+ All Categories
Home > Documents > Fire Design of Aluminium Structures.pdf

Fire Design of Aluminium Structures.pdf

Date post: 02-Jun-2018
Category:
Upload: wal1547
View: 235 times
Download: 0 times
Share this document with a friend

of 72

Transcript
  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    1/72

    Fire Designof Aluminium Structures

    Frantiek Wald

    Czech Technical University in Prague

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    2/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    PropertiesThermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    2

    Objectives of the lecture

    Summary of structural aluminium and steel design

    at ambient temperature

    Properties of structural aluminium

    Particularities of aluminium fire design

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    3/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    PropertiesThermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    3

    Outline of the lecture

    Introduction Thermal properties Mechanical properties Transfer of heat

    Unprotected elements

    Protected elements Elemental analyses Classification of sections Columns

    Beams Critical temperature Summary

    Worked example

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    4/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    PropertiesThermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Structural aluminium/steel behaviour?

    Ambient temperature

    Stress-strain diagram

    No yield stress

    Modulus of elasticity 1/3 of steel

    Lower ductility

    Different production of sections

    Majority wrought aluminium

    Buckling curves more favourable

    Heat affected zones HAZ

    Reduction of material properties

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    5/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    PropertiesThermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Structural aluminium/steel design?

    Ambient temperature

    Diferent procedures

    HAZ for resistance

    HAZ for stability

    Lugs for stiffening

    Material model

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    6/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    PropertiesThermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Structural aluminium/steel design?

    Ambient temperature

    Standards different structure

    EN 1999 Design of Aluminium Structures: EN 1999-1-1 General structural rules

    EN 1999-1-2 Structural fire design

    EN 1999-1-3 Structures susceptible to fatigue EN 1999-1-4 Cold-formed structural sheeting.

    EN 1999-1-5 Shell structures

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    7/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    PropertiesThermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    7

    Relative thermal elongation

    As a function of the temperature

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    8/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    PropertiesThermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    8

    Relative thermal elongation

    Mathematical model

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    9/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    PropertiesThermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    9

    Specific heat of aluminium

    0

    200

    400

    600

    800

    1000

    1200

    1400

    0 200 400 600 800 Teplota, C

    prEN 1999-1-2

    Mrn teplo, J/ (kg K)

    Tavenina

    As a function of the temperature

    Liquid alloy

    Temperature, C

    Specific heat J/kg K

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    10/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    10

    Specific heat of aluminium

    200

    600

    800

    1000

    1200

    0

    400

    5004003002001000

    al/ C

    cal

    / (J/kgC)

    alc

    Mathematical model

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    11/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    11

    Thermal conductivity

    of aluminium alloyal

    The thermal conductivity for 0 C <

    < 500 C

    0

    50

    100

    150

    200

    250

    0 100 200 300 400

    Tepeln vodivost, W m K

    Teplota, C

    5000 a 7000

    -1 -1

    ada 1000, 3000 a 6000

    ada 2000, 4000,

    Series

    Temperature, C

    Thermal conductivity, W/m K

    Series

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    12/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    12

    Thermal conductivity

    Mathematical model

    50

    150

    200

    250

    0

    100

    5004003002001000

    al

    / C

    al

    / (W/mC) A

    B

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    13/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    13

    Mechanical properties

    of aluminium alloys

    At 20 C should be taken as those givenin EN 1999-1-1 for normal temperature design

    For up to 2 hours thermal exposure period

    0,2 % proof strength at elevated temperature

    fo, = ko,fowhere

    fo, is 0,2 proof strength at elevated temperature

    fo is 0,2 proof strength at room temperature

    according to EN 1999-1-1

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    14/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    14

    0,2 % proof strength

    at elevated temperature

    0,2% proof strength ratios ko,

    Two tables Lower limits

    Aluminium alloy temperature C

    20 100 150 200 250 300 350 550

    Lower limit values 1,00 0,90 0,75 0,50 0,23 0,11 0,06 0

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    15/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    15

    0,2 % proof strength

    at elevated temperature

    0,2% proof strength ratios ko,

    Two tables for different alloys and tempers

    0

    0,1

    0,3

    0,4

    0,5

    0,6

    0,7

    0

    0,2

    0,8

    1,0

    0,9

    500400300200100

    6061-T66063-T5

    E

    6063-T6

    6082-T6

    6082-T4

    al

    / C

    ko,

    Eal,

    Eal

    3004-H34

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    16/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    16

    0,2 % proof strength

    at elevated temperature

    0,2 % proof strength ratios ko,

    Two tables for different alloys and tempers

    0

    0,1

    0,3

    0,4

    0,5

    0,6

    0,7

    0

    0,2

    0,8

    1,0

    0,9

    500400300200100

    5454-O

    E

    5005-O

    5005-H14

    5083-H12

    5052-H34

    al

    / C

    ko,

    Eal,

    Eal

    5454-H34

    5083-O

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    17/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    17

    Exposure period

    300

    200

    400

    100

    015 30 60 3600

    log min.

    200 C

    160 C

    250 C

    300 C Doba vystaven prvku

    Mez mrnosti, MPa

    zven teplot,

    prEN 1999-1-2: 2004

    Time of

    exposure

    log min

    0,2 proof strengthfo, N/mm2

    Time

    of

    exposure

    log min

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    18/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    18

    Modulus of elasticity Eal,

    Ratio E = Eal,/Eal for aluminium alloys

    at elevated temperature al CAluminium alloy

    temperature,

    (C)

    Modulus of elasticity,

    Eal,

    (N/mm)

    20 70 00050 69 300

    100 67 900

    150 65 100

    200 60 200250 54 600

    300 47 600

    350 37 800

    400 28 000550 0

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    19/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    19

    Modulus of elasticity Eal,

    Ratio E = Eal,/Eal for aluminium alloys

    at elevated temperature al C

    0

    0,1

    0,3

    0,4

    0,5

    0,6

    0,7

    0

    0,2

    0,8

    1,0

    0,9

    500400300200100

    5454-O

    E

    5005-O

    5005-H14

    5083-H12

    5052-H34

    al

    / C

    ko,

    Eal,

    Eal

    5454-H34

    5083-O

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    20/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Assessment 1

    What thermal exposure is expected for

    aluminium alloys during fire? When starts at elevated temperature the

    reduction of 0,2 % proof strength?

    20

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    21/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    21

    Unprotected aluminium

    temperature development

    Simple analytical model

    Step by step procedure (the lumped mass method)

    should not be taken as more than 5 s

    Am/V the section factor should not be taken as less than 10 m-1

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    22/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    22

    Section factor

    for unprotected aluminium members

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    23/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    23

    Section factor

    for unprotected aluminium members

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    24/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    24

    Section factor

    for unprotected aluminium members

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    25/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    25

    Grooves with gap in the surface

    The calculation of the exposed surface area

    Grooves with gap in the surface less than 20 mm

    should not be included in the exposed surface

    area.

    Grooves with gap in the surface > 20 mm,

    the area of the groove should be includedin the area of the exposed area

    < 20 mm > 20 mm

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    26/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    26

    Surface emissivity m

    The values of net,dshould be obtained from EN 1991-1-2 using

    m = 0,3 for clean uncovered surfaces

    m= 0,7 for painted and covered

    (e.g. sooted) surfaces

    h

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    27/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    27

    Surface emissivity m

    100

    200

    300

    400

    5 10 15 20 25

    Teplota prvku , C

    25A / V =m355075150200300 100125

    150200300 125 3550100 25A / V =m

    m= 0,7

    0

    0

    m= 0,3

    as, min.

    Souinitel prezu

    Time, min

    Element

    temparature, CSection factor

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    28/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Aluminium element

    insulated by fire protection

    materialFor a uniform temperature distribution

    in a cross-section, the temperature increase

    28

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    29/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Section factor Ap/V

    for insulated members

    29

    Sketch Description Section factor (Ap/V)

    Contour encasementofuniform thickness,exposed to fire on foursides.

    areasection-crossaluminium

    perimeteraluminium

    b

    h

    Hollow encasement ofuniform thickness,

    exposed to fire on foursides.

    areasection-crossaluminium

    )+(2 hb

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    30/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Section factor Ap/V

    for insulated members

    30

    b

    Contour encasement of

    uniform thickness,exposed to fire on threesides.

    areasection-crossaluminium

    -perimeteraluminium b

    b

    h

    Hollow encasement ofuniform thickness,exposed to fire on threesides.

    areasection-crossaluminium

    +2 bh

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    31/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    31

    Design tools TALAT

    Reference thickness of fire protection

    dp = k dp,ref (k based on material form 0,4 to 1,4)

    V

    Ap

    0

    200

    300

    400

    500

    0 5 10 15 20 25 30

    Teplota, C

    =

    = 25 m

    100

    200 300

    150

    200

    300

    -1V

    Ap

    10025

    50

    100

    150

    Tlouka po. ochr., ,mm

    R 30

    Porn

    PornodolnostR 15 50

    odolnost

    dp

    m-1

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    32/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Assessment 2

    What differences are for step by step procedure

    of aluminium compare to steel? Desribe the section factorAp/V

    for insulated member by bords?

    What surface emissivity m is expected forclean uncovered surface?

    32

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    33/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Structural fire design

    Simple calculation models

    Efi,d Rfi,d,tEfi,d is the design effect of actions for the fire design situation

    Rfi,d,t is the design resistance of the aluminium structure or

    structural member, for the fire design situation

    Advanced calculation models

    The development and distribution of the temperature

    within structural members (thermal response model);

    The mechanical behaviour of the structure or of any partof it (mechanical response model).

    Validation of advanced calculation models

    33

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    34/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Effect of actions

    For time t = 0

    Using combination factors 1,1 or 2,1 according toEN1991-1-2

    Efi,d =fi Ed

    WhereEd is the design value of the correspondingforce or moment for normal temperature design

    As a simplification the recommended value

    of fi = 0,65 may be used(Except areas susceptible to accumulation of goods,

    including access areas.)

    34

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    35/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructionsunder Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Classification of cross-sections

    Classified as for normal temperature design

    Based on the same relative drop in the 0,2 %proof strength and modulus of elasticity

    Actual drop in modulus of elasticity

    Classification of the section changes

    Larger capacity value of the section

    35

    b ,

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    36/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructionsunder Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    coefficient

    To introduce different materials

    Plate slenderness

    36

    of/250=

    =

    ==

    kEf

    t

    b

    kt

    b

    o

    p

    )2

    2

    1(12

    4,28

    ==

    =

    kf

    Et

    b

    kf

    Et

    b

    kEf

    t

    b

    o oo

    950,0235

    0620,0)1(12 2

    2

    k

    t is plate thickness

    b is width,

    is Poisson ratio

    E is modulus od elasticity

    fo is 0,2 % proof strength

    souinitel napt

    b ,

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    37/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructionsunder Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Reduction of coefficient

    At elevated temperature

    37

    ksouinitel napt

    oo

    E

    o

    E

    o, f

    E

    k

    k

    fk

    Ek

    f

    E

    o

    ==,

    ,

    ,

    ,

    yyy,

    E,

    f

    E

    f

    E

    k

    k

    00,1

    bk

    ,

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    38/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructionsunder Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Reduction of coefficient

    for structural steel

    38

    ksouinitel napt

    I t d ti

    bk

    ,

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    39/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructionsunder Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Reduction of coefficient

    for steel

    39

    ksouinitel napt

    yyy,

    E,,

    f

    E

    f

    E

    k

    k850

    Currently for steel

    , C0

    0,2

    0,4

    0,6

    0,8

    1

    1,2

    0 200 400 600 800

    ,y,E k/k

    ,y,E k/k

    539 C

    766 C

    0,85

    368 C

    436 C

    1000

    I t d ti

    bk

    ,

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    40/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructionsunder Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Reduction of coefficient

    for aluminium

    at elevated temperature

    40

    ksouinitel napt

    0f

    250=

    oo,

    alal,,

    /

    /

    ff

    EE

    = o,

    alE,

    k

    k

    Introduction

    bk

    ,

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    41/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructionsunder Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Reduction of coefficient

    for aluminium

    41

    ksouinitel napt

    0f

    250=

    Introduction

    b

    k

    ,

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    42/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructionsunder Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Reduction of coefficient

    for aluminium

    42

    ksouinitel napt

    0f

    250=

    Introduction

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    43/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructionsunder Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Tension members

    The design resistance

    Nfi,t,Rd = Ai ko,,ifo / M,fi

    where

    Ai is an elemental area of the net cross-section

    with a temperature i , including a deduction ifrequired to allow for the effect of HAZ

    softening.

    The deduction is based on the reduced thicknessof o,HAZt

    ko,,i is the reduction factor for the effective 0,2 %

    proof strength at temperature i. 43

    Introduction

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    44/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructionsunder Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    Thermal

    Mechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Beams

    The designMfi,t,Rd of a cross-section

    in class 1, 2, 3 or 4

    with a uniform temperature distribution at timet

    Mfi,t,Rd = ko,MRd(Mx/M,fi)

    where

    MRd is the moment resistance of the cross-section fornormal temperature design.MRd is either Mc,Rdor Mu,Rd

    Mx is the material coefficient according to EN 1999-1-1. M1is used in combination with Mc,Rd and M2 is used in

    combination with Mu,Rd

    The design resistance Mfi,t,Rd is given by the combination of

    MRd and Mxwhich gives the lowest capacity.

    44

    Introduction

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    45/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructionsunder Natural Hazards

    and Catastrophic Events

    Introduction

    Properties

    ThermalMechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Columns

    The design buckling resistance Nb,fi,t,Rd of a

    compression member at timet

    Nb,fi,t,Rd = ko,,maxNb,Rd (M1/1,2 M,fi)

    where

    Nb,Rd is the buckling resistance for normal

    temperature design according to EN 1999-1-1

    1,2 is a reduction factor of the design resistance

    due to the temperature dependent creep

    of aluminium alloys

    45

    Introduction

    B kli l th

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    46/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructionsunder Natural Hazards

    and Catastrophic Events

    Properties

    ThermalMechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Buckling length

    of a column in intermediate storey

    Braced frame in which each storey comprises

    a separate fire compartment

    with sufficient fire resistance

    46

    A: Shear wall or other bracing system

    B: Separate fire compartments in each storey

    C: Column buckling lengthD: Deformation mode in fire

    Introduction

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    47/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructionsunder Natural Hazards

    and Catastrophic Events

    Properties

    ThermalMechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Relative slenderness

    The same relative drop in the 0,2 % proof

    strength and modulus of elasticity.

    If the actual drop in modulus of elasticity is

    taken into account, a larger capacity value can

    be obtained.

    47

    =

    oo,

    alal,,

    /

    /

    ff

    EE

    =

    o,

    alE,

    k

    k

    Introduction

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    48/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructionsunder Natural Hazards

    and Catastrophic Events

    Properties

    ThermalMechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    48

    Buckling curves

    Buckling classes: A

    1,2 is a reduction factor of the design resistance due to the

    temperature dependent creep of aluminium alloys

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    0,0 0,5 1,0 1,5 2,0

    hlink

    ocel

    0,20 - tepeln upraven0,32 - tepeln neupraven

    0,20 - tepeln upraven

    0,32 - tepeln neupraven

    0,21 - kivka a0,76 - kivka dZa poru

    Pomrn thlost

    Souinitel vzprnosti

    redukce 1,2

    Relative slenderness

    Reduction factor for buckling

    Aluminum

    Steel

    Class A

    Class B

    Class A

    Class B

    Curve a

    Curve d1,2

    reduction

    for fire

    design

    Introduction

    Buckling resistance

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    49/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructionsunder Natural Hazards

    and Catastrophic Events

    Properties

    ThermalMechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    49

    nosnost, kN

    60 x 60 x 4

    0,0

    20,0

    40,0

    60,0

    80,0

    100,0

    120,0

    140,0

    160,0

    180,0

    200,0

    0 20 40 60 80 100 120 140 160 180 200

    thlost

    f0= 250MPa ,

    = 0,20; 00 =

    Ocel S235

    Slitina EN AW-6082

    20 C

    300C

    T6, tepeln upraven;

    200 C

    fy= 235 MPa; = (kivka a)0,21

    Buckling resistance

    at elevated temperature

    Buckling length od rectangular hollow section 60x60x4

    Slenderness

    Buckling resistance

    Alloy EN AW 6082Temper T6

    Steel S235

    Introduction

    The critical temperature

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    50/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructionsunder Natural Hazards

    and Catastrophic Events

    Properties

    ThermalMechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    The critical temperature

    of aluminium alloys

    50

    0

    100

    200

    300

    400

    500

    600

    700

    800

    0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8

    ocel

    EN AW-5454EN AW-5086

    EN AW-5083

    EN AW-6082

    EN AW-3003

    Kritick teplota prvku , C

    Stupe vyuit prezu, 0

    170

    Slitiny hlinku

    Degree of utilisation0

    Critical temperature C

    Steel

    Aluminium

    Simplified value 170 C

    Introduction

    The critical temperature

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    51/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructionsunder Natural Hazards

    and Catastrophic Events

    Properties

    ThermalMechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    The critical temperature

    of aluminium alloys

    where the degree of utilisation0= Efi,d/ Rfi,d,0may not be taken lass than 0,015

    Efi,d is the design effect of actions for the firedesign situation according to EN 1991-1-2 and

    Rfi,d,0 is the corresponding design resistance of

    the steel member for fire design situation at

    time t.

    The accuracy of the prediction varies is limited.

    The prediction of critical temperature of steel

    shows a deviation 3,73%. 51

    B

    A

    lnCDcr,a

    +

    = 1

    1

    0

    Introduction

    The critical temperature

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    52/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructionsunder Natural Hazards

    and Catastrophic Events

    Properties

    ThermalMechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    The critical temperature

    of aluminium alloys

    Constants for calculation of critical temperature

    of aluminium alloys

    52

    Alloy Thermaltreatment

    Constants MaximaldeviationA B C D

    EN AW-5052 O 0,9905 428 74,88 0,2063 14,7 %

    EN AW-5052 H34 0,9797 420 90,06 0,1273 27,0 %

    EN AW-5083 O 0,9942 430 62,53 0,1485 10,5 %EN AW-5083 H113 0,9843 424 89,97 0,2711 0,9 %

    EN AW-5454 O 0,9885 424 74,01 0,1519 15,7 %EN AW-5454 H32 0,9806 422 85,83 0,1427 15,6 %

    EN AW-6061 T6 0,9957 427 65,38 0,1169 1,8 %EN AW-6063 T6 0,9902 422 74,06 0,1048 8,7 %EN AW-6082 T6 0,9826 420 89,37 0,1377 4,6 %EN AW-3003 O 0,9806 424 95,59 0,3199 4,5 %EN AW-3003 H14 0,9753 412 95,87 0,1263 9,4 %

    EN AW-5086 O 0,9843 424 89,97 0,2711 0,8 %EN AW-5086 H112 0,9826 428 78,80 0,2438 19,6 %

    EN AW-7075 T6 0,9763 412 94,12 0,1143 12,0 %

    ECCS nomogram for aluminium

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    53/72

    53

    g

    50125 3575

    -1

    100150200300

    200

    250

    300

    350

    400

    450

    500

    150

    100

    Kritick teplota, ,Cal,cr mAm/ V

    100

    200

    150

    250

    300400

    500

    600

    700

    800

    900

    1000

    1200

    1500

    2000

    5 10 15 20 250,0

    50

    0,10,20,30,40,50,60,70,8

    0

    )(Ap/ V /( p/ dp ) W K m-3

    25EN AW -3003

    EN AW -5083EN AW -6061

    EN AW -6082EN AW -7075

    EN AW -5086

    EN AW -5454

    -1

    170

    as, min.

    Souinitel prezu,

    Stupe vyuit prezu,

    Pokud teplota nepekro

    nen teba posuzovat

    Utilisation

    Section factorCritical temperature

    Time, min

    Critical temperature

    Reduction of material Transfer of heat

    Introduction

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    54/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructionsunder Natural Hazards

    and Catastrophic Events

    Properties

    ThermalMechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Assessment 3

    What advantage may be utilesed for

    classification of aluminium cross-sections?

    How is treated the temperature dependent

    creep of aluminium alloys for simple modelling

    of buckling resistance?

    What is the simplified value of critical

    temperature of aluminium alloys?

    54

    Introduction

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    55/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructionsunder Natural Hazards

    and Catastrophic Events

    Properties

    ThermalMechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    55

    Summary

    EN1999-1-2 first standard for fire design of aluminium str.

    Based on steel knowledge

    Lower fire resistance compare to steel

    The low melting point of aluminum (590 C a 650 C)

    The good emisivity 0,3

    0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,91

    0 200 400 600 800 1000 Teplota, C

    Smluvn mez kluzu oceli

    Redukn souinitel

    Mez mrnosti hlinkovch slitin

    Reduction factor

    Steel - effective yield strength ratio

    ky,

    Aluminium - 0,2 % proof strength ratios ko,

    Temperature, C

    Introduction

    W k d l b l

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    56/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructionsunder Natural Hazards

    and Catastrophic Events

    Properties

    ThermalMechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Worked example beam column

    Laterally restrained beam

    Load (gk + qk) 2 kN/m

    Load reduction factor F = 1,45 Alloy EN AW-5083 (material class B)

    56

    Section classification

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    57/72

    Section classification

    Flage in compression not decide

    Web in compression stiffened plate

    is taken form diagram 6.4 in EN 1999-1-1

    Web and all section Class 4

    Web in bending

    section asymmetry coefficient

    varying the stress coefficient g

    Web and all section Class 1 57

    3

    1800,95 34,2 18 18 1,51 27,1

    5

    b

    t = = = > = = =

    1

    1800,95 0,351 12,0 13 13 1,63 21,1

    5

    bg

    t = = = < = = =

    Effective section

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    58/72

    Effective section

    Reduction factor for web in compression

    material buckling class B

    Effective area

    Shift of the center of gravity due to buckling

    58

    ( ) ( )1 2

    c 2 229 198 0,894

    180 5 180 5C C

    b t b t = = =

    ( ) ( ) 2eff g c1 2 3848 1 0,894 2 180 5 3752 mmA A b t= = =

    ( ) ( )

    ct

    eff

    1801 0,894 2 180 5 83

    1 2 20,36 mm

    3752

    b t zz

    A

    = = =

    R i t h k

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    59/72

    Resistance check

    Section bending resistance

    Section poor compression resistance

    Buckling factor

    Combination of buckling and pure bending

    OK

    59

    ( ) ( )

    c 0,8

    Ed Ed

    Rd y,Rd

    c min

    27,9 15,30,895 1,0

    0,483 375,2 22,8

    kde max 0,8;1,3 max 0,8;1,3 0, 483 0,8

    N M

    N M

    + = + =

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    60/72

    Serviceability check

    Full gross section

    Due to lower stessess no local bucklingWeb in compresion

    Simplified

    Secant modulus of eleasticity for maximal stressRamberg-Osgood material model

    OK

    3

    s 53Ed,ser

    Ed,ser 0

    70 10

    61 022 MPa70 10 55,81 0,0021 0,00255,8 110

    n

    E

    E E

    f

    = = =

    ++

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    61/72

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    62/72

    Mechanical actions at fire

    Reduction factor fi

    For snow loading 1,1 = 0,2

    321051331351660

    33120660,

    ,,,,

    ,,,

    QG

    QG

    QkGk

    k1,1kfi =+

    +=

    +

    +=

    kNm9143210315 ,,,MM fiEdEd,fi ===

    kN9683210927 ,,,NN fiEdEd,fi ===

    Termal loading during fire

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    63/72

    g g

    Annex E standard EN 1991-1-2:2004

    Rate of heat release Q

    35302520151050

    0,5

    0

    1,5

    1,0

    2,5

    2,0

    3,5

    3,0

    4,0

    as, min

    Rychlost uvolovn tepla, MWRate of heat release, MW

    Time, min

    Thermal heat during fire

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    64/72

    g

    Flame heigt in time t

    Diameter of the fire in timet

    Temperature along the flame axesConvective part of the rate of heat releaseQc

    353025201510500

    1,0

    2,0

    3,0

    4,0

    as, min

    Dlka plamen, m

    5,0

    6,0 Flame heigt, m

    Time, min

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    65/72

    Transfer of heat into structure

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    66/72

    Transfer of heat into structure

    Maximal beam temperature 272 C in 22 min 40 s

    Reduction factor for k0,,max= 0,596

    0

    50

    0

    150

    100

    250

    200

    350

    300

    400

    3530252015105

    Teplota, C

    40as, min

    teplota plyn

    teplota nosnku

    Temperature, C

    Time, min

    Gas

    Beam

    Resistance at elevated temperature

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    67/72

    p

    Bending resistance

    Buckling resistance

    Buckling length as at ambint temperature

    Interaction as at ambient temperature

    OK

    0147509514

    914

    099

    968 80

    ,,,

    ,

    ,

    ,

    M

    M

    N

    N ,

    Rd,t,fi

    Ed,fi

    Rd,t,fi,b

    Ed,fi

    c

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    68/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazards

    and Catastrophic Events

    Properties

    ThermalMechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    68

    List of Lessons at Seminar

    1. Fire safety RZ

    2. Fire and mechanical loading RZ

    3. Thermal response RZ

    4. Steel structures RZ5. Concrete structures JMF

    6. Composite structures JMF

    7. Advanced models JMF

    8. Composite floors FW

    9. Aluminium structures FW

    10. Timber structures FW

    11. After fire and Historical structures FW

    12. Definitions of Design for Robustness JMD

    13. Global response of structures JMD

    14. Design recommendations JMD

    15. Alternative load path method JMD

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    69/72

    Thank youfor your attention

    Frantiek WALD

    [email protected]

    Introduction

    Properties Notes to users of the lecture

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    70/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazardsand Catastrophic Events

    Properties

    ThermalMechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    70

    Notes to users of the lecture

    Further readings on the relevantdocuments from website of

    www.eaa.net/eaa/education/TALAT

    Keywords for the lecture:

    fire design, aluminium structures,

    material properties,

    Introduction

    Properties Notes to users of the lecture

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    71/72

    European Erasmus Mundus

    Master Course

    Sustainable Constructions

    under Natural Hazardsand Catastrophic Events

    p

    ThermalMechanical

    Transfer of heat

    Unprotected

    Protected

    Elemental analyses

    Classification

    Beams

    Columns

    Critical temp.

    Summary

    Worked example

    Notes

    Text books

    Wang Y., Burgess I., Wald F., Gillie M.,

    Performance Based Fire Engineering of StructuresCRC Press 2012, ISBN: 978-0-415-55733-7.

    Buchanan A. H.,

    Structural Design for Fire Safety,

    Wiley, 2001, ISBN 0471889938.

  • 8/10/2019 Fire Design of Aluminium Structures.pdf

    72/72


Recommended