+ All Categories
Home > Documents > FINAL PROJECT: EVAPORATOR FAN...

FINAL PROJECT: EVAPORATOR FAN...

Date post: 13-Mar-2018
Category:
Upload: lethu
View: 217 times
Download: 3 times
Share this document with a friend
39
FINAL PROJECT: EVAPORATOR FAN DESIGN Christopher Phaneuf Brian Tovar ME407: Computation Fluid Dynamics Professor Scott Bondi 05 May 2008
Transcript
Page 1: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

FINAL PROJECT: EVAPORATOR FAN DESIGN

ChristopherPhaneuf

BrianTovarME407:ComputationFluidDynamics

ProfessorScottBondi05May2008

Page 2: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

TABLEOFCONTENTS

1INTRODUCTION 1

1.1Objective 1

1.2HeatExchangerDesign 1

1.3FanTypes 22DESIGN 3 2.1Assumptions 3

2.2DesignConcept 3 2.3HeatExchangerRedesign 7 2.4DesignIntegration 153FANSIMULATION 16 3.1Preprocessing 17

3.1a)Full‐sizemodel 17

3.1b)Periodicmodel 18

3.1c)Shroud/manifold 23

3.2Solution 244RESULTS 25 4.1Postprocessing 25

4.1a)Fullfansimulation 25

4.1b)Periodicfansimualtion 29

4.1c)Shroud/manifoldsimulation 32

4.2FanPerformance 355DISCUSSION 36 5.1Generalresults 36 5.2CostEstimate 36 5.3Designbenefits 37APPENDIXI:DimensionedFanSchematics 38

APPENDIXII:HandCalculations 40

Page 3: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

1

1 INTRODUCTION

1.1 Objective

Norefrigerationcyclewouldbecompletewithoutanevaporator;noevaporatorwouldbecompletewithoutaheatexchangerandafan.Previousdesignandcomputationalfluiddynamicsanalysisaimedatthedevelopmentofanevaporatoryieldedanovelsingle‐passshell‐and‐tubeheatexchangerfeaturingannularfinsandperpendicularductingfortheinletandoutlet.Thisdevicecoolsairfrom100°Fto50°Fwhileminimizingthephysicalsizeandpressuredrop.Forallpastsimulations,flowthroughtheheatexchangerwassetatamid‐rangevelocityof250ft/min.Thesourceofthemovingairwasirrelevantuntilnow.

Todrivetheairthroughtheheatexchanger,acompact,energy‐efficientfanshallbedesignedtooperateatthreespeedscorrespondingtomeanflowvelocitiesof200,350,and500ft/min.Inaddition,thefanmustbecoupledtotheheatexchangerwithashroudoralternativeconnector.

1.2 HeatExchangerDesign

Thedesignofthefanandshroudbeganwherethefinaldesignofasimpleshell‐and‐tubeheatexchangerleftoff.Bydirectingairflowaroundaseriesofannularbaffles,moreturbulentmixingpromotesincreasedconvectivecoolingfromthelow‐temperaturerefrigerantpipe,whichisassumedtostayataconstanttemperaturealongitsentirelength.Plotsbelowdepicttheuniquegeometryandillustratetheeffectivecooling.

Figure1 Streamlinesfororiginalshell‐and‐tubeheatexchanger

Page 4: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

2

Figure2 Temperaturecontoursfororiginalshell‐and‐tubeheatexchanger

Theoriginalheatexchangerdesignperformedinaccordancewithrelativelylooserequirements.Thispromptedaneedtotesttheheatexchangerundernewlypresentedconditions,includingthevariableflowrateanddirectionofflow.

1.3 FanTypes

Mechanicalfanstylesandconfigurationsaremultifariousandsuitavarietyofneeds.Thetwobasicstypesareaxialandcentrifugalfans.Centrifugalfansareruggedmachinescommonlyusedforlarge,industrialapplications.Thedemandforacompactdesigneliminatesthisoptionandleavestheaxialfanstyleopentoadaptation.Elementsofthefansuchasmotortype,bladegeometry,andhousingpermitflexibilityofperformanceandallowspecificapplicationmatching.

Page 5: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

3

Figure3 Fantypes:centrifugal(left)1andaxial(right)2

2 DESIGN

2.1 Assumptions

Likemostengineeringproblems,acriticalsetofassumptionsisrequiredtorealizeandtesttheintegrationofafanforourevaporator.Detailsofpartswell,acousticeffects,bearingimplementation,inducedvibration,andotherphysicalnuancesencounteredintheoperationofafanareneglectedtosimplifythedesignandshiftemphasisonachievingbulkflowrequirements.AnothersimplificationisencounteredintheapproachtosolvingthegoverningfluidmechanicsequationsusingFLUENT.Thetwomainoptionswithinthesoftwareare1)steadystateanalysisusingmultiplereferenceframes,includingarotatingframeand2)unsteadyanalysisusingaslidingmesh.Duetoinexperiencewithunsteadysimulationsandalackofneedforthebehaviorcapturedbythistypeofsolution,asteadystateapproachwastaken.

2.2 DesignConcept

Duringtheearlierdesignoftheheatexchanger,severaldiscussionsaroseoverthemeansofairflowdelivery.Althoughthefinaldesignfeaturedperpendicularductsateachendofthedevice,themoreobviousandpotentiallymorecompactmethodofaxiallydirectedflowintotheheatexchangerwasconsidered.(Thiscorrespondedtotheoriginal2Daxisymmetricsimulationthatvalidatedthegeneralshell‐and‐tube/annularfinconcept.)Uponmorecriticalconsiderationofanaxialflowscheme,theideawasabandonedduetoquestionsoffeasibility.Itwasthoughtthatthepathoftherefrigerantpipeandthe

Page 6: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

4

fan/shroudsystemwouldconflict.Thepipewouldhavetobebenttoexitashroudandinturncreateabarrierforflowintotheheatexchanger.

Thetaskofdesigningafanfortheevaporatorbroughtustorevisittheideaofanaxiallyorientedflowsource.Callingonpastresearchexperienceinelectricmotortechnologies,muchofwhichiscenteredonfandesign,wedevisedanapproachofdirectlycouplingourheatexchangertoanaxialfanpoweredbyabrushless,permanentmagnetmotor.Theflexibilityofanouter,electricallycommutatedstatorandaninner,permanentmagnet‐equippedrotormakesthisconfigurationpossible.Onthesurface,theroughspecificationsprovidedforthefancomponentsresembleacommoncoolingfan.Thegeneralbladeshapeandsizecorrespondcloselywithmid‐sized,axialcoolingfans.Theprimarydifferenceslieintheslightlymorecomplexbladestyleandthedistributionofthepowercomponents.

Withmodelingandmeshinglimitationsinmind,thefanbladegeometrywaskeptsimple.Theprofileneededtobemoreinterestingandmorecapableofacceleratingfluidthanaflat,angledplatebutnotascomplexasthecarefullydesigned,low‐noisespecialtydesignsfoundinconsumerproducts.UsingSolidworks,asplineintheshapeofanairfoilwascreatedandoffsettogivethebladeathickness.Thetwoedgeswereclosedwithtangentarcsateachend.Thisouterprofilewascopiedontoanotherplane(whichwasoffsetbytheexpectedlengthoftheblade)andmodifiedtobesmallerandexhibitamoresevereangleofattackatthebase/hub.Thesetwoprofileswereloftedtogenerateasingle3‐dimentionalblade(Figure4)andexportedasaSTEPfiletobeimportedintopreprocessingsoftware.

Figure4 Fanbladegeometry

Themotivationbehindthemotordesigndepictedinthe2Dschematicbelowistheabilitytorunapipethroughthecenterwithoutaffectingtheoperationofthefan.Byplacingmagnetsofalternatingpolarityalongthecircumferenceofaretainingringontheoutsideofthefanbladesandbyguidingtherotationofthefanblades(rotor)withanouterbearing

Page 7: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

5

builtintothefanhousing(notshown),thecenterofthehubcanbehollowandallowthepassageoftherefrigerantpipe.Thismakesthepreviouslyabandonedideaofaxially‐drivenflowcompletelyconceivable.Theonlyothercomponentofthefanisthehousing/enclosure,whichisanordinaryplasticcasemodifiedtosupporttherotorwithabearingsupport.

Figure5 Fanmotorconcept:custominrunnerbrushlessPMmotor

Figure6 Fanassembly

Page 8: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

6

ABS(AcrylonitrileButadieneStyrene)plasticwasselectedforthebulkofthefanparts,excludingthesteelstatorlaminationsforthemotor,thecontrollingelectronicsandthemagnetsontherotor.Foruseinsimulations,keypropertiesweregathered:

Density=1080kg/m3(SG=1.08)

Specificheat=0.34Btu/lb°F

ThermalConductivity=0.1125Btu/hrft2°F

Maximumtemperature=180–200°F

UsingSolidworkstodeterminethevolumeoccupiedbyeachprimarycomponent,theapproximatemassofthefanwascalculatedfromthecorrespondingdensities.

(mfanblades=0.02612kg)+(mfancover=0.131kg)+(mstator=0.198kg)+(mmagnets=0.02kg)

=0.375kg

Weight=3.675N=approx.0.8lbs.

Technicalspecificationsforthisfanarepotentiallylimitless.Brushlessmotor‐basedfansareversatiledevices,controlledwithvariousfeedbackschemesandcapableofeitherlow‐speed,high‐torqueorhigh‐speed,lowtorqueapplications.Forthisparticularfan,thestatorisdesignedforrelativelyhighspeedsandappropriatelylowtorquegeneration.Thestatorteethwillfeaturethinmagneticwireandahighnumberofwindings.Theoptimalmeansofpoweringandcontrollingthefanfromline‐fed(wall)electricityisacomplexsystemsummarizedbythefollowingflowofcomponents:apowerrectifierandregulatorconvertingACtomanageableDC,avariablefrequencyinvertertosupplythree‐phasealternatingsquarewavecurrentpulsestothreesetsofstatorwindingsdistributedovertwelveteeth.SteadyspeedcontrolisaccomplishedwitheitherhalleffectsensorspositionedaroundtherotororamethodsensorlesscontrolthatestimatesrotationalvelocitybasedonmeasurementsofbackEMFthroughnon‐energizedwindingphasesduringeachcycle.[NOTE:Thesedetailsareseeminglyexcessiveforthepurposesofthisassignmentbutrepresentacarefullyselectedsetofcomponentsthatareeasilymanufacturedandmeettheoperatingdemandsoftheevaporator.]

Whilemostheatexchangersrequireashroudtoconverttheroundgeometryoftheeffectivefanareatothesquareorrectangularfaceofthetypicalcross‐flowheatexchanger,ourshell‐and‐tubegeometryobviatestheuseofashroud.Withminormodification,theroundcylinderisdirectlycoupledtothefan.Inlieuofashroudanalysis,theintroductionofa3‐inchsectionofpipemanifold(tobeexplainedinthefollowingsection)necessitatesastudyofthissegmentoftransitionbetweenthefanandthebafflesoftheheatexchanger.Additionally,thesimulationsofthefangeometrycapturetheflowin3‐inchlong,5‐inchdiameterstraightshrouddirectlyaftertherotatingflowaroundthefanblades.

Page 9: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

7

2.3 HeatExchangerRedesign

Tovalidatethedirectcouplingapproachofincorporatingthefanintotheevaporatordesign,theheatexchangermustbealteredandtestedforadequateperformancewiththeaxialinlet.Sinceafandiameterof5incheswasselectedfromthestartofthedesign,priortotheinitialstepsofredesigningtheheatexchanger,theoutershelldiameteroftheexchangerwasadjustedaccordingly.ThegeometryofolddesignwasreproduceddirectlyinGAMBITwiththefollowingchanges:theeliminationoftheperpendicularducting,theincreaseofshelldiameterto5inches,andtheuseoffacestosplitthevolumefortheannularfinsinordertousecoupledthermalboundaryconditions.Quadmesheswereappliedtoallfacesandthevolumemeshwasgeneratedtoyieldedacleanlyrevolvedsetof640,549elements.Thegeneralboundaryconditions(forthissimulationandallsubsequentvalidationruns)wereaninletspeedof250ft/min,refrigeranttemperatureof10°F,andcoupledfins.Thek‐epsilonrealizableturbulencemodelwasusedandsolutionscontrolswerekeptattheirdefaultsforthesakeofintermediatetests.Theresultswerenotpromising,confirmingtheexpectedissueswiththealternativeflowscheme.Theaxialflowdidnotinducethesamedegreeofmixingandthearea‐weightedoutlettemperaturewasjustunder80°F.Thisnecessitatedaseriesofsimulationscheckingtheeffectofminorgeometricmodificationstowardabettercoolingshell‐and‐tubeheatexchanger;however,despitemeasuressuchaslengtheningtheheatexchangerandapplyingtighterfinspacing,thecoolingcapabilitiesofthesingle‐passexchangerwithannularfinswasnoteffectivewithinreasonableconstraintsofcompactness(Tout=57°F/∆P=00.28).Thefollowingfiguredemonstratestheinadequateheattransferoftheoriginaldesignexperiencingaxialinflow.

Figure7 Post‐modification,single‐pass,15‐inch,9‐finheatexchanger

Page 10: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

8

Inanefforttoattainbetterperformancefromouraxially‐fedheatexchanger,thenextphaseoftheredesignborrowedfromthemorecommonstyleofshell‐and‐tubeheatexchangers,whichfeaturealargenumberpipeschanneledthroughtheinteriorandalternatingbafflesshapedliketruncatedcircles(Figure8).Byincorporatingamanifoldthatsplitsthesingle1‐inchpipeofrefrigerantinto7half‐inchpipes,morecoolingsurfaceareaisintroducedtothedesign.Additionally,bafflessimilartothosefoundwithinindustrialheatexchangersofthiskindwereincluded.

Thefirstattemptwiththistopologywasareturntotheoriginal12‐inchlengthandhad3baffles.Resultswerenotcompletelysuccessful(Tout=76.25°F/∆P=0.65inches‐water)butshowedroomforimprovement(Figure9).Alonger,15‐inchshellwith7bafflesat1.5‐inchspacingprovidedsufficientresultswithanoutlettemperatureof49.9°Fandapressuredropof2.2inchesofwater(Figures10‐15).Adrawbackofthisapproachistheinabilitytomatchthequalityofthemeshforthesingletube,axisymmetricdesign.The3DmeshwasmadewithTGridandconsistsof279,168elements.Also,whilethepressurelosswasgreaterthanthepreviousdesigns,themodelstillmettheprimaryrequirementofreducingtheairtemperature.Sincetheadditionofthemanifoldaffectstherefrigerantflow,asimulationofthedividingflowwasrunthoughameshof64,980elements(Figure16‐19).Thisconcludedtheheatexchangerredesignprocess.

Figure8 Commonshell‐and‐tubeheatexchanger3

Page 11: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

9

Figure9 7‐pipe,12‐inch,3‐baffleheatexchanger

Figure10 Residualshistoryforfinalheatexchangerredesign

Page 12: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

10

Figure11 Temperaturecontoursforfinalredesign

Figure12 Pressurecontoursforfinaldesign

Page 13: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

11

Figure13 Velocitycontoursforfinaldesign

Figure14 Pathlinescoloredbytemperature

Page 14: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

12

Figure15 Redesignedheatexchanger

Page 15: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

13

Figure16 Internalrefrigerantpipeflow‐‐manifoldmesh

Figure17 Pressurecontoursthroughmanifoldatmid‐plane

Page 16: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

14

Figure18 Velocitycontoursthroughmanifoldatmid‐plane

Figure19 Temperaturecontoursthroughmanifoldatmid‐plane

Page 17: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

15

2.4 DesignIntegration

Withthegeneralfanconceptdevelopedandmodeledandtheheatexchangeradaptedtothesizeofthefan,thetwopartswerecombined.Aflange,ormountingplate,wasaddedtotheendoftheheatexchangertoallowboltingtothefan.Figuresoftheassembled,in‐lineevaporatorweregeneratedwithSolidworks.

Figure20 Assembledevaporatorcomponents

Figure21 Evaporatorwithsectioncut

Page 18: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

16

Figure22 Explodedviewofevaporator

3 FanSimulation

Computationalfluiddynamicswasemployedtorefinethedetailsofourdesignandvalidatetheeffectivenessofthefan.Anaccuratesimulationcanprovideseveralmeasuresoffanperformancecriticaltotheoperationofanefficientandusableevaporator.Withthreedesiredsettingsforthefan,thesimulationprocesswasiterative.Addingtothenumberofrequirediterationwasthelackofexperienceandthereforenumerousissueswithmovingreferenceframes.

Sincethesymmetryoftheaxialfantypeslendsitselftoananalysisofonlyasectionofthefan,periodicboundarieswerefirstattempted.Althoughtheboundaryconditionsseemedtomakesense,resultspointedtomajorerrorsinthesetup.Followingmanypermutationsoflogicalboundaryconditions,thefailuretoyieldreasonableflowregimes,theperiodicconditionwasthesuspectedcause.Wetooktheapproachofmodelingtheentirefanstructure,whichintroducedmoreelementsbuteliminatedanypossibleproblemscausedbyanimproperperiodicconfiguration.Despitethesimplificationofthesimulation,resultsstillfailedtocapturetheintendedflowdirections.Lookingmorecloselyatthemixingplanetutorialthathadoriginallyguidedtheselectionofboundaryconditions,subtlesettingswerefoundtobedisparatewiththepastattemptsanduponadjustment,simulationseventuallyrevealedtheintendedflow.Byestimatingrotationalspeedsfromtheinitialresults,thecorrectvaluesforproducingthethreeoutletspeedsof200,350,and500ft/minwereeventuallydeterminedthroughtrialanderror.Toconfirmourabilitytouseperiodicconditions,wereturnedtomodelingonlyasinglebladeofthefan.Thefollowingsectionswillbrieflydepictthefull‐scalemeshandthentakeyouthroughthedetailedprocessesofcreatingthemeshandarrivingatasolutionfortheperiodicmodel.

Page 19: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

17

3.1 Preprocessing

3.1a)Full‐sizemodel

Figure23 Full‐sizemeshdisplayingallfacemeshes

Figure24 Close‐uponquad‐mappedfanbladewithboundarylayer

Page 20: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

18

3.1b)Periodicmodel

OncethegeneralfanconfigurationwasestablishedandthefanbladegeometrywasmodeledinSolidworks,preprocessingsoftwareknownasGAMBITwasusedtomodeltherelevantfluidvolume,createathree‐dimensionalmesh,andsetboundarytypestobefurtherdefinedinthesolver.

InGAMBIT,theimportofanytypeofnon‐nativefileleads,almostalways,toanexcessoflowergeometry.Forexample,somelinesorcurveshaveunnecessaryverticesalongtheedge.ThefirststepafterimportingtheSTEPfilegeneratedinSolidworksisaclean‐upoftheresultinggeometry,andforthiscasethatmeansacompletedismantlingoftheuppertopologiesandareconstructionoftheloftedfanbladefeature.Thishastobedonebeforetheairfoilvolumecanbesubtractedfromthepositiveairspace;otherwise,wewouldhavetoreconstructthatentiregeometryaltogetherandweprefertomakeourworkloadsimple.

Thefirstanomalyencounteredisthesingleloftededgesalongtheleadingandtrailingedgeoftheairfoilcross‐section.Afterboththevolumeandallthefaceshavebeenerasedfromtheimportedgeometry,thesetwoedgescanbedeleted.Whenonetakesacloserlookateachofthe(nowisolated)airfoils,youdiscovertheoverdefinedcurvesthatwereferredtoearlier.Theymustbereducedtoasinglecurveusingthesplit/mergeedgetoolbox.

Figure25 Exampleofsuperfluouslowergeometry

Thenwecanconnecttheairfoilstoeachotherthroughtheirfour(andonlyfour)existingvertices.Thiswillresultinthestraightloftthatwearelookingfor,butonlyafterthesixfaceshavebeencreatedandthevolumestitchedandsubtractedfromthecenterairspace.Itisnotimportanttosplitthisvolumewiththeairfoilvolumeandthenlaterdeleteit.Sinceweonlycareaboutthepositivespace,asimplesubtractionwillsuffice.Althoughsubtractionyieldsnoboundaryissues,theresultinggeometryrequiressomecleaningupsincetheSTEPfilegeometrysitsexactlytangenttothecylindricalvolume.Usingthesamemergeedgestoolfrombefore,thetwooutsideairfoiledges(specificallythosealongthe

Page 21: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

19

cylindersouterwall)needtobejoined.Thisjoiningdoesnotrequireadeconstructionoftheuppertopologicalentitieslikebefore;it'ssimplydoesn'thavethesameaim.

Figure26 Repairingsubtractedvolume

AperiodicboundaryconditionisusefulforthereductionoftheCPUtimerequired,andtoachieveaworkingmodelofthis,twocylindersweresubtractedfromoneanotherwhileapairofoppositelyrotatedbricksslicethegeometrydowntoaroundedwedgeshapedextrusion.Ifyoucanrecallfromthedesignsection,theradialdimensionsofthispart'scross‐sectionissuchthattheinnerdiameterisjustlargerthantheaxialpipecarryingrefrigerant;1.5inches,andtheouterdiameterissizedtofitexactlyalignedwiththeheatexchangerdiameter:aflatfiveinches.Thismeansthatthefanhassixbladesthatfitidenticallyontheinletfaceoftheheatexchangersothatnoarealconversionisrequired,reducingthenumberofpartsofthesystemandfurtherreducingcosts.

Figure27 Overallairspacewithvolumestobesubtractedfor60periodic

Whenweconsidertheflowofairthroughafansystem,weseethreesections.Thefirstistheairfromtheoutsidethattravelsthroughthefan,thesecondisthehighlyturbulentzonewherethebladessweepoutacylindricalvolume,andthelastistheairafterwards;theairintheheatexchanger.Forthisreasonwedivideourpositiveairspaceintothreesectionsofvaryingsize.Theseven‐inchheightoftheairspaceallowsacenteredvolumeofoneinchinheighttoencompassthefanbladesandresultsintwoequivalentthree‐inchsections;onebeforethefanandoneafterthefan.Aspecialboundaryconditionmustexisthereforfluidtoflowacrossitasifitwerenotaboundary.Toaccomplishthiswemustfirstsplitthe

Page 22: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

20

largervolumewithtworealfacesthatextendpastthelimitsofthevolume,justtobecertain.

Figure28 Splittingmainvolumearoundairfoil

Meshingbeginsfirstwithanunderstandingofperiodicboundaryconditions.Sinceeachperiodicboundarymustbelinkedformeshingbemeshingbegins,and,ifweconsiderourintentionstoconcentratethemeshingsizearoundtheairfoil,wearepresentedwithaproblem.Hereyoucansee,sincewehavetospecifyavertexforeachfaceanditmeshlinksthetwoadjacentedgestothecorrespondingoppositeface,whenwebegintoedgemeshonewitharatioalongtheaxialdirectionanduniformdensityedgemeshalongtheperpendiculartoflowedge,thereexistsaconflict;bothcan'texist.

Figure29 Edgemeshingalongperiodicboundarytypes

Page 23: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

21

Tosolvethisproblem,wetosplittheeightverticaledgesbyau­valuetocreateavertexinthecenterofeachsymmetricface.Nowwecanedgemeshthelongerofthetwoedgeswithanincreasingratio,andtheshorteredgewithaconstantspacingontheorderofthesmallest(thelastelement)fromthelongeredge,thirdlyandmostimportantofall,anindependentedgemeshisnowpossiblealongtheeightperpendicularedgesaswellasthefourairfoilloftedges.(Figure29).

Figure30 Methodofquad‐mappingtheinletandoutletvolumes

Forvolumemeshing,theordermatters.Asitis,thecentervolumewillnotmeshaHexMapscheme,simplybecausethehubsidefacewillresultinatoohighlyskewedmeshforittocomplete.Instead,acompromisemustbesetalongthesharedfacesoneithersideofthecentervolume;thevolumesbeforeandafterthefanwillhaveahexmapscheme,butthefanvolumeitselfwillbemeshedwithTGrid.Thisisunderstandable;itisdifficult(ifnotimpossible)topredicttheflowdirectionandtoconstructameshperpendiculartotheregionwiththemostexpectedturbulence.UsingaTGridschemeimpliesacertainamountoffreedom,andtorestrictthatfreedom,everyedgeofthevolumewasmeshedtoacertainqualitybeforethemeshingschemehadthefreedomtosetitsownconditions.Also,aboundarylayerwascreatedaroundtheairfoil.Theresultingmeshsizeis:372,160elements,938,893faces,226,643nodes.

Page 24: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

22

Figure31 Sectionofquad‐mappedfanbladeandsurrounding3Delements

Figure 32 Worst 25% of 3D elements according to equiskew

Page 25: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

23

A mesh analysis shows that the worst quarter of the tetrahedral shaped elements, based on their Equiskew feature, all reside in this center volume. This is completely acceptable since the flow direction in this region is difficult to predict. Most importantly, the airfoil itself has a quad-mapped face and the inlet and outlet interior faces of this volume are quad-mapped as well.

3.1 c) Shroud / manifold flow

Figure 33 Mesh for simulating flow around pipe manifold before entering exchanger

Page 26: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

24

3.2 Solution

ThemeshisreadintoFLUENTandcheckedforinconsistencies.Duringearlyattempts,gridcheckswouldoccasionallyfailduetoimproperlyconfiguredperiodicconditions.Oncehavinglearnedthecorrectmethodoflinkingfacemeshesandapplyingperiodicboundarytypes,thisnolongerpresentedanyproblems.ThemeshisscaledandunitsaresetforEnglishsysteminputs,includinglength,angularvelocity,pressure,temperature,andvelocity.Theenergyequationandk‐epsilonturbulencemodelareturnedon.BoundaryConditionsarelabeledinFigure34.Theproblemisinitializedanditerateduntilreachingconvergence.

Figure34 Modelboundaryconditions

Page 27: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

25

4 Results

4.1 Postprocessing

4.1a)Fullfansimulation

Figure35 Residualsforfull‐size,lowspeed

Figure36 Pathlinesthroughfull‐sizemodel

Page 28: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

26

Figure37 Pathlinesforlowspeedacrossmid‐plane(flowfromtoptobottom)

Figure38 Velocityvectorsforlowspeedthroughfanbladesection

Page 29: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

27

Figure39 Residualsforfull‐size,mediumspeed

Figure40 Pathlinesformediumspeedacrossmid‐plane,shroudandhub

Page 30: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

28

Figure41 Residualsforfull‐size,highspeed

Figure42 Pathlinesforhighspeedacrossmid‐plane,shroud,andhub

Page 31: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

29

4.1b)Periodicfansimulation

Figure43 Residualsforperiodic,lowspeed

Figure44 Pathlinesforlowspeedatmid‐plane

Page 32: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

30

Figure45 Residualsforperiodic,mediumspeed

Figure46 Pathlinesformediumspeedatmid‐plane

Page 33: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

31

Figure47 Residualsforperiodic,highspeed

Figure48 Pathlinesforhighspeedatmid‐plane

Page 34: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

32

Figure49 Pathlinesforhighspeedacrossfanblade,hub,andshroud

4.1c)Shroud/manifoldsimulation

Figure50 Residualsforshroudsimulationathighspeed

Page 35: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

33

Figure51 Pathlinesovermanifoldatmid‐plane

Figure52 Pressurecontoursatmid‐plane

Page 36: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

34

Figure53 Velocitycontoursatmid‐plane

Figure54 Temperaturecontoursatmid‐plane

Page 37: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

35

4.2 FanPerformance

Actualoutputvelocitiesofthefanwere:

Low‐speed(500rpm)=207ft/min

Medium‐speed(800rpm)=348ft/min

High‐speed(1000rpm)=444ft/min

Pressureincreases(head)throughthefanareminimalatabout0.015inchesofwater,notcompletelycompensatingforthepressuredropthroughtheheatexchanger.

Temperatureincreaseisnegligibleineachsimulation,reportinganincreaseontheorderof1·10‐3°F.

FLUENTprovedtobeextremelyusefulforreportingtheforcesandmomentsexperiencedbythefanblades,withoptionstowritethetotalforceduetobothpressureandviscousshearstresses,aswellasthemomentaroundeachaxiswithrespecttotheorigin(whichisconvenientlyatthecenterofthefanblades.Thefollowingvalueswerederivedfromtheperiodicmodel,allowingustodeterminetheforcesandtorquesonasinglebladeandsimplymultiplybysixfortheneteffect.Theforcesareusedforhandcalculationsofthestructuralstrengthofthefanbladesandthemomentsarehandingforcalculatedtherequiredpowerfromthemotor,sincebothtorqueandthesetrotationalspeedareknown.

SPEED Low Medium High

Fy(N) 0.001 0.0075 0.01217

Fz(N) 0.00115 0.00765 0.01234

Torque(N­m) 0.000069 0.0004675 0.000751

Angularspeed(rad/s) 52.36 99.5 125.664

Req.FanPower(W) 0.0216 0.279 0.566

Page 38: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

36

5 Discussion

5.1 GeneralResults

Throughcountlessiterationsofattemptedsimulations,attentiontothedetailsofsettingboundaryconditionsbecamethecriticalstepforyieldingreasonablenumbersforoutputflowandcorrespondingfanspeed.Forthesakeofthesizeandflowofthereport,thecoarserandfinermeshes,rangingfromabout200,000to1.8millionelementsfortheperiodicvolumes,runattheextremesofrotationalspeed,werenotshownbutservedasmeasuresofthelevelofdetailrequiredtocapturethefanflowconsistently.Thismeshsensitivitytestwassimilarlyperformedduringtheheatexchangerredesign,sincethemeshingprocesswasadverselyalteredbytheintroductionofmultiplepipesandasymmetricalbaffles.Thiswasatimesavingprocessthatensuredconsistentresultsovertherangeofspeeds.

5.2 CostEstimate

Thecostofthephysicalfanwaskeptlowforproductionconsiderations.BasedonrawmaterialspricingfromMcMaster‐Carr,thefanrequiresabout$15worthofplastic.Thepartsforprototypingthemotor,controller,andpowerconversioncouldbemanagedwithacombinationofoneofmanykitsfromaretailersuchasgobrushless.com(whichincludethematerialsforwindingacustomstatorandassemblingthepermanentmagnetrotor)andahome‐builtpowerandcontrolcircuit.Wehavepersonalexperienceinthisdepartment,havingbuiltathree‐phaseinverterforcontrollinganout‐runnerbrushlessmotorforahigh‐speed,rotaryvalveapplication.Althoughpricingwillbesubjecttoapersonalstockofbasicelectronicssuchaswiring,powertransistors(e.g.MOSFETS),diodes,atransformer,etc,thekitwillcostaround$30.Thistranslatestoasubtotalof$45fortheactualfan.

Laboristheotherfactorindeterminingthecostofdesigning,testing,andprototypingthefanconcept.Sincetheheatexchangerdesignimpressedtheprojectmanagers,ourhourlywageswereincreasedfrom$11/hrto$20/hr.Withapproximately70hoursputintothedesignandanalysisphases,andanestimated30hourstowardanexperimentalprototype,thelaborcostpeaksat$2,000.

Therefore,TOTALCOST=$2.045.00

Page 39: FINAL PROJECT: EVAPORATOR FAN DESIGNchristopherphaneuf.com/cfd/me407_final_report[phaneuf-tovar].pdf · FINAL PROJECT: EVAPORATOR FAN DESIGN ... INTRODUCTION 1 1.1 ... Using Solidworks,

37

5.3 DesignBenefits

Beforediscussingthebenefitsofourdesign,weshouldaddressthedrawbacks.Thecomplexityofthemotorchosentopowerthefansacrificestheruggednessofotheroptions,suchasasquirrel‐cageinductionmotor.Theneedtoincreasethesizeoftheheatexchangertoaccommodatetheaxialfanisunfortunatebutstillkeepsthedesignwithinareasonablesizeenvelope.Also,fanperformancedoesnotmeeteverycriteria,mostnotableitsinabilitytocompletelyovercomethepressurelossthroughtheheatexchanger.

Therearemanyadvantagestothefandesignpresentedhere.ThechoiceofmaterialssuchasABSplasticyieldsalight‐weight,low‐costfanwiththestrengthtowithstandtheforcesofoperationatmultiplespeeds,asverifiedbyhandcalculations.Theuseofabrushless,permanentmagnetsynchronousmotorisanotherkeyappealtothedesign,embracingthetrendsofincreasedsophisticationandincreasedaffordabilityofmotortechnologywithongoingadvancesinthepower‐electronicsandsensorindustries.Alongwiththerelativelycomplexelectroniccontrolschemecomesnumerousbenefitsincludinghighpowerdensity(mostlycreditedtotheuseofpowerfulpermanentmagnets),lowheatgeneration,lownoiseproduction,andhighoverallefficiency.Omissionofanofficialshroudpromotesconvectivecoolingintheheatexchangerbydirectlyintroducingtheturbulentswirlingexitingthefanintotheshelloftheheatexchanger.Theresultingfan,coupledwiththeredesignedheatexchanger,presentsacompact,in‐linepackagethatwouldbeattractiveformanyevaporatorapplications.Thisisadesignmadetoblowawayallcompetingproposals.

1http://longbiao.win.mofcom.gov.cn/en/plate01/product.asp?id=36105

2http://longbiao.win.mofcom.gov.cn/en/plate01/index.asp

3http://commons.wikimedia.org/wiki/Image:Straight‐tube_heat_exchanger_1‐pass.PNG


Recommended