+ All Categories
Home > Documents > Flavor Dynamics Michael Murray for BRAHMS

Flavor Dynamics Michael Murray for BRAHMS

Date post: 09-Jan-2016
Category:
Upload: roddy
View: 23 times
Download: 1 times
Share this document with a friend
Description:
Flavor Dynamics Michael Murray for BRAHMS. C. Arsene 12 , I. G. Bearden 7 , D. Beavis 1 , S. Bekele 12 , C. Besliu 10 , B. Budick 6 , H. B ø ggild 7 , C. Chasman 1 , C. H. Christensen 7 , P. Christiansen 7 , H.Dahlsgaard 7 , R. Debbe 1 , - PowerPoint PPT Presentation
34
Michael Murray 1 Global Detectors Flavor Dynamics Michael Murray for BRAHMS C. Arsene 12 , I. G. Bearden 7 , D. Beavis 1 , S. Bekele 12 , C. Besliu 10 , B. Budick 6 , H. Bøggild 7 , C. Chasman 1 , C. H. Christensen 7 , P. Christiansen 7 , H.Dahlsgaard 7 , R. Debbe 1 , J. J. Gaardhøje 7 , K. Hagel 8 , H. Ito 1 , A. Jipa 10 , E.B.Johnson 11, J. I. Jørdre 9 , C. E. Jørgensen 7 , R. Karabowicz 5 , N. Katrynska 5 ,E. J. Kim 11 , T. M. Larsen 7 , J. H. Lee 1 , Y. K. Lee 4 ,S. Lindahl 12 , G. Løvhøiden 12 , Z. Majka 5 , M. J. Murray 11 ,J. Natowitz 8 , C.Nygaard 7 B. S. Nielsen 7 , D. Ouerdane 7 , D.Pal 12 , F. Rami 3 , C. Ristea 8 , O. Ristea 11 , D. Röhrich 9 , B. H. Samset 12 , S. J. Sanders 11 , R. A. Scheetz 1 , P. Staszel 5 , T. S. Tveter 12 , F. Videbæk 1 , R. Wada 8 , H. Yang 9 , Z. Yin 9 , I. S. Zgura 2 BNL, Bucharest, Strasbourg, John Hopkins, Krakow, NYU, NBI, Kansas, Oslo
Transcript
Page 1: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 1

GlobalDetectors

Flavor DynamicsMichael Murray for BRAHMS

C. Arsene12, I. G. Bearden7, D. Beavis1, S. Bekele12, C. Besliu10, B. Budick6,

H. Bøggild7, C. Chasman1, C. H. Christensen7, P. Christiansen7, H.Dahlsgaard7, R. Debbe1,

J. J. Gaardhøje7, K. Hagel8, H. Ito1, A. Jipa10, E.B.Johnson11, J. I. Jørdre9,

C. E. Jørgensen7, R. Karabowicz5, N. Katrynska5 ,E. J. Kim11, T. M. Larsen7, J. H. Lee1,

Y. K. Lee4,S. Lindahl12, G. Løvhøiden12, Z. Majka5, M. J. Murray11,J. Natowitz8, C.Nygaard7

B. S. Nielsen7, D. Ouerdane7, D.Pal12, F. Rami3, C. Ristea8, O. Ristea11,

D. Röhrich9, B. H. Samset12, S. J. Sanders11, R. A. Scheetz1, P. Staszel5,

T. S. Tveter12, F. Videbæk1, R. Wada8, H. Yang9, Z. Yin9, I. S. Zgura2

BNL, Bucharest, Strasbourg, John Hopkins, Krakow, NYU, NBI, Kansas, Oslo

Page 2: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 2

What are the dynamics of strange & light quarks?

• Baryon number is clearly transported in both rapidity and pT.

• Antibaryons and strange quarks are created

• How do these different flavors interact• Can we learn something about the

initial state of the system from their interaction.

From apparatus => data => comparison to NLO QDC => inference concerning flow and limiting fragmentation => thermal descriptions versus rapidity => half finished wild speculation

Page 3: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 3

GlobalDetectors

Broad Range HAdronic Magnetic Spectrometers

Page 4: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 4

1

L

TOFcpm

2

2222TIME-OF-FLIGHT

0<<1(MRS)

1.5<<4(FS)

pmax

(2 cut)

TOFW (GeV/c)

TOFW2 (GeV/c)

TOF1 (GeV/c)

TOF2 (GeV/c)

K/ 2.0 2.5 3.0 4.5

K/p 3.5 4.0 5.5 7.5

Ring radius vs momentum gives PID / K separation 25 GeV/cProton ID up to 35 GeV/c

(2 settings)

RICH

Particle Identification

Page 5: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 5

Invariant yields over a broad range of phase space

Page 6: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 6

N = 12035

Finding through

weak decay to K+,K-

Invariant mass of K+K- pair (GeV/c2)

Preliminary AuAu y~1 minimum bias, 200GeV

Page 7: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 7

dN/dy = 2.09 1.00 0.25T = 354 109 35 MeV

Consistent with STAR at y=0

Fitting mT spectra gives dN/dy and T

Page 8: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 8

pp => , k, p at 200GeV

pT (GeV/c)

PRL 98, 252001=2pT

=1/2pT

Page 9: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 9

Baryon transport for pp at s = 62GeV

dN/dy =0.7 ey-yb => dN/dx=c

Rapidity

dNdy

Models such as Pythia seriously underestimate the yield of high pT protons at forward rapidities

Preliminary

Preliminary

Page 10: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 10

Baryon Transport in AuAu

“net”

pro

ton

AGS

SPS

RHIC 62

RHIC 200

LHC 5500

dN

/dy

(BRAHMS preliminary)

For AuAu collisions a parton my be hit multiple times and the rapidity distribution flattens out

Page 11: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 11

y = A -B e-ybeam

AuAu rapidity loss flattens out between SPS & RHIC

ybeam

Peak of proton dN/dy should fall in acceptance of CASTOR at LHC

Page 12: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 12

Limiting fragmentation pp => , k

y-ybeam

y-ybeam

Page 13: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 13

Limiting fragmenation even works for p, pbar

y-ybeam

Page 14: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 14

Limiting Fragmentation also works in AuAu

BRAHMS Preliminary + NA49

dNdy

1Npart

y - ybeam

Page 15: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 15

PRC72 014904

Preliminary AuAu at √sNN = 200GeV, 0-50% central

Elliptic flow, v2(pT) is independent of rapidity

<V2> decreases with y because <pT> decreases with y

Page 16: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 16

V2(pT) scaling at central & forward rapidity

Page 17: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 17

Yields of produced particles are Gaussian

Central 62GeV AuAu => , K pbar

Preliminary

rapidity

dN/dy

Page 18: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 18

TBepN

pN /6

)(

)(

At each rapidity assume chemical equilibrium and strangeness neutrality

and

TsBeKN

KN /)(2

)(

)(

Tsep

p

K

K /2

3/1

Are different regions of rapidity in chemical equilibrium?

Page 19: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 19

BRAHMS PRELIMINARY

K-/K+ ratios seem to be controlled by pbar/p

Page 20: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 20

Does pbar/p control rapidity

dependence strangeness in

pp too?

Not so good here

Note for pp we have to be careful to conserve quantum numbers in each event

Page 21: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 21

Fit ±, K±, p and pbar dN/dy to a temperature and chemical potentials for strange & light quarks

T=1169 MeV

T=1483 MeVT=160 MeV

"THERMUS -- A Thermal Model Package for ROOT", S. Wheaton and J. Cleymans, hep-ph/0407174

Assumption of strangeness neutrality could be checked by comparing to yields

Page 22: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 22

Are protons black, white holes?Colour charges are confined

If we change the gravitational force with the strong nuclear force then R ~ 1fm.

Page 23: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 23

Black Holes and the uncertainty principle

+

-

Page 24: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 24

Black Holes radiate with T = 1/(8GM)

+

Page 25: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 25

If black holes are charged the temperature changes

+

-

-

-

-

--

-

-

Tem

pera

ture

Charge

Page 26: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 26

Slide 3

Search for charge white holes @ RHIC

M => E

Q => B

G => 1/2

Page 27: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 27

First look for white holes in AuAu collisions

STAR 200GeV AuAu

Page 28: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 28

First look for white holes in AuAu collisions

These points have comparable p-pbar

Assuming white hole hypothesis works at 200GeV implies T=1375 MeV for 63GeV, y=0

Page 29: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 29

Next Steps

• Do thermal analysis as a function of centrality

• Use particle abundances and average momenta to estimate dET/dy vs √S and centrality.

• Test if “White Hole” hypothesis can explain BRAHMS data in terms of thermal distributions

Page 30: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 30

Conclusions

• NLO pQCD has trouble describing p and pbar spectra for the forward region of pp collisions

• A wide range of phenomena obey limiting fragmentation

• Elliptic flow at a given pT is independent of y

• Particle yields at a given rapidity can be described within a thermal framework. The temperature falls with √S and y

• Somehow we need to explain very rapid, perhaps instant, thermalization of the system with parameters driven by the baryon density. We are investigating the charged “white hole” hypothesis.

Page 31: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 31

Backups

Page 32: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 32

Particle ratios vs rapidity

Page 33: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 33

Acceleration and radiation

A stationary observer in the blue region sees the thermal radiation of temperature T = a/2

Pictures from Castorina, Kharzeev & Satz hep-ph/0704.1426

Mass m

1/a

Page 34: Flavor Dynamics Michael Murray for BRAHMS

Michael Murray 34

For NA27, the K-/K+ ratio seems to be high

NA49 could clarify this


Recommended