+ All Categories
Home > Documents > Fixing of Rebar in Concrete

Fixing of Rebar in Concrete

Date post: 03-Apr-2018
Category:
Upload: chandra-mouli
View: 214 times
Download: 0 times
Share this document with a friend

of 98

Transcript
  • 7/28/2019 Fixing of Rebar in Concrete

    1/98

    Post-installed rebar connecmortar FIS V and FIS EM

    5.1 Types ................... ..................... .

    5.2 Applications ..................... ........

    5.3 Features and advantages .....

    5.4 Installation ................... ............

    5.5 Design .................... ...................

    5.6 Design tables......................... ..

  • 7/28/2019 Fixing of Rebar in Concrete

    2/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    5

    5.1 Types

    Injection mortar

    FIS V 360 S

    Injection mortar

    FIS VS 360 S

    Injection mortar

    FIS V 950 S, FIS VS 950 S

    Static mixer FIS S

    Description

    The fischer injection mortar FIS V is a styrene-free hybrid mortar that cobinder (vinylester) and a mineral binder (cement). Resin and cement as hardener are stored in two separate chambers and are not mixed and athrough the static mixer.

    Advantages over synthetic mortars

    Higher temperature resistance compared to epoxy, polyester and vin Improved chemical resistance Reduced shrinkage L iti t h l l i

  • 7/28/2019 Fixing of Rebar in Concrete

    3/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    5.2 Applications

    Extension of cantilevered slabs and refurbish-ment of slab edges.

    Bent reinforcement can be easily installedusing FIS V.

    Starter bars for extending concrete walls.

    Starter bars for closing openings.

    Anchoring of staircase landings.

    Connection of a cantilevered slab to the edgeof a concrete floor using spliced bars.

  • 7/28/2019 Fixing of Rebar in Concrete

    4/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    5

    5.3 Features and advantages

    Time and cost savings compared to tradi-tional break-out and making good of conc-rete elements

    Subsequent flexible planning resulting ineasy change of use or easy extension ofbuildings

    Defined performance in accordance withassessments and approval documents

    Design in accordance with EC2 like cast-inrebars

    Resin is alkaline, providing improved corro-sion resistance

    5.4 Installation

    Drilling process

    Position of drill hole should be provided by thedesign engineer.

    For precise drilling parallel to an existing sur-face a drilling aid is available from the fischerrange to ensure deviations 2 %.

    Blowing-out of the drill hole

    The drill hole must be blown-out 3 times from

    Brushing of the dri

    The drill hole must busing the stainless sterange.

    Blowing-out of the d

    The drill hole must bethe bottom of the holair lance from the fiscpressed air 6 bar).

    Injection of the hyb

    Filling the drill hole fro

    The fischer injection aof the extension nozzted to avoid any air bu

  • 7/28/2019 Fixing of Rebar in Concrete

    5/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    For optimum installation fischer offers a com-prehensive range of equipment.

    System kit

    ...contains all the important equipment forcorrect installation.

    The system kit contains a drilling guide, exten-sions for the steel brush, injection aid, clea-ning lance, steel brushes and further usefulequipment. It also contains the installationinstructions and a check list for documenta-tion of the installation process.

    The drilling guide

    Injection guns

    ...guaranteed no-tiredring a hand operated

    a pneumatic gun for puse.

    The injection aid

    ...makes it easy to fibubbles. The aid is atextension nozzle. Usinpressure to be felt eas

    The FIS V extensio

    ...enables the hybrid to the bottom of the d

  • 7/28/2019 Fixing of Rebar in Concrete

    6/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    5

    Table 5.1:

    Gelling time

    Concrete temperature Setting time [min]

    FIS V FIS VS

    + 5 C 9 -

    + 10 C 6 18

    + 15 C 4 12

    + 20 C 3 9

    + 25 C 2.5 7

    + 40 C *) 2 *) 4

    *) With temperatures above 30 C to 40 C the cartridges have to be cooled

    down to 15 C ... 20 C (water bath or cool box).

    Table 5.2:

    Curing time

    Concrete temperature Curing time [min]

    FIS V FIS VS

    - 5 C 360 -

    0 C 180 360

    + 5 C 90 180

    + 10 C 80 120

    + 15 C 60 90

    + 20 C 50 60

    + 25 C 40 45

    + 30 C 35 35

    + 40 C 25 25

    Required volume of resin

    (d - d ) l = k lV FIS V = 24 0

    2

    S v v

    Where:

    VFIS V = mortar volume [ml]

    lv = anchorage length [cm]

    Example:

    A rebar with a diametshould be installed wiof 850 mm. The requVFIS V = k lv = 1.77

    = 150.45 ml

    5.5. Design5.5.1 Basics

    For the assessment under tension two me

    Design in non-reintheorie)

    The loads are transusing its tensile strof failure are concretanchor from the drill hdesign can be done CC-Method (see Anne

    Design in reinforce

    The load is transmittforcement by compreis done similarly to theThe following parts oexclusively with the drete based on EC2.

    The equations and thare based on the assmission of loads, e. g.requirements of the rlations. Possible natio

  • 7/28/2019 Fixing of Rebar in Concrete

    7/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    Generally the design of post-installed rebarsand lap splices can be done in accordancewith EC2. There are some minor deviationsregarding the condition of application, e.g.minimum anchorage length, behaviour underfire and minimum concrete cover.

    Design with higher bond strength than those

    recommended in the national regulationsis not recommended because a significantincrease in displacement of the bar has to beexpected.

    5.5.2 Partial safety factors for actions

    The partial safety factors for actions may betaken in accordance with EC2:

    Table 5.4:

    Partial safety factor

    Favourable

    (reducing of loading)

    Unfavourable

    (increasing of loading)

    Dead loads G 1.0 1.35Variable loads Q 0 1.5

    5.5.3 Steel values of resistance

    The value of resistance of a rebar under ten-sion depends on the material properties (yield

    strength, tensile strength) and on the cross-sectional area of the bar.

    d NRd,s

    =2

    4

    f

    syk

    s

    (5.1)

    Where:

    NRd, s = design valutance for s

    ds = diameter o

    fyk = yield streng

    s = partial safe

    = 1.15

    5.5.4 Bond streng

    rage length

    5.5.4.1 Bond condit

    The bond strength of

    mainly on the surfacdimensions of the strthe inclination of the b

    Good bond conditio5.2.2.1):

    a) When the rebar ha

    90.Direction

    b) When the rebar ha45 and the thicknesponent in the directi

  • 7/28/2019 Fixing of Rebar in Concrete

    8/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    5

    Direction of concreting

    c) When the thickness of the structural com-ponent is greater than 250 mm and the rebaris located in the lower half of the component.

    Direction of concreting

    d) When the thickness of the structural com-ponent is greater than 600 mm and the rebar

    is located at least 300 mm from the uppersurface of the component

    Direction of concreting

    Poor bond conditioun-hatched areas.

    5.5.4.2 Design resis

    strength

    The load bearing capment behaviour of a pFIS V is similar to that concrete compressivemeasured with cylind

    = 2.25

    1f

    bd

    Where:

    1 = 1.0 for go

    = 0.7 for al

    2 = 1.0 for ds= (132 - d

    sfctd = (ct fctk,ct = influence

    mance

    = 1.0

    fctk, 0.05 = lower lim

    sile strengtile)

    c = safety co

    = 1.5

    With post-installed re

  • 7/28/2019 Fixing of Rebar in Concrete

    9/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    5.5.4.3 Basic value of the required

    anchorage length

    The basic required anchorage length lb,rqd isneeded to anchor the force (As sd) in a barassuming constant bond stress. For sd = fydthe maximum steel capacity can be gained.Thus steel failure is decisive and a further

    increase in anchorage length does not resultin an increase in capacity.

    = lb, rqd

    d

    4

    s

    f

    sd

    bd

    (5.3)

    Where:

    lb, rqd = basic value of the required ancho-rage length

    ds = diameter of the rebar

    sd = design value of the tensile steelstrength in the bar at the posi-

    tion from where the anchorage ismeasured from

    fbd = design value of the bond strength(see Equation (5.2) and Table(5.6))

    5.5.4.4 Anchorag

    5.5.4.4.1 Required

    The design value of tcalculated as follows:

    lbd

    = 1

    2

    3

    4

    Where:

    1 = influence o

    2 = influence o

    c = concrete c

    3 = influence forcement

    4 = influence forcement

    5 = influence o

    lb, rqd = basic value

    lb, min = minimum a

    Where: 2 3

    Table 5.7:Values of 1, 2, 3, 3, 4 and 5 coeffi cients

    Influence factor Type of anchorage Reinforcemen

    in tension

    Shape of bars

    straight 1 = 1.0

    other than straight (see pr EN 1992-1-1: 2003

    figure 8.1 (b), (c) and (d))

    1 = 0.7 if cd > 3 ds

    otherwise 1 = 1.0

  • 7/28/2019 Fixing of Rebar in Concrete

    10/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    5

    Where:

    = (Ast - Ast, min)/AsAst = cross-sectional area of the trans-

    verse reinforcement along thedesign anchorage length lbd

    Ast, min= cross-sectional area of the mini-

    mum transverse reinforcement

    = 0.25 As for beams and 0 for slabs

    As = area of a single anchored bar withmaximum bar diameter

    = values see pr EN 1992-1-1: 2003in figure 8.4

    p = transverse pressure [MPa] at ulti-mate limit state along lbd

    Minimum anchorage length

    - for rebars in tension

    lb, min

    = {max 0.3 lb, rqd

    ; 10 ds

    ; 100 mm}

    (5.4 a)

    - for rebars in compression

    lb, min > max {0.6 lb, rqd; 10 ds; 100 mm}

    (5.4 b)

    l0

    = 1

    2

    3

    4

    Where:

    l0 = required la

    lb, rqd = basic valuerage length

    1 = influence o

    2 = influence o

    3 = influence forcement

    5 = influence o

    4 = influence forcement

    6 = influence ooverlappingtion

    = 1.5, if all cross-secti

    Minimum lap length

    l0, min

    >max{0.36

    Where:

  • 7/28/2019 Fixing of Rebar in Concrete

    11/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    Table 5.8:

    Percentage of lapped bars relative tothe total cross-section area

    < 25% 33% 50% > 50%

    6 1 1.15 1.4 1.5

    Note: Intermediate values may be determined by intepolation.

    5.5.5 Concrete cover

    5.5.5.1 Minimum concrete cover in

    accordance with environmentalconditions

    Table 5.9:

    Minimum concrete cover according to environmental conditions

    Exposure class 1) Minimum

    concrete cover

    c in mm 2)

    1 Dry environment 15

    2a

    Humid environment

    without frost 20

    2b with frost 25

    3 Humid environment with frost and de-icing salts 40

    4aSeawater environment

    without frost 40

    4b with frost 40

    5a slightely 25

    5b Aggressive chemical environment moderately 30

    5c high 40

    1)

    For detailed information see EC2, Tables 4.1 and 4.22) A reduction of 5 mm may be considered for slabs in the exposure classes 2 to 5

    5.5.5.2 Minimum concrete cover accor-

    ding to the type of drilling

    With post-installed rebars tolerances mayoccur depending on the tools used (drilling

    guide). These tolerances may be consideredby increasing the minimum concrete cover.The following table gives values based onvarious test series.

    Table 5.10:

    of the position of the table is valid for anchthe surface of the coTable 5.24 gives the tion of the concrete anchorages parallel torete exposed to fire.

    5.5.6 Transvers

    5.5.6.1 Required

    ment for

    (EC 2 sect

    In beams transverse r

    provided: for anchorages othere is no transversthe support reaction supports)

    for all anchoragession

    The minimum crosstransverse reinforcemarea of one anchored should be evenly distrage length.

    For rebars in compresforcement should suconcentrated at the eextend beyond it to times the diameter of

  • 7/28/2019 Fixing of Rebar in Concrete

    12/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    5

    5.6 Design tablesDesign tables (tables 5.11 to 5.30) can beused as follows:

    Required anchorage length lbd lb, min

    The minimum anchorage length lb, min ofanchorages in general and of anchorages at

    an end support (indirect support) can be cal-culated in accordance with equation (5.4a)for rebars in tension and (5.4b) for rebars incompression.

    Example:

    ds = 10 mm, design action NSd = 15.0 kN,

    basic value of the anchorage length lb, rqd =473 mm, anchorage length lbd = 208 mm(Table 5.13)

    - Rebar in tensionlb, min = 0.3 lb,rqd = 0.3 473 mm

    = 142 mm

    < lbdlb, min = 10 ds = 10 10 mm = 100 mm

    < lbd

    lb, min = 100 mm < lbd

    Anchorage length of the rebar lbd = 208 mm.

    - Rebar in compressionlb, min = 0.6 lb, rqd = 0.6 473 mm

    = 284 mm> lbd

    lb i = 10 d = 10 10 mm = 100 mm

    Example:ds = 16 mm, design a

    basic value of the an756 mm, anchorage(Table 5.13)

    - Rebar with 50% lapp

    l0 = lbd 6 = 4

    = 606 mm

    l0, min

    l0, min = 0.3 6 lb= 317 mm

    l0, min = 15 ds = 15= 240 mm

    l0, min = 200 mm

    Anchorage length of t

    The transmission o

    ports of the concrete mspecial consideration.

    Expertly done inswith the manufacturtions with special drilling, proper cleaninjection of resin with

    Yield strength of the

    Compressive stremeasured in cylinders

    The following tables

  • 7/28/2019 Fixing of Rebar in Concrete

    13/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    Required edge distance and spacing accor-ding to Fig. 5.1.

    Figure 5.1:

    Definition of edge distance and spacing given in tables 5.11

    - 5.30.

    cs

    c

    c

    c

    s

    c

  • 7/28/2019 Fixing of Rebar in Concrete

    14/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    5

    Design loads acc. Rebar Theory depending on the anchorage length in nonTable 5.11a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 400 N/m

    Rebar size ds [mm] 8 10 12 14 16

    Drill diameter d0 [mm] 12 14 16 18 20

    Cross section As [mm] 50 79 113 154 201

    Design yield force Nyd,s [N/mm] 17.5 27.3 39.3 53.5 69.9

    Length to develop yield lb0 [mm] 202 252 302 353 403

    Development length as multiple of ds 25 25 25 25 25

    Design bond strength fbd [N/mm] 3.5 3.5 3.5 3.5 3.5

    Edge distance c [cm] 8 10 12 14 16Spacing s [cm] 16 20 24 28 32

    Designload

    [kN]

    fyk=400N/

    mm

    concreteC2

    0/25

    Anchorageleng

    th[mm]

    100 8.7 10.8

    125 10.8 13.5 16.3

    150 13.0 16.3 19.5 22.8

    175 15.2 19.0 22.8 26.6 30.3

    200 17.3 21.7 26.0 30.3 34.7

    225 17.5 24.4 29.3 34.1 39.0

    250 27.1 32.5 37.9 43.4

    275 27.3 35.8 41.7 47.7

    300 39.0 45.5 52.0325 39.3 49.3 56.4

    350 53.1 60.7

    375 53.5 65.0

    400 69.4

    450 69.9

    500

    550

    600

    650

    700

    750

    Table 5.11b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 400 N/

    Imperial size # 3 4 5 6 7

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.

    Drill diameter d0 [mm] 14 17-18 20 24-25 28

    Cross section As [mm] 71 127 198 285 388

    Design yield force Nyd,s [N/mm] 24.8 44.1 68.8 99.1 134

    Length to develop yield lb0 [mm] 240 320 400 480 560

    Development length as multiple of ds 25 25 25 25 25Design bond strength fbd [N/mm] 3.5 3.5 3.5 3.5 3.5

    Edge distance c [cm] 9.5 13 16 19 22

    Spacing s [cm] 19 26 32 38 44

    100 10.3 13.8

    125 12.9 17.2 21.5

    150 15.5 20.6 25.8 31.0

    175 18 1 24 1 30 1 36 1 42

  • 7/28/2019 Fixing of Rebar in Concrete

    15/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    Design loads acc. Rebar Theory depending on the anchorage length in nonTable 5.12a: Metric sizes Concrete C20/25, fck = 20 N/mm, steel: fyk = 420 N/mm

    Rebar size ds [mm] 8 10 12 14 16

    Drill diameter d0 [mm] 12 14 16 18 20

    Cross section As [mm] 50 79 113 154 201

    Design yield force Nyd,s [N/mm] 18.4 28.7 41.3 56.2 73.4

    Length to develop yield lb0 [mm] 212 265 318 371 423

    Development length as multiple of ds 26 25 26 26 26

    Design bond strength fbd [N/mm] 3.5 3.5 3.5 3.5 3.5

    Edge distance c [cm] 8 10 12 14 16Spacing s [cm] 16 20 24 28 32

    Designload

    [kN]

    fyk=420N/mm

    concreteC2

    0/25

    Anchorageleng

    th[mm]

    100 8.7 10.8

    125 10.8 13.5 16.3

    150 13.0 16.3 19.5 22.8

    175 15.2 19.0 22.8 26.6 30.3

    200 17.3 21.7 26.0 30.3 34.7

    225 18.4 24.4 29.3 34.1 39.0

    250 27.1 32.5 37.9 43.4

    275 28.7 35.8 41.7 47.7

    300 39.0 45.5 52.0325 41.3 49.3 56.4

    350 53.1 60.7

    400 56.2 65.0

    450 69.4

    500 73,4

    550

    600

    650

    700

    750

    Table 5.12b: Imperial sizes Concrete C20/25, fck = 20 N/mm, steel: fyk = 420 N/m

    Imperial size # 3 4 5 6 7

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.

    Drill diameter d0 [mm] 14 17-18 20 24-25 28

    Cross section As [mm] 71 127 198 285 388

    Design yield force Nyd,s [N/mm] 26.0 46.3 72.3 104.1 141

    Length to develop yield lb0 [mm] 252 336 420 504 588

    Development length as multiple of ds 26 26 26 26 26

    Design bond strength fbd [N/mm] 3.5 3.5 3.5 3.5 3.5

    Edge distance c [cm] 9.5 13 16 19 22

    Spacing s [cm] 19 26 32 38 44

    100 10.3 13.8

    125 12.9 17.2 21.5

    150 15.5 20.6 25.8 31.0

    175 18.1 24.1 30.1 36.1 42.

  • 7/28/2019 Fixing of Rebar in Concrete

    16/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    5

    Design loads acc. Rebar Theory depending on the anchorage length in nonTable 5.13a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 460 N/m

    Rebar size ds [mm] 8 10 12 14 16

    Drill diameter d0 [mm] 12 14 16 18 20

    Cross section As [mm] 50 79 113 154 201

    Design yield force Nyd,s [N/mm] 20.1 31.4 45.2 61.6 80.4

    Length to develop yield lb0 [mm] 232 290 348 406 464

    Development length as multiple of ds 29 29 29 29 29

    Design bond strength fbd [N/mm] 3.5 3.5 3.5 3.5 3.5

    Edge distance c [cm] 8 10 12 14 16Spacing s [cm] 16 20 24 28 32

    Designload[

    kN]

    fyk=460N/mm

    concreteC20

    /25

    Anchoragelength

    [mm]

    100 8.7 10.8

    125 10.8 13.5 16.3

    150 13.0 16.3 19.5 22.8

    175 15.2 19.0 22.8 26.6 30.3

    200 17.3 21.7 26.0 30.3 34.7

    225 19.5 24.4 29.3 34.1 39.0

    250 20.1 27.1 32.5 37.9 43.4

    275 29.8 35.8 41.7 47.7

    300 31.4 39.0 45.5 52.0

    325 42.3 49.3 56.4

    350 45.2 53.1 60.7

    400 60.7 69.4

    450 61.6 78.0

    500 80.4

    550

    600

    650

    700

    750

    800

    850

    Table 5.13b: Imperial sizes Concrete C20/25, fck = 20 N/mm, steel: fyk = 460 N/m

    Imperial size # 3 4 5 6 7

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.

    Drill diameter d0 [mm] 14 17-18 20 24-25 28

    Cross section As [mm] 71 127 198 285 388

    Design yield force Nyd,s [N/mm] 28.5 50.7 79.2 114.0 155

    Length to develop yield lb0 [mm] 276 368 460 552 644Development length as multiple of ds 29 29 29 29 29

    Design bond strength fbd [N/mm] 3.5 3.5 3.5 3.5 3.5

    Edge distance c [cm] 9.5 13 16 19 22

    Spacing s [cm] 19 26 32 38 44

    100 10.3 13.8

    125 12.9 17.2 21.5

    150 15 5 20 6 25 8 31 0

  • 7/28/2019 Fixing of Rebar in Concrete

    17/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    Design loads acc. Rebar Theory depending on the anchorage length in nonTable 5.14a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 500 N/m

    Rebar size ds [mm] 8 10 12 14 16

    Drill diameter d0 [mm] 12 14 16 18 20

    Cross section As [mm] 50 79 113 154 201

    Design yield force Nyd,s [N/mm] 21.9 34.1 49.2 66.9 87.4

    Length to develop yield lb0 [mm] 252 315 378 441 504

    Development length as multiple of ds 32 32 32 32 32

    Design bond strength fbd [N/mm] 3.5 3.5 3.5 3.5 3.5

    Edge distance c [cm] 8 10 12 14 16

    Spacing s [cm] 16 20 24 28 32

    Designload[

    kN]

    fyk=500N/mm

    concreteC20

    /25

    Anchoragelength

    [mm]

    100 8.7 10.8

    125 10.8 13.5 16.3

    150 13.0 16.3 19.5 22.8

    175 15.2 19.0 22.8 26.6 30.3

    200 17.3 21.7 26.0 30.3 34.7

    225 19.5 24.4 29.3 34.1 39.0

    250 21.7 27.1 32.5 37.9 43.4

    275 21.9 29.8 35.8 41.7 47.7

    300 32.5 39.0 45.5 52.0

    350 34.1 45.5 53.1 60.7

    400 49.2 60.7 69.4

    450 66.9 78.0

    500 86.7

    550 87.4

    600

    650

    700

    750

    800

    850

    890

    Table 5.14b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 500 N/

    Imperial size # 3 4 5 6 7

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.

    Drill diameter d0 [mm] 14 17-18 20 24-25 28

    Cross section As [mm] 71 127 198 285 388

    Design yield force Nyd,s [N/mm] 31.0 55.1 86.1 123.9 168

    Length to develop yield lb0 [mm] 300 400 500 600 700Development length as multiple of ds 32 32 32 32 32

    Design bond strength fbd [N/mm] 3.5 3.5 3.5 3.5 3.5

    Edge distance c [cm] 9.5 13 16 19 22

    Spacing s [cm] 19 26 32 38 44

    100 10.3 13.8

    125 12.9 17.2 21.5

    150 15 5 20 6 25 8 31 0

  • 7/28/2019 Fixing of Rebar in Concrete

    18/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    5

    Design loads acc. Rebar Theory depending on the anchorage length in nonTable 5.15a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 550 N/m

    Rebar size ds [mm] 8 10 12 14 16

    Drill diameter d0 [mm] 12 14 16 18 20

    Cross section As [mm] 50 79 113 154 201

    Design yield force Nyd,s [N/mm] 24.0 37.6 54.1 73.6 96.2

    Length to develop yield lb0 [mm] 277 347 416 485 555

    Development length as multiple of ds 35 35 35 35 35

    Design bond strength fbd [N/mm] 3.5 3.5 3.5 3.5 3.5

    Edge distance c [cm] 8 10 12 14 16

    Spacing s [cm] 16 20 24 28 32

    Designload[

    kN]

    fyk=550N/mm

    concreteC20

    /25

    Anchoragelength[mm]

    100 8.7 10.8

    125 10.8 13.5 16.3

    150 13.0 16.3 19.5 22.8

    175 15.2 19.0 22.8 26.6 30.3

    200 17.3 21.7 26.0 30.3 34.7

    250 21.7 27.1 32.5 37.9 43.4

    300 24.0 32.5 39.0 45.5 52.0

    350 37.6 45.5 53.1 60.7

    400 37.6 52.0 60.7 69.4

    450 54.1 68.3 78.0

    500 73.6 86.7

    550 95.4

    600 96.2

    650

    700

    750

    800

    850

    900

    950

    980

    Table 5.15b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 550 N/

    Imperial size # 3 4 5 6 7

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.

    Drill diameter d0 [mm] 14 17-18 20 24-25 28

    Cross section As [mm] 71 127 198 285 388

    Design yield force Nyd,s [N/mm] 34.1 60.6 94.7 136.3 185

    Length to develop yield lb0 [mm] 330 440 550 660 770Development length as multiple of ds 35 35 35 35 35

    Design bond strength fbd [N/mm] 3.5 3.5 3.5 3.5 3.5

    Edge distance c [cm] 9.5 13 16 19 22

    Spacing s [cm] 19 26 32 38 44

    100 10.3 13.8

    125 12.9 17.2 21.5

    175 18 1 24 1 30 1 36 1

  • 7/28/2019 Fixing of Rebar in Concrete

    19/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    Design loads acc. Rebar Theory depending on the anchorage length in nonTable 5.16a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 400 N/m

    Rebar size ds [mm] 8 10 12 14 16 20 25

    Drill diameter d0 [mm] 12 14 16 18 20 25 30

    Cross section As [mm] 50 79 113 154 201 314 491

    Design yield force Nyd,s [N/mm] 17.5 27.3 39.3 53.5 69.9 109.3 170.7

    Length to develop yield lb0 [mm] 151 189 227 265 302 378 473

    Development length as multiple of ds 19 19 19 19 19 19 19

    Design bond strength fbd [N/mm] 4.6 4.6 4.6 4.6 4.6 4.6 4.6

    Edge distance c [cm] 8 10 12 14 16 20 25

    Spacing s [cm] 16 20 24 28 32 40 50

    Designload[

    kN]

    fyk=400N/mm

    concreteC20

    /25

    Anchoragelength[mm]

    100 11.6 14.5

    125 14.5 18.1 21.7

    150 17.3 21.7 26.0 30.3

    175 17.5 25.3 30.3 35.4 40.5

    200 27.3 34.7 40.5 46.2

    225 39.0 45.5 52.0 65.0

    250 39.3 50.6 57.8 72.3

    275 53.5 63.6 79.5

    300 69.4 86.7 108.4

    325 69.9 93.9 117.4

    350 101.2 126.4

    375 108.4 135.5

    400 109.3 144.5

    450 162.6

    500 170.7

    550

    600

    650

    700

    750

    800

    Table 5.16b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 400 N/

    Imperial size # 3 4 5 6 7 8 9

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.2 25.4 28

    Drill diameter d0 [mm] 14 17-18 20 24-25 28 30-32 35-

    Cross section As [mm] 71 127 198 285 388 507 64

    Design yield force Nyd,s [N/mm] 24.8 44.1 68.8 99.1 134.9 176.2 224

    Length to develop yield lb0 [mm] 180 240 300 360 420 480 54Development length as multiple of ds 19 19 19 19 19 19 1

    Design bond strength fbd [N/mm] 4.6 4.6 4.6 4.6 4.6 4.6 4.

    Edge distance c [cm] 9.5 13 16 19 22 25 2

    Spacing s [cm] 19 26 32 38 44 50 5

    100 13.8 18.4

    125 17.2 22.9 28.7

    150 20 6 27 5 34 4 41 3

  • 7/28/2019 Fixing of Rebar in Concrete

    20/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    5

    Design loads acc. Rebar Theory depending on the anchorage length in nonTable 5.17a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 420 N/m

    Rebar size ds [mm] 8 10 12 14 16 20 25

    Drill diameter d0 [mm] 12 14 16 18 20 25 30

    Cross section As [mm] 50 79 113 154 201 314 491

    Design yield force Nyd,s [N/mm] 18.4 28.7 41.3 56.2 73.4 397 179.3

    Length to develop yield lb0 [mm] 159 198 238 278 318 20 496

    Development length as multiple of ds 20 20 20 20 20 20 20

    Design bond strength fbd [N/mm] 4.6 4.6 4.6 4.6 4.6 4.6 4.6

    Edge distance c [cm] 8 10 12 14 16 20 25

    Spacing s [cm] 16 20 24 28 32 40 50

    Designload[kN]

    fyk=420N/mm

    concreteC20

    /25

    Anchoragelength[mm]

    100 11.6 14.5

    125 14.5 18.1 21.7

    150 17.3 21.7 26.0 30.3

    175 18.4 25.3 30.3 35.4 40.5

    200 28.7 34.7 40.5 46.2

    225 39.0 45.5 52.0 65.0

    250 41.3 50.6 57.8 72.3

    275 55.6 63.6 79.5

    300 56.2 69.4 86.7 108.4

    325 73.4 93.9 117.4

    350 101.2 126.4

    375 108.4 135.5

    400 114.7 144.5

    450 162.6

    500 179.3

    550

    600

    650

    700

    750

    800

    Table 5.17b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 420 N/

    Imperial size # 3 4 5 6 7 8 9

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.2 25.4 28

    Drill diameter d0 [mm] 14 17-18 20 24-25 28 30-32 35-

    Cross section As [mm] 71 127 198 285 388 507 64

    Design yield force Nyd,s [N/mm] 26.0 46.3 72.3 104.1 141.7 185.1 235

    Length to develop yield lb0 [mm] 189 252 315 378 441 504 56Development length as multiple of ds 20 20 20 20 20 20 2

    Design bond strength fbd [N/mm] 4.6 4.6 4.6 4.6 4.6 4.6 4.

    Edge distance c [cm] 9.5 13 16 19 22 25 2

    Spacing s [cm] 19 26 32 38 44 50 5

    100 13.8 18.4

    125 17.2 22.9 28.7

    150 20 6 27 5 34 4 41 3

  • 7/28/2019 Fixing of Rebar in Concrete

    21/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    Design loads acc. Rebar Theory depending on the anchorage length in nonTable 5.18a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 460 N/m

    Rebar size ds [mm] 8 10 12 14 16 20 25

    Drill diameter d0 [mm] 12 14 16 18 20 25 30

    Cross section As [mm] 50 79 113 154 201 314 491

    Design yield force Nyd,s [N/mm] 20.1 31.4 45.2 61.6 80.4 125.7 196.3

    Length to develop yield lb0 [mm] 174 217 261 304 348 435 543

    Development length as multiple of ds 22 22 22 22 22 22 22

    Design bond strength fbd [N/mm] 4.6 4.6 4.6 4.6 4.6 4.6 4.6

    Edge distance c [cm] 8 10 12 14 16 20 25

    Spacing s [cm] 16 20 24 28 32 40 50

    Designload[kN]

    fyk=460N/mm

    concreteC20

    /25

    Anchoragelength[mm]

    100 11.6 14.5

    125 14.5 18.1 21.7

    150 17.3 21.7 26.0 30.3

    175 20.1 25.3 30.3 35.4 40.5

    200 28.9 34.7 40.5 46.2

    225 31.4 39.0 45.5 52.0 65.0

    250 43.4 50.6 57.8 72.3

    275 45.2 55.6 63.6 79.5

    300 60.7 69.4 86.7 108.4

    350 80.4 101.2 126.4

    400 115.6 144.5

    450 125.7 162.6

    500 180.6

    550 196.3

    600

    650

    700

    750

    800

    850

    870

    Table 5.18b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 460 N/

    Imperial size # 3 4 5 6 7 8 9

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.2 25.4 28

    Drill diameter d0 [mm] 14 17-18 20 24-25 28 30-32 35-

    Cross section As [mm] 71 127 198 285 388 507 64

    Design yield force Nyd,s [N/mm] 28.5 50.7 79.2 114.0 155.2 202.7 257

    Length to develop yield lb0 [mm] 207 276 345 414 483 552 62Development length as multiple of ds 22 22 22 22 22 22 2

    Design bond strength fbd [N/mm] 4.6 4.6 4.6 4.6 4.6 4.6 4.

    Edge distance c [cm] 9.5 13 16 19 22 25 2

    Spacing s [cm] 19 26 32 38 44 50 5

    100 13.8 18.4

    125 17.2 22.9 28.7

    150 20 6 27 5 34 4 41 3

  • 7/28/2019 Fixing of Rebar in Concrete

    22/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    5

    Design loads acc. Rebar Theory depending on the anchorage length in nonTable 5.19a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 500 N/m

    Rebar size ds [mm] 8 10 12 14 16 20 25

    Drill diameter d0 [mm] 12 14 16 18 20 25 30

    Cross section As [mm] 50 79 113 154 201 314 491

    Design yield force Nyd,s [N/mm] 21.9 34.1 49.2 66.9 87.4 136.6 213.4

    Length to develop yield lb0 [mm] 198 236 284 331 378 473 591

    Development length as multiple of ds 24 24 24 24 24 24 24

    Design bond strength fbd [N/mm] 4.6 4.6 4.6 4.6 4.6 4.6 4.6

    Edge distance c [cm] 8 10 12 14 16 20 25

    Spacing s [cm] 16 20 24 28 32 40 50

    Designload[kN]

    fyk=500N/

    mm

    concreteC20

    /25

    Anchoragelength[mm]

    100 11.6 14.5

    125 14.5 18.1 21.7

    150 17.3 21.7 26.0 30.3

    175 20.2 25.3 30.3 35.4 40.5

    200 21.9 28.9 34.7 40.5 46.2

    225 32.5 39.0 45.5 52.0 65.0

    250 34.1 43.4 50.6 57.8 72.3

    300 49.2 60.7 69.4 86.7 108.4

    350 66.9 80.9 101.2 126.4

    400 87.4 115.6 144.5

    450 130.1 162.6

    500 136.6 180.6

    550 198.7

    600 213.4

    650

    700

    750

    800

    850

    900

    950

    Table 5.19b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 500 N/

    Imperial size # 3 4 5 6 7 8 9

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.2 25.4 28

    Drill diameter d0 [mm] 14 17-18 20 24-25 28 30-32 35-

    Cross section As [mm] 71 127 198 285 388 507 64

    Design yield force Nyd,s [N/mm] 31.0 55.1 86.1 123.9 168.7 220.3 280

    Length to develop yield lb0 [mm] 225 300 375 450 525 600 67Development length as multiple of ds 24 24 24 24 24 24 2

    Design bond strength fbd [N/mm] 4.6 4.6 4.6 4.6 4.6 4.6 4.

    Edge distance c [cm] 9.5 13 16 19 22 25 2

    Spacing s [cm] 19 26 32 38 44 50 5

    100 13.8 18.4

    125 17.2 22.9 28.7

    150 20 6 27 5 34 4 41 3

  • 7/28/2019 Fixing of Rebar in Concrete

    23/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    Design loads acc. Rebar Theory depending on the anchorage length in nonTable 5.20a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 550 N/m

    Rebar size ds [mm] 8 10 12 14 16 20 25

    Drill diameter d0 [mm] 12 14 16 18 20 25 30

    Cross section As [mm] 50 79 113 154 201 314 491

    Design yield force Nyd,s [N/mm] 24.0 37.6 113 73.6 96.2 150.3 234.8

    Length to develop yield lb0 [mm] 208 260 54.1 364 416 520 650

    Development length as multiple of ds 26 26 26 26 26 26 26

    Design bond strength fbd [N/mm] 4.6 4.6 4.6 4.6 4.6 4.6 4.6

    Edge distance c [cm] 8 10 12 14 16 20 25

    Spacing s [cm] 16 20 24 28 32 40 50

    Designload[k

    N]

    fyk=550N/m

    m

    concreteC20/

    25

    Anchoragelength

    [mm]

    100 11.6 14.5

    125 14.5 18.1 21.7

    150 17.3 21.7 26.0 30.3

    175 20.2 25.3 30.3 35.4 40.5

    200 23.1 28.9 34.7 40.5 46.2

    250 24.0 36.1 43.4 50.6 57.8 72.3

    300 37.6 52.0 60.7 69.4 86.7

    350 54.1 70.8 80.9 101.2

    400 73.6 92.5 115.6 144.5

    450 96.2 130.1 162.6

    500 144.5 180.6

    550 150.3 198.7

    600 216.8

    650 234.8

    700

    750

    800

    850

    900

    950

    1000

    1040

    Table 5.20b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 550 N/

    Imperial size # 3 4 5 6 7 8 9

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.2 25.4 28

    Drill diameter d0 [mm] 14 17-18 20 24-25 28 30-32 35-

    Cross section As [mm] 71 127 198 285 388 507 64

    Design yield force Nyd,s [N/mm] 34.1 60.6 94.7 136.3 185.5 242.3 308Length to develop yield lb0 [mm] 248 330 413 495 578 660 74

    Development length as multiple of ds 26 26 26 26 26 26 2

    Design bond strength fbd [N/mm] 4.6 4.6 4.6 4.6 4.6 4.6 4.

    Edge distance c [cm] 9.5 13 16 19 22 25 2

    Spacing s [cm] 19 26 32 38 44 50 5

    100 13.8 18.4

  • 7/28/2019 Fixing of Rebar in Concrete

    24/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    5

    Design loads acc. Rebar Theory depending on the anchorage length in cracTable 5.21a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 400 N/m

    Rebar size ds [mm] 8 10 12 14 16

    Drill diameter d0 [mm] 12 14 16 18 20

    Cross section As [mm] 50 79 113 154 201

    Design yield force Nyd,s [N/mm] 17.5 27.3 39.3 53.5 69.9

    Length to develop yield lb0 [mm] 302 378 454 529 605

    Development length as multiple of ds 38 38 38 38 38

    Design bond strength fbd [N/mm] 2.3 2.3 2.3 2.3 2.3

    Edge distance c [cm] edge distance (concrete cover) according to national regul

    Spacing s [cm] spacing according to national regulations (e.g.

    Designload

    [kN]

    fyk=400N

    /mm

    concreteC2

    0/25

    Anchoragelength[mm]

    100 5.8 7.2

    125 7.2 9.0 10.8

    150 8.7 10.8 13.0 15.2

    175 10.1 12.6 15.2 17.7 20.2

    200 11.6 14.5 17.3 20.2 23.1

    225 13.0 16.3 19.5 22.8 26.0

    250 18.1 21.7 25.3 28.9

    275 19.9 23.8 27.8 31.8

    300 26.0 30.3 34.7

    325 28.2 32.9 37.6

    350 35.4 40.5

    375 37.9 43.4

    400 46.2

    450 52.0

    500

    550

    600

    650

    700

    750

    Table 5.21b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 400 N/

    Imperial size # 3 4 5 6 7

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.

    Drill diameter d0 [mm] 14 17-18 20 24-25 28

    Cross section As [mm] 71 127 198 285 388

    Design yield force Nyd,s [N/mm] 24.8 44.1 68.8 99.1 134

    Length to develop yield lb0 [mm] 360 480 600 720 840

    Development length as multiple of ds 38 38 38 38 38Design bond strength fbd [N/mm] 2.3 2.3 2.3 2.3 2.3

    Edge distance c [cm] edge distance (concrete cover) according to national regul

    Spacing s [cm] spacing according to national regulations (e.g.

    100 6.9 9.2

    125 8.6 11.5 14.3

    150 10.3 13.8 17.2 20.6

    175 12 0 16 1 20 1 24 1 28

  • 7/28/2019 Fixing of Rebar in Concrete

    25/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    Design loads acc. Rebar Theory depending on the anchorage length in cracTable 5.22a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 420 N/m

    Rebar size ds [mm] 8 10 12 14 16

    Drill diameter d0 [mm] 12 14 16 18 20

    Cross section As [mm] 50 79 113 154 201

    Design yield force Nyd,s [N/mm] 18.4 28.7 41.3 56.2 73.4

    Length to develop yield lb0 [mm] 318 397 476 556 635

    Development length as multiple of ds 40 40 40 40 40

    Design bond strength fbd [N/mm] 2.3 2.3 2.3 2.3 2.3

    Edge distance c [cm] edge distance (concrete cover) according to national regul

    Spacing s [cm] spacing according to national regulations (e.g.

    Designload[kN]

    fyk=420N/mm

    concreteC

    20/25

    Anchoragele

    ngth[mm]

    100 5.8 7.2

    125 7.2 9.0 10.8

    150 8.7 10.8 13.0 15.2

    175 10.1 12.6 15.2 17.7 20.2

    200 11.6 14.5 17.3 20.2 23.1

    225 13.0 16.3 19.5 22.8 26.0

    250 18.1 21.7 25.3 28.9

    275 19.9 23.8 27.8 31.8

    300 26.0 30.3 34.7

    325 28.2 32.9 37.6

    350 35.4 40.5

    400 40.5 46.2

    450 52.0

    500

    550

    600

    650

    700

    750

    Table 5.22b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 420 N/

    Imperial size # 3 4 5 6 7

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.

    Drill diameter d0 [mm] 14 17-18 20 24-25 28

    Cross section As [mm] 71 127 198 285 388

    Design yield force Nyd,s [N/mm] 26.0 46.3 72.3 104.1 141

    Length to develop yield lb0 [mm] 378 504 630 756 882

    Development length as multiple of ds 40 40 40 40 40

    Design bond strength fbd [N/mm] 2.3 2.3 2.3 2.3 2.3Edge distance c [cm] edge distance (concrete cover) according to national regul

    Spacing s [cm] spacing according to national regulations (e.g.

    100 6.9 9.2

    125 8.6 11.5 14.3

    150 10.3 13.8 17.2 20.6

    175 12.0 16.1 20.1 24.1 28.

    200 13 8 18 4 22 9 27 5 32

  • 7/28/2019 Fixing of Rebar in Concrete

    26/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    5

    Design loads acc. Rebar Theory depending on the anchorage length in cracTable 5.23a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 460 N/m

    Rebar size ds [mm] 8 10 12 14 16

    Drill diameter d0 [mm] 12 14 16 18 20

    Cross section As [mm] 50 79 113 154 201

    Design yield force Nyd,s [N/mm] 20.1 31.4 45.2 61.6 80.4

    Length to develop yield lb0 [mm] 348 435 522 609 696

    Development length as multiple of ds 43 43 43 43 43

    Design bond strength fbd [N/mm] 2.3 2.3 2.3 2.3 2.3

    Edge distance c [cm] edge distance (concrete cover) according to national regul

    Spacing s [cm] spacing according to national regulations (e.g.

    Designload

    [kN]

    fyk=460N/

    mm

    concreteC20

    /25

    Anchoragelengt

    h[mm]

    100 5.8 7.2

    125 7.2 9.0 10.8

    150 8.7 10.8 13.0 15.2

    175 10.1 12.6 15.2 17.7 20.2

    200 11.6 14.5 17.3 20.2 23.1

    225 13.0 16.3 19.5 22.8 26.0

    250 14.5 18.1 21.7 25.3 28.9

    275 19.9 23.8 27.8 31.8

    300 21.7 26.0 30.3 34.7

    325 28.2 32.9 37.6

    350 30.3 35.4 40.5

    400 40.5 46.2

    450 45.5 52.0

    500 57.8

    550

    600

    650

    700

    750

    800

    850

    Table 5.23b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 460 N/

    Imperial size # 3 4 5 6 7

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.

    Drill diameter d0 [mm] 14 17-18 20 24-25 28

    Cross section As [mm] 71 127 198 285 388

    Design yield force Nyd,s [N/mm] 28.5 50.7 79.2 114.0 155

    Length to develop yield lb0 [mm] 414 552 690 828 966Development length as multiple of ds 43 43 43 43 43

    Design bond strength fbd [N/mm] 2.3 2.3 2.3 2.3 2.3

    Edge distance c [cm] edge distance (concrete cover) according to national regul

    Spacing s [cm] spacing according to national regulations (e.g.

    100 6.9 9.2

    125 8.6 11.5 14.3

    150 10 3 13 8 17 2 20 6

  • 7/28/2019 Fixing of Rebar in Concrete

    27/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    Design loads acc. Rebar Theory depending on the anchorage length in cracTable 5.24a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 500 N/m

    Rebar size ds [mm] 8 10 12 14 16

    Drill diameter d0 [mm] 12 14 16 18 20

    Cross section As [mm] 50 79 113 154 201

    Design yield force Nyd,s [N/mm] 21.9 34.1 49.2 66.9 87.4

    Length to develop yield lb0 [mm] 378 473 567 662 756

    Development length as multiple of ds 47 47 47 47 47

    Design bond strength fbd [N/mm] 2.3 2.3 2.3 2.3 2.3

    Edge distance c [cm] edge distance (concrete cover) according to national regul

    Spacing s [cm] spacing according to national regulations (e.g.

    Designload

    [kN]

    fyk=500N/

    mm

    concreteC20/25

    Anchoragelengt

    h[mm]

    100 5.8 7.2

    125 7.2 9.0 10.8

    150 8.7 10.8 13.0 15.2

    175 10.1 12.6 15.2 17.7 20.2

    200 11.6 14.5 17.3 20.2 23.1

    225 13.0 16.3 19.5 22.8 26.0

    250 14.5 18.1 21.7 25.3 28.9

    275 15.9 19.9 23.8 27.8 31.8

    300 21.7 26.0 30.3 34.7

    350 25.3 30.3 35.4 40.5

    400 34.7 40.5 46.2

    450 45.5 52.0

    500 57.8

    550 63.6

    600

    650

    700

    750

    800

    850

    890

    Table 5.24b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 500 N/

    Imperial size # 3 4 5 6 7

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.

    Drill diameter d0 [mm] 14 17-18 20 24-25 28

    Cross section As [mm] 71 127 198 285 388

    Design yield force Nyd,s [N/mm] 31.0 55.1 86.1 123.9 168

    Length to develop yieldlb0 [mm] 450 600 750 900 105Development length as multiple of ds 47 47 47 47 47

    Design bond strength fbd [N/mm] 2.3 2.3 2.3 2.3 2.3

    Edge distance c [cm] edge distance (concrete cover) according to national regul

    Spacing s [cm] spacing according to national regulations (e.g.

    100 6.9 9.2

    125 8.6 11.5 14.3

    150 10 3 13 8 17 2 20 6

  • 7/28/2019 Fixing of Rebar in Concrete

    28/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    5

    Design loads acc. Rebar Theory depending on the anchorage length in cracTable 5.25a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 550 N/m

    Rebar size ds [mm] 8 10 12 14 16

    Drill diameter d0 [mm] 12 14 16 18 20

    Cross section As [mm] 50 79 113 154 201

    Design yield force Nyd,s [N/mm] 24.0 37.6 54.1 73.6 96.2

    Length to develop yield lb0 [mm] 416 520 624 728 832

    Development length as multiple of ds 52 52 52 52 52

    Design bond strength fbd [N/mm] 2.3 2.3 2.3 2.3 2.3

    Edge distance c [cm] edge distance (concrete cover) according to national regul

    Spacing s [cm] spacing according to national regulations (e.g.

    Designload

    [kN]

    fyk=550N/

    mm

    concreteC20/25

    Anchoragelengt

    h[mm]

    100 5.8 7.2

    125 7.2 9.0 10.8

    150 8.7 10.8 13.0 15.2

    175 10.1 12.6 15.2 17.7 20.2

    200 11.6 14.5 17.3 20.2 23.1

    250 14.5 18.1 21.7 25.3 28.9

    300 17.3 21.7 26.0 30.3 34.7

    350 25.3 30.3 35.4 40.5

    400 28.9 34.7 40.5 46.2

    450 39.0 45.5 52.0

    500 50.6 57.8

    550 63.6

    600 69.4

    650

    700

    750

    800

    850

    900

    950980

    Table 5.25b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 550 N/

    Imperial size # 3 4 5 6 7

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.

    Drill diameter d0 [mm] 14 17-18 20 24-25 28

    Cross section As [mm] 71 127 198 285 388

    Design yield force Nyd,s [N/mm] 34.1 60.6 94.7 136.3 185

    Length to develop yield lb0

    [mm] 495 660 825 990 115

    Development length as multiple of ds 52 52 52 52 52

    Design bond strength fbd [N/mm] 2.3 2.3 2.3 2.3 2.3

    Edge distance c [cm] edge distance (concrete cover) according to national regul

    Spacing s [cm] spacing according to national regulations (e.g.

    100 6.9 9.2

    125 8.6 11.5 14.3

    175 12 0 16 1 20 1 24 1

  • 7/28/2019 Fixing of Rebar in Concrete

    29/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    Design loads acc. Rebar Theory depending on the anchorage length in cracTable 5.26a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 400 N/m

    Rebar size ds [mm] 8 10 12 14 16 20 25

    Drill diameter d0 [mm] 12 14 16 18 20 25 30

    Cross section As [mm] 50 79 113 154 201 314 491

    Design yield force Nyd,s [N/mm] 17.5 27.3 39.3 53.5 69.9 109.3 170.7

    Length to develop yield lb0 [mm] 224 281 337 393 449 561 701

    Development length as multiple of ds 28 28 28 28 28 28 28

    Design bond strength fbd [N/mm] 3.1 3.1 3.1 3.1 3.1 3.1 3.1

    Edge distance c [cm] edge distance (concrete cover) according to national regul

    Spacing s [cm] spacing according to national regulations (e.g.

    Designload

    [kN]

    fyk=400N/

    mm

    concreteC20/25

    Anchoragelength[mm]

    100 7.8 9.7

    125 9.7 12.2 14.6

    150 11.7 14.6 17.5 20.5

    175 13.6 17.0 20.5 23.9 27.3

    200 19.5 23.4 27.3 31.2

    225 26.3 30.7 35.1 43.8

    250 29.2 34.1 39.0 48.7

    275 37.5 42.9 53.6

    300 46.7 58.4 73.0

    325 50.6 63.3 79.1350 68.2 85.2

    375 73.0 91.3

    400 77.9 97.4

    450 109.6

    500 121.7

    550

    600

    650

    700

    750800

    Table 5.26b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 400 N/

    Imperial size # 3 4 5 6 7 8 9

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.2 25.4 28

    Drill diameter d0 [mm] 14 17-18 20 24-25 28 30-32 35-

    Cross section As [mm] 71 127 198 285 388 507 64

    Design yield force Nyd,s [N/mm] 24.8 44.1 68.8 99.1 134.9 176.2 224

    Length to develop yield lb0

    [mm] 267 356 445 534 623 712 80

    Development length as multiple of ds 28 28 28 28 28 28 2

    Design bond strength fbd [N/mm] 3.1 3.1 3.1 3.1 3.1 3.1 3.

    Edge distance c [cm] edge distance (concrete cover) according to national regul

    Spacing s [cm] spacing according to national regulations (e.g.

    100 9.3 12.4

    125 11.6 15.5 19.3

    150 13 9 18 6 23 2 27 8

  • 7/28/2019 Fixing of Rebar in Concrete

    30/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    5

    Design loads acc. Rebar Theory depending on the anchorage length in cracTable 5.27a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 420 N/m

    Rebar size ds [mm] 8 10 12 14 16 20 25

    Drill diameter d0 [mm] 12 14 16 18 20 25 30

    Cross section As [mm] 50 79 113 154 201 314 491

    Design yield force Nyd,s [N/mm] 18.4 28.7 41.3 56.2 73.4 114.7 179.3

    Length to develop yield lb0 [mm] 236 295 353 412 471 589 736

    Development length as multiple of ds 29 29 29 29 29 29 29

    Design bond strength fbd [N/mm] 3.1 3.1 3.1 3.1 3.1 3.1 3.1

    Edge distance c [cm] edge distance (concrete cover) according to national regul

    Spacing s [cm] spacing according to national regulations (e.g.

    Designload

    [kN]

    fyk=420N/

    mm

    concreteC20/25

    Anchoragelength[mm]

    100 7.8 9.7

    125 9.7 12.2 14.6

    150 11.7 14.6 17.5 20.5

    175 13.6 17.0 20.5 23.9 27.3

    200 19.5 23.4 27.3 31.2

    225 26.3 30.7 35.1 43.8

    250 29.2 34.1 39.0 48.7

    275 37.5 42.9 53.6

    300 40.9 46.7 58.4 73.0

    325 50.6 63.3 79.1350 68.2 85.2

    375 73.0 91.3

    400 77.9 97.4

    450 109.6

    500 121.7

    550

    600

    650

    700

    750800

    Table 5.27b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 420 N/

    Imperial size # 3 4 5 6 7 8 9

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.2 25.4 28

    Drill diameter d0 [mm] 14 17-18 20 24-25 28 30-32 35-

    Cross section As [mm] 71 127 198 285 388 507 64

    Design yield force Nyd,s [N/mm] 26.0 46.3 72.3 104.1 141.7 185.1 235

    Length to develop yield lb0

    [mm] 281 374 468 561 655 748 84

    Development length as multiple of ds 29 29 29 29 29 29 2

    Design bond strength fbd [N/mm] 3.1 3.1 3.1 3.1 3.1 3.1 3.

    Edge distance c [cm] edge distance (concrete cover) according to national regul

    Spacing s [cm] spacing according to national regulations (e.g.

    100 9.3 12.4

    125 11.6 15.5 19.3

    150 13 9 18 6 23 2 27 8

  • 7/28/2019 Fixing of Rebar in Concrete

    31/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    Design loads acc. Rebar Theory depending on the anchorage length in cracTable 5.28a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 460 N/m

    Rebar size ds [mm] 8 10 12 14 16 20 25

    Drill diameter d0 [mm] 12 14 16 18 20 25 30

    Cross section As [mm] 50 79 113 154 201 314 491

    Design yield force Nyd,s [N/mm] 20.1 31.4 45.2 61.6 80.4 125.7 196.3

    Length to develop yield lb0 [mm] 258 323 387 452 516 645 808

    Development length as multiple of ds 32 32 32 32 32 32 32

    Design bond strength fbd [N/mm] 3.1 3.1 3.1 3.1 3.1 3.1 3.1

    Edge distance c [cm] edge distance (concrete cover) according to national regul

    Spacing s [cm] spacing according to national regulations (e.g.

    Designload[kN]

    fyk=460N/m

    m

    concreteC20/25

    Anchoragelength

    [mm]

    100 7.8 9.7

    125 9.7 12.2 14.6

    150 11.7 14.6 17.5 20.5

    175 13.6 17.0 20.5 23.9 27.3

    200 19.5 23.4 27.3 31.2

    225 21.9 26.3 30.7 35.1 43.8

    250 29.3 34.1 39.0 48.7

    275 32.1 37.5 42.9 53.6

    300 40.9 46.7 58.4 73.0

    325 44.3 50.6 63.3 79.1350 54.5 68.2 85.2

    400 77.9 97.4

    450 87.7 109.6

    500 121.7

    550 133.9

    600

    650

    700

    750

    800850

    870

    Table 5.28b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 460 N/

    Imperial size # 3 4 5 6 7 8 9

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.2 25.4 28

    Drill diameter d0 [mm] 14 17-18 20 24-25 28 30-32 35-

    Cross section As [mm] 71 127 198 285 388 507 64

    Design yield force Nyd,s

    [N/mm] 28.5 50.7 97.2 114.0 155.2 202.7 25

    Length to develop yield lb0 [mm] 307 410 512 615 717 819 92

    Development length as multiple of ds 32 32 32 32 32 32 3

    Design bond strength fbd [N/mm] 3.1 3.1 3.1 3.1 3.1 3.1 3.

    Edge distance c [cm] edge distance (concrete cover) according to national regul

    Spacing s [cm] spacing according to national regulations (e.g.

    100 9.3 12.4

    125 11 6 15 5 19 3

  • 7/28/2019 Fixing of Rebar in Concrete

    32/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    5

    Design loads acc. Rebar Theory depending on the anchorage length in cracTable 5.29a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 500 N/m

    Rebar size ds [mm] 8 10 12 14 16 20 25

    Drill diameter d0 [mm] 12 14 16 18 20 25 30

    Cross section As [mm] 50 79 113 154 201 314 491

    Design yield force Nyd,s [N/mm] 21.9 34.1 49.2 66.9 87.4 136.6 213.4

    Length to develop yield lb0 [mm] 281 351 421 491 561 701 877

    Development length as multiple of ds 35 35 35 35 35 35 35

    Design bond strength fbd [N/mm] 3.1 3.1 3.1 3.1 3.1 3.1 3.1

    Edge distance c [cm] edge distance (concrete cover) according to national regul

    Spacing s [cm] spacing according to national regulations (e.g.

    Designload

    [kN]

    fyk=500N/

    mm

    concreteC20/25

    Anchoragelength[mm]

    100 7.8 9.7

    125 9.7 12.2 14.6

    150 11.7 14.6 17.5 20.5

    175 13.6 17.0 20.5 23.9 27.3

    200 15.6 19.5 23.4 27.3 31.2

    225 21.9 26.3 30.7 35.1 43.8

    250 24.3 29.2 34.1 39.0 48.7

    300 35.1 40.9 46.7 58.4 73.0

    350 47.7 54.5 68.2 85.2

    400 62.3 77.9 97.4450 87.7 109.6

    500 97.4 121.7

    550 133.9

    600 146.1

    650

    700

    750

    800

    850

    900950

    Table 5.29b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 500 N/

    Imperial size # 3 4 5 6 7 8 9

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.2 25.4 28

    Drill diameter d0 [mm] 14 17-18 20 24-25 28 30-32 35-

    Cross section As [mm] 71 127 198 285 388 507 64

    Design yield force Nyd,s [N/mm] 31.0 55.1 86.1 123.9 168.7 220.3 280

    Length to develop yield lb0

    [mm] 334 445 557 668 779 891 10

    Development length as multiple of ds 35 35 35 35 35 35 3

    Design bond strength fbd [N/mm] 3.1 3.1 3.1 3.1 3.1 3.1 3.

    Edge distance c [cm] edge distance (concrete cover) according to national regul

    Spacing s [cm] spacing according to national regulations (e.g.

    100 9.3 12.4

    125 11.6 15.5 19.3

    150 13 9 18 6 23 2 27 8

    P i ll d b i

  • 7/28/2019 Fixing of Rebar in Concrete

    33/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    Design loads acc. Rebar Theory depending on the anchorage length in cracTable 5.30a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 550 N/m

    Rebar size ds [mm] 8 10 12 14 16 20 25

    Drill diameter d0 [mm] 12 14 16 18 20 25 30

    Cross section As [mm] 50 79 113 154 201 314 491

    Design yield force Nyd,s [N/mm] 24.0 37.6 54.1 73.6 96.2 150.3 234.8

    Length to develop yield lb0 [mm] 309 386 463 540 617 771 964

    Development length as multiple of ds 39 39 39 39 39 39 39

    Design bond strength fbd [N/mm] 3.1 3.1 3.1 3.1 3.1 3.1 3.1

    Edge distance c [cm] edge distance (concrete cover) according to national regul

    Spacing s [cm] spacing according to national regulations (e.g.

    Designload[

    kN]

    fyk=550N/m

    m

    concreteC20/25

    Anchoragelength

    [mm]

    100 7.8 9.7

    125 9.7 12.2 14.6

    150 11.7 14.6 17.5 20.5

    175 13.6 17.0 20.5 23.9 27.3

    200 15.6 19.5 23.4 27.3 31.2

    250 19.5 24.3 29.2 34.1 39.0 48.7

    300 29.2 35.1 40.9 46.7 58.4

    350 40.9 47.7 54.5 68.2

    400 54.5 62.3 77.9 97.4

    450 70.1 87.7 109.6500 97.4 121.7

    550 107.1 133.9

    600 146.1

    650 158.3

    700

    750

    800

    850

    900

    9501000

    1040

    Table 5.30b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 550 N/

    Imperial size # 3 4 5 6 7 8 9

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.2 25.4 28

    Drill diameter d0 [mm] 14 17-18 20 24-25 28 30-32 35-

    Cross section As [mm] 71 127 198 285 388 507 64

    Design yield force Nyd,s

    [N/mm] 34.1 60.6 94.7 136.3 185.5 242.3 308

    Length to develop yield lb0 [mm] 367 490 612 735 857 980 11

    Development length as multiple of ds 39 39 39 39 39 39 3

    Design bond strength fbd [N/mm] 3.1 3.1 3.1 3.1 3.1 3.1 3.

    Edge distance c [cm] edge distance (concrete cover) according to national regul

    Spacing s [cm] spacing according to national regulations (e.g.

    100 9.3 12.4

    125 11 6 15 5 19 3

  • 7/28/2019 Fixing of Rebar in Concrete

    34/98

    P t i t ll d b ti

  • 7/28/2019 Fixing of Rebar in Concrete

    35/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    Design loads acc. Anchor Theory depending on the anchorage length in nonTable 5.32a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 420 N/m

    Rebar size ds [mm] 8 10 12 14 16

    Drill diameter d0 [mm] 12 14 16 18 20

    Cross section As [mm] 50 79 113 154 201

    Design yield force Nyd,s [N/mm] 18.4 28.7 41.3 56.2 73.4

    Length to develop yield lb0 [mm] 120 149 179 230 263

    Development length as multiple of ds 15 15 15 16 16

    Design bond strength fbd [N/mm] 6.1 6.1 6.1 5.6 5.6

    Edge distance * c [cm] 12 15 18 23 26

    Spacing * s [cm] 24 30 36 46 52

    Designlo

    ad[kN]

    fyk=420

    N/mm

    concrete

    C20/25

    Anchoragelength[mm]

    100 15.4 19.2

    125 18.4 24.0 28.8

    150 28.7 34.6 36.7

    175 40.3 42.8 48.9

    200 41.3 48.9 55.9

    225 55.0 62.8

    250 56.2 69.8

    275 73.4

    300

    325350

    375

    400

    425

    450

    475

    500

    525 * for smaller edge d istances and spacings, please refer to your fischer Techn550

    Table 5.32b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 420 N/

    Imperial size # 3 4 5 6 7

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.

    Drill diameter d0 [mm] 14 17-18 20 24-25 28

    Cross section As [mm] 71 127 198 285 388

    Design yield force Nyd,s [N/mm] 26.0 46.3 72.3 104.1 141

    Length to develop yield lb0 [mm] 142 190 237 313 365

    Development length as multiple of ds 15 15 15 16 16

    Design bond strength fbd

    [N/mm] 6.1 6.1 6.1 5.6 5.6

    Edge distance * c [cm] 14 19 23.5 31 36.

    Spacing * s [cm] 28 38 47 62 73

    100 18.3 24.4

    125 22.9 30.5 38.1

    150 26.0 36.6 45.7 49.9

    175 42.7 53.3 58.2 67.

    200 46 3 61 0 66 5 77

    Post installed rebar connections

  • 7/28/2019 Fixing of Rebar in Concrete

    36/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    5

    Design loads acc. Anchor Theory depending on the anchorage length in nonTable 5.33a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 460 N/m

    Rebar size ds [mm] 8 10 12 14 16

    Drill diameter d0 [mm] 12 14 16 18 20

    Cross section As [mm] 50 79 113 154 201

    Design yield force Nyd,s [N/mm] 20.1 31.4 45.2 61.6 80.4

    Length to develop yield lb0 [mm] 131 161 196 252 288

    Development length as multiple of ds 16 16 16 18 18

    Design bond strength fbd [N/mm] 6.1 6.1 6.1 5.6 5.6

    Edge distance * c [cm] 13 16 19.5 25 29

    Spacing * s [cm] 26 32 39 50 58

    Designlo

    ad[kN]

    fyk=460

    N/mm

    concrete

    C20/25

    Anchoragelength[mm]

    100 15.4 19.2

    125 19.2 24.0 28.8

    150 20.1 28.8 34.6 36.7

    175 31.4 40.3 42.8 48.9

    200 45.2 48.9 55.9

    225 55.0 62.8

    250 61.1 69.8

    275 76.8

    300 80.4

    325350

    375

    400

    425

    450

    475

    500

    550 * for smaller edge d istances and spacings, please refer to your fischer Techn600

    Table 5.33b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 460 N/

    Imperial size # 3 4 5 6 7

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.

    Drill diameter d0 [mm] 14 17-18 20 24-25 28

    Cross section As [mm] 71 127 198 285 388

    Design yield force Nyd,s [N/mm] 28.5 50.7 79.2 114.0 155

    Length to develop yield lb0 [mm] 156 208 260 343 400

    Development length as multiple of ds 16 16 16 18 18

    Design bond strength fbd

    [N/mm] 6.1 6.1 6.1 5.6 5.6

    Edge distance * c [cm] 15.5 21 26 34 40

    Spacing * s [cm] 31 42 52 68 80

    100 18.3 24.4

    125 22.9 30.5 38.1

    150 27.4 36.6 45.7 49.9

    175 28.5 42.7 53.3 58.2 67.

    200 48 8 61 0 66 5 77

    Post-installed rebar connections

  • 7/28/2019 Fixing of Rebar in Concrete

    37/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    Design loads acc. Anchor Theory depending on the anchorage length in nonTable 5.34a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 500 N/m

    Rebar size ds [mm] 8 10 12 14 16

    Drill diameter d0 [mm] 12 14 16 18 20

    Cross section As [mm] 50 79 113 154 201

    Design yield force Nyd,s [N/mm] 21.9 34.1 49.2 66.9 87.4

    Length to develop yield lb0 [mm] 142 178 213 274 313

    Development length as multiple of ds 18 18 18 20 20

    Design bond strength fbd [N/mm] 6.1 6.1 6.1 5.6 5.6

    Edge distance * c [cm] 14 17.5 21 27 31

    Spacing * s [cm] 28 35 42 54 62

    Designload[

    kN]

    fyk=500N/mm

    concreteC20

    /25

    Anchoragelength

    [mm]

    100 15.4 19.2

    125 19.2 24.0 28.8

    150 21.9 28.8 34.6 36.7

    175 33.6 40.3 42.8 48.9

    200 34.1 46.1 48.9 55.9

    225 49.2 55.0 62.8

    250 61.1 69.8

    275 66.9 76.8

    300 83.8

    325 87.4350

    375

    400

    425

    450

    475

    500

    525

    550

    575 * for smaller edge d istances and spacings, please refer to your fischer Techn600

    650

    Table 5.34b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 500 N/

    Imperial size # 3 4 5 6 7

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.

    Drill diameter d0 [mm] 14 17-18 20 24-25 28

    Cross section As [mm] 71 127 198 285 388

    Design yield force Nyd,s [N/mm] 31.0 55.1 86.1 123.9 168

    Length to develop yield lb0 [mm] 169 226 282 373 435

    Development length as multiple of ds 18 18 18 20 20

    Design bond strength fbd [N/mm] 6.1 6.1 6.1 5.6 5.6

    Edge distance * c [cm] 17 22.5 28 37.5 43.

    Spacing * s [cm] 34 45 56 75 87

    100 18.3 24.4

    125 22 9 30 5 38 1

    Post-installed rebar connections

  • 7/28/2019 Fixing of Rebar in Concrete

    38/98

    Post-installed rebar connectionswith Injection mortar FIS V and FIS EM

    5

    Design loads acc. Anchor Theory depending on the anchorage length in nonTable 5.35a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 550 N/m

    Rebar size ds [mm] 8 10 12 14 16

    Drill diameter d0 [mm] 12 14 16 18 20

    Cross section As [mm] 50 79 113 154 201

    Design yield force Nyd,s [N/mm] 24.0 37.6 54.1 73.6 96.2

    Length to develop yield lb0 [mm] 157 196 235 301 344

    Development length as multiple of ds 20 20 20 22 22

    Design bond strength fbd [N/mm] 6.1 6.1 6.1 5.6 5.6

    Edge distance * c [cm] 16 19.5 23.5 30 34.5

    Spacing * s [cm] 32 39 47 60 69

    Designload[

    kN]

    fyk=550N/mm

    concreteC20

    /25

    Anchoragelength

    [mm]

    100 15.4 19.2

    125 19.2 24.0 28.8

    150 23.0 28.8 34.6 36.7

    175 24.0 33.6 40.3 42.8 48.9

    200 37.6 46.1 48.9 55.9

    225 51.8 55.0 62.8

    250 54.1 61.1 69.8

    275 67.2 76.8

    300 73.3 83.8

    325 90.8350 96.2

    375

    400

    425

    450

    475

    500

    550

    600

    650700

    710 * for smaller edge d istances and spacings, please refer to your fischer Techn

    Table 5.35b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 550 N/

    Imperial size # 3 4 5 6 7

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.

    Drill diameter d0 [mm] 14 17-18 20 24-25 28

    Cross section As [mm] 71 127 198 285 388

    Design yield force Nyd,s

    [N/mm] 34.1 60.6 94.7 136.3 185

    Length to develop yield lb0 [mm] 186 248 311 410 478

    Development length as multiple of ds 20 20 20 22 22

    Design bond strength fbd [N/mm] 6.1 6.1 6.1 5.6 5.6

    Edge distance * c [cm] 18.5 24.5 31 41 48

    Spacing * s [cm] 37 49 62 82 96

    100 18.3 24.4

    Post-installed rebar connections

  • 7/28/2019 Fixing of Rebar in Concrete

    39/98

    Post installed rebar connectionswith Injection mortar FIS V and FIS EM

    Design loads acc. Anchor Theory depending on the anchorage length in nonTable 5.36a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 400 N/m

    Rebar size ds [mm] 8 10 12 14 16 20 25

    Drill diameter d0 [mm] 12 14 16 18 20 25 30

    Cross section As [mm] 50 79 113 154 201 314 491

    Design yield force Nyd,s [N/mm] 17.5 27.3 39.3 53.5 69.9 109.3 170.7

    Length to develop yield lb0 [mm] 93 117 140 164 187 261 343

    Development length as multiple of ds 12 12 12 12 12 13 14

    Design bond strength fbd [N/mm] 7.4 7.4 7.4 7.4 7.4 6.7 6.3

    Edge distance * c [cm] 9.5 12 14 16.5 19 26 34

    Spacing * s [cm] 19 24 28 33 38 52 68

    Designlo

    ad[kN]

    fyk=400

    N/mm

    concrete

    C20/25

    Anchoragelength[mm]

    100 17.5 23.4

    125 27.3 35.1

    150 39.3 49.1

    175 39.3 53.5 65.5

    200 69.9

    225 94.2

    250 104.7

    275 109.3 136.8

    300 149.2

    325 161.7350 170.7

    375

    400

    450

    500

    550

    600

    650 * for smaller edge distances and spacings, please refer to your fischer Technical 700

    Table 5.36b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 400 N/

    Imperial size # 3 4 5 6 7 8 9

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.2 25.4 28

    Drill diameter d0 [mm] 14 17-18 20 24-25 28 30-32 35-

    Cross section As [mm] 71 127 198 285 388 507 64

    Design yield force Nyd,s [N/mm] 24.8 44.1 68.8 99.1 134.9 176.2 224

    Length to develop yield lb0 [mm] 111 148 185 223 260 331 39

    Development length as multiple of ds 12 12 12 12 12 13 1

    Design bond strength fbd [N/mm] 7.4 7.4 7.4 7.4 7.4 6.7 6.

    Edge distance * c [cm] 11 14.5 18.5 22 26 33 3

    Spacing * s [cm] 22 29 37 44 52 66 7

    100 22.3 29.7

    125 24.8 31.7 46.4

    150 44.1 55.7 66.8

    175 65.0 78.0 91.0

    200 68 8 89 1 104 0

    Post-installed rebar connections

  • 7/28/2019 Fixing of Rebar in Concrete

    40/98

    Post installed rebar connectionswith Injection mortar FIS V and FIS EM

    5

    Design loads acc. Anchor Theory depending on the anchorage length in nonTable 5.37a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 420 N/m

    Rebar size ds [mm] 8 10 12 14 16 20 25

    Drill diameter d0 [mm] 12 14 16 18 20 25 30

    Cross section As [mm] 50 79 113 154 201 314 491

    Design yield force Nyd,s [N/mm] 18.4 28.7 41.3 56.2 73.4 114.7 179.3

    Length to develop yield lb0 [mm] 98 123 147 172 196 274 360

    Development length as multiple of ds 12 12 12 12 12 14 14

    Design bond strength fbd [N/mm] 7.4 7.4 7.4 7.4 7.4 6.7 6.3

    Edge distance * c [cm] 10 12.5 14.5 17 19.5 27.5 36

    Spacing * s [cm] 20 25 29 34 39 55 72

    Designlo

    ad[kN]

    fyk=420

    N/mm

    concrete

    C20/25

    Anchoragel

    ength[mm]

    100 18.4 23.4

    125 28.7 35.1

    150 41.3 49.1

    175 56.2 65.5

    200 73.4

    225 94.2

    250 104.7

    275 114.7

    300 149.2

    325 161.7350 174.1

    400 179.3

    450

    500

    550

    600

    650

    700 * for smaller edge distances and spacings, please refer to your fischer Technical 750

    Table 5.37b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 420 N/

    Imperial size # 3 4 5 6 7 8 9

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.2 25.4 28

    Drill diameter d0 [mm] 14 17-18 20 24-25 28 30-32 35-

    Cross section As [mm] 71 127 198 285 388 507 64

    Design yield force Nyd,s [N/mm] 26.0 46.3 72.3 104.1 141.7 185.1 235

    Length to develop yield lb0 [mm] 117 156 195 234 273 348 41

    Development length as multiple of ds 12 12 12 12 12 14 1

    Design bond strength fbd [N/mm] 7.4 7.4 7.4 7.4 7.4 6.7 6.

    Edge distance * c [cm] 12 5.5 19.5 23.5 27.5 35 41

    Spacing * s [cm] 24 31 39 47 55 70. 8

    100 22.3 29.7

    125 26.0 37.1 46.4

    150 44.6 55.7 66.8

    175 46.3 65.0 78.0 91.0

    200 72 3 89 1 104 0

    Post-installed rebar connections

  • 7/28/2019 Fixing of Rebar in Concrete

    41/98

    with Injection mortar FIS V and FIS EM

    Design loads acc. Anchor Theory depending on the anchorage length in nonTable 5.38a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 460 N/m

    Rebar size ds [mm] 8 10 12 14 16 20 25

    Drill diameter d0 [mm] 12 14 16 18 20 25 30

    Cross section As [mm] 50 79 113 154 201 314 491

    Design yield force Nyd,s [N/mm] 20.1 31.4 45.2 61.6 80.4 125.7 196.3

    Length to develop yield lb0 [mm] 107 134 161 188 215 300 395

    Development length as multiple of ds 13 13 13 13 13 15 16

    Design bond strength fbd [N/mm] 7.4 7.4 7.4 7.4 7.4 6.7 6.3

    Edge distance * c [cm] 10.5 13 16 18.5 21.5 30 39.5

    Spacing * s [cm] 21 26 32 37 43 60 79

    Designload

    [kN]

    fyk=460N/mm

    concreteC2

    0/25

    Anchorageleng

    th[mm]

    100 18.7 23.4

    125 20.1 29.2 35.1

    150 31.4 42.1 49.1

    175 45.2 57.3 65.5

    200 45.2 61.6 74.8

    225 61.6 80.4 94.2

    250 80.4 104.7

    275 115.2

    300 125.7 149.2

    325 125.7 161.7350 174.1

    375 186.5

    400 196.3

    450

    500

    550

    600

    650

    700

    750 * for smaller edge distances and spacings, please refer to your fischer Technical 800

    Table 5.38b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 460 N/

    Imperial size # 3 4 5 6 7 8 9

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.2 25.4 28

    Drill diameter d0 [mm] 14 17-18 20 24-25 28 30-32 35-

    Cross section As [mm] 71 127 198 285 388 507 64

    Design yield force Nyd,s [N/mm] 28.5 50.7 79.2 114.0 155.2 202.7 257

    Length to develop yield lb0 [mm] 128 171 213 256 299 381 45

    Development length as multiple of ds 13 13 13 13 13 15 1

    Design bond strength fbd [N/mm] 7.4 7.4 7.4 7.4 7.4 6.7 6.

    Edge distance * c [cm] 13 17 21.5 25.5 30 38 4

    Spacing * s [cm] 26 34 43 51 60 76 9

    100 22.3 29.7

    125 27.8 37.1 46.4

    150 28 5 44 6 55 7 66 8

    Post-installed rebar connections

  • 7/28/2019 Fixing of Rebar in Concrete

    42/98

    with Injection mortar FIS V and FIS EM

    5

    Design loads acc. Anchor Theory depending on the anchorage length in nonTable 5.39a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 500 N/m

    Rebar size ds [mm] 8 10 12 14 16 20 25

    Drill diameter d0 [mm] 12 14 16 18 20 25 30

    Cross section As [mm] 50 79 113 154 201 314 491

    Design yield force Nyd,s [N/mm] 20.1 31.4 45.2 61.6 80.4 125.7 196.3

    Length to develop yield lb0 [mm] 107 134 161 188 215 300 395

    Development length as multiple of ds 13 13 13 13 13 15 16

    Design bond strength fbd [N/mm] 7.4 7.4 7.4 7.4 7.4 6.7 6.3

    Edge distance * c [cm] 10.5 13.5 16 19 21.5 30 39.5

    Spacing * s [cm] 21 27 32 38 43 60 79

    Designload

    [kN]

    fyk=500N/mm

    concreteC2

    0/25

    Anchorageleng

    th[mm]

    100 18.7 23.4

    125 21.9 29.2 34.9

    150 34.1 41.8 49.1

    175 48.8 57.3 65.5

    200 49.2 65.5 74.8

    225 66.9 84.2 94.2

    250 87.4 104.7

    275 115.2

    300 125.7 149.2

    325 136.1 161.7350 136.6 174.1

    400 199.0

    450 213.4

    500

    550

    600

    650

    700

    750

    800 * for smaller edge distances and spacings, please refer to your fischer Technical 900

    Table 5.39b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 500 N/

    Imperial size # 3 4 5 6 7 8 9

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.2 25.4 28

    Drill diameter d0 [mm] 14 17-18 20 24-25 28 30-32 35-

    Cross section As [mm] 71 127 198 285 388 507 64

    Design yield force Nyd,s [N/mm] 31.0 55.1 86.1 123.9 168.7 220.3 280

    Length to develop yield lb0 [mm] 139 185 233 278 325 414 49

    Development length as multiple of ds 15 15 15 15 15 16 1

    Design bond strength fbd [N/mm] 7.4 7.4 7.4 7.4 7.4 6.7 6.

    Edge distance * c [cm] 14 18.5 23.5 28 32.5 41.5 4

    Spacing * s [cm] 28 37 47 56 65 83 9

    100 22.3 29.7

    125 27.8 37.1 46.1

    Post-installed rebar connections

  • 7/28/2019 Fixing of Rebar in Concrete

    43/98

    with Injection mortar FIS V and FIS EM

    Design loads acc. Anchor Theory depending on the anchorage length in nonTable 5.40a: Metric sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 550 N/m

    Rebar size ds [mm] 8 10 12 14 16 20 25

    Drill diameter d0 [mm] 12 14 16 18 20 25 30

    Cross section As [mm] 50 79 113 154 201 314 491

    Design yield force Nyd,s [N/mm] 24,0 37,6 54,1 73,6 96,2 150,3 234,8

    Length to develop yield lb0 [mm] 128 161 193 225 257 359 472

    Development length as multiple of ds 16 16 16 16 16 18 19

    Design bond strength fbd [N/mm] 7,4 7,4 7,4 7,4 7,4 6,7 6,3

    Edge distance * c [cm] 13 16 19.5 22.5 25.5 36 47

    Spacing * s [cm] 26 32 39 45 51 72 94

    Designload

    [kN]

    fyk=550N/mm

    concreteC2

    0/25

    Anchorageleng

    th[mm]

    100 18,7 23,4

    125 23,4 29,2 35,1

    150 24,0 35,1 42,1 49,1

    175 37,6 49,1 57,3 65,5

    200 54,1 65,5 74,8

    225 73,6 84,2 94,2

    275 96,2 115,2

    300 125,7 149,2

    350 146,6 174,1

    400 150,3 199,0450 223,8

    500 234,8

    550

    600

    650

    700

    750

    800

    850

    9001000 * for smaller edge distances and spacings, please refer to your fischer Technical

    Table 5.40b: Imperial sizes / Concrete C20/25, fck = 20 N/mm, steel: fyk = 550 N/

    Imperial size # 3 4 5 6 7 8 9

    Rebar size ds [mm] 9.5 12.7 15.9 19.1 22.2 25.4 28

    Drill diameter d0 [mm] 14 17-18 20 24-25 28 30-32 35-

    Cross section As [mm] 71 127 198 285 388 507 64

    Design yield force Nyd,s [N/mm] 34,1 60,6 94,7 136,3 185,5 242,3 308

    Length to develop yield lb0 [mm] 153 204 255 306 357 456 54

    Development length as multiple of ds 16 16 16 16 16 18 1

    Design bond strength fbd [N/mm] 7,4 7,4 7,4 7,4 7,4 6,7 6,

    Edge distance * c [cm] 15.5 20.5 25.5 30.5 35.5 45.5 5

    Spacing * s [cm] 31 41 51 61 71 91 10

    100 22,3 29,7

    125 27,8 37,1 46,4

    Notes

  • 7/28/2019 Fixing of Rebar in Concrete

    44/98

    5

  • 7/28/2019 Fixing of Rebar in Concrete

    45/98

    Fire Safety in the Fixing Te

    6.1 Introduction .................... .........

    6.2 Why there will always be fire

    6.3 Prevention through structur

    fire protection ........................

    6.4 Fire safety measures in the b

    6.5 Fire behavior of building mat

    members and their designat

    6.6 Fire development and tempe

    6.7 Fire Test ................... .................

    6.8 Fire behavior of fasteners an

    state of technology ...............

    6.9 Anchor applications (examp

    6.10 Overview of certified fasten

    6.11 References ..................... ..........

    Fire Safety in the Fixing Technology

  • 7/28/2019 Fixing of Rebar in Concrete

    46/98

    6

    6.1 Introduction

    Fasteners and anchors play an important rolenot only with regard to connection of buil-ding elements, but also where durability andmaintaining capacity and safety is concerned.Often the stability of structural components ina fire will depend on the fastening element.

    The stability of structural components isessential for insuring that escape is possibleand that escape routes remain intact. For thisreason fischer has been working for yearsin collaboration with research institutes andmaterial testing institutes in the area of pas-sive fire protection.

    Through their intensive involvement in thisarea, fischer contributes to the developmentof fastening technology for anchors exposedto extreme fire conditions.

    In addition, we see it as an important contri-bution to safety, when those responsible for

    design and specification of building projectsavail themselves of our experience. By choo-sing todays best solutions for preventive fireprotection it helps to limit damage and savelives.

    6.2 Why there w

    In spite of the most measures, the possibnever be excluded whons preside at the sam

    Flammable mater

    Oxygen or an oxid Suffi ciently high tof ignition

    Fires can occur at anbuilding. Examples ar

    New construction

    work involving open fl Normal operationmable materials, shoelectric cables, cable electrical circuits, incones and household de

    Maintenance andof fire can arise whewhich produce red hping of burning mater

    Figure 6.1:

    Restaurant fire in Hamburg 1997 [1]

    Building: Mainly wood construction, single-floor, timber pile

    foundation

    Cause of fire: Technical defect in the electrical installation, pro-

    bably a result of material fatigue

    Figure 6.2:

    Tunnel fire test 2001 in a Bre

    Fire Safety in the Fixing Technology

  • 7/28/2019 Fixing of Rebar in Concrete

    47/98

    6.3 Prevention through structural and

    operational fire protection

    The first objective of fire protection is to pre-vent fires. If, in spite of this a fire occurs, thenthe second objective is to minimize the con-sequences. Fastening elements can makeessential contributions towards the realization

    of both objectives. In Germany the State Buil-ding Ordinances (Landesbauordnung LBO),the Employers Liability Association Directivesand Regulations (BerufsgenossenschaftlichesVorschriften- und Regelwerk BGVR), as wellas the Association of Insurers VdS (Verbandder Sachversicherer VdS), specify measures

    for structural and operational fire prevention.In the U. S. but also in many countries in Asiarequirements of Factory Mutual (FM), an inter-national group of insurance companies in theU. S., must be observed. The regulations of VdSand FM are required particulary for the design

    and installation of sprinkler systems. Anchorswith FM-Certificate are listed in section 6.10.Several directives of particular importance arelisted below:

    Preventative structural fire protection inclu-des the following:

    Compliance with fire regulations. (e.g. thelayout and structure of the property, use ofheating and electrical systems and storage offlammable or explosive materials).

    Use of fire rated and fire retardant materials

    Sectioning of the

    fire protection areas thfire resistant dividing wand partitions.

    Installation of smextraction and air sup

    Provisions of sa

    routes as well as fume

    Design and maintso that fire engines caat any time without oking areas are insurement.

    Lightning protecti

    Operational fire safetmeasures and facilitie

    Fire alarm systemflame alarms, manual

    Gas warning sens Fire department k

    Permanent fire exsuch as sprinkler sysdepartment feed pohers.

    Fire safety coordin Signage for fire ex

    Adaption of furnis

    R l i t

    Fire Safety in the Fixing Technology

  • 7/28/2019 Fixing of Rebar in Concrete

    48/98

    6

    6.4.1 Building Ordinance in Germany

    The Building Ordinance (MBO) is the basisfor many building code regulations includingthose relative to fire safety measures. TheState Building Ordinances (LBO) of the indivi-dual states supplement the MBO. (Fig. 6.3).

    Paragraph 17 of the MBO states the follo-

    wing:

    Structural facilities are to be arranged andequipped, such that the development andspreading of fire is prevented, in the interest ofavoiding hazards to life and health of peopleand animals, and that in case of fire, effective

    extinguishing work and the rescue of peopleand animals are possible.

    The required tests are specified in the firesafety standard DIN 4102. It regulates theclassification of building materials, structuralcomponents and special components intodifferent fire ratings.

    6.4.2 State Building Ordinances in Ger-

    many

    The specifications of the Building Ordinance(MBO) have been transformed into applicablelaw. The details differ from state to state.

    6.4.3 Application

    lations

    Supplemental to thnances there are otheregulate additional meof buildings:

    Construction Ord

    of public assembl

    Retail Constructio

    School Constructi

    Garage Construct

    Restaurant Constr

    Hospital Construc

    High rised buildinnance

    Industrial building

    6.4.4 Fire safety monal urban

    law

    Because no generallyguidelines are availacase, design and emeasures are to be orfic directives. The stacurve (ISO 834) howewide. Fire analysis andfrom this standard can

    Fire Safety in the Fixing Technology

  • 7/28/2019 Fixing of Rebar in Concrete

    49/98

    6.5 Fire behaviour of building materi-

    als and structural members and

    their designation

    DIN 4102 differentiates between buildingmaterials and structural members. Buildingmaterials correspond to a certain material(concrete, timber, steel) and as a result they

    differ in terms of their combustion. That is whythey are differentiated according to their firebehaviour regardless of their external form(Table 6.1).

    Structural members can consist of differentbuilding materials. They are evaluated as anentity, and classified according to their dura-tion of fire resistance.

    6.5.1 Duration of fire resistance

    The duration of fire resistance indicates theresistance to fire over a certain period of time.

    Example:F 30

    Explanation:

    The structural member has, under the conditi-ons referred to by the standard temperature/time curve, a fire resistance duration of 30

    minutes. For F 30 the term fire retardant isused. Structural members starting from F 90and higher are designated as fireproof.The fire rating is classified with regard to theminimum resistance of 30 60 90 120 or

    6.5.2 Fire behavio

    Letters printed next tnate the fire behaviou(Tab. 6.1). A fire retanent made of non-flamals with a fire rating caccordingly with F 30

    stands for the combinand flammable mater

    6.5.3 Designation

    fasteners an

    The fire rating class fo

    is specified, for exampThe use of fasteners athrough approvals. Thapprovals do not conning fire resistance are the German Approf light ceiling claddinNail anchor FNA II, fisanchor FZEA II, fiscEA II (see table 6.2).

    If anchors are requirewhere they must macase of fire or higher t

    information about theprovided (compare se

    Fire Safety in the Fixing Technology

  • 7/28/2019 Fixing of Rebar in Concrete

    50/98

    6

    For structural components in Germany anchorsshall be selected that are approved and cove-red by an independent expert information.Fixings of fire resistant doors are covered byDIN 18093.

    6.5.4 Special componentsOther structural members such as cablesystems, ventilation ducts, and fire safetyenclosures are tested for their fire rating classaccording to special specifications. In the caseof fire resistance Table 6.3 shows the differentclasses. All structural fixings must demon-

    strate at least the required fire resistance ofthe element being fixed. If, for example, a firerating of L 90 is required for ventilation ducts,then an anchor with a certified class of at leastF 90 must be used.

    With systems consisting of different parts (e.

    g. cable and cable clamp or door frame andfixing), that have been tested at a unit, no partmust be replaced by a different component.Otherwise the approval is not longer valid.

    6.5.5 Future Eur

    International fire safesummarized in the fu13501 - part 1. This existing fire standard to final agreement anthis, the building mate

    according to table 6.d indicate the criteria(d).

    6.6. Fire develo

    ture/time cu

    In order to assess aof fire, reproduciblerequired.

    Table 6.4:

    Classification of the fire behavi

    floor coverings) /5/

    Offi cial

    construction

    require-

    ments

    Additional requirements

    No smoke no burnin

    particles/o

    burning

    dropletsFireproof X X

    At least X X

    Hardly

    X X

    X

    Fire Safety in the Fixing Technology

  • 7/28/2019 Fixing of Rebar in Concrete

    51/98

    6.6.1 Real fire development

    Fires proceed according to the principle rep-resented in figure 6.4. There are two distinctphases developing fire and fully developedfire. In the case of the developing fire there isdifferentiation between the ignition phase andthe smouldering phase, in the case of fully

    developed fire there is differentiation betweenheating-up phase and cool-down phase. Thusthe building material class according to DIN4102 part 1 (for example A, A1, B3) is thedecisive factor for the developing fire. In thecase of a full-fire, after flashpoint, the decisivefactor is the fire resistance of the structural

    member (e.g. F 90).

    6.6.2 Standard fir

    the standa

    curve

    Fire effect relative to ttime is defined in thetime curve (ETK) (Fig4102 and ISO 834.

    rised by a flat increas1090 C after 120 world-wide as a basistest results can be world.

    The temperature/timestandard fire tests. Offido not legislate on this why it is not contime/temperature curperature and the maselected such that testhe standard temperaeffects that are similaa real fire.

    Figure 6.4:

    Fire phases, fire temperatures (diagram) and fire hazards [6]

    Fire Safety in the Fixing Technology

  • 7/28/2019 Fixing of Rebar in Concrete

    52/98

    6

    6.6.3 Temperature curves for special

    applications

    Besides the standard temperature/time curvefurther temperature curves are accepted forspecial applications. The hydrocarbon curvedescribes fire damage with flammable liquids.In Germany tunnel fires are simulated accor-

    ding to the RABT/ZTV Tunnel curve. In theNetherlands they are simulated according tothe Rijkswaterstaat Tunnel curve (Fig. 6.5).

    The RABT/ZTV Tunnel curve is characte-rised by an increase in temperature up to1200 C within 5 minutes. An even moresevere temperature action is required in accor-dance with the Rijkswaterstaat-Tunnelcurve:1200 C over a time of 120 minutes.

    6.6.4 Fire tests un

    The fischer group of in international researviour. In addition to anmodelling calculationhere on executing fireons. In this regard, the

    small fire analysis of roto the fire test in a B(Fig. 6.2). This fire testas part of a catastropBrixen, Italy.

    Three objectives werexecution of this triatemperature dependinconcrete surface (Figcapacity of the anchofire.

    Figure 6.7 shows theand Rieder published

    test /7/.

    Figure 6.5: Figure 6.6:

    Fire Safety in the Fixing Technology

  • 7/28/2019 Fixing of Rebar in Concrete

    53/98

    Figure 6.7:

    Setup for the test in the Brenner Motorway tunnel /2/

    6.7 Fire test

    All standard tests to determine the load bea-ring capacity of anchors are executed in afurnace.

    6.7.1 Test set up and test procedure

    The spatial enclosure of the furnace consistsof either a C20/25 reinforced concrete slab,or of masonry. The anchors are set into thesebuilding materials loaded as defined and then

    6.7.2 Safety conc

    Permissible anchor loapprovals, only show afailure load. This meanby irregularities in thecurate assembly andthe structural membe

    In the fire test, the faunder fire conditionsload is determined froa safety factor 1.

    As different safety cfor offi cial fastener

    and for fire test evaluthe permissible load be higher than that sor anchor approval. Nbed maximum permianchor approval must

    6.7.3 Modes of fa

    At high fire temperatuyield stre


Recommended