TSW-001 and -002 and TW4-TSW-001 and -002

Final Meeting of the contracts TW3-TSW-001 and -002 and TW4-TSW-001 and -002

Date post: 29-Jan-2016
Category:
Upload: gerald
View: 53 times
Download: 0 times
Share this document with a friend
Description:
Final Meeting of the contracts TW3-TSW-001 and -002 and TW4-TSW-001 and -002. ENEA part of the Art.5.1.a. task, and reminder of former results and reports L.Di Pace ENEA CR Frascati. Garching, January 17 th , 2006. Outline. Status of decommissioning Decommissioning waste management - PowerPoint PPT Presentation
20
Associazione EURATOM ENEA sulla FUSIONE Final Meeting of the contracts TW5- TSW-001 and -002 Garching. January 17 th , 2006 Final Meeting of the contracts TW3-TSW-001 and -002 and TW4-TSW-001 and -002 ENEA part of the Art.5.1.a. task, and reminder of former results and reports L.Di Pace ENEA CR Frascati Garching, January 17 th , 2006
Transcript
Presentazione di PowerPointFinal Meeting of the contracts TW5- TSW-001 and -002 Garching. January 17th, 2006
Final Meeting of the contracts TW3-TSW-001 and -002
and TW4-TSW-001 and -002
ENEA part of the Art.5.1.a. task, and reminder of former results and reports
L.Di Pace
Garching, January 17th, 2006
Final Meeting of the contracts TW5- TSW-001 and -002 Garching. January 17th, 2006
Outline
Fusion industry implications
Conclusions
Final Meeting of the contracts TW5- TSW-001 and -002 Garching. January 17th, 2006
Status of decommissioning
An entire generation of nuclear plants are ending the operating life;
Hundreds of thousand of t/a will be produced by nuclear plants decommissioning within next 40 years;
Only a limited volumetric fraction will contain the most of the activity. (99% of radioactivity concentrated in 1% volume).
(Spent fuel is excluded)
Time distribution for generation of slightly radioactive solid material from USA power reactor decommissioning
About 2800 nuclear facilities worldwide are estimated to require decommissioning over
the coming decades for one reason or another.
The typical reasons for decommissioning a nuclear facility include:
Change in governmental policy
Safety issues
for decommissioning:
Entombment of the facility
Final Meeting of the contracts TW5- TSW-001 and -002 Garching. January 17th, 2006
Decommissioning waste management
Clearance, (unconditional, unrestricted release);
Conditional clearance: recycle, reuse in specified application and subject to regulatory control;
No release from regulatory control, (management as radwaste).
Each option has economic impacts due to the associate pricing for handling and disposal.
(average disposal cost in Europe in existing shallow land repositories is ~3000 €/m3)
disposing of slightly radioactive metal from decommissioning in USA could range from 3100 to 16000 US$ /m3 (depending from the repository)
a) the material is handled as if it is no longer radioactive. Under this option, solid material can be reused without restriction, recycled into a consumer product, or disposed of in a landfill. It must be verified the compliance with the limits defined by the regulatory authorities for the surface contamination and the volumetric activity.
b) conditional clearance; means that the material must be recycled or reused in a specified application and subject to continuing regulatory control until specific conditions are met to allow clearance.
Furthermore, it has been calculated that disposing of slightly radioactive metal from all USA power reactors would cost from 1.6 billion of US$ to 8.8 billion of US$ [2] (1.3 billion € to 7.3 billion €).
The disposal cost at landfill as urban waste would have an unit cost of 30 US$/m3 (two orders of magnitude lower than the disposal cost as radioactive waste). The disposal cost as hazardous waste is around 110 US$/m3.
Final Meeting of the contracts TW5- TSW-001 and -002 Garching. January 17th, 2006
Metal recycling market #1
World population growth, ~ 9B within 2050, will require resources (including financial capital) to be used efficiently and effectively;
Wastefulness will not be tolerated.
The three Rs of Waste Management (Reduce, Reuse & Recycle) will become the basis of a new world philosophy;
Metal, plastic and glass are recycled today in large quantities;
Increase in the consume of recycled metal (~900·106 t/a for steel in 2002). (70% of steel produced in USA in 2003 are from recycling);
Recycling allows great energy savings (60-75% for steel, ~95% for aluminium);
And we avail of it
Final Meeting of the contracts TW5- TSW-001 and -002 Garching. January 17th, 2006
Metal recycling market #2
The usual way of recycling steel is by re-melting scraps in basic oxygen furnace (1) with pig iron from blast furnaces, or solely in electric arc furnaces (2).
(1)
(2)
Final Meeting of the contracts TW5- TSW-001 and -002 Garching. January 17th, 2006
Radioactive scrap metal recycling #1
Issue already in the agenda in 80s –90s; OECD-NEA study (1996) on 25 decommissioning projects in 9 different countries showed the following shortcomings:
clearance approach on a “case-by-case” basis;
absence of consistent international release criteria or national clearance standards.
Few thousands of tons of metals are generated from the dismantling of a power reactor (non-radioactive or recyclable fraction 50-70%);
Recycling of metals by re-melting (in electrical induction heating and electric arc furnaces);
Mixing with non-contaminated scrap metal up to ~ 20% wt;
Concrete debris are mostly non-contaminated and will pose no health risks.
Il principale risultato di questo studio fu che, anche in mancanza di normative o regolamenti in materia, era stato possibile smaltire o riutilizzare senza restrizioni di tipo radiologico circa i due terzi, in termini di massa, delle 362000 t prodotte, in gran parte detriti cementizi e terra.
La mancanza, poi, d’uniformità nei criteri a base dell’esenzione impedì il libero passaggio dei materiali generati da una nazione all’altra.
I detriti cementizi sono la parte preponderante originata dal decommissioning, come evidenziato anche in Figura 1, ma rivestono un minore interesse rispetto ai materiali metallici che meglio si prestano ad essere riciclati INFANTE
Marcoule, France (start 1992 now shutdown)
STUDSVIK Melting Facility, Sweden (start 1987)
CARLA Plant, Siempelkamp, Germany (start 1989)
SEG Plant, Oak Ridge, USA (start 1992)
Capenhurst Melting Facility,UK (start 1994)
MSC,Oak Ridge,USA (start 1996)
Centraco, France (start 1999)
Final Meeting of the contracts TW5- TSW-001 and -002 Garching. January 17th, 2006
Radioactive scrap metal recycling #2
Radioactive Scrap Metal melting allows:
A large reduction in the radioactivity of the final ingot due to dilution and nuclides separation (in the slag and in the off-gas system);
Activity homogenisation and volume reduction;
Stabilised product suitable for final disposal.
La fusione può essere vantaggiosa anche per ridurre la dimensione dei rifiuti o per omogeneizzare la radioattività, qualora non fosse possibile operare il riciclo.
Nel caso di riutilizzo di componenti o attrezzature è importante la concentrazione superficiale di radioattività.
Salute dei lavoratori e della popolazione (rischio radiologico di gran lunga inferiore a quelli convenzionali (incidenti mortali sul lavoro e incidenti stradali)
L’impatto ambientale dovuto allo smaltimento e sostituzione risulta superiore a quello dell’altra opzione per i problemi derivanti dalla lisciviazione di metalli pesanti dai terreni e dai rifiuti provenienti dalle miniere, per la maggiore sedimentazione di questi nei fiumi e per le relative emissioni di sostanze tossiche.
L’opzione riciclo e riuso presenta al momento dei problemi d’accettazione, sia per quanto riguarda la popolazione sia da parte degli operatori industriali addetti al riciclo dei metalli. Esiste, infatti, una naturale riluttanza, da parte del pubblico e dell’industria, ad utilizzare prodotti e a trattare materiali grezzi di provenienza nucleare nonostante le garanzie che l’applicazione corretta di pratiche previste dagli organi di controllo, certificate anche attraverso misure di radioattività affidabili, possono fornire.
Importanza di una corretta informazione del pubblico.
Final Meeting of the contracts TW5- TSW-001 and -002 Garching. January 17th, 2006
Radioactive scrap metal recycling #3
International studies [OECD-NEA e ANL (USA)] showed advantages of the option recycle/reuse over dispose/replace as far as:
Worker and public health (radiological risk much lower than conventional ones - fatalities and disabling injuries from workplace and road accidents);
Energy and valuable natural resources savings;
Reduced environmental impact.
Final Meeting of the contracts TW5- TSW-001 and -002 Garching. January 17th, 2006
Radioactive scrap metal recycling #4
From the public acceptability perspective both options have problems at the moment.
A portal truck monitoring system commonly used by steel mills to intercept incoming scrap metal
Final Meeting of the contracts TW5- TSW-001 and -002 Garching. January 17th, 2006
Clearance & Recycling
standards and regulations #1
Council Directive 96/29/Euratom [Basic safety standards for the protection of the health of workers and the general public against the dangers arising from ionizing radiation, [OJ no. 159, 29.6.1996, p. 1-114];
Disposal, recycling and reuse of material containing radioactive substances is subject to prior authorization;
Any practice involving radioactivity requires justification;
If yes: reporting and prior authorization or exemption if linked radiological risks are sufficiently low;
Clearance is the removal of radioactive materials or radioactive objects within authorized practices from any further regulatory control by the regulatory body,
The clearance levels are the recommended nuclide specific limits below which authorities could authorize clearance.
They are based on radioprotection criteria.
Practices which do not fall under this system are called exempt practices.
The concept of clearance derives from that accordingly and both clearance and exemption pertain to the regulatory control of practices.
Final Meeting of the contracts TW5- TSW-001 and -002 Garching. January 17th, 2006
Clearance & Recycling standards and regulations #2
Final Meeting of the contracts TW5- TSW-001 and -002 Garching. January 17th, 2006
Clearance & Recycling
Individual doses of some tens of µSv/a are considered trivial.
To take into account multiple exposures:
Individual dose <10 µSv/a per practice;
Collective dose < 1 pers·Sv/a per practice.
Radiological model to derive clearance limits of the single nuclide have to take into account all possible exposure scenarios: ingestion (direct and indirect), inhalation, and external -radiation & -skin-irradiation.
The IAEA recommendation, laid down in Safety Series No. 89 [[i]], refers to an individual dose of "some tens of microsieverts per year" (µSv/a) as being trivial and therefore to be considered as a basis for exemption.
[i] International Atomic Energy Agency (IAEA),
Principles for the Exemption of Radiation Sources and Practices from Regulatory Control, Safety Series No. 89, Vienna, 1988
In addition the International Commission on Radiological Protection (ICRP) in its Publication 60 [[i]] devotes a paragraph to the concept of exemption from regulatory control.
[i] Recommendations of the International Commission on Radiological Protection. Publication 60, Pergamon Press, Oxford, 1990
L’accordo è migliore per elementi con A < 92, nel 76% dei casi il rapporto tra i due livelli è minore di 10. Nel caso degli isotopi dell’uranio o dei transuranici il confronto è insoddisfacente, in quanto il rapporto tra i due livelli è superiore a 10 nel 74% dei casi.
In alcuni casi i livelli di allontanamento proposti dalla IAEA sono decisamente elevati (dell’ordine di qualche centinaio di Bq/g) e almeno due ordini grandezze superiori ai valori proposti nel EC RP 122, come per: U-230, U-233, U-236, Pu-236, Pu-238, Pu-242, Pu-244, Am-242m, Am-243, Cm-242, Cm-246, Cf-248, Cf-250, Cf-253, Cf-254, Es-253. Questo è forse dovuto al fatto che nel caso dei valori proposti da IAEA, nello specifico caso, si è fatto ricorso ad una formula matematica per derivare il “clearance level”, mentre nel caso del documento della Commissione Europea la procedura per calcolare il livello è quella descritta precedentemente.
Il modello radiologico alla base della derivazione dei livelli di allontanamento incondizionato deve includere tutti i possibili percorsi di esposizione alle radiazioni ionizzanti, definendo degli scenari di inviluppo e i valori parametrici per ingestione, inalazione, irradiazione esterna da sorgenti gamma e irradiazione beta della pelle. La valutazione di dose per ognuno degli scenari inviluppo definiti deve includere: la definizione delle modalità di esposizione, la scelta dei valori parametrici (es. fattori di conversione di dose), il calcolo della dose relativa alla concentrazione di attività di 1 Bq/g per il singolo nuclide, l’individuazione dello scenario e della modalità di esposizione più limitative (che diano origine alla dose più elevata), il calcolo (mediante proporzione) della concentrazione di attività corrispondente ad una dose individuale di 10 µSv/a.
Final Meeting of the contracts TW5- TSW-001 and -002 Garching. January 17th, 2006
Clearance & Recycling
standards and regulations #3
The IAEA recommendation, laid down in Safety Series No. 89 [[i]], refers to an individual dose of "some tens of microsieverts per year" (µSv/a) as being trivial and therefore to be considered as a basis for exemption.
[i] International Atomic Energy Agency (IAEA),
Principles for the Exemption of Radiation Sources and Practices from Regulatory Control, Safety Series No. 89, Vienna, 1988
In addition the International Commission on Radiological Protection (ICRP) in its Publication 60 [[i]] devotes a paragraph to the concept of exemption from regulatory control.
[i] Recommendations of the International Commission on Radiological Protection. Publication 60, Pergamon Press, Oxford, 1990
L’accordo è migliore per elementi con A < 92, nel 76% dei casi il rapporto tra i due livelli è minore di 10. Nel caso degli isotopi dell’uranio o dei transuranici il confronto è insoddisfacente, in quanto il rapporto tra i due livelli è superiore a 10 nel 74% dei casi.
In alcuni casi i livelli di allontanamento proposti dalla IAEA sono decisamente elevati (dell’ordine di qualche centinaio di Bq/g) e almeno due ordini grandezze superiori ai valori proposti nel EC RP 122, come per: U-230, U-233, U-236, Pu-236, Pu-238, Pu-242, Pu-244, Am-242m, Am-243, Cm-242, Cm-246, Cf-248, Cf-250, Cf-253, Cf-254, Es-253. Questo è forse dovuto al fatto che nel caso dei valori proposti da IAEA, nello specifico caso, si è fatto ricorso ad una formula matematica per derivare il “clearance level”, mentre nel caso del documento della Commissione Europea la procedura per calcolare il livello è quella descritta precedentemente.
Il modello radiologico alla base della derivazione dei livelli di allontanamento incondizionato deve includere tutti i possibili percorsi di esposizione alle radiazioni ionizzanti, definendo degli scenari di inviluppo e i valori parametrici per ingestione, inalazione, irradiazione esterna da sorgenti gamma e irradiazione beta della pelle. La valutazione di dose per ognuno degli scenari inviluppo definiti deve includere: la definizione delle modalità di esposizione, la scelta dei valori parametrici (es. fattori di conversione di dose), il calcolo della dose relativa alla concentrazione di attività di 1 Bq/g per il singolo nuclide, l’individuazione dello scenario e della modalità di esposizione più limitative (che diano origine alla dose più elevata), il calcolo (mediante proporzione) della concentrazione di attività corrispondente ad una dose individuale di 10 µSv/a.
Final Meeting of the contracts TW5- TSW-001 and -002 Garching. January 17th, 2006
Clearance & Recycling
standards and regulations #4
Documentation issued by international bodies (IAEA, EC, NEA-OECD e US NRC) related to “clearance” criteria and limits:
IAEA: TECDOC-855 [TECDOC-855] and SAFETY GUIDE No. RS-G-1.7 [SAFETY GUIDE No. RS-G-1.7],
EC: RP89 [RP 89] RP113 , RP114, RP117, RP122 [RP 122]
NEA-OECD [NEA-1996]
US NRC: NUREG-1640 [NUREG-1640]
EC RP 134 [RP134] – relative to the evaluation of the application of the concepts of exemption and clearance for practices according to title III of Council Directive 96/29/Euratom.
Final Meeting of the contracts TW5- TSW-001 and -002 Garching. January 17th, 2006
Table from EC RP 134: Need for harmonisation of Cls
Case of tritium: from 0.4 Bq/g in UK up to 1.0E+6 Bq/g in the Netherlands
Clearance & Recycling
standards and regulations #5
Final Meeting of the contracts TW5- TSW-001 and -002 Garching. January 17th, 2006
Radioactivity measurement techniques and strategies #1
Aim: ascertain the absence of radioactivity and/or the compliance with proposed limits;
Direct measurement on material or on representative samples, or by other means retained sufficient by the competent national authority;
The objective of keeping individual dose <10 µSv/a entails that dose rates to be measured are a small portion of natural background; need to operate at the lower boundaries of instruments detection;
For nuclides difficult to measure it could be possible to link them to other nuclides.
Final Meeting of the contracts TW5- TSW-001 and -002 Garching. January 17th, 2006
Radioactivity measurement techniques and strategies #2
Specify the mass or surface on which average the measurement (distribution not homogenous);
Surfaces of few dm2 and mass of few hundreds of kg (max. 1 m2 and 1 t) may be considered as appropriate for averaging the measurement;
Minimum No. of measurements defined by the regulatory authority (i.e.: wall surface radioactivity);
When measuring the surface activity, it should be considered the “total activity” (removable + fixed surface activity) as well as that penetrated into the material from the surface (i.e.: due to corrosion).
This approach has been chosen in order to avoid simultaneous application of two sets of clearance levels, (one for the surface and one for the bulk) and to take into account the change with the time of the removable fraction (e.g. via rust).
Final Meeting of the contracts TW5- TSW-001 and -002 Garching. January 17th, 2006
Radioactivity measurement techniques and strategies #3
Chances to measure g rays from the bulk;
Limitation of the surface activity involves that of the bulk, by simply measuring the g radiation on the surface;
For low energy -rays or for b- and
a-emitters the opposite problem might occur; they can go undetected if they are located under rust, corrosion or surface coatings;
Other problems are: the geometrical complexity, the influence of the natural background, the accessibility of the item including their surfaces, and the sensitivity of the instrument relative to the criteria to be met;
At any rate the state of the art in measuring of radioactivity is sufficiently developed to cope with the challenge.
Un tipico esempio è dato nel caso della misura di attività superficiale dalla presenza di emettitori gamma ad alta energia, come il Co-60. In tal caso è praticamente impossibile discernere la localizzazione della sorgente gamma, se superficiale o interna. Definire quindi dei livelli di attività superficiale totale porta a limitare anche l’attività presente all’interno del materiale attraverso la semplice misura del flusso di radiazione gamma sulla superficie dell’oggetto.
Ciò è ben evidenziato in Figura 4, dove il rateo di dose dovuto al Co-60 è riportato in funzione dello spessore. Il rateo di dose in questione è calcolato alla distanza di 1 m dalla superficie di 1 m2 di un disco metallico di ferro con attività omogenea e costante in Co-60 (due valori scelti: 0.1 e 1 Bq/g). L’asse delle ordinate posto sulla destra del grafico indica l’attività superficiale totale del Co-60 in Bq/cm2 che darebbe luogo allo stesso rateo di dose indicato sull’asse y di sinistra. Per i nuclidi che emettono radiazioni gamma a bassa energia o beta o per gli alfa emettitori accade il problema contrario, in quanto possono non essere rilevati se si trovano sotto un piccolo strato di corrosione, ruggine o al di sotto di film superficiali di protezione.
Questi nuclidi, anche se appartenenti all’attività superficiale classificabile come rimovibile, devono essere inclusi nel totale dell’attività superficiale in quanto successive manipolazioni del materiale (tagli, operazioni di sabbiatura o di pulizia, riparazioni o il semplice uso) possono causarne il rilascio.
Final Meeting of the contracts TW5- TSW-001 and -002 Garching. January 17th, 2006
Conclusions
The experience of decommissioning of an entire generation of nuclear facilities will be exploited by future fusion industry, (i.e. for recycling, reuse or disposal).
The real waste management problem in fusion will be relative to the in-vessel components (IVCs).
The fusion industry would have the advantage of being able to use activated metal, as it would be employed in a controlled environment, (radiation fields will be monitored).
It seems more important to demonstrate the feasibility of IVCs recycling from the technical point of view, rather than to perform an economic assessment with the present-day terms.
It would be greatly more important to concentrate the future activities on:
the study of the fusion material and equipment cycle and;
on the regulatory framework, within which recycling of fusion material could be performed.
Nonostante gli importanti risultati raggiunti in questa direzione, soprattutto nell’ultimo decennio, sia a livello europeo che mondiale, è ancora forte l’esigenza di armonizzare i criteri e i livelli previsti per il clearance.
Clearance levels (CLs) in [Bq/g]
Nuclide
Belgium
Denmark
1.0E-01 5.0E-02 1.0E-01 5.0E-02 1.0E+00 1.0E-01 1.0E-01 4.0E-01 1.0E-01
239
Pu
1.0E-01 4.0E-02 1.0E-01 4.0E-02 1.0E+00 1.0E-01 1.0E-01 4.0E-01 1.0E-01
137
Cs
1.0E+00 5.0E-01 1.0E+00 1.0E+00 5.0E-01 1.0E+01 1.0E+00 5.0E-01 4.0E-01 1.0E+00
90
Sr
1.0E+00 2.0E+00 1.0E+00 1.0E+00 2.0E+00 1.0E+02 1.0E+00 5.0E-01 4.0E-01 1.0E+00
60
Co
1.0E-01 1.0E-01 1.0E-01 1.0E+00 1.0E-01 1.0E+00 1.0E+00 5.0E-01 4.0E-01 1.0E-01
65
Zn
1.0E+00 5.0E-01 1.0E+00 5.0E-01 1.0E+01 1.0E+00 5.0E-01 4.0E-01 1.0E+00
51
Cr
1.0E+01 1.0E+02 1.0E+01 1.0E+02 1.0E+03 1.0E+01 5.0E-01 4.0E-01 1.0E+01
3
H
1.0E+02 1.0E+03 1.0E+03 1.0E+00 1.0E+03 1.0E+06 1.0E+01 5.0E-01 4.0E-01 1.0E+02
238
U
1.0E+00 5.0E-01 9.0E-03 1.0E+00 1.0E+00 1.0E-01 1.0E-01 1.11E+01 1.0E+00
232
Th
1.0E-02 5.0E+00 2.0E-02 1.0E-02 3.0E-02 1.0E+00 1.0E-01 1.0E-01 2.59E+00 1.0E-02
228
Th
1.0E-01 5.0E-01 1.0E-01 1.0E-01 1.0E-01 1.0E+00 1.0E-01 1.0E-01 2.59E+00 1.0E-01
228
Ra+
1.0E-02 1.0E+00 7.0E-02 1.0E-02 7.0E-02 1.0E+00 1.0E+01 5.0E-01 3.70E-01 1.0E-02
226
Ra+
1.0E-02 5.0E-01 3.0E-02 1.0E-02 3.0E-02 1.0E+00 1.0E-01 1.0E-01 3.70E-01 1.0E-02
210
Pb
1.0E-02 5.0E+00 2.0E-02 1.0E-02 4.0E-02 1.0E+02 1.0E+01 5.0E-01 7.40E-01 1.0E-02
210
Po
1.0E-02 5.0E+00 4.0E-02 1.0E-02 4.0E-02 1.0E+02 1.0E-01 1.0E-01 3.70E-01 1.0E-02
(°) for natural radionculides

Recommended