+ All Categories
Home > Documents > Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented...

Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented...

Date post: 16-Jan-2016
Category:
Upload: dominick-simpson
View: 217 times
Download: 0 times
Share this document with a friend
79
Fire & Life Safety Inspections Presented by Rick Glenn, P.E.
Transcript
Page 1: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 1 April 19, 2007

Fire & Life Safety Inspections

Presented by Rick Glenn, P.E.

Page 2: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 2 April 19, 2007

Established in 1939 Licensed Fire Protection Engineers and NICET

Technicians Wide range of expertise and services

Building/Fire Code consultation Systems design and evaluation (fire alarm/fire

sprinkler/special hazards/security) System inspections and testing Computer fire modeling Performance-based designs

Repeat business greater than 85%

Who is Schirmer Engineering?

Page 3: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 3 April 19, 2007

Who is Schirmer Engineering?

21 Offices Nationwide

Atlanta Miami

Austin New York

Boston Philadelphia

Charlotte Phoenix

Cincinnati Princeton

Dallas San Antonio

Denver San Diego

Houston San Francisco

Las Vegas Temecula

Los Angeles Washington, DC

HeadquartersChicago, Illinois

Page 4: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 4 April 19, 2007

Current edition: 8th, Copyright 2002

Based upon 2000 Life Safety Code and other NFPA standards

Addresses fire protection and life safety inspections

Compilation of inspection procedures, requirements, and regulations

Provides information on identifying a deficiency or dangerous condition

Spells out the major areas that should be focused on during an inspection

NFPA Fire & Life Safety ManualNFPA Fire & Life Safety Manual

Page 5: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 5 April 19, 2007

Long, tedious activity Not glamorous Not easy to do Sometimes no immediate results Typically not appreciated

HOWEVER …

Has major impact on Owner, User, Public, and Insurance Carrier

Consequence: Critical equipment fails when needed Consequence: Loss of use of a system, floor or building Worst case: People are injured or die

Importance of InspectionsImportance of Inspections

Page 6: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 6 April 19, 2007

Continuous process

Goes from very beginning to end of project

Very thorough; there is no time limit

Completed by trained and competent individuals

Closely coordinated with the Construction Process

Are done in a timely manner, including the documentation thereof

Repeated follow up to past inspections

Successful InspectionsSuccessful Inspections

Page 7: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 7 April 19, 2007

Codes listed in the construction contract?

Construction documents and all addenda?

Life Safety Code (if enforced by AHJ)

The 300+ standards issued by NFPA?

IBC and its referenced standards?

DOE Orders?

Local Fire Code?

What Are We Inspecting To?What Are We Inspecting To?

Page 8: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 8 April 19, 2007

Excellent communication skills

Exceptional judgment

Detective skills

Reporter skills

Technical skills

Ability to be part missionary

Ability to be part educator

The Inspector Should Have:The Inspector Should Have:

Page 9: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 9 April 19, 2007

To conduct an inspection safely and efficiently, an inspector should have the following equipment:

Visible means of identification

Flashlight

A notebook or clipboard

Report forms

Pens/pencils

Tape measure

Floor plan drawings or “as-built” drawings

Hard hat, safety glasses, safety shoes (for areas under construction)

Equipment (Ch. 2)Equipment (Ch. 2)

Page 10: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 10 April 19, 2007

Evaluate how the facility is used and determine which occupancy classification it falls under. This will enable you to choose the appropriate checklist and code requirements to accurately conduct the inspection and make the appropriate evaluations.

If inspecting a large property, it is better to inspect the exterior first. Tour the outside to observe how the buildings relate to one another and to adjacent properties. The following features that can be noted while inspecting the exterior of the building:

Address Names and type of occupancies Exterior evidence of building construction type Building height Exterior housekeeping and maintenance Potential exposures and outdoor storage Locations of fire hydrants Conditions affecting fire department response

Observations (Ch. 2)Observations (Ch. 2)

Page 11: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 11 April 19, 2007

It is important to accurately determine the construction type classification of the building

Based on NFPA 220, Standard on Types of Building Construction, or local building code

Construction type influences the fire resistance ratings of the building’s structural elements

The integrity of fire-rated walls must be assured:

Openings in fire-rated walls must be protected to retard or prevent the spread of fire

Doors in fire-rated walls must be kept closed or on automatic hold-opens

Penetrations in fire rated walls are to be sealed to prevent the spread of fire

Exit stair enclosures are to be rated from top to bottom of stairs

Observations (Ch. 2)Observations (Ch. 2)

Page 12: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 12 April 19, 2007

Hazards of Contents The hazard level of contents will have a significant impact on the fire

safety evaluation and the resulting recommendations.

Hazard of the contents of a building are categorized as low, ordinary, and high by Chapter 6 of the LSC. Low-Hazard Contents: Contents of such low combustibility that no self-

propagating fire therein can occur, and thus the only probable danger requiring the use of emergency exits will be from panic, fumes, smoke, or fire from some external source.

Ordinary Hazard Contents: Contents that are liable to burn with moderate rapidity or that give off a considerable volume of smoke, but probably will not explode in the event of a fire.

High Hazard Contents: Hazards that are liable to burn with extreme rapidity or from which explosions are likely in the event of fire.

Be aware that the classifications used by NFPA 13, Standard for the Installation of Sprinkler Systems, are different.

Low hazard contents are rarely found in occupancies; thus this condition normally would not be a major classification during most inspections.

Observations (Ch. 2)Observations (Ch. 2)

Page 13: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 13 April 19, 2007

Fire Detection and Alarm Systems The purpose of a fire detection/alarm system is to detect the

presence of a fire, alert the occupants, notify the fire department, or a combination of these functions.

An inspector should understand the function of, and be able to identify, the major components of these systems.

Fire Suppression Systems Typically includes sprinkler systems, standpipes, and portable

fire extinguishers

Routine inspections should determine that: Sprinkler control valves are open Sprinklers are unobstructed The system has not been altered The sprinkler system has been extended to cover building additions Fire extinguishers are accessible and have been serviced within the past

year

Observations (Ch. 2)Observations (Ch. 2)

Page 14: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 14 April 19, 2007

Reports

A written report should be generated after each inspection to describe the conditions found and the corrections needed.

In general, every report should include the following information:

Date of inspection

Name of inspector

Name and address of property, noting the name and title of the person(s) interviewed, and phone numbers

Name, address, and phone number of owner

Names of major tenants of a multiple occupancy building (not necessarily the name of every tenant)

Type of occupancy

Dimensions of building, including height and construction type

Observations (Ch. 2)Observations (Ch. 2)

Page 15: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 15 April 19, 2007

Reports (cont.)

Factors that could contribute to fire spread inside buildings, such as lack of vertical and horizontal separations

Common fire hazards, such as open flames, heaters, and inaqueate wiring

Special fire hazards, such as hazardous materials and their storage, handling, use, and processes

Fire extinguishing, detection, and alarm equipment

Exits

Outside exposures, including factors making fire spread possible between buildings

Recommendations or notations of deficiencies

Observations (Ch. 2)Observations (Ch. 2)

Page 16: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 16 April 19, 2007

Fire lanes should be marked and unobstructed

Vehicular activity should be limited to passenger pick-up and drop-off in the fire lane. Parking is prohibited.

Fire lanes must be wide enough to allow fire apparatus to pass

Fire hydrants and other sources of water must be visible and accessible from the fire lane.

Sprinkler/standpipe connections must be capped, free of debris, and accessible.

Fire Department AccessFire Department Access

Page 17: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 17 April 19, 2007

Eliminate unwanted fuels

Remove obstructions

Control sources of ignition

Improve access for emergency responding forces

Housekeeping/Building Procedures (Ch. 3)Housekeeping/Building Procedures (Ch. 3)

Effective indoor/outdoor housekeeping practices accomplish the following:

Page 18: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 18 April 19, 2007

How contractors use, arrange and layout their equipment

Material storage and handling Flammable/combustible liquid spills and waste

disposal

Paints/coatings/lubricants

Waste and rags

Shipping materials and packing

Compressed gas cylinders

Smoking

Ignition sources

Look for:Look for:

Page 19: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 19 April 19, 2007

Need to document findings…

What is the issue?

Where is it located?

Who is responsible?

Why was it identified as an issue?

How should it be corrected?

When is it to be corrected by?

Document findings via email, letter, field reports, etc., BUT IT NEEDS TO BE DONE!

Documentation (Ch. 4)Documentation (Ch. 4)

Page 20: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 20 April 19, 2007

Fire Wall – A fire-resistance rated wall having protected openings, which restricts the spread of fire and extends continuously from the foundation to or through the roof, with sufficient structural stability under fire conditions to allow collapse of construction on either side without collapse of the wall.

Fire Barrier – A fire-resistance rated vertical or horizontal assembly designed to restrict the spread of fire in which openings are protected.

Smoke Barrier – A continuous membrane such as a wall, floor, or ceiling assembly, that is designed and constructed to restrict the movement of smoke.

Through-Penetration Firestop System – An assemblage of specified materials or products that are designed, tested and rated to resist the spread of fire through penetrations for a prescribed period of time.

Fire-resistance Rated Construction (Ch. 5)Fire-resistance Rated Construction (Ch. 5)

Page 21: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 21 April 19, 2007

Fire-Protective Coating Fire-resistance ratings for steel

structural framing are usually achieved by the application of a spray-applied fire protective coating.

The coating is applied at a specified thickness that equals the rating required by the code

The thickness should be measured and verified against the listing requirement, such as UL Fire Resistance Directory

Verifying the density is also important because the thickness may be adequate but the material may not be sufficient enough to protect the surface

Fire-Protective Coatings (Ch. 5)Fire-Protective Coatings (Ch. 5)

Page 22: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 22 April 19, 2007

Fire-resistance rated construction is determined by the construction type of the building. The following is an excerpt from the 2006 International Building Code, Table 601:

Fire-resistance Rated Construction (Ch. 6)Fire-resistance Rated Construction (Ch. 6)

Page 23: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 23 April 19, 2007

Vertical Openings

Floor/Ceiling Penetrations

These penetrations are created when holes are made through floor/ceiling assemblies for routing cables, conduits, or pipes and thus permit the passage of smoke and fire from floor to floor.

Methods to seal these openings include:

– Modular devices sized for the pipe, conduit, or cable that contain an organic compound that expands when heated to seal the penetration.

– Foamed-in-place fire-resistant elastomers– Various caulking materials– Poured- or troweled-in-place compounds

These method/materials are required to be listed and/or approved by either UL or FM.

An inspector should be aware of penetrations that may be hidden in concealed spaces (i.e. above drop ceilings)

Vertical Openings (Ch. 8)Vertical Openings (Ch. 8)

Page 24: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 24 April 19, 2007

Here is an example of a listed assembly for protecting through-penetrations per UL.

Penetrations (Ch. 8)Penetrations (Ch. 8)

Page 25: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 25 April 19, 2007

Vertical Openings (cont.)

Stair enclosures, shafts, and chutes

These vertical openings cannot be sealed because their functions require that they communicate between floors.

Such openings should be enclosed in fire-resistive construction

– Fire rating is determined by the local building code

Door openings in the walls of stair enclosures, elevator shafts, and chutes must be protected by self- or automatic-closing fire door assemblies

Vertical Openings (Ch. 8)Vertical Openings (Ch. 8)

Page 26: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 26 April 19, 2007

Horizontal Openings – openings in fire rated walls and partitions If left unprotected will allow smoke and fire to spread

horizontally through the building.

Fire Door Assemblies Means for protecting door openings in fire-resistive walls Fire doors are given an hourly rating Listed fire doors must be identified by a label, a listing mark, or

a classification mark that is readily visible.

– Labels or classification marks may be of metal, paper, or plastic and is commonly located on the hinge side of the door.

Occupants tend to prop open these doors with wood blocks, wedges, or rope. If these materials are located near a door it is a sign that this is happening. Having the door open defeats the purpose of the door, and is a condition that should be corrected immediately.

Horizontal Openings (Ch. 8)Horizontal Openings (Ch. 8)

Page 27: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 27 April 19, 2007

The following table shows the required ratings of fire doors per the rating of the wall with the opening:

Horizontal Openings (Ch. 8)Horizontal Openings (Ch. 8)

Page 28: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 28 April 19, 2007

Horizontal Openings (cont.)

Fire Door Assemblies

Inspection

– Highly combustible material should not be stored near the opening. A fire may spread through the opening before the protective device can operate.

– Fire doors are not to be obstructed or blocked in any way or intentionally wedged open so that self-closing is not possible.

– Test the door to ensure that the door closes and latches.

– Check the label provided on the door for proper rating.

Horizontal Openings (Ch. 8)Horizontal Openings (Ch. 8)

Page 29: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 29 April 19, 2007

Smoke control systems are complex systems involving the:

Exhaust and make-up air supply systemsHVAC control systemFire detection and alarm systemBuilding’s architectural features

Smoke control systems are normally required for underground buildings, malls, high-rise buildings, and buildings having an atrium

There are two types of smoke control systems:

Passive (barriers, partitions, natural vents)

Active (mechanical)

Smoke Control Systems (Ch. 12)Smoke Control Systems (Ch. 12)

Page 30: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 30 April 19, 2007

Smoke Control Systems (Ch. 12)Smoke Control Systems (Ch. 12)

Passive Smoke Control System

Definition: A system of smoke barriers arranged to limit the migration of smoke.

Usually incorporated in institutional buildings (e.g., hospitals, detention centers)

Smoke-tight barriers provide smoke control

Amount of leakage limited by code

Can be tested by “door fan” method or by HVAC fan system

Page 31: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 31 April 19, 2007

Smoke Barrier Allowable LeakageSmoke Barrier Allowable Leakage

Walls: A/AW = 0.00100

Exit enclosures: A/AW = 0.00035

Other shafts: A/AW = 0.00150

Floors/roofs: A/Af = 0.00050

Smoke Barrier Construction

Doors: Tight-fitting, gasketed, 20-minute assembly required

Dampers: Class 2 smoke dampers required

Penetrations: Must be properly sealed

Page 32: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 32 April 19, 2007

Active (Mechanical) Smoke Control SystemActive (Mechanical) Smoke Control System

Active (Mechanical) Smoke Control System

Definition: An engineered system that uses mechanical fans to control smoke movement.

Pressurization method Exhaust method

Page 33: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 33 April 19, 2007

Pressurization MethodPressurization Method

Primary means of controlling smoke by pressure differences across smoke barriers

Method relies on reasonably air-tight construction around smoke zones

This method is used in high-rise buildings Minimum pressure difference across smoke barrier is 0.05 inches

water gauge (w.g.) Maximum pressure difference is dictated by door opening force (30

lbs)

Calculate volume of air necessary to provide a pressure differential

Smok

e B

arri

er W

all

Determine leakage in smoke zone

Q = 2610 A (P)1/2 (Q = K (P)1/2

Q = Volume of air cfmA = Leakage area in square footP = Pressure differential (inches w.g.)

Page 34: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 34 April 19, 2007

Exhaust MethodExhaust Method

For large enclosed volumes (e.g., atria and malls), the exhaust method may be used

Identifies minimum exhaust rates based on ‘design fire’ and space geometry

Can be used when permitted by the Code Official Smoke layer must be maintained at least 6 feet above any walking surface Equal amount of supply air to be introduced Maximum air supply velocity not to exceed 200 ft per minute

6’ 0

Exhaust

Sup

ply

Page 35: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 35 April 19, 2007

Inspections are time consuming and labor intensive.

Must verify that:

Smoke barrier partitions are of 1 hr. fire resistive construction

Smoke barriers are continuous from outside wall to outside wall and above suspended ceilings

Smoke barrier doors have a 20-minute fire resistance rating

Ducts and air transfer openings have smoke dampers

Pipe, conduit, and cable penetrations are properly sealed

Each means for system activation must be functionally tested (e.g., smoke detectors, sprinkler waterflow switch, manual override switch)

Periodic testing of the system is required semi-annually

For large and complex systems, inspections and tests are normally done by third party specialists.

Smoke Control Systems (Inspections & Tests)Smoke Control Systems (Inspections & Tests)

Page 36: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 36 April 19, 2007

Fire Alarm Systems (Ch. 13)Fire Alarm Systems (Ch. 13)

Types of initiating devices monitored by fire alarm systems include: Manual fire alarm stations

Heat detectors

Smoke detectors

Flame detectors

Fire suppression system supervisory devices

Types of notification appliances connected to fire alarm systems include: Bells

Horns

Chimes

Speakers

Strobes

Rotating Beacons

Fire alarm systems are to be installed per NFPA 72, National Fire Alarm Code

Page 37: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 37 April 19, 2007

Types of Initiating Devices Manual Fire Alarm Boxes (pull stations)

Verify that the installer has installed manual fire alarm boxes at unobstructed, readily accessible locations

Are required at each exit from the floor and building Travel distance to a pull station should not exceed 200 feet Pull station is to be located within 5 feet of the exit doorway Pull station should be mounted so that the operable part is between

3.5 feet and 4.5 feet above the floor

Waterflow-actuated The fire alarm system is to monitor the operation of automatic sprinkler

systems by means of a listed waterflow detector or waterflow pressure switch

In the event the sprinkler system activates, a means to detect to the flow of water and sound an alarm is needed

Fire Alarm Systems (Ch. 13)Fire Alarm Systems (Ch. 13)

Page 38: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 38 April 19, 2007

Heat Detectors Heat detectors respond to the thermal energy (temperature) of

a fire and are located on or near the ceiling Fixed-Temperature Heat Detectors

Initiate an alarm when the detecting element reaches a predetermined fixed temperature.

For some older detectors, once operated the device must be replaced

Fire Alarm Systems (Ch. 13)Fire Alarm Systems (Ch. 13)

Page 39: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 39 April 19, 2007

Heat Detectors (cont.) Rate-of-rise detector

Operates when the rate of temperature increase from a fire exceeds a predetermined level, typically around 5°F in 20 seconds or 15°F per minute

These detectors are restorable

Combination detector Detectors can contain more than one element to respond to a fire. Examples include:

– Combination rate-of-rise and fixed temperature heat detector

– Combination smoke-and-heat detector

Line type detector Made of heat sensitive cable

Testing A heat detector should be tested by exposing the detector to a safe heat

source, such as a hairdryer or a shielded heat lamp, until it activates. The detector should reset automatically after each heat test.

Fire Alarm Systems (Ch. 13)Fire Alarm Systems (Ch. 13)

Page 40: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 40 April 19, 2007

Smoke Detectors

Three types of smoke detectors: Spot type smoke detector (ionization and photoelectric) Projected beam detector Air-sampling smoke detector

Ionization smoke detector Uses radioactive material to ionize air and detect smoke particles

Fire Alarm Systems (Ch. 13)Fire Alarm Systems (Ch. 13)

Photoelectric smoke detector A light source and a photosensitive

sensor arranged such that the rays from the light source normally fall on the photosensitive sensor. When smoke particles enter the light path, the intensity of the light is reduced, causing the detector to initiate a fire alarm signal.

Page 41: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 41 April 19, 2007

Smoke Detectors (cont.) - Projected beam detector Consists of two units arranged such that one unit sends a beam of light across a

space to a separate photoelectric receiving unit.

Fire Alarm Systems (Ch. 13)Fire Alarm Systems (Ch. 13)

Page 42: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 42 April 19, 2007

Smoke Detectors (cont.) Air-sampling smoke detector

A system of tubing installed around the protected area with small ports that draw in samples of the air. The air is monitored by a device that detects the smoke and initiates a fire alarm signal.

Fire Alarm Systems (Ch. 13)Fire Alarm Systems (Ch. 13)

Page 43: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 43 April 19, 2007

Smoke Detectors (cont.)

Testing

Smoke detectors should be inspected visually to detect any debris or obstructions that may prevent the smoke detector from operating properly.

To test the detectors, introduce smoke or some other aerosol acceptable to the manufacturer into the detector at its installed location to ensure that smoke can enter the chamber and initiate an alarm.

Fire Alarm Systems (Ch. 13)Fire Alarm Systems (Ch. 13)

Page 44: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 44 April 19, 2007

Location of Heat and Smoke Detectors The following illustration indicates the proper location for

heat and smoke detectors:

Fire Alarm Systems (Ch. 13)Fire Alarm Systems (Ch. 13)

Page 45: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 45 April 19, 2007

Ceiling Surfaces as defined by NFPA 72

Smooth Ceiling: A ceiling surface uninterrupted by continuous projections, such as solid joists, beams, or ducts, extending 4 inches or less below the ceiling surface.

Beam Construction: Ceilings that have solid structural or nonstructural members projecting down from the ceiling surface more than 4 inches and spaced more than 3 feet, center to center.

Solid Joist Construction: Ceilings that have solid structural or nonstructural members projecting down from the ceiling surface more than 4 inches and spaced at 3 feet or less, center to center.

Fire Alarm Systems (Ch. 13)Fire Alarm Systems (Ch. 13)

Page 46: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 46 April 19, 2007

Location of Heat Detectors (cont.) The following illustrations indicate the proper location and

spacing requirements for heat detectors installed on smooth ceiling construction:

Fire Alarm Systems (Ch. 13)Fire Alarm Systems (Ch. 13)

Page 47: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 47 April 19, 2007

Location of Heat Detectors For solid joist construction, detectors should always be mounted

on the bottoms of solid joists. Use spacing for smooth ceilings, except in direction perpendicular to the joists use ½ smooth ceiling spacing.

For beam construction, detectors can be installed on the bottoms of beams that are less than 12 inches deep and less than 8 feet on center. Use spacing for smooth ceilings, except that in direction perpendicular to the beams use 2/3 smooth ceiling spaces.

For beam construction where beams are more than 18 in. deep and beam spacing is more than 8 ft. , each bay must be treated as a separate area.

For ceiling heights exceeding 10 ft., heat detector spacing must be reduced by factors that range from 0.91 times the listed spacing for up to 12 ft. to 0.34 times the listed spacing for ceiling heights up to 30 ft.

Reductions due to ceiling height and construction are cumulative. Sloped or Peaked Ceilings: A row of detectors is required within 3

feet of the peak or high side. The spacing of additional detectors, if any, are based on the horizontal projection of the ceiling in accordance with the type of ceiling construction.

Fire Alarm Systems (Ch. 13)Fire Alarm Systems (Ch. 13)

Page 48: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 48 April 19, 2007

Location of Smoke Detectors In general, smoke detectors are spaced at 30 feet on flat, smooth

ceilings Solid joists are considered equivalent to beams for smoke detector

spacing For ceilings with beam depths less than 10% of ceiling height, use

smooth ceiling spacing (2007) For ceilings with beam depths equal to or greater than 10%, and beam

spacing equal to or greater than 40% of ceiling height, spot type detectors are required in every beam pocket (2007)

For sloped ceilings, use spacing requirements for level beamed ceilings. Ceiling height is taken as average height over slope.

For rooms having an area of 900 sq.ft. or less, only one smoke detector is required, regardless of ceiling surface (2007)

Smoke detectors should not be located within 3 feet of a supply air diffuser or return air opening

Fire Alarm Systems (Ch. 13)Fire Alarm Systems (Ch. 13)

Page 49: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 49 April 19, 2007

Audible Notification Appliances Basic Rule: Audible signals must have a sound level that meets

the greater of the following two conditions: A sound level at least 15 dBA above the average ambient sound level A sound level at least 5 dBA above the maximum sound level having a

duration of at least 60 seconds The sound level is measured at 5 feet above the floor

Audible appliances used in sleeping areas A sound level of at least 75 dBA, measured at the pillow, must be achieved

Wall mounted audible appliances are to be installed at least 90 inches above the floor but not closer than 6 inches to the ceiling

NFPA 72 does not indicate the specific locations for audible devices, however they are to provide the required sound levels throughout the entire occupiable area.

Speakers for emergency voice/alarm communications are required to produce the same sound levels for the evacuation tone signals (not the voice messages) as other audible appliances

Fire Alarm Systems (Ch. 13)Fire Alarm Systems (Ch. 13)

Page 50: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 50 April 19, 2007

Visible Notification Appliances Are required in all public areas, including corridors, lobbies,

conference rooms, meeting rooms, dining areas, lounges, toilet rooms, etc.

Are not required in exit stair enclosures, exit passageways, or elevator cars

Visible notification in rooms is based on providing a minimum illumination of 0.0375 lumens/ft2

Visible notification in corridors is based on the direct viewing of the appliance.

Visible notification devices can be either wall or ceiling mounted. Wherever more than two visible notification appliances are located in

any field of view, they must be spaced a minimum of at least 55 feet apart or they must be synchronized

Wall mounted notification devices are required to be between 80 and 96 inches above the floor

Ceiling mounted devices are limited to 30 feet in height

Fire Alarm Systems (Ch. 13)Fire Alarm Systems (Ch. 13)

Page 51: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 51 April 19, 2007

Fire Alarm Systems (Ch. 13)Fire Alarm Systems (Ch. 13)

Page 52: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 52 April 19, 2007

Fire Alarm Systems (Ch. 13)Fire Alarm Systems (Ch. 13)

Page 53: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 53 April 19, 2007

NFPA 25, Standard for Inspection, Testing, and Maintenance of Water-based Fire Protection Systems

The inspector should be familiar with the requirements of NFPA 25.

There are standardized forms in Annex B for the inspection of automatic sprinkler systems, standpipe systems, private fire service mains, fire pumps, water storage tanks, etc.

The inspector should inspect the facility’s water supply arrangements before inspecting the water based extinguishing systems.

Water supply may come from private or public water system.

Water Supplies (Ch. 14)Water Supplies (Ch. 14)

Page 54: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 54 April 19, 2007

Water used for fire protection may have to be segregated by backflow preventers from the potable water delivered through the public water system.

Reduced pressure type backflow preventers are generally required where the systems can be supplied by additional non-potable water supply sources or where additives are used (antifreeze/corrosion inhibitors).

All backflow preventers must be tested annually by a forward flow test.

Backflow preventers have inherent pressure losses. They should not be installed on existing fire protection systems without being analyzed by a fire protection engineer.

Water Supplies (Backflow Prevention) (Ch. 14)Water Supplies (Backflow Prevention) (Ch. 14)

Page 55: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 55 April 19, 2007

Water supply control valves must be in the “open” position.

Each control valve must be identified and have a sign indicating the system or portion of the system it controls.

NFPA 25 requires each valve to be secured in its normal open or closed position by means of a seal or lock, or that it be electronically supervised.

NFPA 25 requires all valves to be inspected monthly, except for sealed valves: Sealed valves are to be inspected weekly. Inspect valves to verify that they are:

Accessible Free from external leaks Provided with appropriate signage

NFPA 25 requires that all control valves be tested annually.

Water Supplies (Inspecting Valves) (Ch. 14)Water Supplies (Inspecting Valves) (Ch. 14)

Page 56: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 56 April 19, 2007

Must be inspected quarterly

Items that must be verified:

Visibility

Accessibility

Couplings and swivels have not been damaged

Plugs and caps are in place

Gaskets are in place and in good condition

Identification sign

Automatic drain valve is operating properly

Water Supplies (Fire Dept. Connections) (Ch. 14)Water Supplies (Fire Dept. Connections) (Ch. 14)

Page 57: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 57 April 19, 2007

The inspector could use the following checklist when inspecting hydrants:

The hydrant is set up plumb with outlets at least 18 inches above the ground.

Open and close the hydrant to verify it is working properly.

Check that the hydrant drains properly. If the drain is working properly, a suction can be felt at the outlets immediately after the valve is closed.

Check for leaks. The main valve should close tightly.

Flush hydrants annually to remove debris. (Flow for approximately 60 seconds)

Water Supplies (Private Fire Service Mains and Water Supplies (Private Fire Service Mains and Yard Hydrants) (Ch. 14)Yard Hydrants) (Ch. 14)

Page 58: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 58 April 19, 2007

Types of Fire Pumps Centrifugal – Single or multistage pumps

Horizontal or vertical type Pump of choice for providing water under pressure to fire protection

systems Available in capacities up to 5000 gpm and pressures from 40-400 psi.

Vertical Turbine Used in streams, ponds, and pits Consists of a motor of right-angle gear drive, a column pipe and

discharge fitting, a drive shaft, a bowl assembly housing the impellers, and a suction strainer

Fire Pump Assembly Includes the water supply suction and discharge piping and valving,

the pump, the driver, the controller, and auxiliary equipment

Auxiliary equipment consists of the shaft coupling, the automatic air release valve, pressure gauges, the circulation relief valve (not for diesel drive) with heat exchanger, pump test devices, pump relief valve, alarm sensors and indicators, and jockey pump

Water Supplies (Fire Pumps) (Ch. 14)Water Supplies (Fire Pumps) (Ch. 14)

Page 59: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 59 April 19, 2007

Inspecting Fire Pumps

Inspected weekly to verify it is in proper condition

Weekly run test for electric motors should last at least 10 minutes

Weekly run test for diesel engines should last at least 30 minutes

These tests are conducted with an automatic start, but without flowing water

Fire pumps are also tested annually by flowing water at “no load, “rated load”, and “peak flow” conditions

The purpose of the annual test is to compare the performance of the pump assembly to the performance recorded in earlier tests and at the time of initial field acceptance

Water Supplies (Fire Pumps) (Ch. 14)Water Supplies (Fire Pumps) (Ch. 14)

Page 60: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 60 April 19, 2007

Inspecting Fire Pumps

With the pump started, the inspector should check the following:

Signs of leakage Overheating Irregular performance All alarms and relief valves are operating correctly Pressure gauges for erratic performance

– Gauges performing erratically could indicate poor suction, obstructions, in adequate water supply, or insufficient immersion of the suction pipe

All valves and outlets should be closed at the end of the test to note whether the pump shuts off at the correct pressure

Fire pump rooms should be kept clean, dry, and free of miscellaneous stored materials

Water Supplies (Fire Pumps) (Ch. 14)Water Supplies (Fire Pumps) (Ch. 14)

Page 61: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 61 April 19, 2007

Water Supplies (Fire Pumps) (Ch. 14)Water Supplies (Fire Pumps) (Ch. 14)

Page 62: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 62 April 19, 2007

Flow Testing Water Main Underground pipe is required to have a flow test every 5 years

minimum per Chapter 7 of NFPA 25, 2002 edition

A flow test is to be conducted at the two hydrants nearest to the point at which the building fire service main connects to the main water supply

The following is the procedure taken to conduct a flow test:

Attach the gauge to Hydrant A and obtain the static pressure

Attach a second gauge to Hydrant B and remove the cap from the other 2 ½-in. outlet

While Hydrant B is uncapped, measure the diameter of the outlet to check its size. Although the inside diameter of the hydrant opening is usually close to 2 ½-in., some butts are sufficiently different to require a fairly close measurement. For convenience, this should be taken to the nearest hundredth of an inch.

Feel inside the outlet to determine its shape, that is, either smooth, right angle, or projecting

Slowly open Hydrant B and flush thoroughly, making sure a full flow is established for accurate measurement

Water Supplies (Flow Testing) (Ch. 14)Water Supplies (Flow Testing) (Ch. 14)

Page 63: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 63 April 19, 2007

Flow Testing a Water Main

The figure below illustrates a water main fed by a city connection, which provides an example of how water flow in such a system is tested:

Water Supplies (Flow Testing) (Ch. 14)Water Supplies (Flow Testing) (Ch. 14)

Page 64: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 64 April 19, 2007

Flow Testing Water Main A pitot tube is placed in the center stream of the flowing

hydrant to obtain an accurate reading To calculate the flow of water, the inspector uses the following

equation:

Q = gallons/minute

c = coefficient of discharge for the opening

d = opening’s diameter in inches

p = Pitot pressure reading

Water Supplies (Flow Testing) (Ch. 14)Water Supplies (Flow Testing) (Ch. 14)

Page 65: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 65 April 19, 2007

Classifying the Occupancy

An important step in inspecting fire sprinkler systems is to know the fire hazard presented by the occupancy.

Occupancies are categorized into three basic hazards: Light Hazard Ordinary Hazard Extra Hazard

These occupancy classifications are defined in NFPA 13.

The Occupancy Hazard Classification impacts sprinkler spacing and types of sprinklers that can be used.

Automatic Sprinkler and Other Water-Based Fire Automatic Sprinkler and Other Water-Based Fire Protection Systems (Ch. 15)Protection Systems (Ch. 15)

Page 66: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 66 April 19, 2007

There are two occasions when an inspector must be at their most observant and critical:

When a new sprinkler system is installed

When a system is shut down for repairs, inspection, or modifications

If the system is to be taken out of service for any reason, the proper authorities (fire department, owner, etc.) must be notified

Sprinkler System Water Supply

One of the first items to be inspected is the water supply

Inspect all control valves to verify that they are open/closed as per the drawings and/or signs present

The main drain test required by NFPA 25 can be used as an indicator to determine whether there has been a reduction in the available water supply

Automatic Sprinkler and Other Water-Based Fire Automatic Sprinkler and Other Water-Based Fire Protection Systems (Ch. 15)Protection Systems (Ch. 15)

Page 67: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 67 April 19, 2007

The Sprinkler System

Sprinklers are to be inspected annually for signs of: Leakage Physical damage Corrosion Foreign materials (paint, grease, dirt, etc.) Loss of fluid (glass bulb sprinklers)

Sprinklers should be checked for any obstructions that may prevent proper discharge. Obstructions include light fixtures, HVAC equipment, cables, and stored materials.

Sprinkler system piping should be inspected to make sure that it is in good condition, free from mechanical damage, and not being used to support fixtures, ladders, or any other loads.

Sprinkler system inspections are to be conducted from the floor level. Sprinklers in inaccessible spaces are not required to be checked annually.

Automatic Sprinkler and Other Water-Based Fire Automatic Sprinkler and Other Water-Based Fire Protection Systems (Ch. 15)Protection Systems (Ch. 15)

Page 68: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 68 April 19, 2007

The Sprinkler System Sprinkler orientation should be checked that the sprinklers are

installed in the correct position

Sprinklers installed before 1920 must be replaced

Sprinklers installed more than 50 years ago need to be submitted for operational testing

The inspector should record pressure gauge readings of the system and compare them with information provided during the acceptance test and with previously recorded readings

The inspector should make arrangements for testing the water flow alarm devices

Internal inspections of the pipe should be conducted when abnormal conditions from a routine system test are observed. These conditions include: Defects on an intake screen from a raw water supply source Foreign objects in the pump suction line, dry pipe valves, or deluge valves Obstructions in the sprinkler pipe False trips in a dry-pipe system

Verify that a sufficient supply of spare sprinklers are available

Automatic Sprinkler and Other Water-Based Fire Automatic Sprinkler and Other Water-Based Fire Protection Systems (Ch. 15)Protection Systems (Ch. 15)

Page 69: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 69 April 19, 2007

Wet-Pipe Sprinkler System A wet-pipe system is a system that contains water and is connected to

a water supply so that water immediately discharges from activated sprinklers

Dry-Pipe System A system where water does not enter the system until the system air

pressure drops below a predetermined point.

When one or more sprinklers operate in a fire area, the air pressure drops, the dry pipe valve automatically opens, and water enters the system

Water is then discharged from any open sprinkler

The inspector should check that the air pressure in the system corresponds to that listed on the manufacturer’s data sheet for the dry pipe valve

Automatic Sprinkler and Other Water-Based Fire Automatic Sprinkler and Other Water-Based Fire Protection Systems (Ch. 15)Protection Systems (Ch. 15)

Page 70: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 70 April 19, 2007

Preaction and Deluge Systems

Preaction and deluge systems use a supplemental fire detection system to initiate the flow of water

In a preaction system, only one or a few sprinklers will open

In a deluge system, all sprinklers are open and will flow water upon activation

Preaction systems with more than 20 sprinklers and all deluge systems are to be supervised automatically

The automatic water control valve must have a manual means of activation that is independent of the fire detection system.

Automatic Sprinkler and Other Water-Based Fire Automatic Sprinkler and Other Water-Based Fire Protection Systems (Ch. 15)Protection Systems (Ch. 15)

Page 71: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 71 April 19, 2007

Testing Sprinkler Systems

Wet-pipe and Dry-pipe Sprinkler Systems

A main drain test should be conducted annually as follows:– Record the pressure on the water supply gauge– If the system is equipped with an alarm check valve, close the alarm

line– Open the main drain valve– When the flow has stabilized, record the residual pressure from the

water supply gauge– Close the main drain valve and note the time it takes the gauge to

reach its original static reading– Place the valve on the alarm line back in its normal open position– No flow measurements are taken during this test, only readings from

the pressure gauges Test each water flow alarm by opening the inspector’s test valve

(wet-pipe) or the alarm test valve (dry-pipe). Test each valve supervisory switch by closing/opening the

valve.

Automatic Sprinkler and Other Water-Based Fire Automatic Sprinkler and Other Water-Based Fire Protection Systems (Ch. 15)Protection Systems (Ch. 15)

Page 72: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 72 April 19, 2007

Wet-pipe and Dry-pipe Sprinkler Systems

The gauges used on a sprinkler system must be replaced or tested every 5 years

Gauges not accurate within 3% of the full scale reading must be recalibrated or replaced

Preaction and Deluge Systems

The same basic procedures used to test wet-pipe systems may be applied to preaction and deluge systems

The interior of the preaction or deluge valve should be inspected annually for any corrosion that might impair the device

Preaction and deluge systems should be flow tested annually. (Under special conditions, flow test may be postponed for up to 3 years).

Automatic Sprinkler and Other Water-Based Fire Automatic Sprinkler and Other Water-Based Fire Protection Systems (Ch. 15)Protection Systems (Ch. 15)

Page 73: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 73 April 19, 2007

Standpipe and Hose Systems

There are five types of standpipe systems:

Automatic wet system – The most common standpipe system, charged with water at all times

Semiautomatic dry system – Equipped with remote control devices at each hose station that admit water into the system

Automatic dry-pipe system – Used for unheated buildings. A dry-pipe valve prevents water from entering the system until the stored air pressure in the discharge side falls below the water supply pressure

Manual dry system – Has no permanent water supply. System is composed of a pipe that contains air at atmospheric pressure and receives its water supply from a fire department pumper

Manual wet system – Has a permanent water supply. Composed of a small-diameter water supply pipe that is connected to the system to keep it filled at all times. The water supply for both flow and pressure is provided by a fire department pumper

Automatic Sprinkler and Other Water-Based Fire Automatic Sprinkler and Other Water-Based Fire Protection Systems (Ch. 15)Protection Systems (Ch. 15)

Page 74: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 74 April 19, 2007

Inspecting and Testing Standpipes

Inspectors should make sure that the valves in the automatic sources of water are open (monthly) and should test the supervisory means of such valves (quarterly)

The inspector should check the valve at each discharge outlet or hose station for leakage and should examine the hose threads (quarterly)

Check the condition of the hose and nozzle (annually)

Any pressure regulating valves provided must be tested every 5 years to ensure that they are properly set and adjusted

Chapter 6 of NFPA 25 provides additional information on inspecting, testing, and maintaining standpipe systems

Automatic Sprinkler and Other Water-Based Fire Automatic Sprinkler and Other Water-Based Fire Protection Systems (Ch. 15)Protection Systems (Ch. 15)

Page 75: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 75 April 19, 2007

Automatic Sprinkler and Other Water-Based Fire Automatic Sprinkler and Other Water-Based Fire Protection Systems (Ch. 15)Protection Systems (Ch. 15)

Page 76: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 76 April 19, 2007

Water Mist Systems, Chapter 16

Special Agent Extinguishing Systems, Chapter 17

Clean Agent Extinguishing Systems, Chapter 18

Portable Fire Extinguishers, Chapter 19

Other Types of SystemsOther Types of Systems

Page 77: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 77 April 19, 2007

NFPA Fire and Life Safety Inspection Manual, Appendix, page 587

NFPA 72 – National Fire Alarm Code, Chapter 10

NFPA 25 – Water Based Fire Protection Systems, Annex B

Inspection Checklist FormsInspection Checklist Forms

Page 78: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Fire and Life Safety inspections© Slide 78 April 19, 2007

QuestionsQuestions

Page 79: Fire and Life Safety inspections © Slide 1April 19, 2007 Fire & Life Safety Inspections Presented by Rick Glenn, P.E.

Recommended