+ All Categories
Home > Documents > Fission dynamics in the proton induced fission of actinide nuclei...

Fission dynamics in the proton induced fission of actinide nuclei...

Date post: 29-Jan-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
28
E.M. Kozulin Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia Fission dynamics in the proton induced fission of actinide nuclei at intermediate energies
Transcript
  • E.M. Kozulin

    Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia

    Fission dynamics in the proton induced fission of actinide nuclei

    at intermediate energies

  • 13, 20, 40, 55+ 242Pu → 243Am

    13,20,40,55

    20, 40, 55

    + 232Th → 233Pa

    + 238U → 239Np

    MeV

    Elab

    The aim of the present work has been investigation more completely the proton induced reactions p + 232Th, 238U, 242Pu using the complex correlation measurements of the fission fragment mass and total kinetic energy distributions and of the double differential neutron and γ-rayspectra;

    to investigate of super asymmetric fission mode connected with influence of the nuclear shells N=50 and Z=28(78Ni fission mode)

    P

  • small angular momentum transferred to the compound system;

    the possibility to reach very low excitation energy of the compound system;

    in contrast to heavy ion induced fission, there is no quasi-fission and inelastic processes in these reactions.

    Fission reactions induced by light particles such as protons, neutrons etc. are interesting due to:

  • Target

    232Th, 238U,242Pu

    F1

    F2

    solid angle – 0.3 sr

    angular resolution – 0.30

    TOF-startdetector

    BeamP

    position sensitivestop detector

    x, y, TOF

    mass resolution – 2 a.m.u

    TOF-startdetector

  • The measurements were carried out at the Accelerator Laboratory, University of Jyväskylä (Finland), using the setup that included:

    the two-armed time-of-flight reaction products spectrometer CORSET built with the use of microchannel plates (MCP);

    8 detector time-of-flight neutron spectrometer DEMON;

    High Efficiency Neutron DEtection System (HENDES) facility to measure neutron multiplicity;

    12 BaF2 detectors of γ-rays

  • CORSETthe two-armed time-of-flight reaction productspectrometer CORSET composed of microchannelplates•Time resolution δt 120-150 ps•Mass resolution δΜ/Μ 2 amu•Angular resolution δΘ, δϕ ±0.3°•Solid angle of each arm 360 msr•Range of measured angles:

    in the reaction plane Θ from 20°to 160° ±20°out of plane ϕ ±7°

    DEMON8 detector time-of-flight neutron spectrometerDEMON using scintillation modules•Time resolution δt 1.5 ns•Neutron energy resolution - 4% at 3 MeV•Intrinsic efficiency 50% at 3 MeV

    HENDESTime resolution δt 120-150 psIntrinsic effeciency 34% to 22% at 1-10 MeVPosition resolution ±5cm

    BaF2 detectors12 detectors scintillation γ-quanta multiplicityspectrometer

  • 120140160180200220

    T

    KE

    , MeV

    242Pu(p,f)238U(p,f)

    232Th(p,f)

    01234

    Yie

    ld, %

    140150160170180

    ,

    MeV

    60 80 100 120 140 1600

    50100150200

    σ2 T

    KE, M

    eV2

    mass, u80 100 120 140 160

    mass, u60 80 100 120 140 160

    mass, u

    AHy140 AHy140 AHy140

    From top to bottom: two dimensional mass-TKE matrices, mass distribution of fission fragments, average TKE and square variance of TKE as a function of fission fragment mass for proton-induced fission of 232Th, 238U, 242Pu

  • 220 240 26080

    100

    120

    140

    160

    243Pu233Th

    132Sn

    AH

    AL

    Mea

    n m

    ass o

    f fis

    sion

    frag

    men

    t gro

    up

    Mass number of fissioning nucleus

    239U

    – our experiments

    J.P.Unik et al., in Proc. Symp. Physics and Chemistry of Fission, Vol.2, IAEA, Vienna, 1974, 20.

    The experimental mass distributions are similar for all studied reactions. The most probable mass of the heavy fission fragment for all target nuclei studied is close to the AH=140 (asymmetric mode S2). The origin of this mode could be attributed to the deformed neutron-shell closure N≈88 in the heavy fragments.

  • 120

    140

    160

    180

    200

    220

    TKE,

    MeV

    Ep=55 MeVEp=40 MeVEp=20 MeV

    Ep=13 MeVp +232Th →233Pa

    012345

    Yie

    ld, %

    130

    140

    150

    160

    170

    , M

    eV

    60 80 100 120 140 1600

    50

    100

    150

    σ2 TK

    E, M

    eV2

    mass, u

    80 100 120 140 160

    mass, u

    60 80 100 120 140 160

    mass, u

    60 80 100 120 140 160 180

    mass, u

    From top to bottom: two dimensional mass-TKE matrices, mass distribution of fission fragments, average TKE and square variance of TKE as a function of fission fragment mass at the proton energies 13, 20, 40 and 55 MeV

  • 60 80 100 120 140 16010-4

    10-3

    10-2

    10-1

    100

    0

    1

    2

    3

    4

    5

    6

    Yie

    ld, %

    Mass, amu

    Yie

    ld, %

    Ep=13 MeV Ep=20 MeV Ep=40 MeV Ep=55 MeV

    232Th(p,f)

    The mass distribution in linear and logarithmic scale for the proton-

    induced fission of 232Th at the proton energies 13, 20, 40 and 55 MeV

  • 70 80 90 100 110 12010-5

    10-4

    10-3

    10-2

    10-1

    100

    101

    242Pu(p,f) Ep=13MeV 242Pu(p,f) Ep=20MeV 242Pu(p,f) Ep=55MeV 242mAm(nth,f)

    Lohengrin data

    mass, u

    Yie

    ld, %

    A=78

    Y=0.089% for the 242Pu(p,f) Ep=55 MeV

    Y=0.035% for the 242Pu(p,f) Ep=13 MeV

    Y=0.016% for the 242Am(nth, f)

  • 60 80 100 120 140 160 18010-410-310-210-1100101

    242Pu(p,f)NCN/ZCN=1.56

    mass, u

    Yie

    ld, %

    60 80 100 120 140 160 18010-410-310-210-1100

    238U(p,f)NCN/ZCN=1.57

    Yie

    ld, %

    60 80 100 120 140 160 18010-410-310-210-1100101

    232Th(p,f)NCN/ZCN=1.56

    Ep: 13 MeV 20 MeV 40 MeV 55 MeVY

    ield

    , %

    A=78

  • Ion beams:

    DEMON

    CORSET

    Gamma

  • 10-410-310-210-1

    10-410-310-210-1

    10-410-310-210-1

    10-410-310-210-1

    10-410-310-210-1

    10-410-310-210-1

    2 4 6 8 10 12 1410-4

    10-310-210-1

    2 4 6 8 10 12 14

    Θ=14.50

    φ= 00

    p(13MeV)+232Th

    Θ=29.50

    φ= 00

    Θ=44.50

    φ= 00

    Θ=59.70

    φ= 00

    Θ=89.20

    φ= 00

    Θ=119.20

    φ= 00

    Θ=164.00

    φ= 00 Θ=-14.50

    φ= 00

    Θ=-29.50

    φ= 00

    Θ=-44.50

    φ= 00

    Θ=-59.70

    φ= 00Θ=-89.20

    φ= 00

    Θ=-119.20

    φ= 00

    d2N

    /dEd

    Ω, M

    eV-1st

    r-1

    E, MeV

    Θ=-164.00

    φ= 00

    E, MeV

    10-510-310-1

    10-510-310-1

    10-510-310-1

    10-510-310-1

    10-510-310-1

    10-510-310-1

    0 10 20 30 4010-5

    10-310-1

    0 10 20 30 40

    Θ=14.50

    φ= 00

    p(40MeV)+232ThΘ=29.50

    φ= 00

    Θ=44.50

    φ= 00Θ=59.70

    φ= 00

    Θ=89.20

    φ= 00Θ=119.20

    φ= 00

    Θ=164.00

    φ= 00Θ=-14.50

    φ= 00

    Θ=-59.70

    φ= 00

    Θ=-29.50

    φ= 00

    Θ=-89.20

    φ= 00

    Θ=-44.50

    φ= 00

    Θ=-119.20

    φ= 00

    En, MeV

    d2N

    /dE

    dΩ, M

    eV-1st

    r-1Θ=-164.00

    φ= 00

    En, MeV

    Double differential experimental neutron spectra (black points) and their decomposition (in assumption of three sources model) for proton-induced fission of

    232Th at two proton energies Ep = 13 and 40 MeV

  • In our experiments on the proton induced fission we extractedpre-equilibrium neutrons, and after we applied standardprocedure (three source model) on deducing neutronmultiplicities: pre-fission, and two post-fission multiplicitiesfrom both fragments.

    After having received the number of pre-equilibrium neutrons, we corrected our mass distributions.

  • poststpre2 2n,i nn n nn n n

    stpre 2 stpre post 3/ 2 posti 1n n i i

    M EM Ed M exp expdE d 4 (T ) T 2( T ) T=

    < >< > ε ⎧ ⎫ ⎧ ⎫ε ε= − + −⎨ ⎬ ⎨ ⎬Ω π π⎩ ⎭ ⎩ ⎭

    n n n CN(FF) CN(FF) CN(FF) CN(FF) CN(FF)E 2 E E / A cos E / Aε = − Φ +

    ΩΘ=110

    φΘ=1080

    φ

    Θ=1080

    φΘ=110

    φ

  • Average preequilibrium , average statistical prescission and postsscission neutron multiplicities as well as average γ-ray multiplicity , average energy emitted by γ-rays and average energy per one gamma quantum as a function of mass and total kinetic energy (TKE) of fission fragments were measured in proton induced reactions.

  • 70 80 90 100 110 120 130 140 150 160 1700,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    3,5

    4,0

    4,5

    5,0

    70 80 90 100 110 120 130 140 150 160 1700,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    3,5

    4,0

    4,5

    5,0p + 242Pu -> 243Am

    mass [amu]

    Ep=55MeVEp=20MeV

    mass [amu]

    p+ 238U -> 239Np

    Ep=13MeV

    Ep=55MeVEp=20MeV

  • – Ep = 20 MeV

    – Ep = 55 MeV

    70 80 90 100 110 120 130 140 150 160 1700123456789

    70 80 90 100 110 120 130 140 150 160 1700123456789

    [ M

    eV ]

    Ep=55 MeV Ep=20 MeV

    Ep=55 MeV Ep=20 MeV

    p+238U->239Np

    mass [amu]

  • 70 80 90 100 110 120 130 140 150 160 1700123456789

    70 80 90 100 110 120 130 140 150 160 1700123456789

    p + 242Pu -> 243Am

    p+ 238U -> 239Np

    Ep=55 MeV Ep=20 MeV

    Ep=13 MeV

    Ep=55 MeV Ep=20 MeV

    mass [amu]

    70 80 90 100 110 120 130 140 150 160 1700123456789

    70 80 90 100 110 120 130 140 150 160 1700123456789

    [ M

    eV ]

    p + 242Pu -> 243Am

    p+ 238U -> 239Np

    [ M

    eV ]

    Ep=55 MeV Ep=20 MeV

    Ep=13 MeV

    Ep=55 MeV Ep=20 MeV

    mass [amu]

  • 80 90 100 110 120 130 140 150 160 1700

    1

    2

    3

    4

    5

    6

    7

    8

    9

    80 90 100 110 120 130 140 150 160 1701,0

    1,5

    2,0

    2,5

    3,0

    3,5

    4,0

    4,5

    5,0

    p+242Pu->243Am

    Ep = 13 MeV Ep = 20 MeV Ep = 55 MeV

    mass [ amu ]

    Ep = 13 MeV Ep = 20 MeV Ep = 55 MeV

    70 80 90 100 110 120 130 140 150 160 1700

    1

    2

    3

    4

    5

    6

    7

    8

    9

    70 80 90 100 110 120 130 140 150 160 1701,0

    1,5

    2,0

    2,5

    3,0

    3,5

    4,0

    4,5

    5,0

    Ep = 20 MeV Ep = 55 MeV

    mass [ amu ]

    p+238U->239Np

    Ep = 20 MeV Ep = 55 MeV

  • With help of average gamma-ray multiplicity we mayobserve the influence of shell effects (that isimportant, because our aim is to investigate the yield of doubly-magic 78Ni nucleus), the mean spinof the fragments.

    With help of average neutron multiplicity we may obtainthe excitation of fragments, the level densityparameter.

  • 90 100 110 120 130 140 150 160 170

    0,6

    0,8

    1,0

    1,2

    1,4

    1,6

    1,890 100 110 120 130 140 150 160 170

    0

    1

    2

    3

    4

    5

    6

    7

    8

    0,0

    0,5

    1,0

    1,5

    2,0

    2,5

    3,0

    3,5

    4,0

    [ M

    eV ]

    mass [ amu ]

    , and as a function

    of single fragment mass. is taken from the paper

    Budtz-Jørgensen and H.-H. Knitter, Nucl. Phys. A490 (1988).

    252Cf

  • 70 80 90 100 110 120 130 140 150 160 1700123456789

    70 80 90 100 110 120 130 140 150 160 1700123456789

    p + 242Pu -> 243Am

    p+ 238U -> 239Np

    Ep=55 MeV Ep=20 MeV

    Ep=13 MeV

    Ep=55 MeV Ep=20 MeV

    mass [amu]

    80 90 100 110 120 130 140 150 160 1700,8

    0,9

    1,0

    1,1

    1,2

    1,3

    1,4

    70 80 90 100 110 120 130 140 150 160 1700,8

    0,9

    1,0

    1,1

    1,2

    1,3

    1,4

    mass [ amu ]

    p+242Pu->243Am

    [ M

    eV ]

    Ep = 55 MeV Ep = 20 MeV Ep = 13 MeV

    p+238U->239Np

    [ M

    eV ]

    Ep = 55 MeV Ep = 20 MeV

  • 70 80 90 100 110 120 130 140 150 160 170

    0,75

    1,00

    1,25

    1,50

    1,75

    2,00

    2,25

    2,50

    70 80 90 100 110 120 130 140 150 160 170

    0,75

    1,00

    1,25

    1,50

    1,75

    2,00

    2,25

    2,50

    mass [amu]

    Ep=55MeVEp=20MeV

    [M

    eV]

    mass [amu]

    p + 242Pu -> 243Am p + 238U -> 239Np

    Ep=13MeV

    Ep=55MeVEp=20MeV

    [M

    eV]

  • We observed the large enhancement of fission fragment yield for super asymmetric mode at AL < 80 in the proton-induced fission of 242Pu, 238U and 232Th at Ep= 55 MeV. Obtained results allow us to plan future experiments on the investigation of neutron-rich exotic nuclei with proton number around 28.

    For the first time it has been obtained data on neutron and γ-rays emission in the coincidence with fission fragments for the reactions 232Th(p,f), 244Pu(p, f).The multiplicities and average energies of neutrons and γ-rays also confirm the suggestion about closed-shell structure of fission fragments with AL

  • E.M.Kozulin, A.A.Bogachev, M.G.Itkis, J.Kliman, G.N.Kniajeva, L.Krupa, A.Yu.Chizhov

    Flerov Laboratory of Nuclear Reactions, JINR, Dubna, Russia

    J.Äystö, W.A.Rubchenya, W.H.Trzaska, V.Lyapin, M. Sillanpää, S. Yamaletdinov, M. Mutterer

    Department of Physics, University of Jyväskylä, Finland

    E.VardaciINFN – Sezione di Napoli, Italy

    A.M.StefaniniINFN - Laboratori Naziolali di Legnaro, Italy

    S.V.KhlebnikovKhlopin Radium Institute, St. Petersburg, Russia

    O. DorvauxInstitut de Recherches Subatomiques, CNRS-IN2P3, Strasbourg, France

    F. HanappeUniversite Libre de Bruxelles, Belgium

    Spokesperson: E. Kozulin


Recommended