+ All Categories
Home > Documents > Fission Moly

Fission Moly

Date post: 07-Jul-2018
Category:
Upload: ramakantv
View: 228 times
Download: 0 times
Share this document with a friend

of 148

Transcript
  • 8/18/2019 Fission Moly

    1/148

    IAEA-TECDOC-515

    F I S S I O N   M O L Y B D E N U M

    F O R

      M E D I C A L

      U S E

    PROCEEDINGS

     OF A

     TECHNICAL COMMITTEE MEETING

    ORGANIZED BY THE

    INTERNATIONAL ATOMIC ENERGY AGENCY

    AND HELD

     IN

     KARLSRUHE, 13-16  OCTOBER 1987

    ATECHNICAL

     DOCUMENT

     ISSUED BY THE

    INTERNATIONAL ATOMIC

     ENERGY AGENCY

    VIENNA,

     1989

  • 8/18/2019 Fission Moly

    2/148

    FISSION  MOLYBDENUM

     FOR MEDICAL USE

    IAEA,

     VIENNA,

     1989

    IAEA-TECDOC-515

    ISSN  1011-4289

    Printed

     by the  IAEA  in Austria

    June

     1989

  • 8/18/2019 Fission Moly

    3/148

    FOREWORD

    Because of its

      favourable

      physical  and   chemical properties,

      T̂c

    is

    today the radionuclide of

     choice

     for

     routine

     diagnostic

     nuclear

     medicine. The

    A n

    parent  radionuclide

      Mo is

      produced  mainly

      by the

      nuclear  fission

      of

    U. Small

      amounts

      are  produced  by the  neutron  activation  method,

    however, current

     generator technologies

     are not yet  fully

     developed

      to

     utilize

     

    the so-called  n,y  Mo" in medium or

     large production

     scale.

    There  are   several  countries,  particularly  those  with  sizable

      local

    Q

     Q

    demand, seriously considering

      the  possibility  to  locally

      produce

      Mo

    through the

      fission

      route.

      In view

      that

      the required technology is highly

    sophisticated and  that  the  necessary  capital  investment  is

      very  high,

      some

    Member States  have  requested the co-operation of the Agency for technical

    advice.

    In

      response

      to the

      growing  interest

      in this

      matter,

      and in

      order

      to

    provide  some

      guidelines  both

      to the

      Agency

      and to  interested Member

      States,

    the

      IAEA  convened

      the Technical

      Committee  Meeting

      on

      "Fission

      Molybdenum for

    Medical Use .

      The

      report

      includes

      an

      assessment

      of the

      current

      target and

    process  technologies, problems associated  with  radioactive  waste  disposal  as

    well

     as views on economical  factors and proliferation

     concerns.

      Also included

    are all the

      contributions

     presented  at the meeting by individual participating

    countries.

    The Agency  wishes  to  thank  all the  scientists  and institutions who

    contributed

     to the meeting with their

     ideas

     and scientific papers.

    The officer of the

      IAEA

      responsible  for the

     meeting

      was H. Vera Ruiz   of

    the Division of

     Physical

     and

     Chemical Sciences.

  • 8/18/2019 Fission Moly

    4/148

    P L E A S E

      B E

     A W A R E  T H A T

    A L L   O F T H E

      M I S S I N G

      P A G E S IN

      T H I S

      D O C U M E N T

    W E R E

      O R IG I N A L L Y B L A N K

  • 8/18/2019 Fission Moly

    5/148

    EDITORIAL NOTE

    In   preparing this material for the press s t f f

      of

      th e International

     Atomic

     Energy  Agency have

    mounted and  paginated  the original

      manuscripts

      as submitted by the authors and given some

    attention

      to the presentation.

    The  views  expressed

      in the

     papers,

      th e

      statements

      made and the general style

      adopted

      are the

    responsibility of the  named

      authors.

      The  views  do not

     necessarily

      reflect  those  of the governments

    of  th e

      Member

      States or organizations

      under

      whose

      auspices

      th e  manuscripts  were produced.

    The

      use in

      this

      book  of pa rticular designations  of  countries  or

      territories does

      not  imply  an y

    judgement  by the

     publisher,

      the IAEA,  as to the

     legal

     status o f  such countries or territories, o f  their

    authorities  an d  institutions  or of the  delimitation  of  their boundaries.

    The

      mention  of

      specific

      companies  or of  their

     products

      or

      brand

      names  does not  imply  an y

    endorsement

      or  recommendation  on the part  of the  IAEA.

    Authors

      are

      themselves

      responsible for

      obtaining

      the necessary

      permission

      to

      reproduce

    copyright

      ma terial from

      other sources.

  • 8/18/2019 Fission Moly

    6/148

    CONTENTS

    SUMMARY

      REPORT

    1.

      I N T R O D U C T I O N

      ........................................................................................

      7

    2.

      S C O P E OF THE  M E E T IN G

      ..........................................................................

      8

    3.

      T A R G E T

      T E C HN O L O G Y

      D E V E L O P M E N T  .....................................................

      9

    4.   C U R R E N T  P R O C E S S

      T E C H N O L O G Y

      ............................................................  12

    5.   P R O B L E M S A S S O C IA T E D W I TH W A S T E DIS P O S A L  .......................................  12

    6.

      E C O N O M I C  F A C T O R S  ................................................................................  13

    7.  P R O L I F E R A T I O N  C O N C E R N S  .....................................................................  15

    7.1.

      Highly

      enriched  uranium

      contained

      in  fission  M o

      production

      targets  .................  15

    7.2.  Plutonium  produced  in  fission  M o

      product ion

      .............................................  15

    7.3.  U r a n i u m  recycling  .................................................................................  15

    8.

      S A F E G U A R D S  ...........................................................................................

      16

    9.

      Q U A L I T Y A S S U R A N C E

      A N D

      Q U A L I TY

      C O N T R O L

      ........................................

      1 6

    10. P O S S I B IL I T IE S F O R T E C H N O L O G Y

      T R A N S F E R  .............................................

      17

    1 1 . S U M M A R Y   O F C O N C L U S I O N S A N D

      R E C O M M E N D A T IO N S

      ............................  19

    PAPERS  PRESENTED

     AT THE MEETING

    Operation

      of the  installation  for  fission  M o  production  in  Argentina  ..............................  23

    R. O. M arqués, P . R. Cristini , H. F ernandez, D . M artiale

    Development

      of the M o process at

      C R N L  ..............................................................

      35

    K.A. Burrill R.J.  Harrison

    Product ion techniques

      of

      fission

      M o  ......................................................................  47

    A.A.

      Sameh,

     H.J.  Ache

    Production   of

      fission

      M o by processing  irradiated  natural uranium  targets  .......................  65

    O .  Hladik,  G .  Bernhardt,  W .  Boessert,  R.  Münze

    Research

      a nd  development  of M o production

      technology

      in  J a p a n  .................................  83

    H.  Kudo, N.  Yamabayashi,  A. Iguchi, E.  Shikata

    Preliminary investigations  for technology  assessment  of M o production

      from

      L E U targets . .. 99

    G.F.  Vandegrifi,

      D.J.  Chaiko, R.R.

      Heinrich,

      E.T. Kucera K.J. Jensen D.S. Poa

    R .

      Varma,

      D.R.

      Vissers

  • 8/18/2019 Fission Moly

    7/148

    Cont inuing

      investigations for technology assess m ent of M o

      product ion

      from  L E U t a r g e t s

     ....

     115

    G.F.

      Vandegrifi,  J.D.  Kwok,  S.L.  Marshall,  D .R ,  Vissers,  J.E.  Matos

    Product ion of

      fission  Mo,

    1 3 I

    I and

      133

    X e

      ................................................................

      129

    J.  Salacz

    Irradiation

      of

      235

    U in the

      Osi r i s reactor

      for the production of

      M o,

      13 1

    I

     a nd

      l3 3

    X e

    radioisotopes

      ..................................................................................................

      133

    L .

      Marchand

    I r rad iat ion

      of

      235

    U   a t t h e B R 2  reactor  for the

      product ion

      of  M o,

      I 3 I

    I  a nd

      133

    X e

    radioisotopes.  Short presenta t ion of the DGR

      loop  ...................................................

      137

    J.M.

      Baugnet,  G. Blondeel

    I r rad iat ion of

      235

    U

      in the HFR  Petten  for the

      production

      of  M o,

      13 1

    I  a nd

      133

    X e

    radioisotopes  ..................................................................................................

      141

    J.  Konrad

    Irradiat ion

      of

      235

    U in the  Siloé

      reactor

      for the production of  M o,

      I 31

    I a nd

      133

    Xe

    radioisotopes  ..................................................................................................  143

    /.  Gallier

    Reprocessing of

      irradiated

      235

    U

      for the

      production

      of

      M o,

      I 31

    I

     a nd

      13 3

    X e

      radioisotopes

      .......  149

    /.  Salacz

    L i s t

      of

      Participants

      .............................................................................................  155

  • 8/18/2019 Fission Moly

    8/148

    SUMMARY  REPORT

    1.

      INTRODUCTION

    Technetium-99m

      is  today  the most widely used radionuclide in  modern

    diagnostic

      nuclear  medicine; very  likely  this  will  remain  so for the

    foreseeable

      future.

      This

      is

      mainly because

      of its favourable  nuclear

    properties

      and the

      fact

      that it was  possible  to

      produce compact,

    practical  and  transportable

      TCc-

     Mo  generator  systems,  providing

    significant  amounts of ^rc to

     users

      far   removed from  the   production

    centres.

    The

      ever  increasing

      demand for

     this  radionuclide, both

      in

     developed

      and

    developing  countries,  may  call  for a  greater  production  capacity  and

    availability,  particularly in the

      developing

      countries,

      many

      of  which

    currently

     operate

     low and medium power nuclear research reactors.

    235

    Currently, the nuclear fission of U is the preferred method of

    99

    producing  high  specific activity Mo  suitable  for the  preparation  of

    99

    Chromatographie

      generators.  The drawback of the  fission  Mo

    technology,

     at least from the view-point of a developing country, is the

    high

      capital

      investment  and the  relatively  sophisticated

      technology

    required.

      Inspite of the above,  there  are

      several  countries

      with

    sizeable  nuclear medicine communities

      seriously considering

      the

    possibility

      of

      introducing this

      technology  to reliably  meet  the

      local

    demand

      of Tc.

    99

    Most  of the

      present  fission

      Mo   technologies make  use of  highly

    235

    enriched  U

     (HEU)

     as

     Al-U

     alloys  or UO in a variety of  target

    designs, and the  corresponding  chemical separation  processes  have

     been

    developed

      accordingly.

      However, there  are indications

      that

      the

    availability of HEU

     targets

     may be restricted in the

     future

     and that new

    or  modified  target technologies  and   separation methods have  to be

    99

     99m_

    investigated to  ensure  a high  quality  and

      economical

      Mo/ Tc

    product

     when using

      low enriched

     target materials

     (LEU).

  • 8/18/2019 Fission Moly

    9/148

    2.

      SCOPE

     OF THE

     MEETING

    99

    Countries wishing  to set up

     production

      plants for

      fission

      Ho to

     meet

    ever

      increasing

      national

      demands

      of Tc for medical  purposes,

      should

    seriously

      and  timely

      take

      into

      account

      the  desirability  of

      using

      low

    enriched uranium

      in this

      process.

      In this regard, the Agency should

    continue

      to play an active role in

      facilitating

      an  exchange  of

    information

     and ultimately an appropriate

     transfer

     of technology

     between

    developed

      and developing

     Member States

     by

     organizing

     scientific

     meetings

    and

     through

     its

     Technical Co-operation Programme.

    The meeting was  held  at the Nuclear Research Centre of Karlsruhe,

    Federal

      Republic  of

      Germany,

      from 13 to 16  October

      1987,

      and was

    attended by

      eleven specialists  from

      6

      Member

      States.  All

      papers

    presented

     at the

     meeting

     are included at the end of the

     report.

    In particular, the participants

     were

     asked to:

    99

    review the

      known

      current  production  technologies of  fission  Mo

    for medical use  including  target  technology,  post

      irradiation

    chemical processing,

      waste

      disposal,

      recycling   of target

      material

    and reactor

     irradiation

     practices;

    - discuss and assess the feasibility of substituting low enriched

    uranium

      for

     highly  enriched  uranium

      in

      targets,

     particularly

      with

    regard to new target materials and technology

     (i.e.

      high density

    uranium-suicide

      dispersions and

      uranium

      metal

      films),  purity

      of

    99

    the Mo product, radioactive

     waste

     and

     economics

     of the process;

    assess  the

      feasibility

      of  transfering  this  technology

      from

    developed to

      developing  countries

      and

      identify

      possible bottle

    necks

      and  problem  areas that may

     hinder

      this  technology

      transfer;

    and

    identify

      and define  concrete

      future lines

      of activity  where  the

    Agency's

     efforts would have the greatest impact and significance.

  • 8/18/2019 Fission Moly

    10/148

    3.

     TARGET TECHNOLOGY DEVELOPMENT

    99

    Most of the  world's  Mo is produced from the  following three

      target

    geometries

     

    (1) ÜO-

     films

     on the

     inside walls

     of  stainless steel cylinders,

    (2)

      Uranium-aluminide alloy

     extruded

      into aluminium

     clad

     rods,

     and

    (3) Uranium aluminium  dispersed  in an aluminium   matrix  and  pressed

    between aluminium plates.

    99

    The first design is  unique  to Mo production; the  second  and third

    designs  are fabricated in the same manner   as  fuel  for  nuclear  research

    and

     test

     reactors.

    235

    Conversion of present HEU (~ 93% U) targets to  those  using LEU

    235

    (£ 20% U) requires a 5-6  fold  increase in

     total

      uranium  content  to

    99

    produce irradiation  yields

      of Mo

      equivalent

      to

      current

      HEU

      targets.

    The

      incorporation

      of

      this larger concentration

      of

      uranium

      in

      current

    target  geometries  will

      require  modifications of the fuel  composition.

    In the case of HEU-oxide-film

      targets,

      research

      at  Argonne

      National

    Laboratory (AND

     has been

     directed

      to the development of LEU metal films

    which

      can   directly

      replace

      the U0

    ?

      films

      used

      in  current

      target

    designs.

      It is

      possible

      to

     place uranium

      films on the

      inside wall

      of

    cylindrical targets by  either

      loading

      uranium  metal  foils  or

    electrodepositing

      uranium

      metal. The  work  at ANL has

      concentrated

      on

    development of the electrodeposition technique.

    99

    Uranium

      metal

      targets for fission Mo production

      have

      several

    advantages

      over

      U0

    2

      targets.

      For

      example,  uranium

      metal  is

      about

    twice

      as

      dense

      as

     U0_,

     ts  thermal

      conductivity

      is an

      order

      of

    magnitude higher

      than that of

     UO«,

      and its plating

      efficiency from

    LiCl-KCl-UCl

    3

      molten  salt  melts  is 100% vs. 20% for the UO

    deposition  process.   The  principal disadvantages  of  using

    electrodeposited

      uranium   metal

      targets

      are

      that

      (1) they

      must

      be

    prepared  from  molten  salt

      systems

      at  high  temperatures (~ 450 C) in

    an

      inert

      atmosphere,

      and (2) the  deposit

      morphology

      tends to be

    dendritic.

      While the higher

     conductivity

     and density

     make

     uranium metal

    targets  appear

      quite  promising, heat management  and

      safety issues

     need

    to

     be

     thoroughly analyzed.

  • 8/18/2019 Fission Moly

    11/148

    Experiments

      performed

      on simulated LEU

      targets

      have  shown

      that

    (1) well-bonded

      dendrite-free uranium  metal

      films  can be  bonded  to

    nickel-plated

      stainless

     steel or zircalory and (2) it is likely that LEU

    targets

      can be

      processed  using

      the  current

      techniques

      for HEU  oxide

    targets,  with  no  significant changes. Uranium

      metal

      can be easily

    dissolved  and the  higher amounts  of uranium in the target  will  affect

    99

    neither  Mo

      yield

      nor its purity. It is  expected  that the  higher

    amounts of transuranic (TRU)

      elements

     produced by the irradiation of LEU

    will

     be

     handled easily

     by current

     processing steps.

    The  development  of

     U

    3

    s

    i

    ?

      and U Si  fuels  has  made

      core

      conversion

    from  HEU to LEU possible in  most  research  and  test reactors  currently

    99

    using

     U-A1 alloy or  uranium  aluminide fuels. For Mo production

    targets containing  HEU  alloy  or   aluminide

      fuel,

      the use of

      replacement

    of  targets

      containing   LEU suicide  fuel  and the

      same

      target  geometry

    99

    would  retain  current

      irradiation

      yields  of Mo.  Because these

    targets  will  be   fabricated  in the same

      manner

      as  reactor  fuels,

      their

    ability

      to be

      fabricated

      will be

      assured

      and difficulties in

      licensing

    will

     be

     minimized.

      However, because of (1) the

     different chemical forms

    of

      uranium

      (e.g.,

      U Si vs UA1 ) and (2) the  need  for   harder

    « 5  X X

    cladding  (e.g.,

      Al 6061,

      AlMg

      or

      AG3NE

      aluminium alloys vs

      pure

    aluminium),

      modifications in the  current  commercial chemical processes

    99

    for

      Mo

      recovery

      will

      be

      necessary.

      Although  it is  clear

      that

    processes  can be

      modified  and/or

      developed  for LEU

      silicide

      targets,

    there are,

     however,

      serious

      concerns

      that these  developments will  be

    extremely

      difficult

      to  integrate into ongoing production  facilities

    without disruption of

     production schedules.

    The Chalk

      River Nuclear  Laboratories  (CRNL)

     has performed

      cold

      and hot

    testing  of the ability of

      their current

     processing method  to handle LEU

    silicide

      targets

      that  were

      fabricated

      using

      materials and a

      geometry

    compatible with  the

     fabrication

      method  for LEU  fuel  rods.  These  tests

    have

      shown  that

      the   current  process  method  cannot  be

      used

      directly to

    process

     LEU

     silicide targets.

      Two

     problems were

     discovered:

    (1) A silicate precipitate from the

     acid

     dissolution of the targets was

    finely

      divided  and difficult to

      filter,

      and plugged the

      alumina

    column

     during processing.

    10

  • 8/18/2019 Fission Moly

    12/148

    (2) This precipitate adsorbs Mo and holds  it against elution from the

    column.  (This

     problem

     was not evident in cold

      laboratory

     tests but

    was noticed in hot

     testing using

     an actual

     full-size target.)

    Tests  at  ANL, using  simulated

      targets,

      have shown

      that process

    modifications can be made to the alkaline dissolution process to

     contend

    with

      problems

      developed from  the use of suicide

      fuels.

      Tests

      with

    slightly irradiated targets are planned in early

     1988.

    New target  designs  that  will  not require

      changes

      in

     current

      processing

    methods, have

     a

     great

     appeal, even though

     their fabrication

      is  expected

    to be

     more

     expensive and licensing more

     difficult.

    Some alternative target designs

      of

      this

      type

      have

      been

      addressed

      at

    CRNL.

      These

      designs

      include U

      metal,

      UO , U-A1 alloy, U

      dispersed

      in

    aluminium,  UO

      dispersed

      in  aluminium,  and  other combinations.

    Because  UO is

      economically attractive

      due to

      ease

      of

      preparation,

      its

    use in an aluminium

      dispersion

      has

      been

      explored to the

      point

      of

    fabrication  of  full-size targets  and  cold

      laboratory

      testing.  This

    target

      was  fabricated  by extruding a 3 m rod of UO

      dispersed

      in

    aluminium at 60 wt % U. The extrusion  required  a  large  press and UO

    was not uniformly

      dispersed

      throughout  the rod. The rod was  clad

      with

    pure

      aluminium.

      It was

      then

      cut into  target

      lengths

      and  processed  in

    99

    the

      laboratory

      by

      dissolving,

      adding  tracer  Mo, and

      processed

      by an

    alumina column.  Difficulties  with  fabrication  of the UO /Al rod may

    be

      solvable.

      However, other  target

      compositions

      continue  to be

    explored, including those made separate from reactor fuel fabrication.

    99

    In

      conclusion,

      LEU

      targets

      for Mo can be

      fabricated

      to

      give yields

    typically of  current HEU   targets.   It is likely  that

      changes

      in  target

    design and/or  processing

      will

      be

      necessary

      for   this

      conversion.

      The

    economical impact

     of

     this

     conversion has to be assessed.

    1 1

  • 8/18/2019 Fission Moly

    13/148

    4. CURRENT PROCESS TECHNOLOGY

    99

    Six papers

      were

      presented  on  different process technologies  of Mo.

    R. Marques (Argentina),

     A.

     Samen (FRG)

      and C.

     Fallals (Belgium) reported

    on  results  of  processes  based  on the irradiation of highly   enriched

    14  2

    (>90%

     U-235)

     targets in several High Flux Reactors (* > 10

     n/cm

     s)

    and  alkaline dissolution  of different U-A1  targets.  These  processes

    differ

      mainly  in the  subsequent

      purifications  steps

      of the

      crude

    99

    Mo.

      K.A.  Burrill  (Canada),

      R.

     Münze (GDR)

      and H.

     Kudo  (Japan)

    99

    described

      Mo

      production

      processes  that  use  acidic

      (HNO

     )

    dissolution.   A  slower  rate of dissolution has  been  occasionally

    observed  in the GDR and Canadian processes.  Limited

      data

      indicate that

    this may be

      correlated  with

     higher

     burn-up. During

     routine

     production,

    GDR  personnel  have  experienced  20-50%  lower

      yields

      because

      of the

    formation  of a  gelatinous  precipitate  arising

      from

      the   presence  of

    silicon in the

     cladding.

    Whereas  the Canadian process

      starts with

      highly enriched targets, the

    GDR  process  uses  medium  enriched U-Al-targets (fuel   elements  of the

    research

      reactor, 36%

      enriched).   Kudo  reported

      on a method

      based

      on

    2.6%  enriched U0

    ?

      pellets. All of these processes  include  separation

    133 131

    of  Xe. In some cases  I is separated as well.

    All

      processes  discussed

      during

      the  meeting have been demonstrated   to

    99

    supply

      Mo of a  suffic

    generators for medical use.

    99

    supply  Mo of a

      sufficiently

      high

      quality

      for  preparing   column

    5.

     PROBLEMS ASSOCIATED WITH WASTE DISPOSAL

    99

    Processing highly enriched targets  for Mo  production generates

    radioactive  wastes which must   be  treated  and disposed of in

    environmentally acceptable ways.

    The

      wastes

     will be  generated  as

      solids,

      liquids,  and/or gases, and

     will

    include

      material  in the

     low,  medium,

      and

      high

      radioactive

      level

    classifications.

      Initial treatment

     of the

     wastes

     is usually required at

    the

     production

     site, prior to short or  long term storage.  The  treatment

    required

      is

      dictated

      by

      both

      the form of the

      waste

      and its

      activity

    level.

      This technology

     is

     established,

     and

     generally

     available.

    1 2

  • 8/18/2019 Fission Moly

    14/148

    The heavily  shielded

      process

      and

      interim storage  facilities must

    obviously

     be built

     on-site,

     but the sophisticated equipment

     required

      for

    them

     would

     generally have to be bought

     off-shore.

    Storage facilities may or may not need to be

      constructed,

     depending upon

    the physical and

     political availability

     of

     off-shore space.

    In any event, an adequate

      infrastructure

      is required  to transfer  waste

    from

      the

      fuel  processing  facility

      to the  waste

      treatment

      facility (if

    not one and the

     same),

     and the treated

     waste

     to  storage.

    Trained

      operating crews, and support personnel  (maintenance,  analytical,

    accounting,  safety, security,   e t c )

      are required for all facilities. In

    addition,  an

      independent regulatory

      body is

      required,

      to

      review,

    license, and  monitor  all

     phases

     of the operation.

    6. ECONOMIC FACTORS

    99

    At

      present  the

      world's  supply

      of Mo

      comes

      mainly from commercial

    sources.  In

     Eastern

     Europe, the  German Democratic  Republic is the

     only

    known

      manufacturer with a  capability  of 1000

     Ci/week.

      Medi-Physics

    (USA),

     IRE  (Belgium) and

     AECL

      (Canada)

     are the other  major

     suppliers

      in

    Western  Europe  and North   America.  IRE and AECL both have a capability

    of 3000-5000

      Ci per batch. The number of

      batches

      per

      week

      can  vary

    according to the

      demand.

      It is  estimated that this

      installed

      capacity

    99

    can

      supply  current  world's

      needs  for Mo on a reliable  basis.  KfK

    99

    has  demonstrated  a capability of producing 1000  Ci Mo per

      week

      on a

    routine  basis,  however, their mandate  excludes  them  from commercial

    activities  and their  efforts  are  dedicated  to  research  into  process

    development.

    Several companies, including

      the

      largest  producers

      of ^xc

      generators

    in

      industrialized  countries,  have  chosen  on  economical grounds  to

    9 9 m _   99

    manufacture  TC   generators  by   purchasing  fission Mo

      rather

      than

    by

      producing

      it. In

      certain  developing

      countries,

      however,

      there  are

    99

    more than  simple  economic  factors that may  drive  the demand for Mo

    fission  production.  Socio-economic  factors, hard  currency

      availability

    and

      a

      need

      for   technological

      development

      provide

      some

      of the

      driving

    forces.

    1 3

  • 8/18/2019 Fission Moly

    15/148

    99

    Before undertaking  production of fission Mo, a  country must  first

    have

     or develop an

     appropriate

     infrastructure.

      This  includes

     a

     suitable

    13  2

    reactor with a  flux  greater than 10  n/cm .sec,  an  isotope

    processing

      facility

      with Health Physics,

      Regulatory  Affairs,  Quality

    Assurance

      and

      Quality  Control organizations.

      In

      such

      a

      facility,

    appropriate hot cells each with sufficient shielding and

     glove

     boxes are

    estimated

      to be a

      minimum  requirement.

      In

      addition

      there

      can be

    significant  costs  associated

      with

      technology

      transfer, training

      and

    start-up.

    The  country

      should

      also

      have

      adequate  waste storage  and  management

    facilities.

      However,

      if

      these

      are on the same site as the   processing

    facility and

      reactor, issues such

      as the

      acquisition

      of

      containers

    approved

      for

      road  transportation

      and the

      costs associated with   such

    transport

      might

      not be  factors.  These  costs

      could

      be  significant

    otherwise.

    99

    KfK has  provided  actual costs for a

     weekly

      production of Mo.

      This

    includes chemicals, maintenance,  waste

      disposal,

      transportation,

    irradiation  services,

      health

      physics,  quality  control and production.

    It was

      stated

      to be DM 2.4 million

      annually.  This

      did not

      take

      into

    account  R&D

      costs.

      It is

      recognized

      that an  individual  country  may

    choose

      not to allocate  these  R&D  costs  and  overhead  to the  cost  of

    99

    Mo

     production.

    With DM 2.4 million (US$1.3 million) one could buy ~ 130 Ci/week of

    99

    Mo for a period of one

      year

     (6 day Ci

      delivered)

     assuming

      a

     price

     of

    $200/Ci

      which

      is appropriate for

      that

      large volume.  This break-even

    point  of 130  Ci/week  will vary  from country  to

     country.

      At this

      level

    of demand, based on the KfK production

     costs,

     it

     seems reasonable that

     a

    99

    country

      may

      consider making

      its own Mo.

      There

      are

      considerations

    other than economics

     that can be important factors as

     stated

     earlier.

    14

  • 8/18/2019 Fission Moly

    16/148

    7. PROLIFERATION CONCERNS

    99

    7.1.

      Highly Enriched Uranium Contained

     in

     Fission

      Mo

     Production

     Targets

    Due to international

     concerns

     about the proliferation of weapons-useable

    uranium  and because

      supplies

      of highly-enriched  uranium

     (>20%)

     will  be

    restricted in the future, a programme has  begun  at ANL to

      develop

      the

    technology  for production of fission  product  molybdenum using  targets

    containing low-enriched uranium (<

     20%)

     instead  of

      highly-enriched

    uranium.  The status of this  work  is discussed in the

      paper

      entitled

    "Preliminary

      Investigations  for   Technology Assessment  of "MO

    Production from LEU

     Targets".

    99

    7.2.

      Plutonium Produced in Fission  Mo Production

    The plutonium produced  in

     irradiated

      targets containing HEU (93%) or LEU

    (20%)  for

      production

      of fission  product  molybdenum is not significant

    from a proliferation point of  view.

    99

    Targets

      specifically

      designed for fission Mo production  contain

    235 235

    between 1 and 15g U. Burnup is

      typically

     1-2%  of the U

    99

    because the Mo

      saturates

      in this  burnup range. Quantities  of

    99

    plutonium

      produced

      are

      about

      1

     mg/1000

      Ci Mo for

      targets

      containing

    99

    HEU  and   about  21 mg/1000  Ci Mo for

      targets

      containing

     LEU. Curies

    are defined

      here

      at the time of  removal

      from

      the  reactor  and the Pu

    239 239

    includes

      both

      Pu and Np.

      With

      LEU   targets,  it would

      require

    99

    production (at the

     reactor)

     of  about 48.000 Ci Mo to

      produce

      l g of

    99

    Pu.

      That

      is, about lg of Pu   would  be

      produced

      per   year   for a Mo

    production rate of 1000 Ci per

     week.

      This rate of Pu production is not

    significant.

    7.3.

      Uranium Recycling

    Some

      concern

      was   expressed  about the

      possibility

      that the

      transfer

      of

    99

    technology  for   uranium recovery   from  the Mo  fission

      production

    process  may potentially  lead  to activities in

      sensitive areas such

      as

    reprocessing

      of

      irradiated

      fuel  elements.  It

      must,

      however,

      be

    recognized

      that

     such

     transfer would be limited  to

     small scale

     operations

    aimed

      exclusively

      at the  recovery  of the

      valuable uranium  from

      LEU as

    well as HEU

      targets.

      In  both cases  the production of Pu is

     negligible

    1 5

  • 8/18/2019 Fission Moly

    17/148

    and  the  underlying

     chemical process

     flowsheets are well described in the

    open  literature. Further,

      it is recogniEed

      that

      the KfK  process

    technology  is not  directly  applicable to the recovery of fissionable

    materials other

     than

     uranium.

    8.  SAFEGUARDS

    Safeguards requirements

      must

      be   fulfilled  by a very strict (at the mg

    235

    level)

      U and U

     total

     balance for  each

     area

     and at all times.

    Documented reports  must be  sent  at  regular  periods to  national  and

    99

    international  authorities.  Fission Mo producers  must  accept regular

    inspections

      by

      national

      and

      international authorities,

      particularly  by

    IAEA officers.

    9. QUALITY ASSURANCE

     AND

     QUALITY CONTROL

    99

    For  fission  Mo, a

      quality

      assurance  programme must be

      completely

    described

     including:

    -

      detailed

     description of the facility and equipment,

    detailed

      description

      of the

      whole

      process, such   as  targetry,

    irradiation,  chemical process, storage,

     waste

     and recovery,

    -  personnel

     training,

    good

     manufacturing

     practices and good

      laboratory practices,

    technical

     procedures.

    99

    Final  Mo

      quality

      must be

      described

      by

      precise specifications

      of

    radionuclidic and radiochemical

      purities

      in

      addition

      to  other

    requirements

      such as specific activity, pH and   nature  of  solution  as

    described

     in the

     international

     pharmacopoeia.

    Final

     product

     quality must

     be

     assessed

      by a qualified quality

      assurance

    officer

      who is functionally

      independent

      from the production department

    and

     assumes personal responsibility for the assessment.

    1 6

  • 8/18/2019 Fission Moly

    18/148

    10. POSSIBILITIES FOR TECHNOLOGY TRANSFER

    99

    Efficient  and reliable  international

      suppliers

      of Mo are in

    existence  today,  with

      estimated

      total

      capabilities

      sufficient

      to

      supply

    the entire

      current

      world

      demand.

      However,  for a variety of

      reasons,

    some organizations  in

      developing

      countries  may

      wish

      to  undertake

    99

    indigenous

      production of

      fission

      Mo for

      medical

      applications. The

    meeting  considered  and discussed  several  areas  in  which  the

      IAEA

      may

    assist  these organizations  in achieving   their   goal

      through

      a process  of

    technology transfer.

    Nuclear Reactor Requirements

    99

    Before embarking

      in Mo fission production, the

      organization  should

    make  sure

      that adequate

      irradiation

      facilities

      are

      available.

      These

    facilities should include

     a nuclear  research

      reactor

     with  the  following

    characteristics: (a)

     Irradiation

     positions with adequate thermal

     neutron

    flux  greater than  10  n/cm .sec  must be available- . The

      ability

    to  insert  and  remove targets  without  interrupting reactor operation  is

    desirable

      but not

      necessary,

      (b) The coolant flow in the irradiation

    positions

      must

      allow irradiation

      of the fission

      targets

     with

      acceptable

    thermal-hydraulic  safety  margins,  (c)

     Operation

      of the

      reactor

      must be

    reliable and

      continuous,

      with sufficiently

     high

      load

      factors, (d)

     Other

    uses  of the  reactor  are  desirable  to reduce the fraction of the

    99

    operation costs to be allocated to Mo production.

    Safety

     Considerations/Regulatory

     Aspects

    Irradiation

      of the  targets  is normally  regulated  by the  same

    organization

      which has regulatory responsibility for the operation of

    the  reactor.  In all probability, the  same criteria

      applied

      to

      evaluate

    the  safety  of the  reactor   fuel  will  be  used  to evaluate the

      safety

      of

    the targets.

      Thus,

      thermalhydraulics

      considerations

      will dictate  the

    maximum power of the

      targets,

     their uranium content,  and the uniformity

    requirements

      for their

      loading.

      The  safety aspects  of the  fissile

    -

    /

      Experience

      shows

      that  to   obtain  a

     99

    Mo

      activity

      of   about  150 Ci at a

    calibration  time of 6 days after the end of

      irradiation,

      a  thermal

    neutron

     flux

     of 3 to 4 x lO^   n/cm^ sec is

     required.

    1 7

  • 8/18/2019 Fission Moly

    19/148

    material used  in the  targets

      will

      also  be

      evaluated

      in a

      manner

    consistent

     with the evaluation of the reactor

     fuel.  Thus,

     targets using

    the

      same

      material as the  reactor  fuel  material  will  be

      easiest

      to

    license.

    The  safety

      aspects

      of

     target

     processing must be addressed in a

     separate

    safety report, which must include a

     detailed

     quality

      assurance

     programme

    (see Chapter 9 on

     quality assurance

     programme).

    Waste

     Disposal

    An

      adequate

      waste

      disposal/uranium recovery

      system

      must

      be

      available

    before

     start-up

     of the facility (see hapter 5 on waste

     disposal).

    Man-power

     Requirements

    An

      infrastructure

      of skilled

      personnel

      in

      nuclear,  chemical

      and

    radiochemical

     fields must be available.

    Availability of

     Fuel

    HEU

      supplies  may be limited in the

      future.

      Organizations  in developed

    countries

      are

      investigating

      the

      feasibility

      of

      using

      LEU

      targets

      in

    their  facilities.

      Organizations

      in developing

      countries  should

      take

    this

     development into account (see Chapter 7 on

     Proliferation

     Concerns).

    Economical Aspects

    99

    The demand for Mo

      which

      the

      proposed facility

      is planned to

      satisfy

    99

    must

      be

      assessed  realistically

      in

      terms

      of

      quantity

      of Mo needed per

    week

      in the various

     nuclear

     medicine

     centres

     of the

      country.

      The

      level

    of  demand  is  essential   to

      determine

      the  unit cost  of the produced

    99

    Mo. A  realistic

      estimation

      of the

      unit

      cost should  take  into

    account  several factors such as R & D  costs,

     capital

     investment of the

    production plant,  operation costs,

      quality  control  and  maintenance  of

    all the relevant facilities. The  assessment can be done by conducting a

    technical-economical feasibility study.

    18

  • 8/18/2019 Fission Moly

    20/148

    11. SUMMARY OF  CONCLUSIONS  AND RECOMMENDATIONS

    1.

     Since

      the   establishment  of

      indigenous production facilities

      of

      fission

    99

    Ho for

      medical

      use requires

      serious considerations

      of

      technical

      and

    economical nature,

     it is highly

     recommended that

     careful

      pre-feasibility

    and  feasibility studies be conducted  before  further commitments  are

    made. The Agency may

      play

      a role, in co-operation with

      external

    experts, to help the

     country

      concerned to define the  terms of

     reference

    for  such

     feasibility

     studies.

    2. It is

      recognized that

      safety and

      regulatory aspects

      are of

      paramount

    importance  for a  successful

      production

      programme.

      Therefore,

      it is

    recommended

      that  both

      national

      and  international  safety  regulations

    should be

     strictly

     followed.

    3.

     Because  of the technical

      complexity

      of the matter,  it is

     necessary that

    the staff  involved  in all  phases  of the

      production

      programme  be well

    trained and

      highly  qualified.

      Here

      again,

      the

      Agency

      may   play  an

    important role through its Fellowship Programme.

    4. It is expected  that  in about  two

     more

     years new  developments  in  target

    materials and technology as well as chemical  processing may  take place,

    which

      will

      take

      into

      account the

      future

      unavailability of highly

    enriched

     uranium

     for

     targets.

    19

  • 8/18/2019 Fission Moly

    21/148

    PAPERS PRESENTED  AT THE MEETING

  • 8/18/2019 Fission Moly

    22/148

    OPERATION  OF THE INSTALLATION  FOR FISSION Mo

    PRODUCTION

      IN ARGENTINA

    R . O .

      M A R Q U É S ,

      P . R . C R I S T I N I ,

    H.

      FERNANDEZ,

     D.

     MARZIALE

    Direction

      de

      Radioisotopes

      y

      Radiaciones,

    Comisiön Nacional

      de

      Energia  A t ö m i c a ,

    Buenos

      A ir e s ,

      Argentina

    Abstract

    The

      paper  describes  the

      efforts

      of the

      Argentine  Atomic

      Energy  Commission  to

    9

     9

    establish  a programme to produce fission Mo for the

      preparation

      of

    99

      *c   generators.   Th e   producti on

      plant

      has   been   completed  in

      1987

     and has

    started

      limited  pr o d u c tio n runs.

      The hot

      cells consist

     of

      four

     hot cells

     with

    a

      stainless

      s t e e l   lining.

      The chemical separation  process  of   * * M o   from

    the

      i rra d i a t e d  A l / A l l o y

     (90 n r ic hed)  targets is similar to the

      pr o c ess

    de ve l ope d

      by A.  Sameh  in the

      Fed er al Rep u blic

      of  Germany.   The

      pr o d u c t

    sp ec if ic atio n

      conforms

      very well  with   the requir ements for a safe use in the

    p r e p a r a t i o n  of x c ge ne ra t or for  m e d i c a l u s e .

    O n

      1 9 8 5

      t h e A r g e n t i n e A t o m i c C o m i s s i o n   b e g a n   t h e o p e r a t i o n

    o f t h e   i n s t a l l a t i o n   f o r   p r o d u c t i o n   o f

      f i s s i o n

      M o - 9 9 .

    T h i s

      f a c t   i s t h e

      r e s u l t

      o f a

      p r o j e c t   i n c l u d e d

      i n t h e   G e r m a n

    A r g e n t i n e a g r e e m e n t , h a s i n v o l v i n g t e c h n o l o g y   t r a n s f e r   t o o u r

    c o u n t r y

      o f t h e p r o d u c t i o n

      m e t h o d   d e v e l o p e d

      b y D r .

      S a m e h

      A l l a t   K F K .

    T h e d e c i s i o n o f p r o d u c i n g   f i s s i o n   M o - 9 9   i n   A r g e n t i n e

      R e p u b l i c

    w a s

      t a k e n

      s o m e   y e a r s

      a g o b e c a u s e

      o f

      i n c r e a s i n g

      d e m a n d   i n t h e

    m e d i c a l   f i e l d   f o r   f i s s i o n   M o l y b d e n u m   g e n e r a t o r s .   T h e   n e e d   f o r

    M o - 9 9

      h a s   b e e n   i n c r e a s i n g u p t o a

      v a l u e

      o f 8 0   C i / w e e k   a t   p r e s e n t .

    T h u s 1 0

      y e a r s

      a g o

      C N E A

      d e c i d e d t h e c o n s t r u c t i o n o f a

      s u i t a b l e

    p l a n t f o r   f i s s i o n   p r o d u c t s   p r o c e s s i n g .   T h i s i n s t a l l a t i o n ,   w i t h

    s e v e r a l m o d i f i c a t i o n s ,

      i s t h e o n e

      o p e r a t e d

      a t

      p r e s e n t .

    I t   i s

      p l a c e d

      i n a

      r o o m

      o f 8 0 m

    2

      i n t h e

      r a d i o i s o t o p e   p r o d u c -

    t i o n

      p l a n t ,

      n e x t

      t o

      R A - 3

      n u c l e a r r e a c t o r , a l l o w i n g   i n

      t h i s

      w a y a

    f a s t a n d

      s a f e t r a n s f e r

      o f i r r a d i a t e d t a r g e t s t o t h e p r o c e s s i n g

    23

  • 8/18/2019 Fission Moly

    23/148

    h o t   c e l l .

      F o u r

      h o t   c e l l s w e r e   s e t t l e d   t h e r e :   t w o o f t h e m a r e

      m a i n ,

    s h i e l d e d

      w i t h 2 0 c m o f P b . T h e i r d i m e n s i o n s a r e 2 x 1 , 5 x 1 , 5 m ,

    b e i n g

      e q u i p p e d   w i t h   m a s t e r s l a v e m a n i p u l a t o r s

      a n d

      w i t h d o u b l e   d o o r

    F r e n c h   s y s t e m .

    T h e

      t h i g t

      c o n t a i n m e n t   b o x e s

      a r e

      b u i l t

      i n

      s t a i n l e s s   s t e e l ,

    w i t h

      a n

      i n t e r n a l

      c o a t i n g   o f   e p o x i   p a i n t . T h e   o t h e r   t w o a r e

    a u x i l i a r y   h o t   c e l l s   e q u i p p e d   w i t h   m a n i p u l a t o r s ,  a n d

      t h e i r

      d i m e n -

    s i o n s   a r e 1 x 1 x 1 m ,

      s h i e l d e d w i t h

      1 0 c m o f

      l e a d .

      T h e

      l o w e r

    p a r t

      o f t h e   c e l l s   a r e   u s e d   t o

      p l a c e s e v e r a l t a n k s

      f o r

      c o l l e c t i o n

    a n d

      s t o r a g e   o f

      l i q u i d

      w a s t e   a n d   d i s p o s a l   o f   g a s e o u s w a s t e .

    T h e

      e n g i n e

      r o o m   w a s

      p l a c e d

      i n a

      s p a c e b e t w e e n   g r o u n d

      a n d

    f i r s t   f l o o r .

      L a t e r   o n i t

      w i l l

      b e

      s h o w n

      t h a t   t h e

      c h a r a c t e r i s t i c s

    o f   t h i s i n s t a l l a t i o n   a r e   v a r y i n g b e c a u s e   o f i t s   a m p l i f i c a t i o n .

    I r r a d i a t i o n t a r g e t s

    T h e

      t a r g e t   c o n s i s t s

      o f a n   A l / U

      a l l o y c o r e

      ( U A 1

    V

    )

      w i t h

      1 g

    A

    U r a n i u m e n r i c h e d t o   9 0 % ,   w h i c h i s

      A l u m i n i u m - w r a p p e d

      a s a s a n d w i c h

    I t

      i s 1 3 c m

      l o n g ,

      3 , 6 c m w i d e a n d   0 , 1 5   c m t h i c k . T h e   w e i g h t   o f

    A l

      i s 1 3 g r   ( e a c h ) .   T h e s e t a r g e t s   a r e   p r o d u c e d   b y t h e   N u c l e a r

    F u e l D e p a r t m e n t   o f   C N E A , e m p l o y i n g n a t i o n a l t e c h n o l o g y .

    I r r a d i a t i o n   c o n d i t i o n s

    T h e   p l a t e s ,   p r o p e r l y

      d i s p o s e d ,

      a r e p l a c e d i n

      R A - 3

      r e a c t o r

    IT

      O

    c o r e ,   e x p o s e d

      t o a

      n e u t r o n f l u x

      o f 3 x 1 0   n / c m   s e c a n d   u s i n g

    t h e

      c o o l i n g s y s t e m

      o f t h e

      r e a c t o r . B e c a u s e

      o f t h e

      n e e d

      o f

      c h a n g i n g

    t h e r e a c t o r c o r e ( i t i s n e c c e s a r y t o g o f r o m 9 0 % t o 2 0 %

      e n r i c h -

    m e n t )   f r o m

      t h e

      b e g i n n i n g

      o f

      t h i s y e a r

      t h e

      r e a c t o r

      i s

      o p e r a t i n g

    w i t h   a g e d

      f u e l

      e l e m e n t s ,

      w h i c h p r o d u c e a

      r e a l   f l u x

      o f

      a b o u t

    1 , 5   x 10

    13

      n / c m

    2

      s e c .

    24

  • 8/18/2019 Fission Moly

    24/148

    T h e i r r a d i a t i o n   t i m e

      o f t h e

      p l a t e s

      i s 5 c o m p l e t e d a y s , a n d

    a f t e r ,

     t h i s   t h e y   a r e

      c o o l e d

      1 6   h o u r s   i n t h e

      r e a c t o r p o o l   b e f o r e

    t r a n s p o r t a t i o n f o r

      p r o c e s s i n g .

    A   t i g h t c a n i s   u s e d   t o   c o n t a i n   t h e i r r a d i a t e d   p l a t e s   f o r

    t r a n s p o r t

      f r o m

      t h e

      r e a c t o r

      t o t h e

      p r o c e s s i n g

      h o t

      c e l l .

      .

    T r a n s p o r t a t i o n

      o f i r r a d i a t e d   t a r g e t s

    T h e   r e c e p t i o n   o f t h e   t i g h t   c a n   w i t h   t h e

      i r r a d i a t e d

      p l a t e s

    f r o m

      t h e r e a c t o r a n d

      t r a n s p o r t a t i o n

      t o t h e p r o c e s s i n g

      c e l l s

      a r e

    c a r r i e d

      o u t w i t h a s e l f - p r o p e l l e d

      s h i e l d i n g

      s p e c i a l l y d e s i g n e d

    f o r

      t h i s

      p u r p o s e .   T h e   w e i g h t   o f t h e

      s h i e l d i n g

      i s   a b o u t   2 , 5 T n a n d

    t h e

      t h i c k n e s s

      o f P b i s 2 3 c m .

    A s t h e   h e i g h t   o f   t a r g e t

      r e c e p t i o n

      a t   R A - 3   r e a c t o r   a n d t h e

    h e i g h t o f t h e e n t r a n c e   s y s t e m   a t t h e   c e l l   d i f f e r i n a b o u t 1 m ,

    t h e   p o s i t i o n   o f t h e s h i e l d i n g   d o o r   c a n b e   v a r i e d   b e t w e e n   t h o s e

    l i m i t s .

    l o d g e m e n t i n s i d e t h e

      s h i e l d i n g

      a l l o w s

      a

      c o n v e n i e n t

      e n e r g y

    d i s s i p a t i o n .   I n o r d e r t o   e n t e r p l a t e s   i n t h e h o t   c e l l ,   t h e d o u b l e

    d o o r

      L A C A L H E N E

    s y s t e m

      h a s

      b e e n   m o d i f i e d ,   a l l o w i n g

      t h e

      o p e r a t i o n

    t o   b e m a d e i n l e a k - p r o o f   c o n d i t i o n s .

    D e s c r i p t i o n o f t h e p r o c e d u r e

    A s c a n b e   s e e n   i n F i g I t h e   a d j u s t m e n t   o f   o p e r a t i o n   o f t h e

    i n s t a l l a t i o n w a s   d i v i d e d i n   f o u r   s t a g e s .

    T h e   p r o c e d u r e   f o l l o w e d f o r   p r o c e s s i n g   t h e p l a t e s i s t h e o n e

    d e v e l o p e d   b y D r .   S a m e h   ( F i g . I I ) .   A t t h i s   p o i n t ,   i t i s

      c o n v e n i e n t

    t h e f o l l o w i n g   c o m m e n t s   c a n b e m a d e   a b o u t   t h e   e q u i p m e n t   e m p l o y e d .

    O w i n g t o

      d i f f i c u l t i e s

      f o r g e t t i n g i m p o r t e d

      e l e m e n t s ,

      s e v e r a l o f

    t h e m

      w e r e

      r e p l a c e d .

    25

  • 8/18/2019 Fission Moly

    25/148

    FIRST STAGE:

    S E C O N D S T A G E :

    T H I R D   S T A G E :

    F O U R T H  STAGE:

    STARTING

     OF

     INSTALLMENT

    O P E R A T I O N

    N O N   C O M M E R C I A L   P R O D U C T I O N

    C H A R A C T E R I Z A T I O N

      O F F I N A L

    P R O D U C T  (Mo-99)

    E M P L O Y M E N T  OF Mo-99 IN

    G E N E R A T O R

     PRODUCTION

    ( N O N - C O M M E R C I A L  PRODUCTION)

    R O U T I N E   P R O D U C T I O N   F O R

    C O M M E R C I A L

     PURPOSES

    «

      IRRADIATION

     SYSTEM

    *   T R A N S P O R T   D E V I C E F O R

      I R R A D I A T E D

      T A R G E T S

    *  P R O C E S S I N G

     STEPS

    •   R A D I O N U C L I D I C P U R I T Y

    '  C H E M I C A L   C H A R A C T E R I S T I C S  AND   R A D I O C H E M I -

    C A L P U R I T Y

    •  B E H A V I O U R  OF  F I S S I O N  Mo-99 IN  A L U M I N A

    COLUMNS

      C H A R A C T E R I S T I C S

     OF

      E L U T E D  Tc-99

     m

    v

    *   G E N E R A T O R

      E F F I C I E N C Y   A N D

      Y I E L D I N G

    •  W E E K L Y

      P R O D U C T I O N

     OF Mo-99

    *

      L I Q U I D   W A S T E

     DISPOSAL

    * D I S O L U T I O N O F

      I R R A D I A T E D  U-235

      A N D

      L A T E R

    P U R I F I C A T I O N

    »

      A L L

     THESE

      S T A G E S   I N V O L V E

      P E R S O N N E L

      L I C E N S I N G   A N D

      D O C U M E N T A T I O N

      E V A L U A T I O N   B Y T H E

    R E G U L A T O R Y   B O D Y .

    F I G. I

    L._.J

    LJzz:

    1 3 1 1

     Mo

    Fission product

    Uranium

    133

    Xe

    FIG.II

    26

  • 8/18/2019 Fission Moly

    26/148

    F o r

      i n s t a n c e   t a n t a l i u m   r e a c t o r s

      c h a n g e d

      t o   P . V ; C

      s p e c i a l l y

    m o l d e d   r e a c t o r s ,   w i t h   a   w a l l   t h i c k n e s s   o f a b o u t 1 c m   w h i c h a l l o w s

    w o r k i n g

      i n   v a c u u m

      c o n d i t i o n s

      w i t h o u t a n y   d i f f i c u l t i e s .

    T h e t a n t a l i u m o r   s t a i n l e s s   s t e e l   v a l v e s   w e r e r e p l a c e d   b y

    s p e c i a l l y   d e s i g n e d a n d b u i l t P V C

      v a l v e s .

      T h e e x c h a n g e

      c o l u m n s

     a r e

    c o n t a i n e d i n P V C   t u b e s ,

      a l s o

     s p e c i a l l y   d e s i g n e d ,   t o b e a r t h e

      d e p r e s -

    s u r e c o n d i t i o n s

      o f t h e

      p r o c e s s .

    I n   t h i s   w a y ,   r e - c h a n g e a b l e   e l e m e n t s   h a v e

      d i s p o s a b l e

      c h a r a c -

    t e r i s t i c s ,

      b e c a u s e t h e

      r e p l a c i n g

      o f

      t h e s e

      e l e m e n t s

      d o e s

      n o t

    r e p r e s e n t

      a n   i m p o r t a n t

      e x p e n s e .

    T h e

      m e t h o d o l o g y e m p l o y e d i n v o l v e s

      d e p r e s s u r e   c o n d i t i o n s

    d u r i n g

      a l m o s t   a l l t h e p r o c e s s i n o r d e r t o k e e p t h e

      f i s s i o n   g a s e s

    i n a   c l o s e d   s y s t e m .   T h e

      i r r a d i a t e d

      t a r g e t s ,   i n t h e  f i r s t  c h e m i c a l

    s t e p ,   a r e   d i s s o l v e d   i n h o t   a l k a l i n e   m e d i u m   w i t h   a   c o n t i n u e s   f l o w

    o f   N

    2

    .

    T h e

      s o l u t i o n ,

      a f t e r

      c o o l i n g , i s f i l t e r e d

      t h r o u g h

      a

      f a t t e d

    p l a t e ,   b u i l t   i n s t a i n l e s s   s t e e l .

    T h e

      i n s o l u b l e   r e s i d u e   c o n t a i n s   U r a n i u m   a s   d i u r a n a t e   a n d

    U r a n i u m d i o x i d e ,   t o g e t h e r

      w i t h

      i n s o l u b l e   f i s s i o n

      p r o d u c t s

      s u c h

    a s R u t h e n i u m , Z i r c o n i u m ,   N i o b i u m   a n d   L a n t h a n i d e s .

    T h e f i l t r a t e c o n t a i n s M o l y b d e n u m , t o g e t h e r   w i t h   t h e  A l u m i n a t e

    a n d t h e   s o l u b l e f i s s i o n   p r o d u c t s   s u c h   a s I , T e

      a l k a l i n e

      a n d

    a l k a l i n e   e a r t h   c a t i o n s ,   S b   ( a n d  s o  on).

    A t   t h i s   p o i n t   w e c a n t o   c a r r y   o u t t h e   r e c u p e r a t i o n   o f   1 - 1 3 1

    w i t h   s o m e

      s u c c e s s .

    A f t e r   t h e   f i r s t s t a g e ,   t h e

      p u r i f i c a t i o n

      o f   M o - 9 9   i s c a r r i e d

    o u t m a i n l y b y

      i o n i c

      e x c h a n g e   c r o m a t o g r a p h y . I t h a s   b e e n   t h o r o u g l y

    s t u d i e d

      d u r i n g   t h e a d j u s t m e n t o f t h e   o r i g i n a l   m e t h o d ,   s p e c i a l l y

    l o a d i n g r a t e   a n d w a s h i n g o f t h e

      c o l u m n s ,

      i n   o r d e r   t o r e a c h   a d e -

    q u a t e

      d e c o n t a m i n a t i o n

      f a c t o r s . A s a r e s u l t o f   t h e s e s t u d i e s ,   t h e

    27

  • 8/18/2019 Fission Moly

    27/148

    l o a d i n Q ,

      w a s h i n g   a n d e l u t i o n   r a t e s h o u l d   n o t b e g r e a t e r t h a n

    8 m l / m i n t o   o b t a i n   a   f i n a l

      p r o d u c t

      o f   g o o d   q u a l i t y .

    T h e r e f o r e   a   f i r s t a n i o n i c

      e x c h a n g e

      c o l u m n

      A G - 1

      i s

      l o a d e d

    w i t h

      t h e

      f i l t r a t e

      s o l u t i o n .

      A f t e r   w a s h i n g ,

      t h e M o i s

      e l u t e d

    d i r e c t l y   t o t h e

      s e c o n d

      m a i n   h o t

      c e l l

      t o c a r r y o u t t h e   n e x t   s t e p

    o f   t h e p u r i f i c a t i o n   p r o c e s s :   c o m p l e x i n g   M o   w i t h

      p o t a s s i u m

    t h y o c i a n a t e   i n

      a c i d

      m e d i u m ,   i n   o r d e r   t o

      o b t a i n

      t h e

      w e l l

      k n o w n

    c o m p l e x   M o O

     (SCN)

    4

    ~

    T h e p u r i f i c a t i o n

      s t e p

      f o l l o w i n g   t h e

      M o - S C N

      c o m p l e x f o r m a t i o n

    i s   t h e

      p a s s a g e

      t h r o u g h   a

      C H E L E X

      1 0 0   r e s i n

      c o l u m n

      i n i t s   a n i o n i c

    f o r m ,

      w h e r e

      t h e

      c o m p l e x

      i s r e t a i n e d

      q u a n t i t a t i v e l y .

    A f t e r   t h e w a s h i n g o f C H E L E X   c o l u m n ,   t h e e l u t i o n o f M o i s

    p e r f o r m e d   w i t h

      h o t   N a O H s o l u t i o n

     (50eo.

    T h e n e x t

      s t e p

      i s t o

      r e p e a t

      t h e

      f o r m a t i o n

      o f

      M o - S C N   c o m p l e x

    a n d   i t s   p a s s a g e   t h r o u g h   a C H E L E X

      1 0 0 - 2 0 0

      r e s i n c o l u m n ,

      w i t h

      t h e

    s a m e w a s h i n g

      a n d

      e l u t i o n c o n d i t i o n s ,

      t o

      g u a r a n t e e

      t h e

      p u r i t y

      o f

    t h e

      f i n a l   p r o d u c t .

    T h e

      w h o l e

      p r o c e s s   i s

      c a r r i e d

      o u t

      u n d e r d e p r e s s u r e

    c o n d i t i o n s t o a v o i d t h e   e s c a p e   o f

      f i s s i o n

      g a s e s ,   w h o s e   d i s p o s a l

    w i l l

      b e   e x p l a i n e d   l a t e r o n .

    T h e l i q u i d   c i r c u l a t i o n   i s c a r r i e d o u t

      d u r i n g a l m o s t

      a l l

    t h e

      p r o c e s s

      b y   d e p r e s s u r e c o n d i t i o n s ( p r o d u c i n g   s u i t a b l e A P ) .   i f

    n e c e s s a r y , w i t h t h e   h e l p   o f   p u l s a t i n g   p u m p s .

    W i t h

      t h e

      e l u t i o n

      o f M o   f r o m   t h e   s e c o n d   r e s i n   c o l u m n ,   t h e

    o p e r a t i o n

      i n

      c e l l

      I I i s

      c o m p l e t e d ,

      a n d t h e

      e l u a t e

      i s

      c a r r i e d

      t o

    t h e   s e c o n d   a u x i l i a r y

      c e l l

      w h e r e p H i s   a d j u s t e d   t o a   v a l u e   o f 3 , 5

    b e f o r e

      p a s s i n g   t h e

      s o l u t i o n

      t h r o u g h   a n

      A ^ O - j

      c o l u m n ,   w h i c h   i s

    t h e   l a s t s t e p

      o f

      p u r i f i c a t i o n .

    28

  • 8/18/2019 Fission Moly

    28/148

    W a s h i n g

      t h i s

      c o l u m n   i s   m a d e

      w i t h

      a

      d i l u t e

      H N ü V j   s o l u t i o n a n d

    w a t e r ,   p a y i n g   s p e c i a l   a t t e n t i o n t o   w a s h i n g   r a t e .   F i n a l l y   M o i s

    e l u t e d

      w i t h

      N H - j s o l u t i o n i n a v o l u m e o f 3 0 m l .

    W a s t e

      D i s p o s a l :

    a )

      G a s e o u s :

    i ) D i s s o l u t i o n : t h e H

    2

      p r o d u c e d   d u r i n g

      d i s s o l u t i o n

      o f A l / U   p l a t e s

    i n   a l k a l i n e m e d i u m

      i s

      d r i v e n   i n t o

      a n

      o x i d a t i o n   s y s t e m   w i t h

    C u O a t

      4 0 0 Q C

      a n d t h e f o r m e d

      w a t e r

      i s

      c o n d e n s e d .

      T h e

      r e m a i n i n g

    g a s e s   ( a n i t r o g e n s t r e a m   p e r m a n e n t l y   c a r r i e s   t h e   f i s s i o n g a s e s

    t h r o u g h   t h e

      s y s t e m )

      a r e   c o l l e c t e d   i n   p r e - e v a c u a t e d   s t a i n l e s s

    s t e e l

      t a n k s

      ( t o t a l

      v o l u m e :

      4 0 0 1 ) .

      A f t e r

      a

      w e e k

      o f

      s t o r a g e

      t h e

    g a s e s a r e   t r a n s f e r r e d   t o   f o u r

      t a n k s

      ( 1 0 0 1

      e a c h )

      w i c h   a c t i v a t e d

    c h a r c o a l ,   p l a c e d

      t o g e t h e r

      w i t h   t h e   a f o r e s a i d t a n k s u n d e r c e l l

    n u m b e r

      o n e .

    A f t e r

      a n o t h e r w e e k o f s t o r a g e t h e   g a s e s   a r e   c a r r i e d i n t o   5

    t a n k s ( 8 9 1

      e a c h )

      w i t h

      a c t i v a t e d

      c h a r c o a l   ( p l a c e d o n t h e t o p o f

    c e l l

      n u m b e r o n e ) a n d t h e n   t h e y   a r e d e l i v e r e d t o t h e

      v e n t i l a t i o n

    s y s t e m   o f t h e   c e l l s .

    A

      s t u d y

      o f

      s e p a r a t i o n

      o f

      X e - 1 3 3

      b y

      c h e m i s o r p t X o n

      i s c a r r i e d

    o u t a t

      p r e s e n t

      i n o r d e r t o o b t a i n h i g h p u r i t y X e .

    M o - S C N   c o m p l e x

      f o r m a t i o n

      i s c a r r i e d o u t i n a   p r e - e v a c u a t e d

    r e a c t o r   a n d i s a c c o m p a n i e d b y p H   c h a n g e f r o m a l k a l i n e   t o

      a c i d

    m e d i u m .

      P r o d u c e d   g a s e s

      a r e   c o l l e c t e d   i n a 1 0 0 1   t a n k

      u n d e r

      t h e

    c e l l   a n d a f t e r a   w e e k

      c a r r i e d

      t o

      f o u r

      t a n k s

      ( t o t a l

      v o l u m e ;

      32 0 1 )

    w i t h

      a c t i v a t e d   c h a r c o a l ,   p l a c e d   o n t h e t o p o f   m a i n   h o t   c e l l

    n u m b e r

      2 .

    T h e s e   o f f - g a s e s

      a r e

      d e l i v e r e d

      t o t h e v e n t i l a t i o n

      s y s t e m

      o f

    t h e   h o t   c e l l s ,   w h i c h

      i n v o l v e s

      f o u r t e e n   2 0 0 1 t o w e r s ,   l o c a t e d   i n

    t h e

      c e l l a r c o n t a i n i n g   a c t i v a t e d

      c h a r c o a l ,   w h i c h c a n

      w o r k

      i n

    s e r i e s   c o n n e c t i o n

      o r i n   p a r a l l e l . A f t e r   p a s s i n g t h e s e

      c o l u m n s

      t h e

    a i r i s   f o r c e d t h r o u g h   a

      b a t t e r y

      o f a b s o l u t e

      f i l t e r s .

    29

  • 8/18/2019 Fission Moly

    29/148

    b )

      S o l i d s :

    T h e   r e s i n c o l u m n s   ( A G - 1 x 8 c o l u m n k e p t

      i n a

      l e a k - p r o o f

    s t a i n l e s s s t e e l   c y l i n d e r )   a s   w e l l   a s   v a l v e s ,

      q u i c k - c o n n e c t s ,

    h o s e s ,

      c l e a n n i n g p a p e r s ,

      a r e   t a k e n   o u t o f t h e

      c e l l w i t h

      t h e

    f r e n c h P A D I R A C s y s t e m .

    c )

      L i q u i d s :

    i )

      H i g h a c t i v i t y l i q u i d w a s t e s   f r o m

      A G - 1  r e s i n

      l o a d i n g

      a n d

    w a s h i n g :

    T h e r e   a r e t w o   t a n k s

     (100

      1

      e a c h )

      u n d e r   c e l l   n u m b e r   2

      t h a t

    a l l o w ,   i n a n   a l t e r n a t e d   w a y ,   u p t o 5   m o n t h s   o f   d e c a y   f o r   e f f l u e n t s

    c o r r e s p o n d i n g   t o

      t h i s s t a g e

      ( a b o u t   3 , 5 1 p e r

      e a c h p r o c e s s   i n c l u -

    d i n g

      w a s h i n g

      s o l u t i o n s ) .

    i i )   M e d i u m a c t i v i t y l i q u i d   w a s t e s :

    F i v e

      1 0 0 1

      t a n k s   a l l o w

      t h e

      s t o r a g e

      o f

      l i q u i d s c o m m i n g   f r o m

    C H E L E X

      I a n d I I

      p r e - w a s h i n g

      a n d

      l o a d i n g a c i d

      w a s h i n g s   o f   c e l l

    n u m b e r

      I I

      e q u i p m e n t ( a b o u t

      1 1 1 p e r   p r o c e s s )

      d u r i n g

      5

      m o n t h s .

    i l l )   D i s p o s a l   a f t e r t h e m e n t i o n e d   d e c a y

      p e r i o d :

    L i q u i d s

      ( I a n d I I ) a r e

      d i s p o s e d

      b y

      c e m e n t a t i o n i n t o

      e v a c u a t e d

    l e a k - p r o o f t a n k s (200  1 ) .

    C h e m i c a l

      a n d

      p h y s i c a l c h a r a c t e r i s t i c s

      o f

      p r o d u c e d

      M o - 9 9

    I n   F i g . I l l a r e   s e e n   t h e m a i n

      c o n t a m l a n t s

      o f   M o - 9 9

      ( o b t a i n e d ) .

    I t   i s   w o r t h m e n t i o n i n g

      t h a t

      b e c a u s e   o f   l a c k   o f   s p a c e   a   f i n a l

    p u r i f i c a t i o n

      s t e p   b y

      v o l a t i l i z a t i o n

      o f M o h a s n o t   b e e n

      i m p l e m e n t e d .

    30

  • 8/18/2019 Fission Moly

    30/148

    S p e c i f i c a c t i v i t y :

      à

      1 0 . 0 0 0  Cl/g

     M o .

    C o n c e n t r a t i o n :   >  1.000   m C i / m l .

    R a d i o c h e m i c a l

      p u r i t y :

      9 9

    M o

      a s

      M o l y b d a t e

      > 9 9

    R a d i o n u c l i d i c

      p u r i t y

      ( w i t h

      r e f e r e n c e

      M o - 9 9

      a c t i v i t y

    13 1

    I  < 1 0 p p m

    103

    Ru   < 2 0 p p m

    9 5

    N b   < 1 p p m

    95

    Z r   < 0 . 1 p p m

    1 3 2

    T e

    _ 1 3 2

    I

     < 0 1 p p m

    ^^Ba-^^La   N . D

    u 1

    C e

      N . D

    1 4

    *C e

      N .D

    o r   <

      10 ~

    4

      ppm

    FIG.III.

      Product  specification  of  fission  molybdenum.

    A s

      w i l l

      b e

      s e e n   l a t e r

      o n , a t

      p r e s e n t

      t h e

      i n s t a l l a t i o n

      i s

      b e i n g

    e n l a r g e d ,

      w h i c h w i l l i n c l u d e   t h i s

      v o l a t i l i z a t i o n   s t e p ,

      l o o k i n g

    f o r a n

      e n h a n c e m e n t

      o f t h e

      p u r i t y

      o f

      f i n a l   p r o c e s s .

    T h e   c h e m i c a l

      s t a t e

      o f

      ( o b t a i n e d )  M o - 9 9

      h a s b e e n   s t u d i e d   b y

    h i g h   t e n s i o n

      e l e c t r o p h o r e s i s ,

      s h o w i n g

      t h a t   M o O ^ ( f o r m )   i s

    p r e s e n t i n   m o r e t h a n   9 9 % i n t h e

      f i n a l

      p r o d u c t .

    T h i s   m a t e r i a l   i s   e m p l o y e d   a t

      p r e s e n t

      f o r t h e   p r o d u c t i o n   o f

    M o - 9 9 / T c - 9 9 m   g e n e r a t o r s

      w i t h   a c t i v i t i e s   o f 1 C i o r   m o r e .

    B e s i d e s   w h e n s t u d y i n g

      e l u t i o n c u r v e s

      a n d   e l u t i o n r e s p o n s e

    ( y i e l d )

      i t c a n b e   s e e n   t h a t   t h e y

      g r e a t l y

      o v e r p a s s

      t h e s e   o b t a i n e d

    w i t h i m p o r t e d   M o - 9 9 ,   t h a t   i s

      e m p l o y e d

      a l s o i n g e n e r a t o r

      p r o d u c -

    t i o n

      a t p r e s e n t .

    3 1

  • 8/18/2019 Fission Moly

    31/148

    C o m m e n t s   a b o u t p r o d u c t i o n   p r o c e s s

    A f t e r   a b o u t

      4 0

      p r o d u c t i o n

      p r o c e s s s e s ,   i t h a s

      b e e n

      d e m o s t r a t e d

    t o b e h i g h l y   r e l i a b l e   a n d   a t t r a c t i v e

      b e c a u s e

      i t a v o i d s t e d i o u s

    o p e r a t i o n s

      o f   s e p a r a t i o n   b y e x t r a c t i o n o r p r e c i p i t a t i o n .

    T h e

      p r o c e s s

      y i e l d

      i s g r e a t e r

      t h a n

     80%,

      t a k i n g

      i n t o

      a c c o u n t

    t h e   t h e o r e t i c a l   d a t a

      o b t a i n e d

      a p p l y i n g   t h e   O R N L   O r i g e n

    P r o g r a m m e

      t o o u r

      i r r a d i a t i o n

      c o n d i t i o n s .

    T h e   o p e r a t i o n

      c a n b e c a r r i e d o u t i n

      h i g h l y   r e l i a b l e   c o n d i -

    t i o n s .

    W e h a v e   p r o c e s s e d   f r o m   1 g t o 4 g o f

      U - 2 3 5   w i t h o u t h d i f f i -

    c u l t i e s

      ( e a c h

      U r a n i u m

      g r a m

      i s

      a c c o m p a n i e d

      b y 1 3 g o f A l u m i n i u m ) ,

    w i t h o u t h a f f e c t i n g y i e l d .   O b t a i n e d   M o - 9 9 ,   i s

      s u i t a b l e ,

     f o r

      g e n e -

    r a t o r   p r o d u c t i o n ,   w i t h   a   s a t i s f a c t o r y

      r e s p o n s e .

    U - 2 3 5   P u r i f i c a t i o n

      a n d

      f u t u r e b u i l d i n g

    A s w e a r e n o t   a l l o w e d   t o

      a c c u m u l a t e   m o r e t h a n

      5 0 g o f

      U - 2 3 5

    i n

      e a c h   c e l l ,

      w e h a v e

      b e g u n   w i t h

      t h e   d i s s o l u t i o n   o f t h e   p r e c i p i -

    t a t e

      f o r m e d

      d u r i n g t h e

      a l k a l i n e

      t r e a t m e n t o f t h e i r r a d i a t e d

    t a r g e t s

      ( t h e   p r e c i p i t a t e   c o n s i s t s   m a i n l y   o f U 0

    2

      a n d

      i n s o l u b l e

    c o m p o u n d s ) .

    F o r

      t h i s   o p e r a t i o n

      w e

      h a v e d e v e l o p e d

      a n e q u i p m e n t   t h a t

      a l l o w s

    t h e

      t r a n s f e r e n c e

      o f t h e p r e c i p i t a t e

      f r o m

      t h e   f i l t e r   t o a   d i s s o l v e r

    a n d l a t e r

      f i l t r a t i o n ,   o b t a i n i n g

      a   s o l u t i o n   o f   U - C 0

    3

    =

      c o m p l e x e s ,

    b u t a t

      p r e s e n t

      w e d o n o t

      h a v e   e n o u g h

      s p a c e t o c o n t i n u e t h e

      r e c y -

    c l i n g o f u r a n i u m .

    F u t u r e f a c i l i t i e s :

    A s

      I

      s a i d

      i n t h e b e g i n i n g , w e a r e

      w o r k i n g

      a t

      p r e s e n t

      i n a

    p l a c e   b e l o n g i n g

      t o t h e R a d i o i s o t o p e

      P r o d u c t i o n   P l a n t .   D u r i n g

     1986

    ( t h e   l a s t   y e a r )   t h e

      c o n s t r u c t i o n

      o f a   s p e c i a l

      b u i l d i n g

      f o r   t h i s

    p r o j e c t

      i s b e e n

      c a r r i e d

      o u t .

    32

  • 8/18/2019 Fission Moly

    32/148

    o

    T h e n e w   b u i l d i n g   c o v e r s a n   a p r o x i m a t e   a r e a o f 6 0 0 f i r a n d

    c o m p r i s e s

      a

      p r o c e s s i n g r o o m   w i t h c a p a c i t y

      f o r t h r e e n e w   c e l l s .

    U r a n i u m l a b o r a t o r i e s , c h e m i c a l   a n d r a d i o c h e m i c a l   l a b o r a t o r i e s

    a n d   d r e s s i n g

      r o o m .

      O n t h e   f i r s t   f l o o r a r e

      o f f i c e s

      a n d   v e n t i l a t i o n

    e n g i n e s ;   f i l t e r s   r o o m   i n

      f i r s t

      a n d   s e c o n d   f l o o r .

    A   c o m m u n i c a t i o n d u c t   h a s   b e e n

      p r e p a r e d

      b e t w e e n   c e l l s   i n

    o p e r a t i o n a t p r e s e n t a n d

      t h o s e

      t o b e

      c o n s t r u c t e d

      i n t h e f u t u r e

    i n o r d e r   t o w o r k   w i t h   a l l t h e   c e l l s   i n   c o n n e c t i o n . T h i s   s t r u c t u r e

    w i l l a l l o w t h e

      s e p a r a t i o n

      o f

      X e - 1 3 3

      a n d 1 - 1 3 1 , f o r p u r i f i c a t i o n

    o f   M o - 9 9   b y   v o l a t i l i z a t i o n   a n d t h e c o m p l e t i o n o f t h e   r e c y c l i n g

    o f   U - 2 3 5 .

    T h e d e s i g n

      o f t h e n e w

      c e l l s

      h a s

      b e e n d e v e l o p e d ,   e n t e r i n g

    n o w   i n t h e   a c q u i s i t i o n s t a g e   o f   s o m e e l e m e n t s   f o r t h e   c o n s t r u c t i o n n .

    T h e

      m a i n   d i f f i c u l t y   a t

      p r e s e n t

      i s t h e

      r e a c t o r :

      o w i n g   t o t h e

    p r o j e c t e d

      c h a n g e   i n t h e

      c o r e

     (90% t o 2 0 %   e n r i c h m e n t )   i t h a s t o

    s t o p   f o r a   l o n g   p e r i o d .   I n o r d e r t o c o n t i n u e

      w i t h

      t h e   p r e s e n t

    p r o g r a m m e ,   w e   h a v e   b e g u n s t u d i e s   i n t e n d i n g   t o   i r r a d i a t e t a r g e t s

    i n t h e   r e a c t o r   o f t h e

      C N E A

      i n

      B a r i l o c h e

      ( i n t h e   s o u t h   o f t h e

    A r g e n t i n a H h a t

      c a n   r e a c h   a   n e u t r o n

      f l u x

      o f 3 x

      l O ^ n / c m

    2

     sec.

    33

  • 8/18/2019 Fission Moly

    33/148

    DEVELOPMENT OF THE Mo

     PROCESS

     AT

     CRNL

    K . A .

      B U R R I L L ,

      R . J .

      H A R R I S O N

    C h a l k

      R i v e r

      N u c l e a r Laboratories,

    At o m ic

      Energy of Canada

      Limited,

    Chalk  River,  Ontario,

    Canada

    Abstract

    Highly

     enriched  uranium

      ( H E U )

      is used  for

     Ho-99 production

     ac

     CRNL.

    Dissolution

     of the targets and  loading of the solution

     onto

     A12Û3  columns

    is discussed.  Development work continues to reduce processing

      time

      and

    overall

     product

     cost.  A. process for

     treating

      the

     fission

     product

     waste  has

    been

     selected

     and a

     facility

      for  processing  is

     being  designed.

    Low enriched uranium

      ( L E U )

      is planned  for  targets

     eventually.

    Our experience

     with

     Si-based

      fuel

      for

     targets

     is poor, and

      alternatives

     are

    being

     sought.

    1.  INTRODUCTION

    The  production of crude

     Mo-99

     at CRNL has

      grown

     ten fold

      over

      the

     past

    ten

     years.

      The  process is based on

     that developed

     at Brookhaven [Ij in the

    1950's, but a

     large

     experience base has built up which is in

     itself

     a

    valuable technology.  The

     Mo-99

     is purified via a  proprietary process by

    the AECL

     Radiochemical

     Company

      before

     it is used in Tc-99

    m

     generators.

    Development has focussed partly on cost reduction.  Interim waste

    treatment

     is being postponed by

     tank

     storage, and work is underway  to

    apply processes

     that

     have

     been

     developed to treat

      this

     waste.

      Finally,

    conversion

     of the

     uranium from

     93% enriched  in

     U-235

     to 20% enriched in the

    fuel

     is

     anticipated

     and its

     influence

     in the


Recommended