+ All Categories
Home > Documents > Finite Volume Method - sastra-fdp-cfd.wikispaces.com balance CpT k −∆HR UA ∆T Species balance...

Finite Volume Method - sastra-fdp-cfd.wikispaces.com balance CpT k −∆HR UA ∆T Species balance...

Date post: 04-Apr-2018
Category:
Upload: hoangkhanh
View: 219 times
Download: 4 times
Share this document with a friend
33
Progress Through Quality Education P. R. Naren School of Chemical & Biotechnology SASTRA University Thanjavur 613401 E-mail: [email protected] at Faculty Development Program on Computational Fluid Dynamics School of Mechanical Engineering SASTRA University Thanjavur 613401 03 June 2015 Finite Volume Method
Transcript

Progress Through Quality Education

P. R. NarenSchool of Chemical & Biotechnology

SASTRA University

Thanjavur 613401

E-mail: [email protected]

at

Faculty Development Program on Computational Fluid DynamicsSchool of Mechanical Engineering

SASTRA University

Thanjavur 613401

03 June 2015

Finite Volume Method

Outline

• Conservation equations and control volume

– Eulerian and Lagrangian framework

– Integral form of conservation equation

• FVM approach

– Steady state diffusion equation in 1D

– Convective term

• Issues with collocated grid

3-Jun-15 Finite volume method 2

Governing Equations

• Conservation of mass

• Conservation of momentum

• Conservation of energy

• Concept of CV

*

mlim

δ∀ → ∀

δρ =δ∀

Transport Equations

3-Jun-15 Finite volume method 3

Framework

• Eulerian – Fixed reference

• Infinitesimally small control volume – Differential form– No discontinuity

• Lagrangian– Moving reference

• Finite control volume– Integral form– Gross behaviour

Samimy et al., 2003

3-Jun-15 Finite volume method 4

Advection

i

V

N

T

P

ρ

i

V

N

T

P

ρ

i

u

N

T

P

ρ

i i

u u

N N

T T

P

+ δρ + δρ

+ δ+ δ

xδP

i

m u A

P mu

Q mC T

N

= ρ=

=

ɺ

ɺ ɺ

ɺ ɺ P

i

1

u

C T

x

P

ii i

m

Pu

QC T

NC x

= ρδ∀

= ρδ∀

= ρδ∀

= = ρδ∀

ɺ

ɺ

ɺ

Unit Mass Unit VolumeBalance

3-Jun-15 Finite volume method 5

Generic Transport Equation

• Transport equation for a quantity φ

Accumulation + Net outflow = Net Diffusion + Net source

( ) ( )div( V ) div grad St φ

∂ ρφ+ ρ φ = Γ φ +

��

Equation Specific quantity φ ( per unit mass)

Γ Sφ

Mass balance 1 0 0

Momentumbalance

u µ ρg

Energy balance CpT k −∆HR UA∆T

Species balance i xi D ri

P∇

3-Jun-15 Finite volume method 6

Mass Balance

• Mass

d i v ( ) 0t

∂ ρ + ρ =∂

U

( ) ( ) ( )u v w0

t x y z

∂ ρ ∂ ρ ∂ ρ∂ ρ + + + =∂ ∂ ∂ ∂

3-Jun-15 Finite volume method 7

Momentum Balance

• Navier Stokes

M

Ddiv div S

Dtρ = + +U

p τ

( ) ( ) Mx

u pdiv( u ) div grad u S

t x

∂ ρ ∂+ ρ = − + µ +∂ ∂

U

Navier

Stokes

3-Jun-15 Finite volume method 8

Integral Form

( ) xSdx

d

dx

du

dx

dφ+

φΓ=ρφ

( ) ( ) ( ) φ+φΓ=ρφ+∂ρφ∂

Sgraddivudivt

( ) ( ) φ+φΓ=ρφ Sgraddivudiv

( ) x

d d du d d S d

d x d x d x φ∆ ∀ ∆ ∀ ∆ ∀

φ ρ φ ∀ = Γ ∀ + ∀

∫ ∫ ∫

Gauβ

( ) x

x x x

d d du S. d x S. d x S S.d x

d x d x d x φ∆ ∆ ∆

φ ρ φ = Γ +

∫ ∫ ∫

3-Jun-15 Finite volume method 9

Geometry

3-Jun-15 Finite volume method 10

3-Jun-15 Finite volume method 11

Numerical Techniques

• Finite Difference

• Finite Element

• Finite Volume

Taylor

3-Jun-15 Finite volume method 12

Finite Volume

( ) ( ) ( )

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂+

∂ρ∂

y

u

yx

u

xx

p

y

vu

x

uu

t

u

( ) ( ) ( )dV

y

u

ydV

x

u

xdV

x

pdV

y

vudv

x

uudt

t

u

VVVVVt∫∫∫∫∫∫

∆∆∆∆∆∆

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂+

∂ρ∂

( ) ( )dV

y

u

ydV

x

u

xdV

x

pdV

y

vudv

x

uu

VVVVV∫∫∫∫∫

∆∆∆∆∆

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂

3-Jun-15 Finite volume method 13

Some Mathematics !!

• Taylor Series

( ) ( ) ( ) ( ) ...xf!2

hxhfxfhxf ''

2' +++=+

( ) ( ) ( ) ( ) ...xf!2

hxhfxfhxf ''

2' −+−=−

( ) ( ) ( ) ( ) ...xf!2

h2xf2hxfhxf ''

2

++=−++( ) ( ) ( ) ( )...xf!3

h2xhf2hxfhxf "'

3' +=−−+

( ) ( ) ( ) ( )...xf!3

h

h

1

h2

hxfhxfxf "'

3' −−−+= ( ) ( ) ( ) ( )

...h

hxfxf2hxfxf

2'' −−+−+=

3-Jun-15 Finite volume method 14

( ) xSdx

d

dx

du

dx

dφ+

φΓ=ρφ

( ) dVSdVdx

d

dx

ddVu

dx

d

V

x

VV∫∫∫

∆φ

∆∆

+

φΓ=ρφ

Finite Volume Formulation

( ) ( ) ( ) φ+φΓ=ρφ+∂ρφ∂

Sgraddivudivt

( ) ( ) φ+φΓ=ρφ Sgraddivudiv

3-Jun-15 15

P EW ew

s

n

S

N

Finite Volume Formulation . . .

( ) dVSdVdx

d

dx

ddVu

dx

d

V

x

VV∫∫∫

∆φ

∆∆

+

φΓ=ρφ

( ) ( ) ( )we

V

uudVudx

d ρφ−ρφ≈ρφ∫∆

( ) dVSdVdx

d

dx

ddVu

dx

d

V

x

VV∫∫∫

∆φ

∆∆

+

φΓ=ρφ

( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ]2

uu

2

uu

2

uu

WE

PWPE

ρφ−ρφ=

ρφ+ρφ−ρφ+ρφ=

3-Jun-15 16

P EW ew

s

n

S

N

Finite Volume Formulation . . .

( ) dVSdVdx

d

dx

ddVu

dx

d

V

x

VV∫∫∫

∆φ

∆∆

+

φΓ=ρφ( ) dVSdVdx

d

dx

ddVu

dx

d

V

x

VV∫∫∫

∆φ

∆∆

+

φΓ=ρφ

weV dx

d

dx

ddV

dx

d

dx

d

φΓ−

φΓ≈

φΓ∫∆

( ) ( )[ ] ( ) ( )[ ]PW

WP

EP

PE

xx ∆φΓ−φΓ−

∆φΓ−φΓ=

3-Jun-15 17

Finite Volume Formulation

P EW ew

s

n

S

N

φ+φ+φ=φ saaa EEWWPP

φ+φ+φ+φ+φ=φ saaaaa SSNNEEWWPP

( ) dVSdVdx

d

dx

ddVu

dx

d

V

x

VV∫∫∫

∆φ

∆∆

+

φΓ=ρφ

3-Jun-15 Finite volume method 18

( ) ( )we

V

ppdVx

p −≈∂∂−∫

[ ] [ ]

[ ]2

pp

2

pp

2

pp

WE

WPPE

−=

+−+=P EW ew

s

n

S

N

Difficulty in pressure term discretization

Checker board Solution?

3-Jun-15 Finite volume method 19

Suhas V Patankar

Professor Emeritus Univ. of Minnesota

Summary

• Finite volume approach applied to Integral form of Conservation equation

• Discretization of diffusion and advective terms

3-Jun-15 Finite volume method 20

Resources

• Chung T. J. (2002) Computational Fluid Dynamics. Cambridge University Press

• Date A. W. (2005). Introduction to Computational Fluid Dynamics. Cambridge University Press

• Fox, R. O. (2003) Computational Models for Turbulent Reacting Flows. Cambridge University

Press

• Hoffmann K. A. and Chiang S. T. (2000). Computational Fluid Dynamics Vol1, 2 and 3.

Engineering Education System, Kansas, USA.

• John F. W., Anderson, J.D. (1996) Computational Fluid Dynamics: An Introduction Springer

• Patankar, S. (1980) Numerical Heat Transfer and Fluid Flow. Taylor and Francis

• Ranade, V.V. (2002). Computational Flow Modeling for Chemical Reactor Engineering,

Academic Press, New York.

• Versteeg, H.K. and Malalasekera, W. (1995) An Introduction to computational Fluid Dynamics

- The Finite Volume Method. Longman Scientific and Technical

3-Jun-15 Finite volume method 21

Web Resources

• http://www.cfd-online.com

• http://en.wikipedia.org/wiki/Computational_fluid_dynamics

• http://www.cfdreview.com/

• https://confluence.cornell.edu/display/SIMULATION/FLUENT

+Learning+Modules

• http://weblab.open.ac.uk/firstflight/forces/#

• NPTEL

– Balchandra Puranik and Atul Sharma

– Srinivaas Jayanthi

3-Jun-15 Finite volume method 22

Gratitude

• Dr. Vivek V. Ranade – My Mentor Guide and Teacher

– iFMg - Research group at NCL, Pune

• Audience

– For patient hearing and for their thirst in knowledge

3-Jun-15 Finite volume method 23

THANK YOU

A person who never made a mistake never tried anything new

- Albert Einstein - 1879 -1955

3-Jun-15 Finite volume method 24

Concept of staggered grid

3-Jun-15 Finite volume method 25

( ) ( ) ( )

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂+

∂ρ∂

y

u

yx

u

xx

p

y

vu

x

uu

t

u

( ) ( ) ( )dV

y

u

ydV

x

u

xdV

x

pdV

y

vudv

x

uudt

t

u

VVVVVt∫∫∫∫∫∫

∆∆∆∆∆∆

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂+

∂ρ∂

( ) ( )dV

y

u

ydV

x

u

xdV

x

pdV

y

vudv

x

uu

VVVVV∫∫∫∫∫

∆∆∆∆∆

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂

3-Jun-15 Finite volume method 26

U Control volume

3-Jun-15 Finite volume method 27

( ) ( )dV

y

u

ydV

x

u

xdV

x

pdV

y

vudv

x

uu

VVVVV∫∫∫∫∫

∆∆∆∆∆

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂

( ) ( ) ( )we

V

uuuudvx

uu ρ−ρ≈∂ρ∂

∫∆

( ) ( )

( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ]2

uuuu

2

uuuu

2

uuuu

uuuu

J,1iJ,1i

J,1iJ,iJ,iJ,1i

J,1IJ,I

−+

−+

ρ−ρ=

ρ−ρ−

ρ−ρ=

ρ−ρ=

X Momentum Equation

3-Jun-15 Finite volume method 28

( ) ( )dV

y

u

ydV

x

u

xdV

x

pdV

y

vudv

x

uu

VVVVV∫∫∫∫∫

∆∆∆∆∆

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂

( ) ( ) ( )sn

V

vuvudVy

vu ρ−ρ≈∂ρ∂

∫∆

( ) ( )

( ) ( )[ ] ( ) ( )[ ]

( ) ( )[ ]2

vuvu

2

vuvu

2

vuvu

vuvu

1J,i1J,i

J,i1J,i1J,iJ,i

j,i1j,i

−+

−+

+

ρ−ρ=

ρ−ρ−

ρ−ρ=

ρ−ρ=

X Momentum Equation . . .

3-Jun-15 Finite volume method 29

( ) ( )dV

y

u

ydV

x

u

xdV

x

pdV

y

vudv

x

uu

VVVVV∫∫∫∫∫

∆∆∆∆∆

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂

( ) ( ) J,1IJ,I

V

ppdVx

p−

−≈∂∂−∫

X Momentum Equation . . .

3-Jun-15 Finite volume method 30

( ) ( )dV

y

u

ydV

x

u

xdV

x

pdV

y

vudv

x

uu

VVVVV∫∫∫∫∫

∆∆∆∆∆

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂

weV x

u

x

udV

x

u

x

∂∂µ−

∂∂µ≈

∂∂µ

∂∂

∫∆

( )[ ] ( )[ ]

( )[ ]δ

+−µ=

δ−µ

−δ−µ

=

∂∂µ−

∂∂µ=

−+

−+

2

uu2u

2

uu

2

uu

x

u

x

u

J,1iJ,iJ,1i

J,1iJ,iJ,iJ,1i

J,1IJ,I

X Momentum Equation . . .

3-Jun-15 Finite volume method 31

( ) ( )dV

y

u

ydV

x

u

xdV

x

pdV

y

vudv

x

uu

VVVVV∫∫∫∫∫

∆∆∆∆∆

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂

snV y

u

y

udV

y

u

y

∂∂µ−

∂∂µ≈

∂∂µ

∂∂

∫∆

( )[ ] ( )[ ]

( )[ ]δ

+−µ=

δ−µ

−δ−µ

=

∂∂µ−

∂∂µ=

−+

−+

+

2

uu2u

2

uu

2

uu

y

u

y

u

1J,iJ,i1J,i

1J,iJ,iJ,i1J,i

j,i1j,i

X Momentum Equation . . .

3-Jun-15 Finite volume method 32

( )J,1IJ,IJ,iJ,i ppauua −−+= ∑

( ) ( )dV

y

u

ydV

x

u

xdV

x

pdV

y

vudv

x

uu

VVVVV∫∫∫∫∫

∆∆∆∆∆

∂∂µ

∂∂+

∂∂µ

∂∂+

∂∂−=

∂ρ∂+

∂ρ∂

Final form

3-Jun-15 Finite volume method 33


Recommended