+ All Categories
Home > Documents > Florey Vol 1

Florey Vol 1

Date post: 22-Oct-2014
Category:
Upload: arisculese
View: 96 times
Download: 3 times
Share this document with a friend
Popular Tags:
476
Analytical Profiles of Drug Substances Volume 1 Edited by Klaus Florey The Squibb Institute for Medical Research New Brunswick, New Jersey Contributing Editors Glenn A. Brewer, Jr. Lester Chafetz Gerald J. Papariello Jack P. Comer Stephen M. Olin Bernard 2. Senkowski Compiled under the auspices of the Phar-rnaceuticnl Analysis and Control Section Academy of Plinrrnnc-eulical Sciences Academic Press New York and London 1972
Transcript
Page 1: Florey Vol 1

Analytical Profiles of

Drug Substances Volume 1

Edited by

Klaus Florey The Squibb Institute for Medical Research

New Brunswick, New Jersey

Contributing Editors

Glenn A. Brewer, Jr. Lester Chafetz Gerald J. Papariello Jack P. Comer

Stephen M. Olin

Bernard 2. Senkowski

Compiled under the auspices of the Phar-rnaceuticnl Analysis and Control Section

Academy of Plinrrnnc-eulical Sciences

Academic Press New York and London 1972

Page 2: Florey Vol 1

EDITORIAL BOARD

Glenn A. Brewer, Jr. Lester Chafetz Stephen 86. Olin Jack P. Comer Klaus Florey Carl R. Rehm David E. Guttman Eric H. Jensen Frederick Tishler

Arthur F. Michaelis

Gerald J. Papariello

Bernard 2. Senkowski

Page 3: Florey Vol 1

COPYRIGHT 0 1 9 7 2 , BY THE AMERICAN PHARMACEUTICAL ASSOCIATION ALL RIGHTS RESERVED NO PART OF THIS BOOK MAY BE REPRODUCED IN ANY FORM, BY PHOTOSTAT, MICROFILM, RETRIEVAL SYSTEM, OR ANY OTHER MEANS, WITHOUT UrRIlTEN PERMISSION FROM THE PUBLISHERS.

ACADEMIC PRESS, INC. 1 1 1 Fifth Avenue, New York, New York 10003

United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NW1 IDD

LIBRARY OF CONGRESS CATALOG CARD NUMBER: 70-187259

PRINTED IN THE UNITED STATES OF AMERICA

Page 4: Florey Vol 1

AFFILIATIONS OF EDITORS, CONTRIBUTORS, AND REVIEWERS

G. A. Brewer, Jr., The Squibb Institute for Medical Research, New Brunswick, New Jersey

J. H. Burns, Eli Lilly and Company, Indianapolis, Indiana

L. Chafetz, Warner-Lambert Research Institute, Morris Plains, New Jersey

I. Comer, Eli Lilly and Company, Indianapolis, Indiana

J. P. Comer, Eli Lilly and Company, Indianapolis, Indiana

R. D. Daley, Ayerst Laboratories, Rousses Point, New York

N. J . DeAngelis, Wyeth Laboratories, Philadelphia, Pennsylvania

J. M. Dunham, The Squibb Institute for Medical Research, New Brunswick, New Jersey

N. P. Fish, Wyeth Laboratories, Philadelphia, Pennsylvania

K. Florey, The Squibb Institute for Medical Research, New Brunswick, New Jersey

D. E. Guttman, Smith, Kline and French Laboratories, Philadelphia, Pennsylvania

J. L. Hale, Eli Lilly and Company, Indianapolis, Indiana

E. H. Jensen, The Upjohn Company, Kalamazoo, Michigan

J. W. Lamb, Eli Lilly and Company, Indianapolis, Indiana

A . MacDonald. Hoffmann-La Roche Inc., Nutley, New Jersey

B. McEwan, Eli Lilly and Company, Indianapolis, Indiana

Page 5: Florey Vol 1

AFFl LlATlONS

J. M. Mann, Eli Lilly and Company, Indianapolis, Indiana

A . F Midzaelis, Sandoz Pharmaceuticals, Hanover, New Jersey

N. Neuss, Eli Lilly and Company, Indianapolis, Indiana

S. M . O h , Ayerst Laboratories, New York, New York

G. J. Papariello, Wyeth Laboratories, Philadelphia, Pennsylvania

E. L. Pratt, The Sterling-Winthrop Research Institute, Rensselaer, New York

C. R. Rehm, Ciba-Geigy Inc., Summit, New Jersey

N. E. Rigler, Lederle Laboratories, Pearl River, New York

P. Rulon, Wyeth Laboratories, Philadelphia, Pennsylvania

C. F. Schwender, Warner-Lambert Research Institute, Morris Plains, New Jersey

B. 2. Senkowski, Hoffmann-La Roche Inc., Nutley, New Jersey

C. E. Shafer, Elli Lilly and Company, Indianapolis, Indiana

C. Shearer, Wyeth Laboratories, Philadelphia, Pennsylvania

R. J. Simmons, Eli Lilly and Company, Indianapolis, Indiana

L. H. Sternbach, Hoffmann-La Roche Inc., Nutley, New Jersey

F. Tishler, Ciba-Geigy Inc., Ardsley, New York

C. D. Wending, Eli Lilly and Company, Indianapolis, Indiana

viii

Page 6: Florey Vol 1

FOREWORD

The concept for gathering together and publishing pertinent information on the physical and chemical properties of various official and new drug substances had its origin with the members of the Section on Pharmaceutical Analysis and Quality Control of the Academy of Pharmaceutical Sciences. More than two years of consideration preceded the authorization of this ambitious project by the Executive Committee of the Academy in the Spring of 1970. The immediate and virtually spontaneous enlistment of the first group of contributors to this work attested to its importance and the wisdom of pursuing its publication.

By coincidence, the delegates to the sesquicentennial anniversary meet- ing of the United States Pharmacopeial Convention, Inc., in Washington, D. C . on April 8-1 0, 1970, adopted the following resolution:

Whereas widespread interest has been expressed in the inclusion of addi- tional information about physical and chemical properties of drugs recognized in the United States Pharmacopeia

Be I t Resolved that the Board of Trustees consider publishing in the Pharmacopeia, or in a companion publication, information on such attributes as solubilities, pH and pK values, spectra and spectrophotometric constants, and stability data, pertaining to pharmacopeial drugs.

The U.S.P.C. Board of Trustees unanimously approved the resolution in principle on June 4, 1970 and authorized the Director of Revision to include in the U S.P. monographs such physical-chemical information as he deemed proper and also to cooperate with the Academy of Pharmaceutical Sciences to secure the publication of other physical-chemical data.

It was my privilege to be the President of the Academy during the period when Analytical Profiles was under consideration. It is my unusual and unique honor as President of the Academy and Director of U.S.P Revision to assist in the institution and dedication of this first volume. I trust that it will serve immeasurably in providing the scientific community with an authoritative source of information on the properties of many o f our im- portant drug compounds.

Thomas J . Macek Director of Revision

The United States Pharmacopeia

ix

Page 7: Florey Vol 1

PREFACE

Although the official compendia define a drug substance as to identity, purity, strength, and quality, they normally do not provide other physical or chemical data, nor do they list methods of synthesis or pathways of physical or biological degradation and metabolism. At present such information is scattered through the scientific literature and the files of pharmaceutical laboratories.

For drug substances important enough to be accorded monographs in the official compendia such supplemental information should also be made readily available. To this end the Pharmaceutical Analysis Section, Academy of Pharmaceutical Sciences, has started a cooperative venture to compile and publish AnalyticalB-ofiles of Drug Substances in a series of volumes of which this is the first. It is also planned to revise and update these profiles at suitable intervals.

Our endeavor has been made possible through the encouragement we have received from many sources and through the enthusiasm and cooperative spirit of our contributors. For coining the term Analytical Profile we are in- debted to Dr. James L. Johnson of the Upjohn Company.

We hope that this, our contribution to the better understanding of drug characteristics, will prove to be useful. We welcome new collaborators, and we invite comment and counsel to guide the infant to maturity.

Klaus Florey

xi

Page 8: Florey Vol 1

Table of Contents 1. Editorial Board Page ii 2. Edited by Page iii 3. Copyright page Page iv 4. Affiliations of Editors Pages vii-viii 5. Foreword

Thomas J. Macek Page ix

6. Preface Klaus Florey

Page xi

7. Acetohexamide C.E. Shafer

Pages 1-14

8. Chlordiazepoxide A. MacDonald, A.F. Michaelis, B.Z. Senkowski

Pages 15-37

9. Chlordiazepoxide Hydrochloride A. MacDonald, A.F. Michaelis, B.Z. Senkowski

Pages 39-51

10. Cycloserine J.W. Lamb

Pages 53-64

11. Cyclothiazide C.D. Wentling

Pages 65-77

12. Diazepam A. MacDonald, A.F. Michaelis, B.Z. Senkowski

Pages 79-99

13. Erythromycin Estolate J.M. Mann

Pages 101-117

14. Halothane R.D. Daley

Pages 119-147

15. Levarterenol Bitartrate Charles F. Schwender

Pages 149-173

16. Meperidine Hydrochloride Nancy P. Fish, Nicholas J. DeAngelis

Pages 175-205

17. Meprobamate C. Shearer, P. Rulon

Pages 207-232

18. Nortriptyline Hydrochloride J.L. Hale

Pages 233-247

19. Potassium Phenoxymethyl Penicillin John M. Dunham

Pages 249-300

20. Propoxyphene Hydrochloride B. McEwan

Pages 301-318

21. Sodium Cephalothin R.J. Simmons

Pages 319-341

22. Sodium Secobarbital I. Comer

Pages 343-365

23. Triamcinolone K. Florey

Pages 367-396

24. Triamcinolone Acetonide K. Florey

Pages 397-421

25. Triamcinolone Diacetate K. Florey

Pages 423-442

26. Vinblastine Sulfate J.H. Burns

Pages 443-462

27. Vincristine Sulfate J.H. Burns

Pages 463-480

Page 9: Florey Vol 1

ACETOHEXAMIDE

C. E. Shafer

Page 10: Florey Vol 1

C. E. SHAFER

CONTENTS

1. Description

2. Physicai Properties 1.1 Name, Formula, Molecular Weight

2.1 Infrared Spectrum 2.2 Nuclear Magnetic Resonance Spectrum 2.3 Ultraviolet Spectrum 2.4 Melting Range 2.5 Differential Thermal Analysis 2.6 Thermogravimetric Analysis 2.7 Solubility

3.1 First Example 3.2 Second Example

4.1 Infrared Analysis 4.2 Solubility Analysis

3. Synthesis

4 . Stability

5 . Drug Metabolic Products 6. Methods of Analysis

6.1 Titrimetric 6.2 Ultraviolet Spectrophotometric (Alkali) 6.3 Ultraviolet Spectrophotometric

(Alcohol) 7. Pharmacokinetics 8 . Identification 9. References

Page 11: Florey Vol 1

ACETOHEXAMI DE

1. Description

1.1 Name, Formula, Molecular Weight Acetohexamide is N- (p-acetylphenylsul-

fony1)-N'-cyclohexylureal, and is also known as 1-[ (pacetylpheny1)sulfonyl]-3-cyclohexylurea2~ 4.

CH 3 8 0 SO - N H ! N H o

C15H20N204S M1. wt. = 324.40

2. Physical Properties

2.1 Infrared Spectrum The infrared absorption spectrum of

acetohexamide (Lilly Reference Standard, Lot No. 2KT47) is presented in Figure No. 1. The spectrum was taken in a KBr pellet with a Perkin-Elmer 221 Infrared S ectrophotometer. The band at 3300, 3200 cm.-' is tyqical - of an N-H stretch; the band at 1680 cm. of a conjugated ketone, and the band at 1445 cm.-l of a C-CH3 group.

2.2 Nuclear Magnetic Resonance Spectrum The NMR spectrum of acetohexamide

(Lilly Reference Standard, Lot No. 2KT47) is presented in Figure 2. The spectrum was produced using a Varian A60 NMR Instrument. The quartet at low field (<86) is an A2B2 pattern that is typical of para substitution and the singlet at 2.526 is typical of a methyl group adjacent to a carbonyl function.

2.3 Ultraviolet Spectrum The UV absorption spectrum of aceto-

hexamide (Lilly Reference Standard, Lot No. 2KT47) is presented in Figure 3. The spectrum was produced using a Cary 14 instrument. The sample was dissolved in 95% ethanol using 8.06 mg. per 25 ml. of solution. The X max. at 247 nm is typical of substituted aceto-

3

Page 12: Florey Vol 1

10 0.0

0.2 z 4 m w

2 0.4 m a

0.6

0.8 1.0 1 . 5

FR E 0 UE N C Y ( C M - l I

2 3 4 5 6 7 8 9 10 11 12 13 14 1s

W A V E L E N G T H (MICRONS)

Fig. 1. Infrared spectrum

Page 13: Florey Vol 1

ACETOHEXAMIDE

0.9 -

0.8 -

PPM (d)

Fig. 2 . NMR spectrum (sweep o f f s e t 000,200.0 Hz)

Y 0 z 2 a 0 UY m a

Fig. 3 . Ultraviolet spectrum

5

Page 14: Florey Vol 1

C. E. SHAFER

phenone, and the A max. at 284 nm is typical of a conjugated aromatic ring.

2.4 Melting Range4 Between 184" and 189" (Class Ia NF).

2.5 Differential Thermal Analysis

of acetohexamide (Lilly Reference Standard, Lot No. 2KT47) as produced by a DuPont 900 D.T. analyzer, The spectrum shows a sharp phase transition at 192°C.

The curve in Figure 4 is a DTA spectrum

2.6 Thermogravimetric Analysis The TGA spectrum of acetohexamide in

Figure 5 (Lilly Reference Standard, Lot No. 2KT47) was produced with a DuPont 950 T.G. Analyzer. It indicates less than 1% weight loss to 191"C., approximately 5% weight loss at 198"C., and approximately 20% weight loss at 210 "c.

2.7 Solubility4 Practically insoluble in water. Practically insoluble in ether. Slightly soluble in alcohol. Slightly soluble in chloroform. Soluble in pyridine. Soluble in dilute solutions of alkali hydroxides.

3. Synthesis

Two examples for the preparation of aceto-

3.1 First Examnle5

hexamide are listed.

NaNO2 CH 3CO- oNH2 HC1, AcOH >

6

Page 15: Florey Vol 1

ACETOHEXAMI DE

217 236 256 TEMPERATURE ,'C

Fig. 4 . DTA spectrum

I I I I I I I I I

1 40 59 79 98 117 137 157 177 197

T I O C (CHROMEL: ALUMEL) 197 217 236 256 276

Fig. 5. TGA spectrum

Page 16: Florey Vol 1

C. E. SHAFER

SO 2 , AcOH CH3CO-f - \)N:HCl C u C l 2 . 2 H 2 0 ' CH3CO 4 - 3 S O 2 C l NH ,OH >

C H s C O + 9 - S 0 2 N H 2 K2C03

C H 3 C O ~ S 0 2 N H C O N H ~ -

3 . 2 Second E x a m p l e '

N a 2 S 0 3 CH3CO

CH3CO 0 S 0 3 N a P O C 13 >

CH 3 CO O s o 2 c 1 NH40H >

C 1 C O 2C z H 5

CH 3 CO 0 SO 2NH 2 K2C03

2 CHBCO SO 2NHC02C 2H 5 ,

CH 3 C O - 0 S 0 - 2NHCC?NH-c>

8

Page 17: Florey Vol 1

ACETOHEXAMI DE

4 . Stabilitv

Acetohexamide is stable under all normal storage conditions. Temperatures above 80°C. were required to produce measurable degradation7 as indicated by solubility analysis, or by spectrophotometric assay at 249 nm8. Irradiation under a Hanovia lamp for one, and for three hours, showed about 25%, and 50%, decomposition by the spectrophotometer assay7. The compound p-acetylbenzenesulfonamide was detected as a degradation product using thin layer chroma- tography with several combinations of plates, solvents and visualization techniques7.

4.1 Infrared Analysis7 Weigh 250 mg. of acetohexamide. Trans-

fer to a 100-ml. volumetric flask. Add 10 ml. of 0.5 N sodium hydroxide solution and about 20 ml. of water. Shake for 30 minutes on an automated shaker, dilute to volume with water and mix well.

solution to a 125-ml. separatory funnel and heat on a steam bath for 10 minutes. Allow to cool, and make strongly acid with several drops of concentrated hydrochloric acid.

portions of chloroform. Drain the extract through anhydrous sodium sulfate and collect it in a 150-ml. beaker. Thoroughly wash the sodium sulfate with chloroform, and collect the wash with the extract.

temperature and a stream of air, to a suitable volume f o r quantitative transfer to a 25-ml. volumetric flask. Use chloroform to transfer the sample, dilute to volume with chloroform, and mix well.

determine the absorbance of the final solution at the maximum at about 5.90 p in 1.0 mm. sodium chloride cells using chloroform as the blank.

Transfer a 20-ml. aliquot of the above

Extract the sample with three 25-ml.

Evaporate the sample, using a mild

Using a suitable spectrophotometer,

9

Page 18: Florey Vol 1

C. E. SHAFER

In the same manner determine the absorbance of 250 mg. of NF Acetohexamide Reference Standard.

Sa.) x 100% = percent acetohexamide. (Sa. 4bs./Std. Abs.) x (mg. Std./mg.

4 . 2 Solubility Analysis8 Thermally degraded acetohexamide was

evaluated using solubility analysis. Because of the high cost due to the large amount of time involved, and because the method is applicable only to the drug substance free of excipients, the use of solubility analysis as a routine procedure is limited.

5. Drug Metabolic Products

The principal (urine) metabolite in man was found to be 1-(p-hydroxyethylbenzene- sulfonyl)-3-cyclohexylurea (hydroxyhexamide) by Welles, Root and Anderson2. Later, McMahon, Marshall and Culpg discovered other (urine) metabolites in man in which the cyclohexane ring was hydroxylated to form hydroxyaceto- hexamide and hydroxyhydroxyhexamide. (See the following structures with names.)

0 0

Acetohexa- SO 2NHCNH mide

Hydroxy- hexami de

H

Hydroxy- aceto-

CH3C ' e S O 2 N H ! N H e OH

hex am i de

Hydroxy- aceto- hexamide

t OH

CH 3 1 0 S O - t 2 N H ! N H e OH

- / OH

10

Page 19: Florey Vol 1

ACETOHEXAMI DE

The metabolites of radioactive acetohexamide found in the urine of man by Galloway, McMahon, Culp, Marshall, and Young" were hydroxyhexamide, smaller amounts of hydroxyacetohexamide and hydroxyhydroxyhexamide, and small quantities of other hydroxylated isomers. Smith, Vecchio and Foristll determined the average biological half- lives of acetohexamide and its major metabolite hydroxyhexamide as 1.3 hours and 4.6 hours, respectively. The hydroxy metabolites also have hypoglycemic activity.

6. Methods of Analvsis

6.1 Titrimetric4 This method is described in detail.

6.2 Ultraviolet Spectrophotometric' ( alkali) Transfer 50.0 mg. of acetohexamide to

a 100-ml. volumetric flask. Add 15 ml. of purified water and 5.0 ml. of 0.5 N sodium hydroxide. Shake mechanically for at least 30 minutes. Dilute to volume with purified water and mix well. Transfer 2.0 ml. of the solution to a 100-ml. volumetric flask. Dilute to volume with purified water and mix well.

Weigh 50.0 mg. of NF Acetohexamide Reference Standard, transfer to a 100-ml. volumetric flask. Dissolve and dilute just like the sample.

Concomitantly determine the absorbance of the sample solution and of the standard solution in 1-cm. silica cells, at the maximum at about 249 nm, with a suitable spectrophotometer, using purified water as the blank.

acetohexamide. (Sa. abs./Std. abs.) x 100% = percent

6.3 Ultraviolet Spectrophotometric (alcohol) This method12 uses absolute alcohol to

dissolve 25.0 mg. of the acetohexamide and 25.0 mg. of the acetohexamide reference standard,

11

Page 20: Florey Vol 1

C. E. SHAFER

is diluted to 50.0 ml.; then 2 . 0 ml. of each are diluted to 100.0 ml. with absolute alcohol. The absorbances of the solutions are determined at the maximum at about 248 nm, using absolute alcohol as the blank. Calculation: (Sample abs./Standard abs.) x 100% P percent acetohexamide.

7. Pharmacokinetics

No pharmacokinetic studies have been reported in the literature. However, seventy to eighty percent of a single oral dose of 1 gram of acetohexamide was recovered as a metabolite within 24 hours in the urine of four human volunteers. It is suggested that aceto- hexamide is converted to hydroxyhexamide in the liver. Acetohexamide and hydroxyhexamide are probably converted to hydroxyacetohexamide and hydroxyhydroxyhexamide in both the liver and kidneysg.

be necessary to obtain a rate constant f o r metabolism, distribution rate constant, rate constant for absorption, etc. Sulfonylurea drugs may lower blood sugar by stimulating the beta cells of the pancreatic islets to release endogenous insulin, Also, it has been reported that the sulfonylureas block the degradation of insulin by the enzyme insulinasel3.

A multiple compartment system would probably

8 . Identification

A. The X-ray diffraction pattern of aceto- hexamide conforms to the pattern stated in the NF4. No polymorphs have been observed and documented.7 Infrared and a chemical method are listed for identification purposes4.

in 0.01 N sodium hydroxide exhibits an ultra- violet absorbance maximum at about 249 nm. Two other sulfonylurea compounds, chlorpropamide and tolbutamide, exhibit a maximum absorptivity

B. A 1 in 100,000 solution of acetohexamide

12

Page 21: Florey Vol 1

ACETOHEXAMI DE

at about 230 and about 228 nm, respectively, in the same medium3.

C. Strickland14 described a method for the separation and detection of four of the more important oral hypoglycemic agents using thin- layer chromatography. It was used for the identification of acetohexamide, chlorpropamide, tolbutamide, and phenformin hydrochloride.

13

Page 22: Florey Vol 1

C. E. SHAFER

References

1. 2.

3 .

4.

5 .

6. 7.

8.

9.

10.

11.

12.

13.

14.

USAN, J.A.M.A., - 180, 232 (1962). Welles, J. S., Root, M. A., Anderson, R. C., Proc. SOC. Exp. Biol. and Med., 107, 583-5 (1961). m i m , E. F. and Hilty, W. W,, J. Pharm. Sci., 56, 385-6 (1967). her. Pharm. Ass., National Formulary XIII, 19-21 (1970). U.S. Patent 3,320,312 (Patented May 16, 1967). Mfg. Chem., - 34, 454-6, 467 (1963). Comer, J. P., The Lilly Research Laboratories, unpublished data. Comer, J. P. and Howell, L. D., J. Pharm.

McMahoc R. E., Marshall, F. J., and Culp, H.W., Pharmacol. Exptl. Therap.,

Galloway, J.A., McMahon, R. E., Culp, H. W., Marshall, F. J., and Young, E. C., Diabetes, 16, 118 (1967). Smith, D. c, Vecchio, T. J., and Forist, A. A., Metab., Clin. Exptl., - 14, 229-40 (1965). Baltazar, J. and Ferreira Braga, M. M., Revista Portuguesa de Farmacia, - 16, 169-74 (1966). Mirsky, I. A,, Perisutti, G., and Diengott, D., Metab. Clin. Exptl., 5, 156-61 (1956). Strickland, R. D., J. Chromatog. - 24,

Sci., 53, 335-7 (1964).

149, 272-9 (1965). -

455-8 ( 1966).

The author expresses appreciation to Mr. C. D. Underbrink and Dr. A. D. Kossoy of the Analytical Development Department at Eli Lilly and Company for assistance in preparing and interpreting data in this profile.

14

Page 23: Florey Vol 1

CHLORDIAZEPOXIDE

A . MacDonald, A . F. Michaelis, and B. Z. Senkowski

Chemistry Reviewed by L. H . Sternbach

Page 24: Florey Vol 1

A. MacDONALD, A. F. MICHAELIS, AND B. 2 . SENKOWSKI

CONTENTS

A n a l y t i c a l P r o f i l e - Chlord iazepoxide

1. D e s c r i p t i o n 1.1 N a m e , Formula, Molecular Weight 1 . 2 Appearance, Color , Odor

2. P h y s i c a l P r o p e r t i e s 2 . 1 I n f r a r e d Spectrum 2.2 Nuclear Magnet ic Resonance Spectrum 2 . 3 U l t r a v i o l e t Spectrum 2 . 4 Mass Spectrum 2 . 5 O p t i c a l R o t a t i o n 2.6 Mel t ing Range 2 . 7 D i f f e r e n t i a l Scanning C a l o r i m e t r y 2.9 S o l u b i l i t y 2.10 C r y s t a l P r o p e r t i e s 2 . 1 1 D i s s o c i a t i o n Cons tan t 2 . 1 2 D i s t r i b u t i o n C o e f f i c i e n t

3 . S y n t h e s i s

4 . S t a b i l i t y Degrada t ion

5. Drug Metabol ic P r o d u c t s and Pharmacokine t ics

6. Methods of Analys is 6 . 1 Elemental A n a l y s i s 6 . 2 Phase S o l u b i l i t y Analys is 6 . 3 Chromatographic Analys is

6 . 3 1 Thin-Layer Chromatographic A n a l y s i s 6.32 Column Chromatographic A n a l y s i s 6 .33 Vapor Phase Chromatography

6.4 D i r e c t S p e c t r o p h o t o m e t r i c A n a l y s i s 6 .5 C o l o r i m e t r i c A n a l y s i s 6 .6 F o l a r o g r a p h i c A n a l y s i s 6 .7 Non-Aqueous T i t r a t i o n 6 . 8 G r a v i m e t r i c Method of A n a l y s i s

7. Acknowledgments

8. References

16

Page 25: Florey Vol 1

CHLORDIAZEPOXI DE

1. D e s c r i p t i o n

1.1 Name, Formula, Molecular Weight Chlord iazepoxide i s 7-Chloro-2-(methylamino)-

5-phenyl-3H-1,4-benzodiazepine 4-oxide.

CHLORDIAZEPOXIDE

NHCH3 I

C16H1 4 lN 3’ Mol. Weight: 299.76

1 . 2 Appearance, Color , Odor S l i g h t l y ye l low, p r a c t i c a l l y o d o r l e s s , c r y s t a l l i n e

powder.

2 . P h y s i c a l P r o p e r t i e s

2 . 1 I n f r a r e d Spectrum The i n f r a r e d spec t rum of r e f e r e n c e s t a n d a r d c h l o r -

1 diazepoxide i s p r e s e n t e d i n F i g u r e 1 . The spec t rum w a s measured i n a K B r p e l l e t which c o n t a i n e d 0.9 mg/300 mg KBr.

The f o l l o w i n g bands (cm-l) have been a s s i g n e d f o r F i g u r e 12.

a . C h a r a c t e r i s t i c f o r NH:3270 b . C h a r a c t e r i s t i c f o r N=C-NC H :1630 c . C h a r a c t e r i s t i c f o r a r o m a t l c groups:1590, 1470 2 5

2 . 2 Nuclear Magnet ic Resonance Spectrum The NMR spec t rum shown i n F i g u r e 2 w a s o b t a i n e d by

d i s s o l v i n g 50 .3 mg of r e f e r e n c e s t a n d a r d c h l o r d i a z e p o x i d e i n

17

Page 26: Florey Vol 1

A. M

acDO

NA

LD

, A. F

. MIC

HA

EL

IS, A

ND

6. 2. S

EN

KO

WS

KI

aJ a 4

X 0 a

aJ N

td *r( a

f-l 0

a

a, f-l td f-l w

G H

* Q

c

on

'

50

:

0

0

0-

-1

3>

NV

8UO

SB

V

18

Page 27: Florey Vol 1

CH

LO

RD

IAZ

EP

OX

I DE

t

19

Page 28: Florey Vol 1

A. MacDONALD, A. F-MICHAELIS, AND 6. Z . SENKOWSKI

0.4 m l of DMSO-d6 con ta in ing t e t r a m e t h y l s i l a n e as i n t e r n a l r e fe rence . The s p e c t r a l ass ignments are shown i n Table 13. NMR s t u d i e s by Nuhn and Bley a t 100 Mhz and va r ious tempera- t u r e s i n d i c a t e t h a t t h e methylene pro tons a t p o s i t i o n t h r e e are no t equ iva len t 4 .

TABLE I

Ch lo rd iazepox i de

Chemical S h i f t TYPE Protons A t T ( p p d (J i n Hz)

5.60 2.57 2.70 3.24 7 . 2 1 1.94

b = s i n g l e t ; b ( c ) = complex s i n g l e t d(b) = broad doub le t ; m(u) = unsymmetr

d = doub le t ; ca l m u l t i p l e

2 . 3 U l t r a v i o l e t Spectrum Chlordiazepoxide when scanned between 420 and

210 nm (5.07 mg/L i n a c i d i f i e d 3A a l coho l ) e x h i b i t s two maxima. These were l o c a t e d a t 245-246 nm ( a = 110.9) and 311-312 nm ( a = 34.2). Minima were observed a t 294-295 nm and 218-219 nm5. The spectrum shown i n F igure 3 w a s ob ta ined us ing a s o l u t i o n of 0 . 5 mg chlordiazepoxide/ lOO m l a c i d i f i e d a l coho l (approximately O.lNH2S04 i n 3A a l c o h o l ) .

2 . 4 Mass Spectrum The mass spectrum of ch lord iazepoxide w a s ob ta ined

using a CEC 21-110 m a s s spec t rometer w i th an i o n i z i n g energy of 70eT? and a temperature of 190°C. Three low r e s o l u t i o n s p e c t r a of ch lord iazepoxide are shown i n F igure 4. A r e g u l a r change i n i n t e n s i t i e s ( e .g . a t m / e 299, 282, 36) can be noted by comparing spectrum (a ) t o ( c ) . This had been r e l a t e d t o the t i m e t h a t t he sample w a s exposed t o t h e in s t rumen ta l t empera ture , and is probably r e l a t e d t o thermal e f f e c t s . Hence, s can ( a ) should be cons idered most repre- s e n t a t i v e of t he ch lord iazepoxide mass s p e c t r a l c h a r a c t e r i s t i c s .

20

Page 29: Florey Vol 1

CHLORDIAZEPOXI DE

FIGURE 3

Ultraviolet Spectrum

0.1

0.1

w 0 2 4 P o.< 8 9

0.:

NANOMETERS

21

Page 30: Florey Vol 1

A. MacDONALD, A. F. MICHAELIS, AND 6. 2. SENKOWSKI

FIGURE 4

Mass Spec t r a of Chlordiazepoxide

22

Page 31: Florey Vol 1

CHLORDIAZEPOXI DE

Table I1 lists t h e e l emen ta l composi t ions f o r t h e most d i a g n o s t i c i o n s as determined by' h igh r e s o l u t i o n mass spec t romet ry6 . The molecular i o n f o r ch lord iazepoxide w a s observed a t m / e 299. The ions a t m / e 283 and m / e 282 cor- respond t o l o s s of 0 o r OH as expected f o r an N-oxide. Loss of CH4N l e a d i n g t o m / e 269 is b e s t exp la ined as loss of t h e methyl amino group. Other i o n s i n Table I1 can be a s c r i b e d t o l o s s e s of C 1 , p a r t of t h e seven-membered r i n g , and com- b i n a t i o n s of a l l t h e s e primary l o s s e s .

TABLE I1

a High Resolu t ion Mass Spectrum of Chlordiazepoxide

Found Mass

299.0804 29 8.0721 283.0818 282.0769 269.0461 268.0582 253.0501 247.1087 241.0503 218.0801 205.0758 190.0630

Calcd. Mass

299.0868 298.0790 283.0874 282.0796 269.0525 268.0640 253.0531 247.1107 241.0531 218.0842 205.0764 190.0655

c1 - -3 5 0 H N - - C

16 14 3 1 1 16 13 3 1 1 16 1 4 3 0 1 16 13 3 0 1 15 10 2 1 1 15 11 3 0 1 15 10 2 0 1 16 13 3 0 0 14 10 2 0 1 15 10 2 0 0 1 4 9 2 0 0 1 4 8 1 0 0

-

a. Only peaks d i scussed are inc luded i n t h i s t a b l e .

2.5 O p t i c a l Ro ta t ion Chlordiazepoxide e x h i b i t s no o p t i c a l a c t i v i t y .

2.6 Melt ing Range A sha rp me l t ing p o i n t is not observed wi th ch lo r -

d iazepoxide . ra te of h e a t i n g .

The me l t ing range is wide and depends on t h e The me l t ing range r e p o r t e d i n NF XI11 i s

240-244OC.

2 . 7 D i f f e r e n t i a l Scanning Calor imet ry The DSC spectrum of ch lord iazepoxide is shown i n

Figure 5 . The endotherm observed a t 253OC corresponds t o the decomposi t ion of t h e drug. 7 .3 kcal /mole*.

The AHf was found t o be

23

Page 32: Florey Vol 1

A. MacDONALD, A. F. MICHAELIS, AND 6. 2. SENKOWSKI

FIGURE 5

CHLORDIAZEPOXIDE D.S.C. SPECTRUM

DECOMPOSITION TEMPERATURE = 526OK 253. C

- 40 AHF = 7.3 kcal / mole

I m 2 P v,

-' 60

k 9 0

- 80 517 O K

244 -c

I I I 100 460 480 500 5 20

TEMPERATURE O K

24

Page 33: Florey Vol 1

CHLORDIAZEPOXI DE

2 .8 Thermogravimetric Analys is A thermal g r a v i m e t r i c a n a l y s i s performed on ch lo r -

d i a z e oxide e x h i b i t e d no l o s s of weight when hea ted t o 105°C i .

2.9 S o l u b i l i t y Approximate s o l u b i l i t y d a t a ob ta ined a t room - -

t empera ture are g iven i n the fo l lowing t a b l e .

Solvent

pe t ro leum e t h e r (30"-60") e t h e r water is o p r o panol 3A a lcoho l chloroform 95% e t h a n o l benzene methanol

S o l u b i l i t y mg/ml

i n s o l u b l e 1 2

11 17 1 7 23 25 26

2.10 C r y s t a l P r o p e r t i e s The x-ray powder d i f f r a c t i o n p a t t e r n of c h l o r d i -

azepoxide is presented i n Table 111..

Instrument Condi t ions

General E lec t r ic Model XRD-6 Spectrogoniometer

Tube Targe t Copper Op t i c s 0 .2" De tec to r s l i t

Generator 50 KV 12-112 MA

M.B. S o l l o r s l i t 3" B e a m s l i t

0.0007" N i f i l t e r 4" t a k e o f f ang le

Goniometer Scan a t 0.4" 20 p e r minute D e t e c t o r Ampl i f ie r - 16 coa r se 817 f i n e (ga in )

Sea led p r o p o r t i o n a l counter tube and DC v o l t a g e a t p l a t e a u P u l s e h e i g h t s e l e c t i o n EL-5 v o l t s ;

Rate m e t e r T.C.4 2000 c/S f u l l scale Chart speed 1 inch p e r 5 minutes

EU - Out

Recorder

25

Page 34: Florey Vol 1

A. MacDONALD, A. F. MICHAELIS, AND 6. 2. SENKOWSKI

Samples prepared by g r i n d i n g a t room tempera ture .

TABLE I11

20

5.72' 7 .00 8.08 9 .oo

10.96 11.48 11 .88 12 .28 13 .92 14 .64 14.96 15.76 16 .12 17 .28 17.64 18 .76 19 .20 19 .48 19 .96 20.36

--

Chlordiazepoxide

d* 2 15.45 12 .63 10 .94

9 .83 8.07 7 . 7 1 7.45 7 . 2 1 6 .36 6 .05 5.92 5 .62 5 .50 5 .13 5 .03 4.73 4.62 4.56 4.45 4.36

I/;* 0

43 4 6 6

15 100

1 7 10 3 1 10 10 23 17 59 28 38

4 11

4 20

nh *d = ( i n t e r p l a n a r d i s t a n c e ) **I/I = r e l a t i v e i n t e n s i t y (bas$dS$fi R ighes t i n t e n s i t y

0 of 1.00)

2 .11 D i s s o c i a t i o n Constant The d i s s o c i a t i o n cons t an t , pKa, f o r ch lo rd iaze -

poxide has been determined spec t ropho tomet r i ca l ly t o b e 4.76 + 0.0510 and by t i t r a t i o n us ing NaOH t o b e 4.9 (non- loga r i thmic p l o t )

2.12 D i s t r i b u t i o n C o e f f i c i e n t Reymond and Toome1*=d t h e d i s t r i b u t i o n co-

e f f i c i e n t of ch lord iazepoxide between n-octanol and pH 7.2 b u f f e r t o have a va lue o f l 7 l a t room tempera ture where D = Coctanol /Cbuffer12 .

26

Page 35: Florey Vol 1

CH LORD1 AZEPOXI DE

3 . Synthesis Chlordiazepoxide is prepared by the reaction scheme

shown in Figure 6 . 6-chloro-2-chloromethyl-4-phenyl- quinazoline 3-oxide is reacted with methylamine which pre- sumably attacks the quinazoline at the 2 position. The nucleophilic attack is followed by enlargement of the ring to yield the 7-chloro-2-(methylamino)-5-phenyl-3H-l,4- benzodiazepine 4-oxidel 3 . A complete review of the chem- istry of benzodiazepines presents alternative pathways1"

4 . Stability Degradation The known degradation products of chlordiazepoxide in

aqueous solution are shown in Figure 7. In mild acid the lactam is formed while under strong acid treatment, the product of hydrolysis is 2-amino-5-chlorobenzophenone 5.

5. Drug Metabolic Products and Pharmacokinetics The major metabolites in humans, the N-desmethyl meta-

bolite and-the lactam are shown in Figure 7. ical procedures for the metabolites have been described by deSilva15.

The analyt-

A pharmacokinetic model for the disposition of chlor- diazepoxide HC1 in the dog has been presented in terms of a six-compartment open system16. The excellent agreement between the simulated and experimental data reflects the reliability of the assumption of first-order kinetics for all processes. The model provides a basis for the elucida- tion and quantitation of chlordiazepoxide and its pharmaco- logically active biotransformation products, the N-des- methyl metabolite and the lactam. The pathways in man17-19 have been shown to be similar to those in the dog to the extent to which they are described in the model.

The main features of the physiological disposition of chlordiazepoxide HC1 in the dog were: (a) its biotransfor- mation to N-desmethyl as the exclusive route of drug elimi- nation; (b) the elimination of N-desmethyl almost entirely by biotransformation, with up to 50% going to the lactam and the remainder going to an unidentified biotransforma- tion product; and (c) the elimination of lactam by urinary excretion and further biotransformation.

27

Page 36: Florey Vol 1

FIGURE 6

N W

S Y N T H E S I S OF C H L O R D ! A Z E P O X I D E

6- chloro-2 - chlorome t hyl - 4-

oxide phenyl quinazoline 3 -

7-chloro- 2- (methylamino) -5-

phenyl -3H- I, 4 - benzodiazepine 4 -

oxide

b

b

n

m N

Page 37: Florey Vol 1

FIGURE 7

METABOLIC STAND I HR ' H2S04

CONVERSION

PROBABLE 4.5- EPOXIDE CHLORDIAZEPOXIDE N-OESYETHYL METABOLITE

FLUORESCENT Act 370/Em 4 6 0 m y

\cn2 LIGHT EXPOSED IN

2 ~ AMINO-5-CHLORO- BEMZOPHENONE METABOLITE ILACTAYI LACTAM-4.5- EPOXIDE

lA.C.8.) FLUORESCENT Act 3 8 O l E m 4 6 0 m p

CHEMICAL REACTIONS OF Chlordiazepoxide

Page 38: Florey Vol 1

A. MacDONALD, A. F. MICHAELIS. AND B. 2 . SENKOWSKi

6. Methods of Analys is

6 . 1 Elemental A n a l y s i s

Element % Theory Reported

C H

64.11 4 . 7 1

64.38 4.66

6.2 Phase S o l u b i l i t y Phase s o l u b i l i t y a n a l y s i s is c a r r i e d o u t u s i n g

i s o p r o p a n o l as t h e s o l v e n t . A t y p i c a l example i s shown i n F i g u r e 8 which a l s o l i s t s t h e c o n d i t i o n s under which t h e a n a l y s i s w a s c a r r i e d o u t 2 0 .

6 . 3 Chromatographic A n a l y s i s Chromatographic a n a l y s i s may b e used t o assess

t h e s t a b i l i t y and p u r i t y of c h l o r d i a z e p o x i d e .

6 . 3 1 Thin-Layer Chromatographic A n a l y s i s The f o l l o w i n g TLC p r o c e d u r e i s u s e f u l f o r

s e p a r a t i n g c h l o r d i a z e p o x i d e from p o s s i b l e h y d r o l y t i c pro- duc ts2 ' . s o l v e n t sys tems, t h e sample c o n t a i n i n g 1 mg of c h l o r d i a z e - poxide s u b s t a n c e i n ch loroform, is s p o t t e d and s u b j e c t e d t o ascending chromatography. A f t e r development of a t least 10 cm, t h e p l a t e i s a i r d r i e d and s p r a y e d w i t h 10% H2SO4. T h i s is fo l lowed by h e a t i n g a t 105'C f o r 1 5 minutes and t h e f o l l o w i n g sequence of s p r a y s :

Using s i l i c a g e l G p l a t e s and e t h y l a c e t a t e

1. 0.1% sodium n i t r i t e i n water 2 . 0.5% ammonium s u l f a t e i n water 3 . 0.1% N- (1-Nap t h y l ) -e thylenediamine

d i h y d r o c h l o r i d e i n water

The lactam and benzophenone (ACB) p r o d u c t s ( F i g u r e 7) w i l l y i e l d p u r p l e s p o t s i f p r e s e n t . Chlord iaze- poxide does n o t react under t h i s procedure and i s subse- q u e n t l y v i s u a l i z e d by p l a t i n u m i o d i d e s p r a y . R ' s are as f o l l o w s : f

30

Page 39: Florey Vol 1

CH LORDIAZEPOXI DE

FIGURE 8

a Ll2 -

W I- 3 8 LL 0

E" 10 z 0 k v)

CHLORDIAZEPOXIDE PHASE SOLUBILITY ANALYSIS

SOLVENT: ISOPROPANOL

EQUILIBRATION: PO HRS AT 25OC EXTRAPOLATED SOLUBILITY: 13.05 mg/g. SOLVENT

- SLOPE: 0.0%

0

31

Page 40: Florey Vol 1

A. MacDONALD, A. F. MICHAELIS, AND B. 2. SENKOWSKI

chlordiazepoxide 0.2

lactam (7-chloro-1,3-dihydro-5- 0.4 (sensitivity phenyl-2H-1,4,benzodiazepin-2- 0.1%) one-4-oxide)

benzophenone (5-chloro-2-amino- 0.9 (sensitivity benz ophenone) 0.01%)

Additional TLC systems appearing in the liter- ature are listed in Table IV.

6.32 Column Chromatographic Analysis

tographic separation of chlordiazepoxide has been reported by Scott and Bommer in their study of the separation of several benzodiazepines from each other and from biological media27. The important advantages indicated for this meth- od of analysis are the mild operating conditions which enable collection of the compounds and also the simple sample preparation which does not require derivatization or hydrolysis of the sample.

The analytical scale liquid-solid chroma-

The liquid solid chromatography was car- ried out using a Durapak "OPN" column (36-75 1-1 particle diameter). The mobile phase, which ranged from 100% hexane to 70:30 hexane-isopropanol (v/v), was pushed through the 1 mm i.d. stainless steel column using an air-driven pump at sufficient pressure to deliver a 1.0 ml/min. flow rate. The detection was an ultraviolet monitor with an 8 p 1 cell volume operated at 254 nm. Sensitivity in the microgram range was reported.

6.33 Vapor Phase Chromatography J . A . F . deSilva has reported the deter-

mination of chlordiazepoxide in blood with a sensitivity limit of 0.5 to 0.8 pg/ml of blood28. the selective extraction of the compound into ether, hydrolysis tb the 2-amino-5-chlorobenzophenone and sub- sequent determination by gas-liquid chromatography.

The method involves

The GLC of unhydrolyzed chlordiazepoxide has been reported by Martin and Street2' using acid-washed chromosorb W coated with dimethyldichlorosilane. reported column temperature for chlordiazepoxide was 245'C.

The

32

Page 41: Florey Vol 1

CHLORDIAZEPOXI DE

TABLE IV

System

Thin-Layer Chromatography Systems for Chlordiazepoxide

Support R xl00 Detection I-

Methanol : acetone B (12:88)

96% ethanol B 1sopropanol:propyl

ether B Methanol : methyl- acetate : cy clohexane (17.8:48.6:33.6) B Methano1:methyl- acetate:(17.1:82.3) B Ch 1 o ro f om : me t h ano 1

(1O:l) B Ethylacetate :ethanol

(9:l) B Benzene:dioxane: 28% ammonium hydroxide A Acetone: cyclohexane: ethanol (4:4:2) A Benzene:acetone

(4:l) A Methano1:acetone: ammonium hydroxide

Benzene:ethanol:25% ammonium hydroxide

(50 : 50 : 1)

(50:10:5) A

A

48

48

29

57

46

-

38

27

4 1

78

64

w2 54

"254

"254

"2 5 4

w254

w254

w254

Dragendorf f Reagent

II

11

Marquis Reagent

Dragendorff Reagent -04

Reference

22

22

22

22

22

23

23

24

24

24

25

26

H2SO4 - 10% EtOH

HNO3 - EtOH (10% sol.) 10% H202

Adsorbant: A. Silica Gel G

B. Silica Gel Gf

33

Page 42: Florey Vol 1

A. MacDONALD, A. F. MICHAELIS, AND B. Z . SENKOWSKI

and under these cond i t ions two peaks were obta ined wi th r e t e n t i o n times of 3.6 and 7.3 minutes , which i n d i c a t e s p o s s i b l e decomposition on t h e column. w a s r epor t ed t o be 0 .04 pg.

The s e n s i t i v i t y

6 . 4 Direct Spectrophotometr ic Analys is Direct spec t rophotometr ic a n a l y s i s of ch lord i -

azepoxide has n o t been found t o be a p p l i c a b l e i f s i g n i - f i c a n t q u a n t i t i e s of t h e known h y d r o l y t i c contaminants a r e p re sen t . For m a t e r i a l no t conta in ing t h e i n t e r f e r i n g spec ie s t h e repor ted maxima a t 245-6 nm and 311-12 nm i n a c i d i f i e d 3 A a lcoho l may b e used f o r q u a n t i t a t i v e measure- ments. The a va lues a t t h e s e maxima are 110.9 and 34.2 r e s p e c t i v e l y . The Technicon Autoanalyzer system f o r dos- age form assays of ch lord iazepJxide is based on t h e d i r e c t spec t ropho tome t r i c ass ay .

6.5 Color imet r ic Analysis The c o l o r i m e t r i c a n a l y s i s of ch lord iazepoxide is

accomplished by ac id hydro lys i s 0-f t h e compound fol lowed by d i a z o t i z a t i o n and coupl ing wi th N-(1-Napthy1)ethylene- diamine d ihydrochlor ide . The r e s u l t a n t r e a c t i o n product e x h i b i t s a maxima a t 540 nm. S imi l a r procedures have been repor ted i n t h e l i t e r a t u r e which employed o t h e r coupl ing reagents 30-31.

6.6 Polarographic Analysis Polarographic behavior of ch lord iazepoxide i n

both alcohol-water and non-aqueous media has been i n v e s t i - gated32, 3 3 s 3 4 . General agreement is noted between authors . The fo l lowing t a b l e summarizes some of t h e r epor t ed h a l f - wave p o t e n t i a l s .

The f i r s t wave has been a sc r ibed t o t h e reduc- t i o n of t h e N-tO, t h e second t o t h e r educ t ion of t h e 4,5 N=C: P r o p o r t i o n a l i t y between concen t r a t ion and d i f f u s i o n cur- r e n t w a s repor ted f o r t h e range 2 x Dosage form a n a l y s i s showed a p r e c i s i o n of 5 2%32.

and t h e t h i r d t o t h e r educ t ion of t h e 1,2 N=C:32,33.

t o 7 x 10 4M.

34

Page 43: Florey Vol 1

CHLORDIAZEPOXI DE

TABLE V

Solvent Wave 1 Wave 2 -- 0.1N H C 1 con ta in ing 20% MeOH v /v -0.250 -0.612

Buffer a t pH 4.6 -056 -0.84

0.05 M N H 4 C 1 i n 10% MeOH i n a b s o l u t e e thano l v / v -0.826 -1.097

Wave 3 Reference

-1.127 32

-1.29 33

-1.605 32

6 .7 Non-Aqueous T i t r a t i o n Chlordiazepoxide may be t i t r a t e d i n C H C 1 3 u s ing

HC104 i n dioxane wi th a methyl r ed i n d i c a t o r . 0.1N H C l O i s e q u i v a l e n t t o 29.98 mg of ch lo rd iaze - poxide2' 3 ' 5.

Each m l of

6 . 8 Gravimet r ic Method of Analys is The sample i s d i s s o l v e d i n H C 1 and t r e a t e d w i t h

1% Reinecke s a l t . The p r e c i p i t a t e i s washed, d r i e d a t 105OC and weighed t o cons t an t weight o r t h e d r i e d p r e c i p i - t a te may b e d i s so lved i n ace tone f o r c o l o r i m e t r i c determi- n a t i o n a t 530 m u 3 6 .

7. Acknowledgments

The au tho r s wish t o acknowledge t h e a s s i s t a n c e of D r . W . Benz, D r . V. V e n t u r e l l a and M r . T . Danie ls i n t h e p r e p a r a t i o n of t h i s a n a l y t i c a l p r o f i l e .

35

Page 44: Florey Vol 1

A. MacDONALD, A. F. MICHAELIS, A N D 6. 2. SENKOWSKI

8. References

1.

2 .

3.

4. 5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Hawrylyshyn, M., Hoffmann-La Roche Inc., Personal Communication. Traiman, S. , Hoffmann-La Roche Inc. , Personal Communication. Johnson, J. and Venturella, V. , Hoffmann-La Roche Inc., Personal Communication. Nuhn, P. and Bley, W., Pharmazie 3, 523 (1967). Mahn, F. , Hoffmann-La Roche Inc. , Personal Communication. Greeley, D. and Benz, W., Hoffmann-La Roche Inc., Personal Communications. Venturella, V., Hoffmann-La Roche Inc., Personal Communication. Donahue, J., Hoffmann-La Roche Inc., Personal Communication. Sheridan, J.C., Hoffmann-La Roche Inc., Personal Communica tion. Toome, V., Hoffmann-La Ro'che Inc., Personal Communication. Yao, C., and Lau, E., Hoffmann-La Roche Inc., Personal Communication. Reymond, G. and Toome, V. , Hoffmann-La Roche Inc., Personal Communication. Sternbach, L.H. and Reeder, E., J . Org. Chem., - 26, 111 (1961). Archer, G. and Sternbach, L.H., Chem. Reviews, 68, 751 (1969). deSilva, J.A.F. and D'Arconte, L.D., J . Forensic S c i . , 14, 184 (1969). Kaplan, S.A. , Lewis, M., Schwartz, M.A., Postma, E., Cotler, S., Abrusso, C.W., Lee, T.L., and Weinfeld, R.E., J . Pharm. S c i . , 2, 1569 (1970). Koechlin, B.A. , and D'Arconte, L. , Anal. Biochem., - 5, 195 (1963). Koechlin, B.A., Schwartz, M.A. , Krol, G. , and Oberhaens, W., J . PharmacoZ. Exp. Ther., 148, 339 (1965). Schwartz, M.A., and Postma, E., J. Pharm. Sci . , - 55, 1358 (1966). MacMullan, E.A., Hoffmann-La Roche Inc., Personal Communication.

36

Page 45: Florey Vol 1

CHLORDIAZEPOXI DE

21 . 22 .

23 .

2 4 .

25 .

26.

27 .

28.

29 .

30.

31.

32 .

33.

34 .

35.

36 .

National FomuZary XIII, 148-149 (1970) . R o e t e r , E. e t al., Zeit , f. Anal. Chem., E, 45 (1969) . Becks tead , H.D. , and Smith, S . J . , Arneim. Forsch., - 18, 529 ( 1 9 6 8 ) . Tomoda, M. Kyoritsu Yakka Daigaku Kenkyv Neppo, - 10 , 18 ( 1 9 6 5 ) . Thomas, J. J. and Pyron, L. J . , J . P h m . BeZg., - 1 9 , 4 8 1 (1964) . P a u l u s , W . , e t a l . , Arneimittel-Forsch, 13, 609 ( 1 9 6 3 ) . S c o t t , C . G . , and Bommer, P . , J . Chrom. Sci . , 8, 446 ( 1 9 7 0 ) . d e S i l v a , J.A.F., i n Theory and AppZication o f GLC i n Induskry and Medicine, Kromen and Bender, Eds. , Grune and S t r a t t o n , I n c . , p . 252 , ( 1 9 5 8 ) . M a r t i n , C. and S t ree t , H . V . , J . Chromatog., 22, 274 ( 1 9 6 6 ) . Balogh, E. and A j t a y , K . , Rev. Med. (Targu-Muresl, - 1 4 , 159 ( 1 9 6 8 ) . R a n d a l l , L.O., x s . Nervous S y s t . Suppz. , 22, 1 ( 1 9 6 1 ) . Senkowski, B . Z . , e t al., Anal. Chem., 36, 1 9 9 1 (1964) . O e l s c h l a e g e r , H . , e t al., Arch. Pham., 300, 250 ( 1 9 6 7 ) . O e l s c h l a e g e r , H . , e t a l . , Arch. Pham., 296, 396 ( 1 9 6 3 ) . Beral, H . , e t a l . , Rev. a i m . (Bucharest), 16, 169 ( 1 9 6 5 ) . Grev. I . , and ' Barku, S. , Farmacia (Bucharest), 16, 1 9 9 ( 1 9 6 8 ) .

37

Page 46: Florey Vol 1

CHLORDIAZEPOXIDE HYDROCHLORIDE

A . MacDonald, A . F. Michaelis, and B. Z . Senkowski

39

Page 47: Florey Vol 1

A. MacDONALD, A. F. MICHAELIS, AND 6. 2 . SENKOWSKI

CONTENTS

A n a l y t i c a l P r o f i l e - Chlord iazepoxide Hydrochlor ide

1. D e s c r i p t i o n 1.1 N a m e , Formula, Molecular Weight 1 . 2 Appearance, Color , Odor

2 . P h y s i c a l P r o p e r t i e s 2 . 1 I n f r a r e d Spectrum 2.2 Nuclear Magnet ic Resonance Spectrum 2 .3 U l t r a v i o l e t Spectrum 2.4 Mass Spectrum* 2.5 O p t i c a l R o t a t i o n 2.6 Mel t ing Range 2 . 7 D i f f e r e n t i a l Scanning C a l o r i m e t r y 2 . 8 Thermogravimetr ic A n a l y s i s 2.9 S o l u b i l i t y 2.10 C r y s t a l P r o p e r t i e s 2 . 1 1 D i s s o c i a t i o n Cons tan t* 2 . 1 2 D i s t r i b u t i o n C o e f f i c i e n t *

3. S y n t h e s i s *

4. S t a b i l i t y Degradat ion*

5. Drug Metabol ic P r o d u c t s and Pharmacokine t ics*

6. Methods of A n a l y s i s 6 . 1 Elemental A n a l y s i s 6 .2 Phase S o l u b i l i t y Analys is 6 . 3 Chromatographic A n a l y s i s

6 . 3 1 Thin-Layer Chromatography* 6.32 Column Chromatographic Analys is* 6 .33 Vapor Phase Chromatography*

6 .4 D i r e c t S p e c t r o p h o t o m e t r i c A n a l y s i s 6 . 5 C o l o r i m e t r i c Analys is* 6 .6 P o l a r o g r a p h i c Analys is* 6.7 Non-Aqueous T i t r a t i o n 6 . 8 G r a v i m e t r i c Method of Analys is*

7 . Acknowledgments

8. References * Refer t o A n a l y t i c a l P r o f i l e on Chlord iazepoxide .

40

Page 48: Florey Vol 1

CHLORDIAZEPOXIDE HYDROCHLORIDE

1. Desc r ip t ion

1.1 N a m e , Formula, Molecular Weight Chlordiazepoxide hydrochlor ide is 7-chloro-2-

(methylamino)-5-phenyl-3H-l,4-benzodiazepine 4-oxide hydro- ch lo r ide .

CHLORDIAZEPOXIDE

Nncn3 I

C H C1N30-HC1 Mol. W t . 336.22 16 14

1 . 2 Appearance, Color , Odor White o r p r a c t i c a l l y wh i t e , odor l e s s , c r y s t a l l i n e

powder.

2. Phys i ca l P r o p e r t i e s

2 .1 I n f r a r e d Spectrum The i n f r a r e d spectrum of ch lord iazepoxide hydro-

c h l o r i d e is p resen ted i n F igure ll. measured i n a KBr p e l l e t l a n d conta ined 1.0 mg/300 mg K B r . The fo l lowing bands (cm- ) have been ass igned f o r F igu re 12.

+

The spectrum w a s

a . C h a r a c t e r i s t i c f o r NH2:3100-2550 b. C h a r a c t e r i s t i c f o r N= C-&2:1680 c. Characteristic f o r a romat ic and CFN:1610, 1550

41

Page 49: Florey Vol 1

A. M

acDO

NA

LD

, A. F. M

ICH

AE

LIS

, AN

D B

. 2. S

EN

KO

WS

KI

PI a

.I4 x 0 a

PI N

w 0

.. 4J U

42

Page 50: Florey Vol 1

CHLORDIAZEPOXIDE HYDROCHLORIDE

2.2 Nuclear Magnetic Resonance Spectrum The NMR spectrum shown i n F igu re 2 w a s ob ta ined

by d i s s o l v i n g 49.9 mg chlord iazepoxide hydrochlor ide i n 0.5 m l of DMs0-d~ con ta in ing t e t r a m e t h y l s i l a n e as i n t e r n a l r e fe rence . The s p e c t r a l ass ignments are shown i n Table 13. NMR s t u d i e s by Nuhn and Bley a t 100 MHz and va r ious tempera- t u r e s i n d i c a t e t h a t t h e methylene pro tons a t p o s i t i o n t h r e e are n o t equ iva len t4 .

TABLE I

Chlordiazepoxide Hydrochlor ide

Protons a t Chemical S h i f t Type T ( P P d (J i n Hz)

5.06 2.52 2.12 2.27 3.02 6.74

1 .98 -0.72

S = s i n g l e t ; S(b) = broad s i n g l e t ; S (c ) = complex s i n g l e t ; d = double t

2 .3 U l t r a v i o l e t Spectrum Chlordiazepoxide hydrochlor ide measured between

360 and 210 nm i n a c i d i f i e d 3 A a l c o h o l (0.1N H2S04) e x h i b i t s maxima a t 245-6 nm ( a = 96.5) and 311-12 nm ( a = 30.5). Minima were observed a t 218 and 295-6 nm5. shown i n t h e p r o f i l e f o r ch lord iazepoxide6 .

The spectrum is

2.4 Mass Spectrum The mass spectrum of ch lord iazepoxide hydro-

c h l o r i d e is i d e n t i c a l t o t h a t r epor t ed f o r ch lo rd iaz - epoxide6.

2 .5 O p t i c a l Rota t ion Chlordiazepoxide hydrochlor ide e x h i b i t s no o p t i c a l

a c t i v i t y .

43

Page 51: Florey Vol 1

A. M

ac

DO

NA

LD

, A. F

. MIC

HA

EL

IS, A

ND

B. 2. S

EN

KO

WS

KI

L

44

Page 52: Florey Vol 1

CHLORDIAZEPOXIDE HYDROCHLORIDE

2.6 Melt ing Range Chlordiazepoxide melts wi th decomposition. The

range desc r ibed i n USP X V I I I is 212-218OC us ing Class I method 7.

2 .7 D i f f e r e n t i a l Scanning Calor imetry The DSC spectrum of ch lord iazepoxide hydroch lo r ide

is shown i n F igu re 3. corresponds t o t h e me l t ing of t h e drug fol lowed by decom- p o s i t i o n a t approximately 241OC. The AH was found t o b e approximately 25.5 kcal/mole8.

The exotherm observed a t 233°C

f

2 . 8 Thermogravimetric Analysis A TGA scan performed on ch lord iazepoxide hydro-

c h l o r i d e e x h i b i t e d 90 l o s s of weight when hea ted t o 1O5OC8.

2.9 S o l u b i l i t y Approximate s o l u b i l i t y d a t a obta ined a t room

temperature are g iven i n t h e fo l lowing t a b l e (decomposi t ion may occur on s t a n d i n g i n s o l u t i o n ) :

TABLE I1

Solvent S o l u b i l i t y mg/ml

Petroleum e t h e r

Benzene E the r Isopropanol Chloroform 95% e t h a n o l Me t h ano 1 3A a lcoho l Water

(30-60 ") i n s o l u b l e

in so lub l e i n s o l u b l e

1 2

57 116 138 165

2.10 C r y s t a l P r o p e r t i e s The x-ray powder d i f f r a c t i o n p a t t e r n of ch lo rd i -

azepoxide hydrochlor ide is presented i n Table 111'.

45

Page 53: Florey Vol 1

A. MacDONALD. A. F. MICHAELIS, AND B. 2. SENKOWSKI

EX0 I- a 9 0

FIGURE 3

1 I I 100

46

Page 54: Florey Vol 1

20

6.96' 12.24 12.60 13.08 14.08 1 4 . 8 16.00 17.56 18.84 19.12 20.00 20.52 21.04 2 1 . 2 21.80 22.16 22.80 23.68 24.32 25.08 25.88 26.16 26.60 27.16 28.04 28.52 29.20 29.80

CHLORDIAZEPOXI DE HYDROCHLORIDE

TABLE 111

Chlordiazepoxide Hydrochlor ide

d < % *

12.70 7.23 7.03 6.77 6.29 5.99 5.54 5.05 4 . 7 1 4.64 4.44 4.33 4.22 4 .19 4.08 4 .01 3.90 3.76 3.66 3.55 3.44 3 .41 3.35 3.28 3.18 3.13 3.06 3.00

24% 4

2 1 49 13

5 9 3

17 5 2

2 1 53 4 3 19 35 73 2 1 28

7 5 5 6 4

17 100

20 5

n h 2 Z S i n 8

*d = ( i n t e r p l a n a r d i s t a n c e )

**I/Io = r e l a t i v e i n t e n s i t y (based on h i g h e s t i n t e n s i t y of 100)

47

Page 55: Florey Vol 1

A. MacDONALD, A. F. MICHAELIS, A N 0 6. 2. SENKOWSKI

Instrument Condi t ions

General E l e c t r i c Model XRD-6 Spectrogoniometer

Generator 50 KV 12-112 MA Tube t a r g e t Copper o p t i c s 0.2 ' Detec tor S l i t

MR sollor sl i t 3' B e a m s l i t 0.0007" N i F i l t e r 4" t ake o f f ang le

Goniometer Scan a t 0.4' 20 p e r minute Detec tor Amplif ier - 16 coa r se , 8.7 f i n e

(ga in ) Sealed p r o p o r t i o n a l counter t ube and DC v o l t a g e a t p l a t eau . P u l s e h e i g h t s e l e c t o r E - 5 v o l t s ;

Rate Meter T.C. 4 2000 CIS f u l l s c a l e

Recorder Chart Speet - 1 inch pe r 5 minutes

L EU - Out

Samples prepared by g r ind ing a t room temperature .

6. Methods of Analysis

6 .1 Elemental Analys is

Element % Theory % Reported

C H

57.15 57.20 4.50 4 . 3 7

6.2 Phase S o l u b i l i t y Analysis Phase s o l u b i l i t y a n a l y s i s is c a r r i e d ou t u s ing

isopropanol a s t h e s o l v e n t . A t y p i c a l example is shown i n F igure 4 which a l s o l ists t h e cond i t ions under which t h e e q u i l i b r a t i o n took place". b i l i t y of a c i d i c s o l u t i o n s of ch lord iazepoxide such as t h e hydrochlor ides may r e s u l t i n some decomposition dur ing phase a n a l y s i s .

However, t h e i n h e r e n t i n s t a -

48

Page 56: Florey Vol 1

CHLORDIAZEPOXI DE HYDROCHLORIDE

I- z w > J 0 v)

0

lL 3.0

0

IL w n w I- 3 J

$ 2 . 0

lL 0

m E

z 0 L 2 1.0

I 0 V

z

I- 3 J 0 v)

v)

0

0

FIGURE 4

C h l o r d i a z e p o x i d e HC1 P h a s e S o l u b i l i t y A n a l y s i s

-

- n -

n n U

- CHLORDIAZEPOXIDE HCI PHASE SOLUBILITY A NALY S I S

SOLVENT. ISOPROPANOL

EQUILIBRATION: L O H R S AT 25%

0 SLOPE : 0 . 2 3 2 .I%

- EXTRAPOLATED SOLUBILITY : 2 . 5 3 m g l g SOLVENT

1 I I I 2 0 4 0 60 80 I'

SYSTEM COMPOSITION: mg OF SAMPLE PER g OF SOLVENT

49

Page 57: Florey Vol 1

A. MacDONALD, A. F. MICHAELIS. AND B. 2 . SENKOWSKI

6.4 Direct Spectrophotometric Analysis Direct spectrophotometric analysis of chlordiaze-

poxide hydrochloride has not been found to be applicable if any of the known hydrolytic contaminants are present.

For material not containing the interfering species, the reported maxima at 245-6 nm and 311-12 nm in acidified 3A alcohol may be used for quantitative measure- ments. The a values at these maxima are 96.5 and 30.5 respectively.

6.7 Non-Aqueous Titration Chlordiazepoxide hydrochloride may be titrated

directly in non-aqueous solvents.

A suitable solvent for dissolution of the com- pound is glacial acetic acid. The quantitative titration is performed after addition of approximately 10 ml of 15% mercuric acetate in glacial acetic acid to complex the hydrochloride anion. The end point is determined potent- iometrically or colorirnetrically, utilizing crystal violet indicator. One equivalent of the compound is titrated under the conditions described.

7. Acknowledgments

The authors wish to acknowledge the assistance of Dr. W. Benz, Dr. V. Venturella, and Mr. T. Daniels in the preparation of this analytical profile.

50

Page 58: Florey Vol 1

CHLORDIAZEPOXIDE HYDROCHLORIDE

8. References

1.

2 .

3.

4 .

5 .

6 .

7 .

8.

9.

10.

Hawrylyshyn, M., Hoffmann-La Roche Inc., Personal Communication.

Traiman, S., Hoffmann-La Roche Inc., Personal Communication.

Johnson, J. and Venturella, V., Hoffmann- La Roche Inc., Personal Communication.

Nuhn, P. and Bley, W., Pharmazie, G, 523 (1967).

Mahn, F. , Hoffmann-La Roche Inc., Personal Communication.

Chlordiazepoxide Analytical Profile.

United S t a t e s Phamnacopia XVIII, p . 113 (1970).

Donahue, J., Hoffmann-La Roche Inc., Personal Communication.

Sheridan, J.C., Hoffmann-La Roche Inc., Personal Communication.

MacMullan, E . A . , Hoffmann-La Roche Inc., Personal Communication.

5 1

Page 59: Florey Vol 1

CYCLOSERINE

J. W. Lamb

53

Page 60: Florey Vol 1

J. W. LAMB

C OI; TE NTS

1. D e s c r i p t i o n 1.1 IJame, F o r m u l a , P i o l e c u l a r J e i g h t 1 . 2 A p p e a r a n c e , C o l o r , a n d Odor

2.1 I n f r a r e d S p e c t r u m 2.2 ; ( u c l e a r M a g n e t i c Reso r i ance S p e c t r u m 2.3 U l t r a v i o l e t S p e c t r u m 2.4 O p t i c a l R o t a t i o r : 2.5 K e l t i n g i lange 2.6 D i f f e r e n t i a l T h e r m a l A n a l y s i s 2.7 T h e r m o g r a v i m e t r i c A n a l y s i s 2.8 S o l u b i l i t y 2.9 C r y s t a l P r o p e r t i e s

3.1 C h e m i c a l S y n t h e s i s 3.2 B i o s y n t h e s i s

4. j t a b i l i t y - D e g r a d a t i o n 5. > r u g M e t a b o l i c P r o d u c t s 6. M e t h o d s o f A n a l y s i s

6.1 L l e m e n t a l A n a l y s i s 6.2 S p e c t r o p h o t o m e t r i c A n a l y s i s 6.3 C o l o r i m e t r i c A n a l y s i s 6.4 C h r o m a t o g r a p h i c A n a l y s i s

2. P h y s i c a l P r o p e r t i e s

3 . S y n t h e s i s

4.41 P a p e r C h r o m a t o g r a p h i c A n a l y s i s 6 .42 T h i n L a y e r C h r o m a t o g r a p h i c

6 . 4 3 U i o a u t o g r a p h i c A n a l y s i s

6.51 High L e v e l P l a t e S y s t e m 6.52 Low L e v e l P l a t e S y s t e m 6.53 P h o t o m e t r i c S y s t e m

A n a l y s i s

6.5 M i c r o b i o l o g i c a l A n a l y s i s

7. R e f e r e n c e s

54

Page 61: Florey Vol 1

CYCLOSERINE

1. D e s c r i p t i o n

1.1 Name, F o r z u l a , M o l e c u l a r W e i g h t C y c l o s e r i n e i s ~ - 4 - a m i n o - 3 -

i s o x a z o l i d o n e .

Cr2,iJii

0

1 . 2 A p p e a r a n c e , C o l o r , a n d O d o r ' . i h i t e t o s l i g h t l y y e l l o w , p r a c t i c a l l y

o d o r l e s s c r y s t a l l i n e p o w d e r .

2 . P h y s i c a l P r o n e r t i e s

2 . 1 I n f r a r e d S p e c t r u m ':he i n f r a r e d s p e c t r u m o f c y c l o s e r i n e

p r e s e n t e d i n F i g . 1 was t a k e n i n a K B r p e l l e t . R s p e c t r u m o f t h e same s s m p l e t a k e n i n a N u j o l i i u l l i s e s s e n t i a l l y i d e n t i c a l t o t h e o n e p r e - s e r i t e d . I i i d y l , K u e h 1 2 , a n d Ytarnrner3 s h o w e d t h a t t h e s o l i d s t a t e s p e c t r u m o f c y c l o s e r i n e has two i o n i z a b l e g r o u p s w i t h pKa l , e q u a l t o l t . l t - 4.5 and pKa e q u a l t o 7.4. S p e c t r a l b a n d s t y p i c a l o f a n a m i n o a c i d z w i t t e r i o n ( 2 2 0 0 c n - l a s s i g n e d t o t h e -l :H + ) a n d a r e s o n a n c e s t a b i l i z e d h y d r o x a m a z e a n i o n (1600 t o 1500 c m - ' ) r e p r e s e n t e d i n f - ig . 1.

2

a r e i n a g r e e m e n t w i t h t h e p e a k s

2 .2 N u c l e a r I * I a g n e t i c R e s o n a n c e S p e c t r u m

F i g . 2 was o b t a i n e d b y p r e p a r i n g a 10;; s o l u - t i o n o f c y c l o s e r i n e i n 3 0. The a s s i g n m e n t s i n 3i.g. 2 a r e ir! a g r e e m e n t w i t h t h o s e o f j t a x r n e r 3 . C y c l o s e r i n e s h o w s a c o m p l e x a b s o r p - t i o n i r i t h e 4 . 3 - 5.0 ppm a n d 3.8 - 4 .2 ppm r t . g io1 - i~ i n a c i d i c a n d b a s i c s o l u t i o n s r e s p e c -

The :JI42 S p e c t r u m as p r e s e n t e d i n

2

5 5

Page 62: Florey Vol 1

J. W. LAMB

WAVELENGTH IN MICRONS ? 5 6 7 8 9 1p 1: 1?13 ,16 ,l?, 2,0, 2,s

u 5 40

p 30 : 20

10

4000 3800 3400 3000 2600 2200 1900 1700 1600 1300 ll00 900 700 500 300 I , , , , . , I , I , , , , . . . , , . . . . . . . 1 1

WAVENUMBER CM. l

F i g . 1. I n f r a r e d a b s o r p t i o n spec t rum o f c y c l o s e r i n e

r I I , 1 1 I 1 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0

PPM

F i g . 2 . Nuclear magne t i c r e s o n a n c e c y c l o s e r i n e

56

Page 63: Florey Vol 1

CYCLOSE R IN€

t i v e l y . The c o m p l e x g r o u p o f s i x p e a k s c e n t e r e d a r o u n d 4.68 ppm a r e t h e t h r e e mag . : c t i - c a l l y n o n e q u i v a l e n t i s o x a z o l i d o n e r i n g p r o t c p s .

2.3 U l t r a v i o l e t S p e c t r u m C y c l o s e r i n e i s r e p o r t e d t o e x h i b i t

a n ab o r p t i o n b a n d p e a k i n g a t 2 2 6 nm i n w a t e r , a n d a s i n g l e b a n e p e a k i n g a t 219 nrn when s c a n n e d i n 0.111 H C 1 . 3

2.4 O p t i c a l R o t a t i o n The f o l l o w i n g r o t a t i o n s h a v e b e e n

[a]$5 + 1 1 2 (C , n o t s p e c i f i e d )

Cali5 + 1 1 6 (C , 1.17 i n w a t e r )

3

r e p o r t e d : 1

2

+ 115 (C, 1.0 i n w a t e r )

4 [a]:5 + 109 - 113 ( C , n o t s p e c i f i e d )

2.5 P l e l t i n g 2 a n g e :'he f o l l o w i n g m e l t i n g ( d e c o m p o s i t i o n )

p o i n t t e m p e r a t u r e s h a v e b e e n r e p o r t e d : 156 C 1

2.6 D i f f e r e n t i a l T h e r m a l A n a l y s i s

p e r f o r a e d on c y c l o s e r i n e . A m e . l t i n g e n d o - t h e r m , f o l l o w e d by a r a p i d e x o t h e r m was ob- s e r v e d o

A t a h e a t i n g r a t e o f 2 0 C / m i n . t h e e n d o t h e r m p e a k e d a t 1 5 2 C a n d t h e e x o t h e r m a t 1 5 0 C .

X d i f f e r e n t i a l t h e r m a l a n a l y s i s ivas

2.7 T h e r m o g r a v i m e t r i c A n a l y s i s A T G A p e r f o r m e d o n c y c l o s e r i n e i n d i -

c a t e d a 1.0;6 w e i g h t l o s s a t 1 4 7 C. Lie igh t l o s s o c c u r r e d r a p i d l y a s t h e t e m p e r a t u r e a p - p r o a c h e d t h e m e l t i n g ( d e c o m p o s i t i o n ) p o i n t , The m e a s u r e m e n t was p e r f o r m e d u n d e r n i t r o g e n

57

Page 64: Florey Vol 1

J. W. LAME

s w e e p a t a h e a t i n g G a t e o f 5 C/min.

2.8 S o l u b i l i t y The f o l l o w i n g s o l u b i l i t y d a t a were

o b t a i n e d f r o m Ir 'eiss6. t i a l l y i n s o l u b l e i n common o r g a n i c s o l v e n t s b u t r e a d i l y s o l u b l e i n water .

C y c l o s e r i n e i s e s s e n -

100 mg/ml i n water 1 .95 m g / m l i n m e t h a n o l 0.85 m g / m l i n a c e t o n e 0.90 mg/rnl i n p y r i d i n e 1 .60 rng/ml i n f o r m a m i d e 1 . 5 0 mg/ml i n e t h y l e n e g l y c o l mono-

m e t h y l e t h e r 1 .00 mg/ml. i n b e n z y l alcohol

2.9 C r y s t a l P r o p e r t i e s T h e c r y s t a l l o g r a p h i c p r o p e r t i e s o f

c y c l o s e r i n e w e r e d e t e r m i n e d b y P e p i n s k y 7 . Dond d i s t a n c e s a r e n o r m a l a n d t h e f i v e - membered r i n g i s n e a r l y p l a n a r .

3 . S y r r t h e s i s

3 0 1 C h e m i c a l S y n t h e s i s C y c l o s e r i n e h a s b e e n s y n t h e s i z e d b y

s e v e r a l w o r k e r s i n c l u d i n g S t a m m e r 3 a n d E v a n s 8 . The m t h o d o f Z v a n s w i l l b e b r i e f l y d e s c r i b e d . Evi lnsg r e p o r t e d c y c l o s e r i n e c a n b e s y n t h e s i z e d by c o n v e r t i n g D L - S e r i n e t o i t s m e t h y l e s t e r h y d r o c h l o r i d e by F i s c h e r e s t e r i f i c a t i o n .

3 H C-CH*COOCH

'd ( 2 ) I C Ph3

58

Page 65: Florey Vol 1

CYCLOSE R I NE

3 C Ph

2 I I C-CH-NIi

2 / I

D - S e r i n e m e t h y l e s t e r i s c o n v e r t e d i n t o t h e 1 : - t r i p h e n y l m e t h y l d e r i v a t i v e w h i c h , when h e a t e d i n t h e p r e s e n c e o f m e t h a n e s u l p h o n y l c h l o r i d e , y i e l d e d t h e s u b s t i t u t e d e t h y l e n e - arri ine ( 2 ) . W e a c t i o r . o f ( 2 ) w i t h h y d r o x y l - a m i n e a n d s o d i u m n i e t h o x i d e g i v e s t h e c o r r e s p o n d i n g h y d r o x a m i c a c i d ( 3 1 . T h i s p r o d u c t i s c o n v e r t e d , b y t h e a c t i o n o f h y d r o - c h l o r i c a c i d , i n t o 3-a a m i n o - 3 - c h l o r o - I l - h g d r o x y p r o p i o n a m i d e ( 4 1 , w h i c h u n d e r g o e s c y c l i z a t i o n t o D - c y c l o s e r i n e ( 5 ) when t r e a t e d w i t h a s t r o n g l y b a s i c i o n e x c h a n g e r e s i c .

3.2 3 i o s y n t h e s l . s C g c l o s e r i n e i s p r o d u c e d by S t r e t o

m y c e s o r c h i d a c e u s . a c c o r d i n g t o H a r n e d * i s o l a t i o n f r o m t h e c u l t u r e f i l t r a t e i s a c c o m - p l i s h e d b y : (1) a d s o r p t i o n on a s t r o n g b a s e a n i o n e x c h a n g e r e s i n , (2) e l u t i o n w i t h 3 SO4, a n d ( 3 ) f o r m u t i o n o f a w a t e r i n s o l u b l e , c r y s t a l . l i n e , s i l v e r s a l t . The f r e e a c i d i s p r e p a r e d by d e c o f i p o s i t i o n o f t h e s i l v e r s a l t w i t h E C l a n d c r y s t a l l i z a t i o n f r o m t h e f i l t r a t e w i t h a c e t o n e or a l c o h o l .

2

I t . S t a b i l i t y - 3 e , T r n d a t i o n

m o i s t u r e ) i s s t a b l e a t 100 C f o r 2 4 h o u r s a n d c a n b e s t o r e d for l o n g p e r i o d s i n a d e s l c c n - t o r a t room t e m p e r a t u r e w i t h o u t m e a s u r a b l e

The d r y c r y s t a l 2 l n e s o l i d (0 .2 , ; o r l e s s

59

Page 66: Florey Vol 1

J. W. LAMB

l o s s o f p o t e n c y . 9 s o l u t i o n s (0.1-1.0 m g / m l ) c a n b e s t o r e d u n d e r r e f r i g e r a i o n w i t h o u t l o s s o f p o t e n c y . Cunrn ings l ' f o u n d t h a t a t c o n c e n t r a t i o n s o f 10-40 mcg/ml t h e r e i s a p r o g r e s s i v e d r o p i n d r u c p o t e n c y o v e r a 1 5 d a y p e r i o d a s d e t e r - m i n e d b y a c h e m i c a l m e t h o d i n a s y n t h e t i c a s s a y mqdium. A d a y o l d 1 m g / m l a q u e o u s s o l u - t i o r . o f c y c l o s e r i n e m a i n t a i n e d a t 5 C s h o w e d a 7.5;6 l o s s o f p o t e n c y when a s s a y e d t u r b i d i - m e t r i c a l l y w i t h K l e b s i e l l a p n e u m o n i a . A f t e r o n e week t h e p o t e n c y l o s s was a b o u t 45%. U s i n g t h e same t e s t s o l u t i o n s , b o t h p h o t o m e t r i c a n d a g a r d i f f u s i o n a s s a y s w i t h S t a p h y l o c o c c u s a u r e u s a n d t h e c o l o r i m e t r i c a s s a y o f J o n e s L L d i d n o t s h o w s i g n i f i c a n t p o t e n c y l o s s .

s o l i d s c o n t a i n i n g s i g n i f i c a n t a m o u n t s o f m o i s - t u r e , a n d c r y s t a l l i n e s o l i d s e x p o s e d t o h u m i d a t m o s p h e r e a r e n o t s t a b l e . 9 d u e t o t h e f o r m a t i o n o f t h e d i m e r (C H 0 N 6 2 g e 2 a n d i n c o n c e n t r a t e d a q u e o u s s o l u t i o n ? c a n p r e v e n t e d b y t h e a d d i t i o n o f a n e q u i v a l e n t c o n c e n t r a t i o n o f a s t r o n g a l k a l i s u c h a s s o d i u m h y d r o x i d e . 9 C r a i g 9 r e p o r t e d t h a t c o n c e n t r a t e d a q u e o u s s o l u t i o n s o f 100 mg/ml c o n t a i n i n g o n e e q u i v a l e n t w e i g h t o f s o d i u m h y d r o x i d e a r e s t a b l e f o r a t l e a s t 30 d a y s a t 2 5 C . C y c l o - s e r i n e i s u n s t a b l e i n a c i d . T r e a t m e n t w i t h 6:J H C l a t 6 0 C g i v e s P - a m i n o x y - D - a l n n i n e h y d r o - c h l o r i d e w h e r e a s c y c l o s e r i n e i n m e t h a n o l a n d XC1 g i v e s P - a m i n o x y - D - a l a n i n e m e t h y l e s t e r d e h y d r o c h l o r i d e .12

C r a i g 9 r e p o r t e d t h a t d i l u t e

C o n c e n t r a t e d a q u e o u s s o l u t i o n s , c r y s t a l l i n e

I n a c t i v a t i o n i s

5. D r u g ; . ~ e t a b o l i c P r o d u c t s

w e l l a b s o r b e d when a d m i n i s t e r e d o r a l l y . A b o u t 65,: was e x c r e t e d u n c h a n g e d i n t h e u r i n e w h i l e 35 was m e t a b o l i z e d t o unknown s u b s t a n c e s .

l i o S s o n L L d e t e r m i n e d t h a t c y c l o s e r i n e i s

6. X e t h o d s o f A n a l y s i s

6 . 1 E l e m e n t a l A n a l y s i s

60

Page 67: Florey Vol 1

CYCLOSERI NE

Zleinest ‘/o Theory Reported Ref. Ref. Ref. i?cf. 14 2 1 5

c 35.29 35.27 35.75 35.4 35.5 Ii 5.96 6.04 5.56 5.98 6.0 14 27.44 27.01 27.1: 26.9 26.6

6.2 Spectrophotometric Analysis The ultraviolet absorption band at

219 nm of 4-amino-3-isoxazolidone is a fknction o f the carbonyl group (see Sec. 2.3). This analysis is useful as a measure of purity and is used as a quantitative test for cycloserine in formulations. The dimer (2,5-bis-(aminoxy- methyl-1-3, 6-diketopiperazine) absorbs at 288 nm due to the loss o f hydroxylamine when treated with alkali reagent.

6.3 Colorimetric Analysis The routine chemical assay for cyclo-

serine is the colorimetric method of Jories. (Jefer to CFR 148d.l(b)). Cycloserine reacts with sodium nitropentacyanoferrate in a slightly acidic aqueous solution to give an intense blue-colored complex suitable for

assay is specific for the ring structure of cycloserine.

been applied successfully tc the determination of cycloserine in biological fluids, such as blood, urine, cerebrosginal fluid and to the determination of crystalline cycloserine. IJo naturally occurring amino acids have been found to interfere with assay results. The minimum assayable level is about 100 ppm in tissue or solid samples such as animal f e e d s , and about 2 5 ppm in liquid samples.

quantitative measurement at 625 nm 4 . This

3 According to Craig , this method has

6.4 ChromatoRraphic Analysis Qualitative chromatographic methods

can be used for identification of cycloserine and for separation of cycloserine and dimcr.

61

Page 68: Florey Vol 1

J. W. LAMB

h , 4 1 Paper Chromatographic Analysis Solvent sjrstcms and corres-

ponding Hf values are reported in the f o l l o w i n g

Solvent System Propanol/water 7 : 3 13

i if 5 0 -

3utanol/water/acctic .15

.70 17 acid 3:1:113 Ace tone/wat er 2 : Ili; 80$ Xthanol/water . 'to Butanol/acetic .68 3 ii c i d/ wa t rj r 4 : 1 : 5

.76 ;..ethyl ethyl k e t o 11 e/ p y r i d i n e/ w a t e r 4 : 1 : 6 Tert. butanol/n. . 3 2 butanol saturated with 0.311 I ~ H ~ O H 1:115

3

detection system: Urownish- y e 11 o ;w s PO t w h e n t r ea t e d vri t h X i n hy dr i n reii,:t.riC,u

5.42 Thin Layer Chromatoxraphic Analysis TLC systems and corresponding

r7f v : i l u e s for cycloserine found in our lnbora- tor.1 X Y P as f o l l o w s :

1.3 Solvent System

P!ethanol/water 4:1 Rf .57 - .40

13 S. i;ethanol/ethyl

acetate/water 5:3 :2 Detection system: I'linhydrin

r e a [; e n t

5-43 Bioautographic Analysis aioautography is a qualitative

nea: ;ure of biologically active cycloserine by its bioreactivity and by its mobility, but is rot suitable f o r the detection o f dimer.

Solvent system: propanol/water 1:9 Test organism: aureus ATCC 6 5 3 8 P 2 f value: 0.5

62

Page 69: Florey Vol 1

CYCLOSE R l NE

6.5 K i c r o b i o l o g i c a l A n a l y s i s C r a i g y d e s c r i b e s two m i c r o b i o l o g i c z l

p l a t e s y s t e m s s u i t a b l e f o r t h e a s s a y o f c y c l o - s e r i n e . The f i r s t i s a h i g h l e v e l a s s a y f o r s o l u t i o n s o r s o l i d s c o n t a i n i n g g r e a t e r t h a n 5 0 0 pprn. The t e s t o r g a n i s m c a n b e S. a l i r e u s A Y C C 6538P or 2. c o l i rj22.L 4348, a n d t h e r e f e r e n c e s t a n d a r d i s 5 0 mcg/ml. The low l e v e l a s s a y i s p e r f o r m e d u s i n g a more s e : i s i - t i v e a s s a y o r g a n i s m , Y a c i l l u s m e c a t h e r i u c ; ATCC 25833 . S e l a t i v e a c t i v i t i e s o f d i m e r t o c y c l o s e r i n e f o r t h e t h r e e b a c t e r i a l s y s t e s s a r e : S. o u r e u s 1:lOO; E. c o l i 1:20; a n d 5, m e t q n t h e r i ~ O O . The minimurn n o - e f f e c t r a t i o s o f d i m e r t o c y c l o s e r i n e f o r t h e t h r e e o r g a n i s m s a r e 15, 2 , a n d 10, f o r S. a u r c u s , - E . -' c o l i arid & m e g a t h e r i u m r e s p e c t i v e l y . The ;ow l e v e l p l a t e a s s a y i s c a p a b l e o f d e t e r - n i n i n g l e v e l s as l o w a s C . l ppm i n l i q u i d a n d l-3 pprn i n t i s s u e . S e n s i t i v i t y i s a c h i e v e d t h r o u s h u s e o f a s e n s i t i v e c u l t u r e a n d ii rrediurii r e l a t i v e l y f r e e o f a l a n i n e . A s s a y s o l u t i o r i s p r e p a r e d w i t h 1 2 . 5 , 2 5 , a n d 50 f o l d g r e a t e r c o n c e n t r a t i o n s o f D L - a l a n i n e t h a n c y c l o s e r i n e r e s u l t e d i n v t i l u e s t h a t w e r e 9 0 , 82, a n d 72: ; r e s p e c t i v e l y o f t h o s e v a l u e s o b t a i n e d w i t h o u t a l a n i n e . a b l e f o r t h e a s s a y o f c y c l o s e r i n e m a t e r i a l s t h a t h a v e a p o t e n c y o f 0.02 mg/gm o r more. T h i s s y s t e m m e a s u r e s o n l y t h e c y c l o s e r i n e i s o m e r s w h e r e a s 5. a u r e u s m e a s u r e s b o t h d i m e r a n d c y c l o s e r i n e n e e S e c . 4 ) .

A s u i t a b l e p h o t o m e t r i c a s s a y i s avail-

6.51 High L e v e l P l a t e S y s t e m R e f e r t o Code o f F e d e r a l Regu-

l a t i o n s 1 4 8 d . l ( e ) .

6 . 5 2 Low L e v e l P l a t e S y s t e m R e f e r t o C r a i g y .

6.53 P h o t o m e t r i c S y s t e m 2 e f e r t o CFR 141.111 s u b s t i -

t u t i n g & p n e u m o n i a e ATCC 10031 f o r 5 a u r e u s .

63

Page 70: Florey Vol 1

J. W. LAMB

7. Y e f c r e n c e s

1.

2 .

2. -#

4 . 5.

6.

7 .

8.

9. 10.

11 0

12.

13. 14.

15.

P.H. i l i d y , 3.3. I iodge , J. Am. Chem. Yoc. 7 7 , 2345 ( 1 9 5 5 ) . P.A. K u e h l , J r . , J. A m . Chem. SOC.

C. S t a m m e r , J. XcKinney , J. Or&+. Chem.

A n a l y t i c a l L a b o r a t o r i e s , S l i L i l l y a n d C0mpar.y. 2 .L . i l a r n e d , F.U. H i d y , a n d E.K. U a r o , A n t i b i o t i c s a n d C h e m o t h e r a p y 2, 204 ( 1 9 5 5 ) . P.J . Lleiss, I4.L. Andrew, a n d iY.i'i. ' I r i g h t , A n t i b i o t i c s C h e m o t h e r a p y 2 , 374-377 ( 1 9 5 7 ) .

77, 2344 ( 1 9 5 5 ) .

30, 3 4 3 6 ( 1 9 6 5 ) .

2.M. E v a n s , The C h e m i s t r y o f t h e A n t i b i o t i c s I J sed i n I " i e d i c i n e , p . 12- 13. Oxford, :Jew York: P e r c a m o n P r e s s 1965. G.H. C r a i g , a n d 2.L. X n r n e d , I n P r e s s . 1.1. Cummings, i?.A. P a t n a d e , a n d P.C. I!udgins , A n t i b i o t i c s a n d C h e m o t h e r a p y ,

L. J o r i e s , Anal. Chem. 28, 39 ( 1 9 5 6 ) . J. i l obson , F. S u l l i v a n , P h a r m a c o l . Rev. Q, 195 ( 1 9 6 3 ) . li. H u s s e y , P e r s o n a l C o m m u n i c a t i o n . D.H. Harris, !*I. 2 u g a r , K. R i a g a n , F . J . J o l f , ii. P e c k , X. ~ a l l i c k , a n d ii.l,d. i ; ' ood ru f f , A n t i b i o t i c s a n d C h e m o t h e r a p y , 2, 183 (195.5). S.N. C o n z e l m a n , J r . , A n t i b i o t i c s a n d C h e m o t h e r a p y , 2, 444 ( 1 9 5 5 ) .

- 5, 1 9 8 ( 1 9 5 5 ) .

64

Page 71: Florey Vol 1

CY CLOTHIAZIDE

C. D. Wentling

65

Page 72: Florey Vol 1

C. D. WENTLING

CONTENTS

1. Description 1.1 Name, Formula, Molecular Weight 1.2 Appearance, Color, Odor

2.1 Infrared Spectrum 2.2 Nuclear Magnetic Resonance Spectrum 2.3 Ultraviolet Spectrum 2.4 Mass Spectrum 2.5 Melting Range 2.6 Differential Thermal Analysis 2.7 Thermogravimetric Analysis 2.8 pKa

2. Physical Properties

3. Synthesis 4 . Stability - Degradation 5 . Drug Metabolic Products 6. Methods of Analysis

6.1 Elemental A n Llysis 6.2 Titrimetric Analysis 6.3 Direct Spectrophotometric Analysis 6.4 Thin Layer Chromatographic Analysis

7. References

66

Page 73: Florey Vol 1

CYCLOTH I AZI DE

1. Description

1.1 Name, Formula, Molecular Weight Cyclothiazide is 6-chloro-3,4-dihydro-

3-(5-norbornen-2-yl)-2H-l,2,4-benzothiadiazine- 7-sulfonamide 1,l-dioxide. It is also known as 6-chloro-3,4-dihydro-3- (5-norbornen-2-~1)-7- sulf amoyl- 1,2,4-benzothiadiazine- 1,l-dioxide; 3- (bicyclo- [ 2,2,l]-hept-2' -ene-6 ' -yl)-6-chloro- 7-sulfamyl-3,4-dihydro-l, 2,4-benzothiadiazine- 1,l-dioxide; 6-chloro-3-(5-bicyclo[2.2.l]hept- 2-eny l) - 7-su If amoy 1-3,4-dihydro- 1,2,4- benzo- thiadiazine-1,l-dioxide and by many slight variations of the particular nomenclature.

H

cl 4H16C1N304S2 Mol. Wt.: 389.88

1.2 Appearance, Color, Odor It is a white to off-white, essentially

odorless powder.

2. Physical Properties

2.1 Infrared Spectrum The infrared spectrum of cyclothiazide

(Lilly Working Standard, Lot No. 95242, crystal- lized from alcohol-water) is presented in Figure 1. The spectrum is of a sample in a KBr pellet, taken on a Beckman IR-12 spectrophotometer. A spectrum of a sample in a Nujol Mull is essen- tially the same1. Figure 1 is also in agreement with other publiahed spectra of cyclothiazide such as that of a sample recrystallized from alcohol-heptane' or that published by' the Drug

61

Page 74: Florey Vol 1

C. 0. WENTLING

Standa rd Laboratory3 b o t h of which are i n KBr p e l l e t s .

C . Underbr ink4 a s s i g n s the f o l l o w i n g bands (cm") t o c y c l o t h i a z i d e : a. c h a r a c t e r i s t i c f o r NH or NH2: 3390, 3260 b. character is t ic for S02-N: 1350, 1310, 1180,

1160 c . probab ly c h a r a c t e r i s t i c f o r NH2 o f S02-NH2:

1560 Whitehead ec a1 .5 a s s i g n t h e i n t e n s e absorp-

t i o n band a t approx ima te ly 6 . 2 p (1600 em-') as c h a r a c t e r i s t i c for 3,4-dihydro-3-subs t i t u t e d 7-su l f amoyl- 1 , 2 , 4 - b e n z o t h i a d i a z i n e 1 , l -d ioxides .

2 . 2 Nuclear Magnet ic Resonance Spectrum A n u c l e a r magnet ic r e s o n a n c e spec t rum

of c y c l o t h i a z i d e i n DMSO-d6 is p r e s e n t e d i n F i g u r e 2 . Whitney e t a1.6, th rough t h e i n t e r - p r e t a t i o n of an NMR spec t rum, estimated t h e material t h e y were u s i n g t o be abou t 80% endo and 20% exo. H . Boaz7, who i n t e r p r e t e d t h e above spec t rum, s u p p l i e s i n T a b l e I t h e s p e c i f i c a s s ignmen t s f o r F i g u r e 2.

2 . 3 U l t r a v i o l e t Spectrum Sal im and H i l t y 3 r e p o r t e d maxima a t 271 -

and 315 nm i n methanol .

i n methanol ( 0 . 0 1 m g . p e r m l . ) from 350 to 210 nm. produced maxima a t 227, 271 and 315 nm8. A s imilar s c a n i n e t h a n o l y i e lded maxima a t 227, 272 and 315 nm. and i n a l k a l i n e media produced maxima a t 274 and 324 nml.

A s c a n of t h e L i l l y Working S tanda rd

2 . 4 Mass Spectrum The mass spec t rum of c y c l o t h i a z i d e

( L i l l y Working S t a n d a r d ) w a s de t e rmined u s i n g a Perkin-Elmer H i t a c h i RMU-6D m a s s s p e c t r o m e t e r g . The i n t e n s i t i e s were measured f r o m a a l o w re- s o l u t i o n mass spec t rum and are summarized as a b a r g raph i n F i g u r e 3. The m o l e c u l a r i o n (M'389) f o r C 1 3 5 is v i s i b l e a l o n g w i t h t h a t o f t h e molecu la r i o n f o r C13' ( M 391). The b a s e peak (no rma l i zed i n t e n s i t y = 100) is a t m / e 6 6 .

68

Page 75: Florey Vol 1

CYCLOTHIAZIDE

WAVELENGTH IN MICRONS 2 5 3 3 5 4 5 6 7 8 9 1 o n 1 3 1 5

4000 3600 3200 2800 2400 2000 1800 1600 MOO 1200 1000 800 WAVENUMBER (CM-l)

Fig . 1. I n f r a r e d spectrum of c y c l o t h i a z i d e taken i n a KBK p e l l e t on a Beckman IR-12 spectrophotometer

8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0 PPM ( b )

F i g . 2 . Nuclear magnetic resonance spectrum of c y c l o t h i a z i d e taken on a Var ian Assoc ia t e s A-560 spectrophotometer i n d i - m e thy l s u l f oxide -d6

69

Page 76: Florey Vol 1

PROTONS AT

8

4 2 7 NH2 5 -4

0

5'

6'

3

CHEMICAL SHIFT (6)

8.05 8.03 7.75-7.90 7.67 7.44 7.23,7.12 7.18 6.30,6.27 6.20 6.01,5.95 6.20 4.54 4.01

TABLE I NMR SPECTRAL ASSIGNMENTS FOR

CYCLOTHIAZIDE

I SOMER FORM

two two endo exo }

endo t w o exo u

exo

exo

endo

COUPLING CHARACTER1 ST ICS

d ; J = 11 .5 s , broad s , broad s , s h a r p

q , U ; J s ' , ~ ' 3 5.5; 55'94' = 2.5

0 0

s = s i n g l e t ; d = doub le t ; t 3 t r i p l i t , q = q u a r t e t u = unreso lved; J = coupl ing c o n s t a n t i n Hz

Page 77: Florey Vol 1

Y Y 120 3g 42.6~100.

g 26 z 22 E 18 - 14 5 6 w

a 2

w f 10

20 40 60 80 100 120 h 140 1111 160 A 180 200 220

269

A 240 260 280 300 320 - 340 360

M(C135)

1 380 400

M A S S TO CHARGE RATIO

Fig . 3 . Low reso lu t ion mass spectrum of cyc lo th iaz ide ; the spectrum was obtained using a Perkin-Elmer Hitachi RMU-6D mass spectrometer

Page 78: Florey Vol 1

C. D. WENTLING

2.5 Melting Range The melting point or range for cyclo-

thiazide has been reported over a rather wide span and the temperatures ("C.) are presented below: 235 (approximately) l o 2345 229-230 andS226-23O1'

220 (approximately with decomp~sition)~ USP Class I

222.5-223.5

2.6 Differential Thermal Analysis A differential thermal analysis of the

Lilly Working Standard was performed using a DuPont 900 Differential Thermal Analyzer at a heating rate of 2OoC. per min. with a nitrogen atmospheres. The thermogram shows an endotherm at approximately 241OC. indicating decomposition.

2.7 Thermogravimetric Analysis A thermal gravimetric analysis of the

Lilly Working Standard was performed using a DuPont 950 Thermogravimetric Analyzer at a heating rate of 5°C. per minute and a nitrogen atmosphere. The sample maintained a constant weight through 217°C. after which weight was rapidly lost.

the differential thermal analysis and the thermo- gravimetric analysis was noted and apparently is real,

The disparity between the results of

2.8 pKa Whitehead et a1.5 report that in aqueous

66% N,N-dimethylformamide, 3,4-dihydro-3- substituted- 7- s u If amoy 1- 1,2,4- benzothiadiazine 1,l-dioxides are characterized by two pKa's of 11.0-11.4 and 13.0-13.3. Novello and Spraguel2 reported pKa's of 9.1 and 10.5 for cyclothiazide. In the latter case the pKa re- presents the pH at half neutralization in 30% aqueous ethanol determined potentiometrically.

72

Page 79: Florey Vol 1

CYCLOTHIAZI DE

3. Synthesis

Cyclothiazide can be prepared by the addition of an excess of ammonia to 5-norbornylenyl- carboxaldehyde. This reaction mixture is then added to a solution of 4-chloro-6-f luorobenzene- 1,3-disulfonamide, and the product is precip- itated by addition to dilute acid". Alternate processes similar to the above involve use of the aldehyde-ammonia complex or the aldimine produced in the first step above by variations of the reaction media.

Other syntheses reported are those of Whitehead et a1.5 and Muller et a1.l1. In both of these processes the starting materials are 4-amino-6-chlorobenzene- 1,3-disulf onamide and 5-norbornylenylcarboxaldehyde. The conditions under which the reaction is performed vary somewhat.

The syntheses are presented in Figure 4.

4. Stability - Degradation Cyclothiazide appears to be very stable in

the solid state and under ordinary ambient conditions. Cyclothiazide is rapidly decomposed when heated in boiling acidic or basic alcohol solutions and is more rapid in the acidic solution13. By the thin layer chromatography method of Koch13, one of the decomposition products has the same Rf value as 4-amino-6- chlorobenzene-1,3-disulfonamide.

5 . Drug Metabolic Products

No report of metabolic products related to cyclothiazide is recorded.

6. Methods of Analysis

6.1 Elemental Analysis

13

Page 80: Florey Vol 1

C. D

. WE

NT

LIN

G

X

II 0

NO

0

x h

XZ

LI

X

X

u

0 z-0

0 u

u

CG CG

CG lx

-+ +

+ +

N

N

X

53

rl

N

uo

5.l

X

N

53

8

rl

m

u (v

$2 0

Frc 0

Frc 0

n lx

X

'N

X

74

Page 81: Florey Vol 1

CYCLOTH l AZl DE

Element C H N

% Theory Reported5 43.13 43.13 4.14 3.89 10.78 10.69

6.2 Titrimetric Analysis Cyclothiazide has a sulfonamide group

which facilitates nonaqueous titrations. Salin and Hilty3 in their discussion of the titration using sodium methoxide indicate the compound exhibits two titratable groups when dissolved in ethylenediamine with o-nitroaniline indica- tor. In dimethylformamide with thymol blue indicator cyclothiazide exhibits only one acidic group. The former conditions are those of the NF X I 1 1 cyclothiazide assay.14

6.3 Direct Spectrophotometric Analysis Cyclothiazide exhibits several ab-

sorption maxima in the ultraviolet range under various conditions (see Section 2.3). While this absorbance will not differentiate cyclo- thiazide from some starting materials, it does lend itself to the assay of formulated batches3, 14, and facilitates a means of detection for thin layer chromatographic work13,15.

6.4 Thin Layer Chromatographic Analysis The most notable work in,this area is

probably that of Duchgne and Lapierels. By means of a two dimensional chromatogram on Alumina GF 254 Merck, they separated 15 compo- nents of a mixture of 18 therapeutically active diuretics. The first solvent is ethylacetate with 1.5% water, developed at 22°C. and, after drying, a solvent system of butanol/chloroform, 30:lOO is lised with development at 5-8°C. Ultraviolet light is employed for visualization of the separated components. The cyclothiazide used in this work shows three components when chromatographed in the first direction with Rf's given as 0.59/0.62/0.67. In the second direc- tion the Rf is given as 0.54. The chromatogram,

75

Page 82: Florey Vol 1

C. D. WENTLING

however, shows two spots. Variations of the system for the first direction are also reported.

Koch13, in routine analytical work, uses Brinkman precoated plates, Silica Gel F254, with a solvent system of acetonitrile/chloroform, 2:l. Cyclothiazide is visualized by means of ultraviolet light and has an Rf of 0 .64 . This system has been used to observe induced decom- position as stated in Section 4.

compound on Kieselgel G (Merck) with a methylene chloride/methanol, 65:25, solvent system. Visualization is by the chloride-iodide-starch method, positive for N-H bonds. By this system an Rf of 0.86 was reported.

Whitney et a1.6 chromatographed the

76

Page 83: Florey Vol 1

CYCLOTH IAZIDE

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

D, Woolf, personal communication, Eli Lilly and Co., Indianapolis, Indiana, 46206. 0. R. Sammul, W. L. Brannon, A . L. Hayden, J. A s s , Offic. Agr. Chem. 47, 918-91 (1964). E. F. Salim and W. W. Hiltr J. Pharm. Sci. 56, 518-19 (1967). C. Unzrbrink, personal communication, Eli Lilly and Co., Indianapolis, Indiana, 46206. C. W. Whitehead, J. J. Traverso, H. R. Sullivan, and F. J. Marshall, J. Org. Chem. - 26, 2814-18 (1961). P. L. Whitney, G. Folsch, P. 0. Nyman, and B. G. Malmstrom, J. Biol. Chem. - 242,

H. Boaz, personal communication, Eli Lilly and Co., Indianapolis, Indiana, 46206. F. E. Gainer, personal communication, Eli Lilly and Co., Indianapolis, Indiana, 46206. A . KOSSOY, personal communication, Eli Lilly and Co., Indianapolis, Indiana 46206. C. W. Whitehead and J. J. Traverso, U. S. Patent 3,419,552 (1968). E. Muller and K. Hasspacher, U. S. Patent 3,275,625 (1966). F. C. Novello and J. M. Sprague, Ind. Chim. Belge. 32 (spec. no.), 222-5 (1967). W. Koch, personal communication, Eli Lilly and Company, Indianapolis, Indiana 46206. "The National Formulary'' 13th edition, Mack Publishing Co., Easton, Pa. 18042

M. Duchene and C. L. Lapisre, J. Pharm. Belg. - 20, 275-84 (1965).

4206-11 (1967).

(1970) 2. 191-2.

77

Page 84: Florey Vol 1

DIAZEPAM

A . MacDonald, A . F. Michaelis, and B. Z . Senkowski

79

Page 85: Florey Vol 1

A. MacDONALD, A. F. MICHAELIS, AND B. 2. SENKOWSKI

CONTENTS

Ana ly t i ca l P r o f i l e - Diazepam

1. Descr ip t ion 1.1 Name, Formula, Molecular Weight 1 . 2 Appearance, Color , Odor

2 . Phys ica l P r o p e r t i e s 2 . 1 I n f r a r e d Spectrum 2 . 2 Nuclear Magnetic Resonance Spectrum 2 . 3 U l t r a v i o l e t Spectrum 2 . 4 Mass Spectrum 2 .5 Opt ica l Rota t ion 2 .6 Melting Range 2 .7 D i f f e r e n t i a l Scanning Calor imetry 2 .9 S o l u b i l i t y 2.10 Crys ta l P r o p e r t i e s 2 . 1 1 D i s soc ia t ion Constant 2 . 1 2 D i s t r i b u t i o n C o e f f i c i e n t

3 . Syn thes i s

4 , S t a b i l i t y Degradation

5 . Drug Metabol ic Products and Pharmacokinet ics

6 . Methods o f Analysis 6 . 1 Elemental Analysis 6 . 2 Phase S o l u b i l i t y Analysis 6 . 3 Chromatographic Analysis

6 .31 Thin Layer Chromatographic Analysis 6.32 Column Chromatographic Analysis 6 .33 Vapor Phase Chromatography

6.4 Direct Spec t rophotometr ic Analysis 6 . 5 Polarographic Analysis 6 . 6 Non-Aqueous T i t r a t i o n

7 . References

80

Page 86: Florey Vol 1

DIAZEPAM

1. Desc r ip t ion

1.1 Name, Formula, Molecular Weight Diazepam i s 7-chloro-1,3-dihydro-l-methyl-5-

phenyl-2H-1,4-benzodiazepin-2-one.

DIAZEPAM

Mol. W t . 284.75

1 . 2 Appearance, Color , Odor Off-white t o yel low, p r a c t i c a l l y o d o r l e s s , c r y s -

t a l l i n e powder.

2 . Phys ica l P r o p e r t i e s

2 . 1 I n f r a r e d Spectrum The i n f r a r e d spectrum of r e f e r e n c e s t anda rd

diazepam i s p resen ted i n F igure l l . su red i n a K B r p e l l e t which con ta ined l mg/400 mg K B r .

The spectrum was mea-

The fo l lowing bands (cm-l) have been ass igned f o r Figure 12.

a . C h a r a c t e r i s t i c f o r NH:3390 b . C h a r a c t e r i s t i c €or -C=0:1680 c . C h a r a c t e r i s t i c f o r a romat i c groups:1560, 1480

2 . 2 Nuclear Magnetic Resonance Spectrum The NMR spectrum shown i n F igure 2 was ob ta ined

by d i s s o l v i n g 47 mg o f r e f e r e n c e s t anda rd diazepam i n 0.5 m l o f C D C 1 3 c o n t a i n i n g t e t r a m e t h y l s i l a n e as i n t e r n a l

81

Page 87: Florey Vol 1

A. M

acD

ON

AL

D. A

. F. M

ICH

AE

LIS

, AN

D B

. 2. S

EN

KO

WS

KI

5 a a N

4l

-lo

X'

Page 88: Florey Vol 1

DIA

ZE

PA

M

t 1

-IL=-

7-

\- t

83

Page 89: Florey Vol 1

A. MacDONALD, A. F MICHAELIS, AND 6. 2 . SENKOWSKI

r e f e r e n c e . Nuhn and Bley4 r e p o r t e d t h a t a t room tempera ture i n C6D6 both methylene p ro tons e x h i b i t an AB spectrum. With i n - c r eas ing tempera ture t h e doub le t was conver ted t o a s i n g l e l i n e i n d i c a t i n g r a p i d i n v e r s i o n o f t h e r i n . This obser -

The s p e c t r a l ass ignments are shown i n Table 13.

v a t i o n was confirmed by Linscheid and Lehn 5 . TABLE I

Diazepam

Chemical S h i f t Protons a t T (ppm)

c3 (a) 5 .19 Clmethyl 6 .62

c3 (b) 6 .25 c 6 , c 8 c 9 9 Ph 2.55

Type (J i n Hz)

s = s i n g l e t ; d = doub le t ; m = m u l t i p l e t

2 . 3 U l t r a v i o l e t Spectrum Diazepam when scanned between 420 and 210 nm i n

a c i d i f i e d 314 a i coho l e x h i b i t s 3 maxima as shown i n F igure 3 . These were l o c a t e d a t 242 + 2 nm ( a = l o o ) , 285 + 2 nm ( a = 43.7) and 368 + 2 nm ( a = i 4 . 5 ) . 221 + 2 nm, 26c + 2 nm and 334 + 2 nm6.

Minima were observed a t

- - -

2 . 4 Mass Spec t r a

us ing a CEC 21-110 mass spec t rometer wi th an i o n i z i n g energy o f 70 eV and a tempera ture o f 190°C. t h e e lementa l composi t ions f o r t h e most d i a g n o s t i c i o n s as determined by h igh r e s o l u t i o n mass spec t romet ry7 . molecular i o n f o r diazepam was observed a t m/e 284. The ions a t m/e 256 and m/e 255 correspond t o a l o s s o f CH2N and HCO r e s p e c t i v e l y wi th t h e l o s s o f c h l o r i n e shown by the ion m/e 249. Other i ons i n Table I1 can be a s c r i b e d t o l o s s e s o f C 1 , and p a r t s o f t h e seven membered r i n g .

The mass spectrum shown i n F igure 4 was ob ta ined

Table I1 l i s t s

The

84

Page 90: Florey Vol 1

DIAZEPAM

0 . 8

0 . 6

0 .4

0 . 2

0.0

Figure 3

Ultraviolet Spectrum of Diazepam

D I A 2 E PAM ( A C I D I F I E D 3 A ALCOHOL I

N A N O M E T E R S

85

Page 91: Florey Vol 1

A. M

ac

DO

NA

LD

, A. F. M

ICH

AE

LIS

, AN

D 6. 2

. S

EN

KO

WS

KI

u 0 a

v)

3 x

86

Page 92: Florey Vol 1

DIAZEPAM

TABLE I1

High Resolut ion Mass Spectrum o f Diazepam (a)

Found Mass

284.0681 283.0630 256.052 1 255.0680 249.1009 241.0520 239.0374 228.0582 221.0817 219.0917 213.0353 205.0758 199.0300 186.0236

c1 -3 5 284.0759 16 13 2 1 1 283.0681 16 1 2 2 1 1 256.0572 15 11 1 1 1 255.0687 15 1 2 2 0 1 249.1071 16 13 2 1 0 241.0531 14 10 2 0 1 239.0375 1 4 8 2 0 1 228.0578 1 4 11 1 0 1 221.0884 15 11 1 1 0 219.0920 15 11 2 0 0 213.0344 13 8 1 0 1 205.0764 14 9 2 0 0 199.0313 13 8 0 0 1 186.0235 1 2 7 0 0 1

0 - N - Calcd. Mass C H - -

(a)Only peaks d i scussed a r e inc luded i n t h i s t a b l e .

2 .5 Op t i ca l Rota t ion Diazepam e x h i b i t s no o p t i c a l a c t i v i t y .

2.6 Melt ing Range The mel t ing range r epor t ed i n NF XI11 i s

131-135OC.

2.7 D i f f e r e n t i a l Scanning Calor imetry The DSC spectrum of diazepam i s shown i n Figure 5.

The edotherm observed a t 129°C corresponds t o t h e melt wi th a AHf o f 5 . 9 kcal /molea. 180°C.

The decomposition temperature i s

2 .8 Thermogravimetric Analys is A thermal g rav ime t r i c a n a l y s i s performed on

diazepam e x h i b i t e d no l o s s o f weight when hea ted t o 105"C8.

2 .9 S o l u b i l i t y Approximate s o l u b i l i t y d a t a obta ined a t room

temperature- a r e given i n t h e fo l lowing t a b l e .

87

Page 93: Florey Vol 1

2 0

4 0

ul 2

ul 0

2 n

c 60

a

-

L

I 0

8 0

100

A. MacDONALD, A. F. MICHAELIS, AND 13. 2. SENKOWSKI

Figure 5

Diazepam D.S.C. Spectrum

DIAZEPAM D.S.C. SPECTRUM

Decomposition Tempcroture = 453 * K 180 .C

A A H f * 5.9 kcal /mole

400 420 440 460

TEMPERATURE *K

88

Page 94: Florey Vol 1

DIAZEPAM

Solven t S o l u b i l i t y mg/ml

Water Petroleum E t h e r

Propylene Glycol E the r Isopropanol 3A Alcohol 95% Ethanol Met hano 1 Acetone Benzene Dimethylacetamide Chloroform

(30'-60')

.05

.9

1 7 18 20 32 41 49 125 220 296 >SO0

2.10 C r y s t a l P r o p e r t i e s The x- ray powder d i f f r a c t i o n p a t t e r n o f diazepam

i s p resen ted i n Table I I I q .

Instrument Condi t ions

General E l e c t r i c Model XRD-6 Spectrogoniometer

Tube t a r g e t Copper Opt ics 0.2' De tec to r S l i t

Generator 50 K V , 12-1/2 MA

MR s o l l e r s l i t 3' Beam s l i t 0.0007" N i F i l t e r 4' t a k e o f f angle Scan a t 0.4 ' 20 p e r minute

8 . 7 f i n e (ga in) Sea led p r o p o r t i o n a l coun te r t ube and DC vo l t age a t p l a t e a u Pu l se h e i g h t s e l e c t o r EL -

Rate meter T . C . 4 2000 C/S f u l l scale

Recorder Chart speed - 1 inch p e r 5 minutes

Goniometer Detect o r Ampl i f ie r - 16 coa r se ,

5 v o l t s ; EU - o u t

Samples prepared by g r ind ing a t room tempera ture .

89

Page 95: Florey Vol 1

A. MacDONALD, A. F. MICHAELIS, A N D B. Z . SENKOWSKI

*d

TABLE I11

Diazepam 0

9.44O I 1 .oo 13.20 13.60 14.60 17.20 17.52 18.88 20.96 ;!1.56 22.04 22.80 213.80 214.44 216.12 26.68 216.88 217.48 28.32 28.88 29.44 29.68

9.37 8 .04 6 .71 6 .51 6.07 5.16 5.06 4.70 4 . 2 4 4 . 1 2 4 .03 3 .90 3.74 3.64 3 .41 3.34 3.32 3.25 3.15 3.09 3.03 3.01

( i n t e rp 1 a n a r d i s t ance ) n X - 2 S in 0

15% 7 3

18 3 5

10 100

3 6

15 65 27 25

4 13 10 11

2 2

14 16

**I/Io = r e l a t i v e i n t e n s i t y (based on h ighes t i n t e n s i t y of 1 .00)

2 . 1 1 D i s soc ia t ion Constant The pKa f o r diazepam has been determined spec to -

photometr ica l ly t o be 3.41°.

2 . 1 2 D i s t r i b u t i o n Coef f i c i en t The d i s t r i b u t i o n c o e f f i c i e n t of diazepam be-

tween 1-octanol and pH 7.2 phosphate b u f f e r i s 382 a t room temperature where D = Coctanol/C buf fe r ’ O .

90

Page 96: Florey Vol 1

DIAZEPAM

3. Synthesis

in Figure 6 with the reaction of 2-methylamino-5-chloro- benzophenone and ethyl glycinate to form diazepam’ l . A complete review of the chemistry of benzodiazepines describes other synthetic routes12.

Diazepam may be prepared by the reaction scheine shown

4. Stability-Degradation The acid hydrolysis products for both diazepam and its

major metabolite are shown in Figure 7 . of chlordiazepoxide is also included since it is the same as for the major diazepam metabolite13.

The acid hydrolysis

5. Drug Metabolic Products and Pharmacokinetics The major metabolites of diazepam in humans are shown

in Figure 81 4 . consist of demethylation at the nitrogen in position 1, addition of a hydroxyl group at carbon 3, and conjugation of the respective derivatives. The primary metabolite in blood is the N-desmethyl diazepam and in urine the oxaze- Pam-glucuronide. Analytical procedures for the metabolites have been published using ultraviolet ~pectrometry’~, thin- layer chromatography’ and gas chromatography’ , ’ s.

The major metabolic pathways were shown to

6. Methods of Analysis

6.1 Elemental Analysis

Element % Theory Reported

C H

67.49 4.60

67.33 4.63

6.2 Phase Solubility Phase solubility analysis is carried out using

isopropano1:hexane (1:l) as the solvent. A typical example is shown in Figure 9 which also lists the conditions under which the analysis was carried out16.

6.3 Chromatographic Analysis 6.31 Thin-Layer Chromatographic Analysis

The following TLC system is usefuFas an identity test and evaluation of diazepam substance. Using silica gel G plates and a mixed solvent system of

91

Page 97: Florey Vol 1

5 P.l

Q)

c

x

tn

A. M

acDO

NA

LD

, A. F

. MIC

HA

EL

IS, A

ND

B. 2. S

EN

KO

WS

KI

N

I

V m

I

N

I

+ 0

II

m

ll

0 -

2

92

Page 98: Florey Vol 1

DIAZEPAM

Figure 7

Hydrolysis of Diazepam

93

Page 99: Florey Vol 1

A. M

ac

DO

NA

LD

, A. F

. MIC

HA

EL

IS, A

ND

B. Z

. SE

NK

OW

SK

I

N

cd .r

l m

a

d

0

2

I

a

n

9

W

N

P

z 0

I- a

94

Page 100: Florey Vol 1

Figure 9

Phase S o l u b i l i t y Analys is of Diazepam

W cn

SOLVENT : ISOPROPANOL : HEPTANE I : I SLOPE : 0.OY.

E Q U I L I B R A T I O N : 2 O H R S AT 25.C v) EXTRAPOLATED SOLUBILITY : 2 2 . 2 m g I g SOLVENT

LL 0

: 0 2 0 4 0 60 80 I

SYSTEM COMPOSITION : mg OF SAMPLE PER g OF S O L V E N T

II D N rn V D I

0

Page 101: Florey Vol 1

A. MacDONALD, A. F. MICHAELIS, AND 8. 2. SENKOWSKI

n-heptane:ethyl a c e t a t e (1 :1 v/v) , t h e sample con ta in ing 0 . 5 mg o f diazepam subs tance i n ace tone i s s p o t t e d and sub jec t ed t o ascending chromatography. f o r a t l e a s t 10 cm, t h e p l a t e i s a i r - d r i e d and sprayed wi th potassium i o d o p l a t i n a t e s o l u t i o n . Diazepam a e a r s

The second system i s use fu l f o r i d e n t i f i c a t i o n o f d i aze am and i t s me tabo l i t e s i n e x t r a c t s of b i o l o g i c a l m a t e r i a l s T 4 , 5 . The method uses two dimensional development o f Brinkmann [F254] precoated s i l i c a g e l p l a t e s u s ing chloroform: heptane :e thanol (1O:lO:l v/v) f o r t h e f i r s t dimension and ch1oroform:acetone (9O:lO v/v) f o r t h e second dimension. The Rf ranges f o r each compound wi th t h e r e s p e c t i v e systems a r e t a b u l a t e d below. hexane (20:80 v / v ) , t h e f i n a l e x t r a c t .

After development

a s a pu rp le spo t with an approximate Rf o f 0 .3-0.4 77 .

The s p o t t i n g s o l v e n t i s ace tone :

Compound

Diazepam N-Desmethyl-

d i az epam 3-Hydroxy-

diazepam Oxazepam

6.32

TABLE I V

R f -

System I Chloroform :Heptane :Ethanol

1 0 10 1

0.38-0.43

0.20-0.23

0.29-0.30 0.09-0.11

Rf -

System I1 Chloroform: Acetone

90 10

0.39-0.41

0.16-0.21

0.33-0.33 0.08

Column Chromatographic Analysis The a n a l y t i c a l s c a l e l i a u i d - s o l i d

chromatographic sepa ra t ion of diazepam a i d i t s meta- b o l i t e s has been r epor t ed by S c o t t and Bommer i n t h e i r s tudy 3f t h e s e p a r a t i o n o f benzodiazepines from each o t h e r and from b i o l o g i c a l medial8. The l i q u i d - s o l i d chroma- tography was c a r r i e d ou t u s ing Durapak "OPN" (36-7511 p a r t i c l e diameter) 100 cm column wi th a 1 mm i n s i d e diameter and hexane: isopropanol (95:s v/v) as s o l v e n t . The flow r a t e was 1 .0 ml/min us ing an a i r d r iven pump. The d e t e c t o r was an u l t r a v i o l e t monitor se t a t 254 nm. The

96

Page 102: Florey Vol 1

DIAZEPAM

c e l l volume was 8 111. Complete s e p a r a t i o n of diazepam, n-desmethyl diazepam, 3-hydroxy diazepam and oxazepam i s r epor t ed a t 2 l.ig s e n s i t i v i t y p e r compound.

6 . 3 3 Vapor Phase Chromatography The a c i d hydro lys i s of blood e x t r a c t s

con ta in ing d i aze am and i t s me tabo l i t e (Figure 7) has been used by deSi lva '? t o prepare t h e r e s p e c t i v e benzophenones a s v o l a t i l e d e r i v a t i v e s f o r gas chromatography. The column used was a 2 f o o t , 1/4", 2 % Carbowax 20 M on s i l a n i z e d Gas Chrom P a t 190" us ing a t r i t i u m e l e c t r o n capture d e t e c t o r . The d isadvantages of t h i s approach i . e . t h e benzophenones obta ined i n ac id hydro lys i s a r e not s p e c i f i c f o r a s i n g l e benzodiazepine have been e l imina ted i n a r e c e n t paper by deSi 1 .a1 graphed d i r e c t l y .

where t h e benzodiazepines have been chromato-

The d i r e c t method uses a 4 f o o t , 4 mm, c o l m a t 23OoC packed wi th 3% OV-17 on 60/80 mesh Gas Chrom Q . The d e t e c t o r was a Nib3 e l e c t r o n cap tu re d e t e c t o r opera ted a t 310". phases and t h e h igh temperature N i 6 3 d e t e c t o r has enabled t h e q u a n t i t a t i o n of i n t a c t diazepam and i t s me tabo l i t e s i n blood and u r i n e e x t r a c t s a t t h e fo l lowing s e n s i t i v i t i e s .

The use of s t a b l e high temperature

Compound

Diazepam N - de s me t h y 1 d i az ep am Oxazepam

S e n s i t i v i t y , nanograms

1 . 0 2 .0 1 .o

6 . 4 Direc t Spectrophotometr ic Analys is Di rec t spec t rophotometr ic a n a l y s i s o f

diazepam i s a p p l i c a b l e provided s i g n i f i c a n t q u a n t i t i e s o f t h e h y d r o l y t i c contaminants a r e no t p r e s e n t . For m a t e r i a l no t conta in ing t h e i n t e r f e r i n g s p e c i e s t h e r epor t ed maxima a t 368 + 2 nm i n 0 . 1 N a l c o h o l i c s u l f u r i c a c i d with an a b s o r p t i v i t y va lue of 14.5 may be used f o r q u a n t i t a t i v e measurement. form assays of diazepam i s based on t h e d i r e c t spec t ro - photometr ic a s say .

The Technicon Autoanalyzer system f o r dosage

97

Page 103: Florey Vol 1

A. MacDONALD. A. F. MICHAELIS. AND B. 2. SENKOWSKI

6.6 Polarographic Assay A s ing le reduction wave f o r diazepam has been

observed by several i nves t iga to r s i n aqueous system1 Y 2 o y 2 I .

The s ing le wave has been a t t r i b u t e d t o the reduction of the -C=N- moiety and the d i f fus ion current is proportional t o concentration i n the range of 2 x t o 7 x 10-4M.

6 .7 Non-Aqueous T i t r a t i o n Diazepam may be t i t r a t e d i n a c e t i c anhydride

using H C l O 4 i n g l a c i a l a c e t i c acid and n i l e blue hydro- chlor ide ind ica to r . t o 28.48 mg of diazepam17.

Each m l of 0.1N HC104 is equivalent

98

Page 104: Florey Vol 1

DIAZEPAM

8 . References

1.

2 .

3 .

4. 5.

6 .

7 .

8 .

9 .

10.

11.

12.

13.

1 4 .

15.

16.

17. 18.

19.

20.

2 1 .

Hawrylyshyn, M . , Hoffmann-La Roche Inc . , Personal Communication. Traiman, S . , Hoffmann-La Roche I n c . , Personal Communication. Johnson, J . and Ven tu re l l a , V . , Hoffmann-La Roche I n c . , Personal Communication. Nuhn, P. and Bley, W . , Pharmzie, 22a, 5 2 3 (1967). L insche id , P . and Lehn, J . J . , B u E Soc. Chim. F r . , 1967 ( 3 ) , 992. Colarusso, R . , Hoffmann-La Roche I n c . , Personal Communication. Greeley, D. and Benz, W . , Hoffmann-La Roche I n c . , Personal Commjnication. Donahue , J . , Hoffmann-La Roche Inc . , Personal Communication. Sher idan , J . C . , Hoffmann-La Roche I n c . , Personal Communication. Toome, V . , Hoffmann-La Roche I n c . , Personal Communication. S te rnbach , L . H . , F ryer , R . I . , Me t l e s i c s , W . , Reeder, E . , Sach, G . , Saucy, G . and Stempel, A . , J . Org. Chem., 27, 3788 (1962). Archer, G . and E e r n b a c h , L. H . , Chem. R e v . , - 68, 751 (1969). deS i lva , J . A . F . , Schwartz, M . A . , Ste fanov ic , V . , Kaplm, J. and D'Arconte, L . , Anal. Chem., - 11, 2099 (1964). deS i lva , J . A . F . , Koechlin, B . A . and Bader, G . , J . Pham. S c i . , 55, 692 (1966). deS i lva , J . A. F, and P u g l i s i , C . V . , Anal. Chem., 4 2 , 1725 (1970). MacMullan, E . A . , Hoffmann-La Roche I n c . , Personal Communication. Nat iona l Formulary XII I , 2 2 1 (1970). S c o t t , C . G . and Bommer, P . , J . Chrom. S c i . , - 8 , 446 (1970).

-

Senkowski, B . Z . , e t a l . , Anal. Chem., - 3 6 , 1991, (1964) . Oelschlaeger , H . , e t a l . , Arch. P h m . , - 297, 431 (1964). Oelschlaeger , H . , e t a l . , Col l ec t ion Czech. Chem. Commun., 2, 1264 (1966).

99

Page 105: Florey Vol 1

ERYTHROMYCIN ESTOLATE

J. M. Mann

101

Page 106: Florey Vol 1

J. M. MANN

CONTENTS

1. D e s c r i p t i o n 1.1 Name, F o r m u l a , S t r u c t u r e , a n d

1 .2 A p p e a r a n c e , C o l o r , a n d Odor

2.1 S o l u b i l i t i e s 2.2 I n f r a r e d S p e c t r u m 2.3 U l t r a v i o l e t S p e c t r u m 2.4 !.lass S p e c t r u m 2.5 X - r a y Powder D i f f r a c t i o n 2.6 M e l t i n g P o i n t 2.7 N u c l e a r M a g n e t i c R e s o n a n c e 2.8 pKa 2.9 C r y s t a l l i n i t y 2 .10 D i f f e r e n t i a l T h e r m a l A n a l y s i s

1.1 o 1 e c u 1 a r ti e i g h t

2. P h y s i c a l P r o p e r t i e s

3. S y n t h e s i s 4. S t a b i l i t y - D e g r a d a t i o n 5 . i ) r u g M e t a b o l i c P r o d u c t s 6. M e t h o d s o f A n a l y s i s

6.1 I n f r a r e d A n a l y s i s 6 .2 U l t r a v i o l e t A n a l y s i s 6.3 M i c r o b i o l o g i c a l A n a l y s i s

6.4 T h i n L a y e r C h r o m a t o g r a p h y 6.31 B i o a u t o g r a p h i c A n a l y s i s

7. i i e f e r e n c e s

102

Page 107: Florey Vol 1

ERYTHROMYCIN ESTOLATE

1. Description

1.1 Name, Formula, Structure, and Molecular Weight

~

Synonyms for this compound include erythromycin propionate lauryl sulfate; ery- thromycin propionate dodecyl sulfate; lauryl sulfate salt of the propionic ester of erythro- mycin; monopropionylerythromycin lauryl sul- fate; and propionyl erythromycin lauryl sulfate.

Esthromycin es to la te

Ko l . wt.: 1056.43 5 2 * 9 7 'lo 1 8 ' R in the structural formula above represents "lauryl", which is predominately a C ali- phatic hydrocarbon. The compound has a theo- retical erythromycin base activity of 694.9

12

mc d m g

103

Page 108: Florey Vol 1

J. M. MANN

1 , 2 A p p e a r a n c e , C o l o r , a n d O d o r T h e c o n p o u n d i s a w h i t e c r y s t a l l i n e

p o w d e r w h i c h i s e s s e n t i a l l y o , d o r l e s s a n d t a s t e - l e s s .

2 . P h y s i c a l P r o p e r t i e s

2.1 S o l u b i l i t i e s M a r s h a n d d e i s s l h a v e r e p o r t e d t h e

s o l u b i l i t i e s o f e r y t h r o m y c i n e s t o l a t e s h o w n i n T a b l e I.

2.2 I n f r a r e d S p e c t r u m T h e i n f r a r e d s p e c t r u m o f e r y t h r o m y c i n

e s t o l a t e i s t h e m o s t commonly a c c e p t e d m e t h o d f o r compound i d e n t i f i c a t i o n . T h e s p e c t r u m o f a 1 0 m . g / m l c h l o r o f o r m s o l u t i o n o f e r y t h r o m y c i n e s t o l a t e f r o m 850-4000 c m - l i s s h o w n i n F i g u r e 1. T h e m o s t c h a r a c t e r i s t i c d i f f e r e n c e b e t w e e n t h e i n f r a r e d s p e c t r a o f e r y t h r o m y c i n b a s e a n d e s t o l a t e a n d t h a t o f a n h y d r o e r y t h r o m y c i n i s t h a t t h e l a t t e r i s l a c k i n g t h e k e t o - c a r b o n y l b a n d a t 1685 cm-1 (5.93 p). I f a s a m p l e o f e r y t h r o m y c i n b a s e o r e s t o l a t e c o n t a i n s a t l e a s t 5 p e r c e n t a n h y d r o e r y t h r o m y c i n , a d e c r e a s e i n t h e i n t e n - s i t y a t 1685 cm-l s h o u l d b e o b s e r v e d . T h i s d e c r e a s e c a n m o s t r e a d i l y b e d e t e c t e d b y mea- s u r i n g t h e r a t i o o f t h e a b s o r b a n c e a t 1685 cm- l (5.93 p ) t o t h a t o f t h e e s t e r a b s o r b a n c e a t 1735 cm-l ( 5 . 7 6 p). T h e a m o u n t o f w a t e r i n t h e s a m p l e c a n a l s o b e e v a l u a t e d b y t h e b a n d a t 1610 cm-1 (6 .2 Y ) . ~

s o r p t i o n b a n d s f o r monopropionylerythromycin i n c h l o r o f o r m .

j t e p h e n s h a s r e p o r t e d i n f r a r e d a b -

2 . 3 U l t r a v i o l e t S p e c t r u m The maximum u l t r a v i o l e t a b s o r p t i o n o f

a q u e o u s s o l u t i o n s o f m o n o p r o p i o n y l e r y t h r o m y c i n i s a t 2 8 5 nm. M o n o p r o p i o n y l e r y t h r o m y c i n was u s e d b e c a u s e p r o p i o n y l e r y t h r o m y c i n l a r y J s u l - f a t e i s p r a c t i c a l l y i n s o l u b l e . Murphy' h a s r e - p o r t e d t h a t t h e u l t r a v i o l e t s p e c t r u m o f t h e e s t e r s o f e r y t h r o m y c i n a r e n o t s i g n i f i c a n t l y

104

Page 109: Florey Vol 1

E RYTH ROMYCl N ESTOLATE

TABLE I

S o l u b i l i t i e s o f E r y t h r o m y c i n E s t o l a t e

S o l v e n t

W a t e r M e t h a n o l E t h a n o l I s o p r o p a n o l I s o a m y l a l c o h o l C y c l o h e x a n e P e t r o l e u m e t h e r i3enzene Is0 o c t a n e C a r b o n t e t r a c h l o r i d e E t h y l a c e t a t e I s o a m y l a c e t a t e A c e t o n e I 4 e t h y l e t h y l k e t o n e D i e t h y l e t h e r E t h y l e n e c h l o r i d e C h l o r o f o r m C a r b o n d i s u l f i . d e P y r i d i n e Formamide E t h y l e n e g l y c o l P r o p y l e n e g l y c o l D i m e t h y l s u l f o x i d e 1,4 D i o x a n e 0.1N I J a O H 0 . 1 I J H C 1

m F / m l

0.160 >20 > 2 0 > 2 0 > 2 0

0.080 0.058

0.058

0 .922 0.050

> 2 0

> 2 0 > 2 0

> 2 0 >20

> 2 0 > 2 0 >20 > 2 0 >20 > 2 0

1.250

0.228

0.088

12.330 0.168

Page 110: Florey Vol 1

WAVELENGTH IN MICRONS 7 8 9 10 11 12 I I I I l l

3.5 4 5 6 I I I I

2.5 3 100 -I I

90 - 2

2 80- v)

2 7 0 - I

60-

50- I-

40 -

w Q 10-

o ~ I I I I I I I I , l ' , I I , I I I I , I I i 4000 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 800

WAVENUMBER CM-1

L

F 3

2 P

Fig. 1. Infrared absorption spectrum of erythromycin es t o la te.

Page 111: Florey Vol 1

ERYTHROMYCIN ESTOLATE

d i f f e r e n t f r o m t h a t o f e r y t h r o m y c i n e x c e p t i n compounds c o n t a i n i n g t h e b e n z e n e n u c l e u s i n t h e a c i d m o i e t y .

2.4 Mass S p e c t r u m S p e c t r a l d a t a a r e n o t r e p o r t e d h e r e

s i n c e t h e l a u r y l s u l f a t e r a d i c a l p r e c l u d e s ob- t a i n i n g u s e f u l i n f o r m a t i o n .

2.5 X-ray Powder D i f f r a c t i o n The x - r a y powder d i f f r a c t i o n p a t t e r n

o f e r y t h r o m y c i n e s t o l a t e ( A = 1.5405 A > i s shown i n T a b l e 11.

2.6 M e l t i n g P o i n t The m e l t i n g r a n g e o f e r y t h r o m y c i n

e s t o l a t e i s 135-140 C a n d i s a c c o m p a n i e d b y d e c o m p o s i t i o n . 5

2.7 N u c l e a r _ M a g n e t i c X e s o n a n c e DeMarcoO h a s made s p e c t r a l a s s i g n m e n t s

f o r e r y t h r o m y c i n e s t o l a t e . The s p e c t r u m shown i n F i g u r e 2 was o b t a i n e d f r o m a p y r i d i n e d /D20 p r e p a r a t i o n a t 1 0 0 MHZ. A s s i g n m e n t s a r e s?own i n T a b l e 111.

2.8 p ~ a The pKa f o r e r y t h r o m y c i n e s t o l a t e i n

6 6 % dirnethylforrnarnide/3476 w a t e r i s 6.9.

2.9 C r y s t a l l i n i t y Lihen m o u n t e d i n m i n e r a l o i l a n d e x -

a m i n e d b y means o f a p o l a r i z i n g m i c r o s c o p e , p r o p i o n y l e r y t h r o m y c i n l a u r y l s u l f a t e e x h i b i t s b i r e f r i n g e n c e a n d e x t i n c t i o n o s i t i o n s when t h e m i c r o s c o p e s t a g e i s r e v o l v e d . 7

2.10 D i f f e r e n t i a l T h e r m a l A n a l y s i s

e r y t h r o m y c i n e s t o l a t e a t a h e a t i n g r a t e o f 2 0 C/min. e x h i b i t s a m e l t i n g e n d o t h e r m a t 1 4 7 C.

A d i f f e r e n t i a l t h e r m a l a n a l y s i s o f

3. S y n t h e s i s The p r o p i o n y l e s t e r o f e r y t h r o m y c i n i s p r e -

107

Page 112: Florey Vol 1

J. M. MANN

TABLE I1

X - r a y P o w d e r D i f f r a c t i o n Data

Z r y t h r o r n y c i n E s t o l a t e

d

22.1 19.2 16.4 14.5 13.6 11.0

9.9 8.9 ?.2 7.0 6.5 5.5 5.1 4.9 4.7 4.5 4.3 3 . 9 3.8 3.6 3.4 3.3 3.03 2.90 2.79

-

2.63 2.47 2.41 2.34 2.20

1/11 __I

0.16 0.16 0.20 0.16 0.16 1.00 0.30 0.30 0.20 0.30 0.16

0.16 0;30 0.20 0.20 0.16 0.12 0.12 0.16 0.12 0.08 0.04 0.04 0.08 0.04 0.04 0.04

0.04

0.80

0.08

108

Page 113: Florey Vol 1

ERYTHROMYCIN ESTOLATE

TABLE 111

X M i i S p e c t r a l A s s i g n m e n t s O f

E r y t h r o m y c i n E s t o l a t e

R e s o n a n c e P r o t o n (ppm 1

cli3 o f l a u r y l

Ci3 o f p r o p i o n y l 1 . 4 s u p e r i m p o s e d

- C 3 - o f l a u r y l 1 -1-1.3 s u p e r i m p o s e d

A l l CH o f a g l y c o n e 1.1-1.6 s u p e r i m p o s e d

3 2

3 and s u g a r o t h e r t h a n t h o s e men- t i o n e d b e l o w

C - 6 1 - 7 3 s i n g l e t :.I(cII ) 2.80 s i n g l e t

3 2

3 OCH

C - 7

C - 2 , 8 , 1 0 c - 3 , 5 ;

c-13 C-amine s u g a r

3.57 s i n g l e t

2.6 d o u b l e t o f d o u b l e t

3.0-3.5 s u p e r i m p o s e d

4.4 m u l t i p l e t 5 .61 d o u b l e t o f

d o u b l e t

1 09

Page 114: Florey Vol 1

J. M. M

AN

N

I10

Page 115: Florey Vol 1

E RYTH ROMYCl N ESTOLATE

p a r e d 3 by t h e r e a c t i o n o f e i t h e r p r o p i o n i c a n h y - d r i d e o r p r o p i o n y l c h l o r i d e a n d e r y t h r o m y c i n i n t h e p r e s e n c e o f s o d i u m b i c a r b o n a t e o r p o t a s s i u m c a r b o n a t e as shown i n s t e p . Z r y t h r o m y c i n e s t o l a t e ( s t e p 2 ) i s f o r m e d ' by t h e a d d i t i o n o f s o d i u m l a u r y l s u l f a t e t o t h e e s t e r d i s s o l v e d i n a c i d i c a c e t o n e , a n d i s i s o l a t e d b y d i l u t i n g w i t h w a t e r . (1)

(2)

4.

3 7 6 7 '' 1 3 ' C6H1003 C

( L r y t h r o m y c i n ) ( P r o p i o n i c a n h y d r i d e )

14 d a s e > CL(o'171:dC

( L r y t h r o m y c i n p r o p i o n a t e )

( L r y t h r o m y c i n ( ;odium l a u r y l

A u e o u s

p r o p i o n a t e ) s u l f a t e )

( i l r o p i o n y l e r y t h r o m y c i n l a u r y l s u l f a t e )

S t a b i l i t y - D e g r a d a t i o n X r y t h r o m y c i n e s t o l a t e d i f f e r s f r o m o t h e r

f o r n i s o f e r y t h r o m y c i n i n t h a t i t i s e x t r e m e l y s t a b l e t o a c i d h y d r o l y s i s . 5 L r y t h r o m y c i n l i b e r - a t e d f r o m t h e e s t e r b y m i l d a l k a l i n e h y d r o l y s i s i s s u b j e c t t o r a p i d d e c o m p o s i t i o n i n s t r o n g l y a c i d s o l u t i o n s . 9 K a v a n a g h l O h a s s t a t e d t h a t d e t e r i o r a t i o n o f e r y t h r o n y c i n i n c r e a s e s w i t h a n i n c r e a s e i n t e m p e r a t u r e a n d d e c r e a s e s w i t h a n i n c r e a s e i n pi { up t o 8.0. a u f f e r e d a q u e o u s s o l u t i o n s o f e r y t h r o m y c i n b a s e a r e q u i t e s t a b l e a t t h i s pH. A c e t o n e s o l u t i o ~ s o f t h e e s t e r f o r m a r e s t a b l e , w h i l e a c e t o n e s o l u t i o n s o f t h e p r o p i o n y l e r y t h r o m y c i n l a u r y l s u l f a t e p r e p a - r a t i o n a r e n o t . P o w d e r s a n d d r y f o r m u l a t i o n s a r e s t a b l e f o r a t l e a s t f i v e y e a r s . L i q u i d p r e p a r a t i o n s become u n a c c e p t a b l e a f t e r 2 y e a r s d u e t o u n d e s i r a b l e t a s t e .

Page 116: Florey Vol 1

J. M. MANN

5 . i ) r u g I j i e t a b o l i c P r o d u c t s

a r e p r e s e n t in v i v o a f t e r t h e t h e r a p e u t i c u s e o f e r y t h r o m y c i n e e t 0 1 a t e . l ~ i n s t u d i e s u s i n g r a b b i t m i c r o s o m e s , Kao a n d T a r d r e w 1 2 h a v e r e - p o r t e d t h a t e r y t h r o m y c i n i s d e m e t h y l a t e d t o d e s - : ; - m e t h y l e r y t h r o m y c i n a n d f o r m a l d e h y d e . P r o p i o n y l e r y t h r o m y c i n was a l s o d e m e t h y l a t e d t o p r o p i o n y l d e s - i d - m e t h y l e r y t h r o m y c i n ; h o w e v e r , t h e r a t e o f d e m e t h y l a t i o n was l e s s t h a n t h a t o f e r y t h r o m y c i n . F r o p i o n y l d e s - i b - m e t h y l e r y t h r o n y - c i n c o u l d s u b s e q u e n t l y be c o n v e r t e d t o des-I{- c e t h y l e r y t h r o m y c i L . shown t h a t o f t h e t o t a l a n t i b a c t e r i a l a c t i v i t y i n w h o l e b l o o d , s e r u a , p l a s m a , a n d u r i n e o f i n d i v i d u a l s 2 h o u r s a f t e r t h e f i f t h 250 mg d o s e o f e r y t h r o m y c i n e s t o l a t e , 20-25;; was p r e s e n t a s e r y t h r o m y c i n a n d 75-80 ; ; a s p r o p i o n y l e r y t h r o m y - c i n . T h i s r a t i o r e m a i n s r e l a t i v e l y c o n s t a n t d u r i n g t h e c o u r s e o f t h e r a p y . I n s t u d i e s i n - v o l v i n g n o n f a s t i n g s u b j e c t s , t o t a l e r y t h r o m y c i r i a c t i v i t y a v e r a g e d 2 -4 mcg/ml o f w h o l e b l o o d , o f w h i c h (3.7-1.0 mcg/ml ivas b a s e a c t i v i t y .

6 . b ! e t h o d s o f A n a l y s i s

3 0 t h e r y t h r o m y c i n a n d p r o p i o n y l e r y t h r o m y c i n

S t e p h e n s et &.ll h a v e

6 . 1 I n f r a r e d n s a l y s i s 4 a s h b u r n l J h a s r e p o r t e d t h a t t h e p o t -

e n c y o f e r y t h r o m y c i n may b e r e a d i l y d e t e r m i n e d by i n f r a r e d a b s o r b a n c e a t 1 0 . 4 6 ;L. I n v e s t i - g a t i o n o f b a c d s l o c a t e d a t 7 . 2 9 , 9 . 0 2 , 9.88, a n d 10.46 p s h o w e d t h a t o c l y t h e l a t t e r c o n - s i s t e n t l y a g r e e d w i t h a c t i v i t i e s o b t a i n e d b y t h e m i c r o b i o l o g i c a l m e t h o d s .

q u a n t i t a t e d by d e t e r m i n i n g i n f r a r e d a b s o r b a n c e a t 9.9 t i . , p r o v i d e d t h a t a n h y d r o e r y t h r o m y c i n i s a b s e n t . T h i s c o m p o u n d , i f p r e s e n t , i n r e a s e s t h e a p p a r e n t p o t e n c y o f e r y t h r o n y c i n . " t h i s m e t h o d , 1 2 0 . 0 mg o f s a m p l e i s a d d e d t o a 1 2 5 m l s e p a r a t o r y f u n n e l c o n t a i n i n g 30 m l l i d .iaO;i a n d 3 0 m l c h l o r o f o r m . A f t e r s h a k i n g f o r 1 m i n u t e , t h e c h l o r o f o r m l a y e r i s c o l l e c t e d . T h e e x t r a c t i o n i s r e p e a t e d w i t h o n e 2 0 m l a n d tivo 10 m l p o r t i o n s a n d a d d e d t o t h e f i r s t e x -

L r y t h r o m y c i n e s t o l a t e h a s a l s o b e e n

I n

112

Page 117: Florey Vol 1

ERYTHROMYCIN ESTOLATE

t r a c t . T h e c h l o r o f o r m s o l u t i o n i s e v a p o r a t e d u n d e r n i t r o g e n , a n d t h e r e s i d u e i s d r i e d i n a d e s i c c a t o r 12 v a c u o f o r 2 h o u r s . The d r i e d e x - t r a c t i s d i s s o l v e d i n 2 0 . 0 m l c h l o r o f o r m , t r a n s - f e r r e d t o a 1 .0 m m c e l l , a n d s c a n n e d v e r s u s a c h l o r o f o r m b l a n k i n a s u i t a b l e s p e c t r o p h o t o m e t e r b e t w e e n 9.6 a n d 1 0 . 2 m i c r o n s . i i b s o r b a n c e a t 9.9 m i c r o n s i s d e t e r m i n e d . i l i s s o l v e 120 .0 mg o f e r y t h r o m y c i n r e f e r e n c e p o w d e r i n 20.0 m l c h l o r o - f o r m , a n d p r o c e e d a s i n d i c a t e d a b o v e f o r s a m p l e p r e p a r a t i o n .

A b s o r b a n c e o f s a m p l e a t 9.9 p X p o t e n c y o f A b s o r b a n c e o f s t a n d a r d a t 9.9 )L

s t a n d a r d (mcg/m[{) = mcg o f e r y t h r o m y c i n b a s e p e r mg.

6.2 U l t r a v i o l e t A n a l y s i s T h e u l t r a v i o l e t a n a l y s i s f o r e r y t h r o -

m y c i n e s t o l a t e i s b a s i c a l l y t h a t d e s c r i b e d by K u z e l -- e t a l . l 5 A l k a l i , b u f f e r , a n d r e f e r e n c e s t a n d a r d s o l u t i o n s m u s t b e p r e p a r e d p r i o r t o a s s a y i n g .

A l k a l i r e a g e n t i s p r e p a r e d b y s l u r - r y i n g 4 2 . 0 g Iia f- '04.12X20 i n 1 2 5 m l 0.gN N a O H a n d a d d i n g 100 m l p u r i f i e d w a t e r . A f t e r h e a t i n g o n a s t eam b a t h t o f a c i l i t a t e d i s s o l u t i o n , t h e s o l u t i o n i s f u r t h e r d i l u t e d t o 2 5 0 ml w i t h p u r i - f i e d water a n d f i l t e r e d .

P h o s p h a t e b u f f e r (p i l 7 . 0 ) i s p r e p a r e d by d i s s o l v i n g 13-35 g I iE2P04 a n d 2 7 . 2 0 g K2HP04 i n 5 l i t e r s p u r i f i e d w a t e r .

p a r e d by d i s s o l v i n g 70.0 mg e r y t h r o m y c i n i n 2 0 0 ml m e t h a n o l . T h i s s o l u t i o n i s d i l u t e d t o 500.0 m l w i t h p h o s p h a t e b u f f e r (pX 7 .0 ) . '=he s t o c k i s s t a b l e f o r 7 d a y s when r e f r i g e r a t e d .

A 10 .0 m l a l i q u o t o f t h e s t a n d a r d i s a d d e d t o e a c h o f t h r e e 2 5 m l v o l u m e t r i c f l a s k s f o l l o w e d by t h e a d d i t i o n o f 1.0 m l 0.51; H2S04 t o o n e o f t h e s e . A f t e r m i x i n g , t h i s f l a s k i s s e t a s i d e a t roon; t e m p e r a t u r e f o r a t l e a s t 60 m i n u t e s . 'Two m l o f t h e a l k a l i r e a g e n t i s a d d e d

3

The r e f e r e n c e s t a n d a r d s o l u t i o n i s pre-

I13

Page 118: Florey Vol 1

J. M. MANN

t o e a c h o f t h e r e m a i n i n g f l a s k s , a n d t h e y a r e t h e n h e a t e d i n a 60 C wate r b a t h f o r 15 m i n u t e s . T h e s e s o l u t i o n s a r e t h e n c o o l e d t o room t e m p e r a - t u r e i n a n i c e b a t h . A f t e r d i l u t i n g t o v o l u m e w i t h p u r i f i e d w a t e r , t h e a b s o r b a n c e i n a 1 - c m s i l i c a c e l l a t 2 3 6 nm i s d e t e r m i n e d u s i n g a i3eckman 3 U s p e c t r o p h o t o m e t e r o r e q u i v a l e n t . One m l o f 0.51J N a O i i i s a d d e d t o n e u t r a l i z e t h e a c i d - t r e a t e d s t a n d a r d , w h i c h i s t h e n p r o c e s s e d a s i n d i c a t e d f o r t h e o t h e r two a l i q u o t s o f s t a n d a r d s t a r t i n g w i t h t h e a d d i t i o n o f a l k a l i r e a g e n t . T h e a c i d - t r e a t e d s t a n d a r d r e p r e s e n t s t h e s t a n d a r d b l a n k . T h e H2d04 i s u s e d t o d e s - t r o y t h e e r y t h r o m y c i n b a s e , m a k i n g i t p o s s i b l e t o m e a s u r e a n y a b s o r b a n c e i n t h e b l a n k t h a t may b e d u e t o e x c i p i e n t s . S o l u t i o n s o f e r y t h r o m y c i n b a s e h a v e n e g l i g i b l e U V a b s o r b a n c e , b u t t h e a l k a l i r e a g e n t a n d h e a t c o n v e r t e r y t h r o m y c i n t o a U V - a b s o r b i n g s p e c i e .

A a m p l e s a r e p r e p a r e d b y d i s s o l v i n g i n m e t h a n o l a n a m o u n t o f e r y t h r o m y c i n e s t o l a t e t h a t w o u l d a p p r o x i m a t e i n p o t e n c y t h e s t a n d a r d s o l u - t i o n . S u f f i c i e n t m e t h a n o l i s a d d e d s o t h a t t h e d i l u t i o n w i l l c o n t a i n 40): m e t h a n o l when b r o u g h t t o v o l u m e w i t h t h e p h o s p h a t e b u f f e r s o l u t i o n . H y d r o l y s i s o f t h e e s t e r t o t h e b a s e i s a c c o m - p l i s h e d b y a l l o w i n g t h e d i l u t i o n t o s t a n d o v e r - n i g h t a t room t e m p e r a t u r e o r h e a t i n g f o r 2 h o u r s i n a c o n t r o l l e d 60 C wate r b a t h e q u i p p e d w i t h a c i r c u l a t o r . T h e s o l u t i o n i s f i l t e r e d a n d d i - l u t e d t o a n a p p r o p r i a t e a s s a y c o n c e n t r a t i o n w i t h 40,0 methano l /GO, : p h o s p h a t e b u f f e r . K e t h a n o l i s n e e d e d f o r d i s s o l u t i o n o f e r y t h r o i l l y c i n e s t o l a t e , a n d t h e p h o s p h a t e b u f f e r p r o v i d e s a n e u t r a l mediur; , f o r h y d r o l y s i s . A l i q u o t s c o n t a i n i n g 10.0 m l a r e t r a n s f e r r e d t o t h r e e 25 r n l v o l u - m e t r i c f l a s k s . a n d two w i t h a l k a l i r e a g e n t a s d e s c r i b e d a b o v e f o r t h e p r o c e s s i n g o f s t a n d a r d .

One f l a s k i s t r e a t e d w i t h H2S04

C a l c u l a t i o n s :

A b s o r b a n c e o f s a m p l e - A b s o r b a n c e o f s a m p l e b l a n k A b s o r b a n c e o f s t a c d a r d - A b s o r b a n c e o f s t a n d a r d

114

Page 119: Florey Vol 1

E RYTH ROMYCl N ESTOLATE

70 € p o t e n c y o f s t a n d a r d ( m c ~ / m g ) l 500 x 1 0 0 0

x b l a n k

x - lo X d i l u t i o n f a c t o r = mg e r y t h r o m y c i n b a s e i n s a m p l e . 25

6.3 M i c r o b i o l o g i c a l A n a l y s i s I J l e t h o d s f o r t h e d e t e r m i n a t i o c o f b a s e

a c t i v i t y f r o m e r y t h r o m y c i n e s t o l a t e a r e i v e n i n A n a l y t i c a l M i c r o b i o l o g y , Vols. 1 & 2.f0, 1 6 P h o t o m e t r i c a s s a y s a r e c o n d u c t e d u s i n g A t a p h y l o - c o c c u s a u r e u s ATCC 9144 w i t h a t e s t r a n g e f r o m 0.05 t o 2 .0 mcg o f e r y t h r o m y c i n a c t i v i t y / m l i n t h e a s s a y t u b e s . S a r c i n a l u t e a ATCC 9341, i s e m p l o y e d f o r t h e c y l i n d e r - p l a t e a s s a y o f e r y - t h r o m y c i n l i b e r a t e d f r o m e r y t h r o m y c i n e s t o l a t e . The a s sa i s a two l a y e r s y s t e m o f G r o v e & R a n d a l l l q A g a r No. 11 u t i l i z i n g a n a s s a y r a n g e o f 0 . 5 - 2 . 0 mcg/ml o f s ample . The t e s t i s s a t i s - f a c t o r y f o r t h e e s t i m a t i o n o f a c t i v i t y i n b o d y f l u i d s .

X r y t h r o m y c i n e s t o l a t e s h o u l d b e d i s -

1 7 s o l v e d i n a small q u a n t i t y o f m e t h a n o l a n d b r o u g h t t o v o l u m e w i t h pH 8.0 p h o s p h a t e b u f f e r . O v e r n i g h t h y d r o l y s i s a t 2 5 C o r a t 60 C f o r 2 h o u r s i s n e c e s s a r y t o l i b e r a t e e r y t h r o m y c i n b a s e b e f o r e d e t e r m i n i n g m i c r o b i o l o g i c a l a c t i v - i t y .

6.31 d i o a u t o g r a p h i c A n a l y s i s A t e p h e n s et h a v e r e p o r t e d

a two s t e p m e t h o d for t h e s e p a r a t i o n o f p r o p i - o n y l e r y t h r o m y c i n f r o m e r y t h r o m y c i n i n b o d y f l u i d s . I n t h i s p r o c e d u r e , t h e c h r o m a t o g r a m i s f i r s t d e v e l o p e d i n a b s o l u t e m e t h a n o l t o s e p a r a t e t h e a n t i b i o t i c f r o m f l u i d p r o t e i n . T h e c h r o n a t o g r a m i s t h e n d e v e l o p e d b y t h e d e s - c e n d i n g t e c h n i q u e i n a s y s t e m c o n t a i n i n g r r H , + C l , I d a C 1 , d i o x a n e , a n d m e t h y l e t h y l k e t o n e . H e s u l - t a n t z o n e s o f i n h i b i t i o n a r e v i s u a l i z e d by a p p l y i n g t h e c h r o m a t o g r a m t o n u t r i e n t a g a r c o n - t a i n i n g & l u t e a a s t h e i n d i c a t o r m i c r o o r g a n i s m .

f i n i s h e d p r o d u c t s c a n b e e x a m i n e d by u s i n g o n l y B u l k e r y t h r o m y c i n e s t o l a t e o r

Page 120: Florey Vol 1

J. M. MANN

the second system.

6.4 Thin Layer Chromatography Zrythromycin and erythromycin estolate

can be separated and quantitated by thin layer chromatography.18 hamples or standards should approximate 5 0 mcg erythromycin estolate and 5-10 mcg erythromycin base when spotted on silica gel (3-254 plates. Approximately 120 m l of the developing solvent (methanol A . R . ) is placed into the developing tank and allowed to equilibrate. The plate is developed until the solvent is approximately 1 5 cm from the origin The plate is removed and allowed to air dry. Antibiotic spots are visualized by spraying the plate ‘with a fresh mixture of 95% ethanol/anis- aldehyde/conc. sulfuric acid, 90:5:5(v/v) followed by heating of the plate at 110 C f o r 10 minutes. The ;if values of erythromycin estolate and erythromycin base are approxi- mately 0.7 and 0.35 respectively.

I16

Page 121: Florey Vol 1

E RYTH ROMYCl N ESTOLATE

7. X e f e r e n c e s 1. J . H . M a r s h , a n d P . J . i i e i s s . J . A . O . A . C . .

2, 4 5 7 - 4 6 2 ( 1 9 6 7 ) .

L i l l y R e s e a r c h L a b o r a t o r i e s .

J u l y 15, 1961.

2 . C . U . U n d e r b r i n k , p e r s o n a l c o m m u n i c a t i o n ,

3,, V . C . S t e p h e n s , U.S. P a t e n t 2 , 9 9 3 , 8 3 3 ,

4 , H . J . Murphy , A n t i b i o t i c s Ann. , 500-523

5. V.C. S t e p h e n s , J.N. C o n i n e , a n d H.W. ( 1 9 5 3 - 1 9 3 4 ) .

I i u r p h y , J. A m . Pha rm. , 48, 6 2 0 - 6 2 2 ( 1 9 5 9 ) .

6. P.V. OeMarco , p e r s o n a l c o m m u n i c a t i o n , L i l l y i i e s e a r c h L a b o r a t o r i e s .

7. Code o f F e d e r a l R e g u l a t i o n s , 2 1 ,

8. M.D. d r a y , a n d V . C . S t e p h e n s , U.S.

9. L . K o r e c k i , P r o c . S y m p o s i a A n t i b i o t i c s ,

8141.504.

P a t e n t 3 , 0 0 0 , 8 7 0 , Sept. 1 9 , 1961.

P r a h a , 355 ( 1 9 6 0 ) .

Vo l . 11, A c a d e m i c P r e s s ( I n P r e s s ) .

M.14. H o e h n , S. R a l s t o n , M.C. S p a r k s , a n d L. T h o m p k i n s , J . A n t i b i o t . , l2,

1 0 . F. K a v a n a g h , A n a l y t i c a l M i c r o b i o l o g y ,

11. V . C . S t e p h e n s , C.T. P u g h , N.E. i ) a v i s ,

551-557 ( 1 9 6 9 ) . 1 2 .

13.

1 4 .

15.

1 6 .

1 7 .

1 8 .

J . C . H . Mao, a n d P.L. T a r d r e w , B i o c h e m . P h a r m . , 14, 1049-1053 ( 1 9 6 5 ) . .;.B. mvashburn, J. A m e r . Pha rm. A s s o c . ,

c;.ii. t i a l l a c e , p e r s o n a l c o m m u n i c a t i o n , L i 1 1 y H e s e a r c h La b o r a t o r i e s.. I1 .H. K U Z C ~ , J . M . N o o d s i d e , J.P. Comer , a n d E.Z. K e n n e d y , A n t i b . a n d Chemo., 6 , 1 2 3 4 - 2 1 4 1 ( 1 9 5 4 ) .

S C . Z d . , 1, 48-49 ( 1 9 5 4 ) .

I;. K a v a n a g h , A n a l y t i c a l M i c r o b i o l o g y , V o l . I . A c a d e m i c P r e s s ( 1 9 6 3 ) . . -

D . C . G r o v e , a n d Yi.A. d a n d a l l , A s s a y l K e t h o d s of A n t i b i o t i c s , M e d i c a l Ency- c l o p e d i a I n c . , (1955). C . Bloom, a n d A n a l y t i c a l S t a f f , p e r - s o n a l c o m m u n i c a t i o n , L i l l y R e s e a r c h L a b o r a t o r i e s .

117

Page 122: Florey Vol 1

HALOTHANE

R. D. Daley

119

Page 123: Florey Vol 1

R. D. DALEY

CONTENTS

1 . Description 1 .l Name, Formula, Molecular Weight 1.2 Appearance, Color, Odor

2.1 Infrared Spectra 2.2 Nuclear Magnetic Resonance Spectra 2.3 Ultraviolet Spectra 2.4 Mass Spectra 2.5 Optical Rotation 2.6 Vapor Pressure and Boiling Point 2.7 Density 2.8 Refract ive Index 2.9 S o l u b i l i t y

2. Physical Propert ies

3. Lynthesis 1;. Stability-Degradation 5 . Drug Metabolic Products 6. Methods of Analysis

6.1 Analysis f o r Halothane i n Mixtures 6.1 1 Gas Chromatography 6.12 Infrared Absorption 6.1 3 Ul t rav io le t Absorption 6.14 Other Methods

6.21 Gas Chromatography 6.22 Infrared Absorption 6.23 Mass Spectrometry

6.2 Analysis f o r Impurit ies i n Halothane

6.3 Analysis f o r T w o 1

7. l Gas Chromatographic Methods 7. Determination i n Body Fluids and Tissues

7.1 1 Methods Using P r i o r Extract ion 7.1 2 Methods Using P r i o r D i s t i l l a t i o n

o r Gas Phase Par t i t ion ing 7.13 Direct In jec t ion Methods

7.21 T u r b i d h e t r i c Method 7.22 Infrared Absorption 7.23 Ul t rav io le t Absorption

7.2 Absorptiometric Methods

7.3 X-ray Spectrography 8. References

120

Page 124: Florey Vol 1

HALOTHANE

1 . Description

1 .1 Name, Formula, Molecular Weight

Halothane i s 2-bromo-2-chloro-l, 1 , l - t r i f luoroethane. Commercial halothane contains 0.01 percent thymol a s a s t a b i l i z e r .

F C 1 I I I I

F-C-C-H

F h r CzHF3ClBr Mol. W t . : 197.39

1.2 Appearance, Color, Odor

Colorless, mobile l iqu id , w i t h an odor resembling t h a t of chloroform.

2. Physical Proper t ies

2.1 Infrared Spectra

Fig. 1 shows the inf ra red s-pctrwn of halothane (Ayerst Laboratories Inc. Batch No. 1CKEi). The spectrum is that of undiluted halothane i n a 0.104 m. potassium bro- mide c e l l vs . a potassium bromide p la te . some of t h e absorption bands a r e q u i t e intense, Fiq. 1 shows the spectrum of a 4.0 volume percent so lu t ion of halothane i n carbon d isu l f ide , i n a 0.104 m. potassium bromide c e l l , vs. a 0.1 m. c e l l f i l l e d with carbon disul- f i d e . A Beckman Model IR-12 instrument w a s used. Consid- e r ing the v a r i e t y of sample handling techniques used, t h i s spectrum and o ther published spec t ra (1-3) a r e t h e same.

infrared and R a m a n spec t ra of halothane. They assigi d bands of t h e gas phase i n f r a r e d spectrum t o fundamentd v ibra t ions as follows: CF deformation-520, 552, 665 cm.-\ CBr stretching-71 8 cm." ; Z C l stretching-814 cm." ; C c stretching-863 cm." ; C H bending-1 133, 1198 ern.-' ; CF stretching-1 179, 1273, 131 3 cm." ; C H stretching-3017 cm.-! Their paper contains the gas phase spectrum of halothane i n t h e 1.5 t o 35 micron region, using LiF, NaC1, and C s B r prisms.

Also, because

Theimer and Nielsen ( 1 ) made a de ta i led study of t h e

121

Page 125: Florey Vol 1

L

N N

Fiq. 1, In f r a red spectrum of halothane, Ayerst Laboratories Inc. Batch ICKEi; 4000 t o 500 ern.-', undi luted; 1350 t o 500 cm.-', L$ (v/v> i n CS2 vs. CS2: 0.1 mm. c e l l s .

Page 126: Florey Vol 1

HALOTHANE

Kalow ( 2 ) published a gas phase spectrum of halo- thane i n t h e 7 t o 16 micron region. (3) published t h e spectrum of a carbon t e t r a c l o r i d e so lu t ion of halothane i n the 1600 t o 450 cm.-’ region.

Kakac and Hudlicky

2.2 Nuclear Magnetic Resonance Spectra

Fig. 2 shows t h e proton magnetic resonance spectrum of halothane. t e t r a c h l o r i d e solut ion, using a Varian HA-I 00 instrument, with a te t ramethyls i lane reference. The quar te t centered a t 5.76 p.p.m. i s assigned t o C H adjacent t o a CF3 group

This spectrum w a s obtained on a carbon

(4).

2.3 Ul t rav io le t Spectra

Fig. 3 shows t h e u l t r a v i o l e t spectrum of halothane (Ayerst Laboratories Inc. Batch No. ICKB) i n 2,2,4- trimethylpentane solut ion. The so lu t ion w a s run vs. t h e solvent on a Cary Model 14 instrument, using 1.0 mm. c e l l s . Fig. 3 a l s o shows a scan of solvent vs. solvent i n the same c e l l s f o r comparison. The d iscont inui ty i n t h e so lu t ion scan a t 221 nanometers is a change i n absorbance scale; t h e absorbance scale is 0 t o 1 f o r t h e 350 t o 221 nanometer region and 1 t o 2 f o r t h e 221 t o 200 nanometer region, f o r t h e solut ion. The halothane concentration i s 0.40 volume percent, or 7.4 grams per l i t e r . The wave- length of maximum absorption i s 203 nanometers, w i t h an absorp t iv i ty of 2.50 l i t e r / g . cm., or a mnlar a h s a r p t i v i t y of 490 l i ter /mole cm. t o t h e C-Br s t ruc ture .

This absorpt ion i s presumably due

b l o w ( 2 ) has published t h e u l t r a v i o l e t spectrum of halothane gas i n a i r (195 t o 280 nanometers). ind ica te t h e wavelength of maximum absorption t o be 206 nanometers.

H i s data

2.4 Mass Spectra

Fig. 4 shows a p lo t of t h e mass spectrum of halo- thane. The data were obtained with an AEI MS-9 mass spectrometer. follows:

The assignments and compositions are as

123

Page 127: Florey Vol 1

Fig. 2, Nuclear magnetic resonance spectrum of halothane i n carbon te t rachlor ide , t etramethylsi'lane reference (courtesy of D r . J. M. Pryce).

Page 128: Florey Vol 1

Fis. 3. UltravioLec spectrum of halothane, Ayerst Laboratories Inc. Batch lCKEl, O.4@ (v/v) in 2,2,4-trimethylpentane, 1 .O mm. cells.

Page 129: Florey Vol 1

R. D

. DA

LE

Y

i n

k 0

k 0

126

Page 130: Florey Vol 1

HALOTHANE

m/e

196

177

161*

1 6W

141*

127

117

111

98

92

91

79

69

67

Assignment

Mt

( M-F)+

(M-C 1)+

( M-Hc~)+

( 1 61 -F)+

( 160-F)+

( M-CF3)+

(M-Br)+

C ompos it ion

C F3 C HC lBr

CF2CHClBr

CF3CHBr

CF3CBr

CF2C HBr

CF2CBr

C H C l B r

CF3C H C 1

CFHBr

C2F2 HC 1

C H B r

CBr

B r

CF3

CFHCl

63 c2 HF2 *Relative in t ens i t i e s of these mass spectral peaks are

The molecular ion and those a t m/e 127 and m/e 69 support the proposed st ructure . a re rearrangement ions (4) .

2.5 Optical Rotation

1.0 or l e s s .

The ions a t m/e 11 1 , 67, and 63

Although the halothane molecule has an asymmetric carbon atom, the commercial product i s a racemic mixture; resolution of the mixture has not been reported ( 5 ) .

127

Page 131: Florey Vol 1

R. D. DALEY

2.6 Vapor Pressure and Boiling Point

The vapor pressure of halothane (6) can be calcu- la ted from t h e equation

log 10 p = 6.8517-1082.495 t + 222.44

where p i s t h e vapor pressure i n mm. temperature i n degrees C. a s follows:

Hg and t i s t h e Some vapor pressure values are

Temperature, degrees C,

20 243.4

30 365.8

50.19 760.

Some reported boi l ing points (degrees C ) are:

50.0 - 50.5 a t 760 mm.Hg (7)

50.2 at 760 mm. Hg (8, 9)

50.1 a t 754 mm. Hg (10)

49.5 - 49.8 a t 740 m. Hg (11)

50.15 a t 760 mm. Hg (12)

2.7 Density

The densi ty of halothane has been reported as 1.871 g./ml. (91, 1.872 g./ml. (111, and 1.8692 g./ml. (6) a t 20 degrees C.

2.8 Refractive Index

The r e f r a c t i v e index of halothane has been reported as 1.3697 (9) and as (6, 8, 11) .

128

Page 132: Florey Vol 1

HALOTHANE

2.9 S o l u b i l i t y

Halothane i s s l i g h t l y soluble i n water (0.345 p a r t s i n 100 parts water) (13) and is miscible with t h e follow- i n g solvents: methanol, ethanol, chloroform, carbon d isu l f ide , d ie thyl e ther , hydrocarbons, and f ixed o i l s .

3. Synthesis

Halothane can be prepared by: ( a ) brominating 2-chlore 1 , 1 , l - t r i f luoroethane, o r ch lor ina t ing 2-bromo-l , 1,1 -tri- fluoroethane (7) ; rearrangement of 1 -bromo-2-chloro-l, 1,2- t r i f luoroe thane with ( b ) aluminum chlor ide (10) o r ( c ) aluminum bromide ( 14) ; (d) treatment of 1,2-dibromo-l, 1,2- t r i c hloroethane with hydrogen f luor ide and antimony tri- and pentachlorides ( 8 ) ; (e ) treatment of 1,2-dibromo-2- chloro-1 ,1 -difluoroethane with hydrogen f l u o r i d e and e i t h e r antimony tri- and pentachloride o r antimony penta- ch lor ide alone ( 15) ; treatment of 2,2-dibromo-2-chloro- 1 , 1 , 1 -trif luoroethane with ( f ) i r o n and hydrochloric acid o r a c e t i c acid (16) o r (g) sodium s u l f i t e and sodium hydroxide ( 12), o r ( h) 2-chloro-l , 1 , l - t r i f luoroethane ( 17); (i) rearrangement of 2-bromo-1 -chloro-1 ,1,2-trifluoro- ethane with aluminum chlor ide (18). shown i n Fig. 5 , where t h e let ters correspond t o the var ious methods mentioned above.

These reac t ions are

4. Stabil i ty-Degradation

Halothane i s s t a b l e when s tored i n amber g l a s s b o t t l e s o r ?:hen 0.01 weight percent t-ol i s added. Exposure of uns tab i l ized halothane t o l i g h t causes slow decomposition with formation of v o l a t i l e a c i d s and bromine ( 5 , 13). It has been reported that 2,3-dichlorohexafluoro-2-butene i s formed when halothane i s heated i n t h e presence of copper and oqygen (19, 20) o r evaporated a t room temperature i n t h e presence of a i r and copper (20); other inves t iga tors e i the r dispute o r do not confirm these observations (21- 25).

5. Drug Metabolic Products

It has been reported that halothane i s p a r t i a l l y metab- o l ized t o bromide, chlor ide, t r i f l u o r o a c e t a t e , and, t o a

129

Page 133: Florey Vol 1

R. D. DALEY

FIGURE 5 PREPARATION OF HALOTHANE

F F AX13 o r 7 ?’ F H D r 3 F k

( b ) , ( c ) B r - C - 4 4 1 - F- ;- c-c1

130

Page 134: Florey Vol 1

HALOTHANE

small extent , t o carbon dioxide. These metabolic products have been reported i n various species of animals as follows :

Man

Rabbit T r i f luoroacetate (29)

Rat

In addi t ion t o t h e above, un ident i f ied non-volati le

Trif luoroacetate (26, 27); Bromide (27, 28)

Chloride (3O), Bromide (31 ) , Carbon dioxide (32)

metabolites have Been reported i n mice (33, 34).

6. Methods of Analysis

6.1 Analysis f o r Halothane i n Mixtures

6.1 1 Gas Chromatography

A number of inves t iga tors have described t h e ana lys i s for halothane i n mixtures by gas chromatography. Adlard and H i l l (35) analyzed mixtures of halothane, ether, oxygen, n i t rous oxide, carbon dioxide, and cyclopropane i n respired anes the t ic mixtures. Rutledge e t a1 (36) ana- lyzed f o r halothane i n gas samples. Theye (37) analyzed resp i ra tory gases f o r o q g e n , carbon dioxide, and halo- thane t o study gas exchange during halothane anesthesia. Lowe (38, 39) reported halothane analyses a t 10 second i n t e r v a l s during c l i n i c a l anesthesia, taking advantage of the f a c t that usual ly a s ingle anes the t ic w a s used, so t h a t l i t t l e o r no chromatographic separat ion was needed. Good separat ion of halothane from ethanol, methanol, chloroform, d i c hlorome t hane, d ic hloroethane, d i e t h y l ether, v inyl e ther and o ther organic vapors has been described (40). Rehder e t a1 (41) analyzed mixtures of halothane, oxygen, and carbon dioxide t o determine halothane and oxygen in take i n t h e anesthet ized pa t ien t . Analysis f o r halothane i n gas mixtures is a l s o described by Mirolyubova (42) and by Wortley e t a1 (43) . halothane i n a lveolar air (44). oxygen, carbon dioxide, n i t r o u s oxide, and halothane i n resp i ra tory gases (45). some of these inves t iga tors .

Tiengo analyzed f o r Patzelova determined

Table I shows systems used by

6.12 Infrared Absorption

Kalow (2) invest igated t h e f e a s i b i l i t y of

131

Page 135: Florey Vol 1

R. D. DALEY

TABLE 1

Gas Chromatographic Systems Used f o r Halothane i n Gas Mixtures

Reference Carrier Column Number

35

36

37

38 9

39

41

Column - Gas

(a) 2 f t . long x & in . 15% dinonyl phthalate on 52-60 mesh f i rebr ick, i n pa ra l l e l with (b) 20 f t . long x 4 in . 20% dimethyl sul-

mesh f i rebr ick

6 f t . long x i n . He Tide detergent

H2

foxid0 011 52-60

(a) 6 f t . long x 3/16 in . molecular sieve i n pa ra l l e l with (b) 12 f t . long x 3/16 in. 10% Amine 220 and 5% Carbowax 400 on 30- 60 mesh T-6 Teflon

12 in . long x & i n . 60-80 mesh Chromo- sorb P, water saturated

He

N2

(a) 60 cm. long x 3/16 i n , , 20$ dioc- t y l sebacate on f i re - brick, i n pa ra l l e l with (b) 120 cm. long x 3/16 in . 10% dioc- t y l sebacate on s i l i c a gel, both columns i n

H2

Temp., 'C Detector

( 4 75 (b) 20

90

64.5

Room t a p .

50

Thermal Conduct iv- i t y

Thermal Conduct iv- i t y

Thermal Conductiv- i t y

Flame Ionization

Thermal Conduc t iv - its

132

Page 136: Florey Vol 1

HALOTHANE

Reference Number Column

series with ( c ) 183 cm. long x 3/16 i n . 5 A molecular s ieve

43 6.5 f t . long x 0.062 i n . I . D . s i l i c o n e f l u i d MS 550 on Chromo- sorb P, 60-80 mesh, 25 : 85

45 (a) 50 cm. long x 4 mm. I.D. 15% Kel-F o i l 10 on 0.1 6 t o 0.2 mm. Chromaton N-AW i n s e r i e s with (b) 270 cm. 100-120 mesh Porapak Q

Carrier - Gas

air

H2

C o l m Temp., O C Detector

88 Flame Ionization

Room Thermal temp. Conductiv-

i t y

monitoring halothane vapor concentrations by u l t r a v i o l e t and inf ra red absorption. technique could be used.

analyze l i q u i d mixtures of halothane and 1 -bromo-2-c$loro- 1,1,2-trifluoroethane r e s u l t i n g from aluminum chlor ide rearrangement of t h e lat ter. Sechzer e t a1 (48) used i n f r a r e d absorption t o analyze f o r halothane i n resp i ra tory gases during and after anes- thes ia . Rehder e t a1 (27) and Larson e t a1 (49) used commercial in f ra red halothane analyzers f o r measuring halothane i n gas mixtures.

He concluded that e i t h e r

Kakac and Hudlicky (3, 46) used i n f r a r e d absorpt ion t o

Davies e t a 1 (47) and

6.1 3 Ul t rav io le t Absorption

As mentioned i n 6.12, Kalow (2) inves t iga ted the use of u l t r a v i o l e t absorption f o r monitoring halothane vapor concentrations (see 2.3, Fig. 3). He recommended a

133

Page 137: Florey Vol 1

R . D. DALEY

wavelength of 228 nanometers f o r measurement, s ince it was free from interference by n i t rous oxide. However, t h e ready a v a i l a b i l i t y of mercury lamps makes measurements a t t h e 254 nanometer mercury l i n e a t t r a c t i v e , and rela- t i v e l y simple photometric systems s u f f i c e t o measure halothane vapor concentrations of 0 t o 5 percent (50). Commercial u l t r a v i o l e t halothane meters have been used t o monitor halothane vapor concentrations and t o check t h e c a l i b r a t i o n of vaporizers (51, 52).

6.14 Other Methods

Duncan (53) extracted halothane from gas mixtures with petroleum ether , t r e a t e d t h e e x t r a c t with l i th ium aluminum hydride t o l i b e r a t e halide, p rec ip i ta ted t h e hal ides with s i l v e r ion, and determined t h e amount of p r e c i p i t a t e photometrically. of Goodall 's method (54) f o r halothane i n blood.

This method i s an adaptat ion

Interferometers have been used t o measure halo- thane vapor concentrations and t o check u l t r a v i o l e t halo- thane meter c a l i b r a t i o n s (51, 55) .

6.2 Analysis. f o r Impurities i n Halothane

Halothane as furnished f o r anesthesia i s a material of high pur i ty . However, i n addi t ion to t h e 0.01 weight percent thymol s t a b i l i z e r , it may contain t r a c e s of v o l a t i l e impurit ies. Also, U.S.P. XVIII ( 5 6 ) allows a non-volatile residue of 1 me. per 50 ml. after 2 hours drying a t 105'C; thymol i s v o l a t i l e a t t h i s temperature. I n anes the t ic use, halothane is evaporated, along with aqy v o l a t i l e impurities. Thymol is not vola- t i l e under conditions e x i s t i n g i n anes the t ic vaporizers, and it w i l l accumulate i n t h e residue.

The discussion of impurity ana lys i s i n 6.21 t o 6.23 below r e l a t e s only t o halothane as m r k e t e d f o r anesthesia. Halothane i s an excellent solvent and, l i k e any high pur i ty material, can be e a s i l y contaminated unless handled carefu l ly . Analyses of d r a i n samples from vaporizers must be in te rpre ted wi th caution; as an example of possible p i t f a l l s , impurity peaks on gas chromatograms of such samples may be due t o the presence of o ther

134

Page 138: Florey Vol 1

HALOTHANE

anes the t ics i n t h e sample (24).

6.21 Gas Chromatography

product . Impurity Number

1 2 3 4 5 6 7

8

9 10 1 1 12 13 14 15 16

Chapnan e t a1 (57) made an extensive study of impuri t ies i n halothane manufactured by high temperature bromination of 2-chloro-l , 1 ,1 - t r i f luoroethane. gas chromatography, mass spectrography, nuclear magnetic resonance, in f ra red absorption, and microchemical analyses t o i d e n t i f y impuri t ies , and took advantage of t h e larger impurity concentrations ava i lab le e i t h e r from d i s t i l l i n g the crude halothane o r from process streams. manner they were ab le t o f i n d s ix teen impuri t ies i n t h e crude halothane, and devise gas chromatographic methods f o r analyzing f o r them a t t h e p.p.m. l e v e l i n t h e f i n i s h e d

They used

In t h i s

The s ix teen impuri t ies found a r e as follows:

I d e n t i t x trans-2-Chloro-l , 1,1,4,4,4-hexafluoro-2-butene 2-Chloro-l , 1,l - t r i f luoroethane cis-2-Chloro-l , 1,1,4,4,4-hexafluor0-2-butene trans-2-Bromo-l , 1,1,4,4,4-hexafluoro-2-butene 2,2-Dichloro-l,1,1 - t r i f luoroethane 2-Bromo-l,1,1-trifluoroethane1 t rans-2,3-Dic hloro- 1 , 1 , 1,4,4,4- hexaf luoro-2- butene cis-2,3-Dichloro-l , l ,1,4,4,4-hexafluoro-2- butene 1,1,2-Trichloro-1,2,2-trifluoroethane Bromodic hlorofluoromet hane 2,2-Dibromo-l,1 , I - t r i f luoroethane Chloroform 2,2-Dibromo-2-c hloro-1 , 1 , 1 -trif luoroet hane 22aurmor~hlorocl ,1 -difluoroetbane 2-Bromo-2,2-dichloro-l, 1,l - t r i f luoroethane 1,2-Dichloro-l, 1 -difluoroethane

Table 2 l i s ts t h e re ten t ion t imes of these impu- rities, r e l a t i v e t o 1,1,2-trichloro-l,2,2-trifluoroethane (impurity number 9 ) , on two gas chromatographic systems: (a ) column 6 f t . long by 3/16 i n . I . D . , of 30 weight percent Aroclor 1254 (chlor inated diphenyl) on 60-80 mesh Chromosorb P, nitrogen c a r r i e r gas a t 30 ml./min., column

135

Page 139: Florey Vol 1

R. D. DALEY

temperature 6OoC., flame ion iza t ion de tec to r ; (b) column 6 f t . long by 3/16 i n . I.D., of 30 weight percent poly- ethylene g lyco l 400 on 72-85 mesh Ce l i t e , joined t o a column 3 f t . long by 3'16 i n . I.D., of 30 weight percent dinonyl phthalate on 72-85 mesh Celite, ni t rogen carrier gas a t 40 ml./min., column temperature 60mC, flame ion iza t ion detecr;or. These two systems separate a l l impuri t ies except numbers 5 and 6. O n l y f o u r of t h e impuri t ies are usual ly detectable , numbers 2, 5, 9, and 14, a t concentrat ions t y p i c a l l y 1 , 8, 12, and 1 p.p.m., respect ively (57).

TABLE 2

Rela t ive Retention Times of Some Possible Halothane Impuri t ies (57)

Retention Times Relative to CF2ClCFC12

Impurity ( a ) Chlorinated (b) Polyethylene Glycol- Number Diphenyl Column Dinonyl Phthalate Column

1 0.12 0.38 2 3 4 5 6 7 8 9

10 1 1 12 13 14 15 16

0.22 0.30 0.40 0.62 0.62 0.62 0.78 1 .oo 3.48 4.85 6.43 9.73 M M M

1 .oo 0.73 1 .oo 2.35 2.35 0.73 0.85 1 .oo ND ND 10.9 ND 1.50 3.28 4.22

ND - Not determined. M - Peak masked by halothane.

136

Page 140: Florey Vol 1

HALOTHANE

Scipioni e t a1 (58) report a somewhat d i f f e r e n t s e t of impuri t ies f o r halothane made by h i s h temperature bromination of 2-c hloro-1 ,1,1 - t r i f luoroet hane on a laboratory sca le , and they a l s o invest igated t h e changes i n concentrations w i t h changes i n reac t ion temperature and c ont ac t time .

A number of o ther inves t iga tors have used gas chromatography t o de tec t o r analyze f o r t r a c e impur i t ies i n halothane. Cohen e t a1 (19, 20) first drew a t t e n t i o n t o t h e presence of c i s and t r a n s 2,3-dichloro-l , I , I ,4,4,4- hexaf luoro-2-butene i n halothane made by high temperature processes; these materials were separated from halothane by gas chromatography, with i d e n t i f i c a t i o n by mass spectro- m e t r y . Albin e t a1 (24) s imi la r ly confirmed t h e presence of these butenes and i d e n t i f i e d 2-bromo-1,1,1,~,4,4- hexafluoro-2-butene as an impurity as well . Gjaldbaek and Worm (25) reported 1,1,2-trichloro-l,2,2-trifluoroethane i n halothane from both high and low temperature processes. The absence of t h e butenes i n halothane of l a t e r manufac- t u r e has been reported (20, 57, 5 9 ) . dichlorohexaf luorocyclobutane w a s found i n halothane made by a low temperature process (25, 60). inves t iga tors were unable t o separate 1-bromo-2-chloro- 1,1,2-trif luoroethane, t h e s t a r t i n g material of one low temperature process, from halothane by gas chromatography (3, 25) ( see below).

A t r a c e of 1,2-

Two groups of

6.22 Inf ra red Absorption

Although t h e concentrat ions of p r a c t i c a l l y a l l t h e impuri t ies i n the market product a r e too low t o de tec t by in f ra red absorption, it has been used t o analyze f o r 1 -bromo-2-chloro-l, 1,2-trif luoroethane a t the 0.1 percent leve l , i n halothane made by isomerizinq the former m a t e r i a l (3, 25).

6.23 Mass Spectrometry

After separat ion by gas chromatography, impur i t ies have been i d e n t i f i e d by mass spectrometry i n some cases (19, 20, 24, 57).

137

Page 141: Florey Vol 1

R. D. DALEY

6.3 Analysis f o r Thymol

The dibromoquinone-c hlorimide colorimetric method

Thymol can also be analyzed fo r by gas i s the o f f i c i a l method fo r thymol analysis i n U.S.P. XVIII (56). chromatography; one technique uses an SE-30 column, flame ionization detection, helium ca r r i e r gas, and temperature programming from 100 t o 150' (25) .

7. Determination i n Body Fluids and Tissues

7.1 Gas Chromatographic Methods

7.11 Methods Using Pr ior Exbraction

Halothane i n blood and t i s sues can be analyzed by gas chromatography a f t e r extraction in to heptane (36, 43, 61-63). in jec t ion methods mentioned below, but it is not necessaqy t o clean the inject ion port frequently, and column l i f e may be extended.

This method takes more time than the d i rec t

Use of electron capture detectors increases the sens i t i v i ty t o halothane and decreases the re la t ive sens i t iv i ty t o heptane , improving the overal l s ens i t i v i ty and speed of the method (64, 65).

Carbon te t rachlor ide c o n t a w chloroform as an internal standard can be used t o extract halothane from blood; it c l ea r s SE-30 columns f a s t e r than heotane (66)

Table 3 lists gas chromatographic systems ysed

7.12 Methods Using Prior D i s t i l l a t i on o r Gas

with this technique.

Phase Part i t ioning

Halothane i n blood o r t i s sues can be analyzed a f t e r d i s t i l l a t i o n in to heptane from a sample-water mixture. the heptane i s separated and dried, and an al iquot is injected i n t o the gas chromatographic apparatus (67).

The d i s t i l l a t e and heptane are mixed by shaking,

138

Page 142: Florey Vol 1

HALOTHANE

TABLE 3

Gas ChromatoaraDhic Systems f o r Methods U s i n g Extract ion P r i o r t o ChromatoaraDhg

Reference Carrier Column Number

61 ¶

62

43 63

64

36

66

- Column

12-30 i n . long, 10 w t . % s i l i c o n e M.S. 550 on 80- 1 0 0 mesh C e l i t e

6.5 f t . long x 0.062 i n . I . D . , s i l i c o n e M.S. 550 on Chromosorb P, 60-80 mesh

6 f t . long x 0.125 i n . O.D., 35 w t . % s i l i c o n e M.S. 550 on U-60 mesh Celite

6 f t . long x 0.25 in . O.D., Tide detergent

5 f t . long x 0.125 in., 5$ SE-30 on 60/E10 mesh Chrmosorb W

G a s Temp.. O C Detector - H2 30 Flame

Ioniza- t i o n

a i r 88 Flame Ioniza- t i o n

44 Electron Capture

N2

He 90 Thermal C onduc- t i v i t y

55 Flame Ioniza- t i o n

N2

Halothane i n bo4y f l u i d s and t i s s u e has a l s o been d e t e d n e d after d i s t i l l a t i o n from t h e sample wi th toluene. The d i s t i l l e d toluene, containing t h e halothane, is dried and analyzed by gas chromatography (68 , 69).

Where t h e blood-gas p a r t i t i o n c o e f f i c i e n t is known, halothane can be determined on t h e gas o r air space above blood samples equi l ibra ted with the gas. Conversely, t h e blood-gas p a r t i t i o n c o e f f i c i e n t can be determined by gas chromatographic ana lys i s of gas

139

Page 143: Florey Vol 1

R. D. DALEY

equi l ibra ted with blood i f t h e halothane content of t h e system and t h e blood and gas volumes are known (70-73). By using a syrinqe with s tops set t o d e f i n i t e volumes, Fink and Morikawa determined halothane partial pressures i n blood by making two consecutive equi l ibra t ions with air , analyzing the air phase a f t e r each e w i l i b r a t i o n (74) .

Table 4 lists systems used with t h i s technique.

TABLE 4

Gas Chromatographic Systems f o r Methods Using D i s t i l l a t i o n o r P a r t i t i o n i n g P r i o r t o Chromatography

Ref e renc e Carrier Number C O l m cas

67 Sil icone o i l He (commercial Perkin-ELme r we C column)

73 2 f t . long x Argon 0.25 in. , 2@ SE30 on C h r o m - osorb

68, 12-24 f t . , l @ He 69 di-2-et hylhexyl

sebacate on 20-60 mesh f i r e b r i c k

71 5 f't. long x 0.125 in. , 5% s i l i c o n e gum rubber on 60-80 mesh Chromosorb W

72 6 ft. long, 3.8 percent (w/w) s i l i c o n e f l u i d on Chromosorb W

He

Not S ta ted

Column Temp., O C Detector

40 Thermal Conduc- t i v i t y

100 Flame Ioniza- t i o n

1 30 cermal Conduc- t i v i t y

100 Flame Ioniza- t i o n

50 Flame Ioniza- t i o n

140

Page 144: Florey Vol 1

HALOTHANE

Reference Number

74

Carr ie r Column Gas Temp., O C Detector Column -

5 f t . long x 1/8 He 85 Flame in . , 5 percent Ioniza- SE-30 on DMCS t i o n C hromosorb W, 50-80 mesh

7.1 3 Direct In jec t ion Met hods

Halothane i n blood and t i s s u e s can be determined by d i r e c t i n j e c t i o n of such material i n t o a gas chromato- graph w i t h a s u i t a b l e i n j e c t i o n port system. The i n j e c t - ion port must provide for more o r less frequent cleanout.

Cohen (75) described a spec ia l biopsy needle f o r sampling and i n j e c t i n g t i s s u e . Lowe (38, 39) used g l a s s c a p i l l a r i e s which he loaded from a syringe and crushed i n t h e i n j e c t i o n por t with a solid-sample i n j e c t o r . Yokota e t a1 homogenized t i s sue with water u l t r a s o n i c a l l y ; t h e homogenizing was done i n a simple sealed system and t h e homogenized mixture was in jec ted ( 7 7 ) .

m i c r o l i t e r syringe ( 3 8 , 39, 76, 77); Douglas e t a1 (64) used a syringe with a needle which protuded from t h e t i p t o remove any dr ied blood.

Blood samples may be i n j e c t e d with an ordinary

When d i r e c t i n j e c t i o n of samples i s used, the water content of t h e samples may i n t e r f e r e with flame ioniza t ion de tec tors unless precautions a re taken. This in te r fe rence can be prevented by sa tura t ing t h e c a r r i e r gas with water, using a shor t sec t ion of column contain- ing water (38, 39, 64, 76). Alternat ively, a sec t ion of drying column may be used t o remove water vaporized from t h e sample (38, 75, 77) .

Lowe (38, 39, 76) poin ts out t h a t normal blood samples contain no v o l a t i l e organic matter t o i n t e r f e r e with flame ioniza t ion detectors . Therefore, l i t t l e o r no

141

Page 145: Florey Vol 1

R. D. DALEY

chromatographic separat ion is needed i f only one anes- t h e t i c i s present i n blood samples.

TABLE 5

Gas ChromatoararJhic Systems f o r Direct 1n.jection

Reference Carrier Column Number

75

38, 39 , 76

64

77

Calumn - Gas

Pre-colwnn of Argon, 0.5 x 0.25 i n . 5% 60-80 mesh Methane Drierite treat- ed with 12-15 w t . % Carbowax 400; p a r t i t i o n column DC 550

Glass wool o r N2 Chromosorb P, 12 i n . long x 0.25 in . , alone o r following 2 f t . Tide column

18 i n . x 0.125 Not in. , 60-85 mesh Stated Chromosorb P sa tura ted with water

75 cm. x 3 mm. I .D. molecular s ieve 5A, 60-80 mesh, coated with 0.3% diethylene glycol succinate

N2

T e m ~ . , O C Detector

72 Electron Capture

Room Flame Temp. Ioniza-

t i o n

Room F h e Temp. Ioniza-

t i o n

120 Flame Ioniza- t i o n

142

Page 146: Florey Vol 1

HALOTHANE

7.2 Absorptiometric Methods

7.21 Turbidimetric Method

The f i r s t reported method of ana lys i s for halo- Halo- thane i n blood w a s by turbidimetr ic measurement.

thane w a s ex t rac ted from blood with petroleum e ther . The ex t rac t w a s heated with sodium amoxide i n a sealed tube. The hal ide formed w a s then prec ip i ta ted with s i l v e r n i t r a t e and t h e absorption of t h e suspension measured a t 520 nanometers. Standard halothane so lu t ions were required because hydrolysis was incomplete (54) .

T h i s technique w a s modified by use of l i th ium aluminum hydride (53, 78) or sodium (79) u l t r a s o n i c a l l y dispersed i n petroleum j e l l y ins tead of sodium amoxide. It w a s a l s o used for t i s s u e ana lys i s (53).

7.22 Inf ra red Absorption

Halothane i n blood w a s determined by ex t rac t ion with a n equal volume of carbon d i s u l f i d e and measurement of t h e absorption a t 7.90 microns i n a 10 m. microcel l (80 ) . The method w a s not s u i t a b l e for t i s s u e samples.

b r s o n e t a1 used a commercial i n f r a r e d halothane analyzer t o analyze for halothane i n gases equi l ibra ted with blood and t issue, f o r determining t h e s o l u b i l i t y of halothane i n blood and t i s sue homogenates (49).

7.23 Ul t rav io le t Absorption

Halothane was determined i n blood and var ious

The absorption of the t i s s u e s af ter ex t rac t ion i n t o toluene and treatment with pyridine and sodium hydroxide. t r e a t e d sample w a s measured a t 367 nanometers ( 8 0 ) .

7.3 X-ray Spectrography

Halothane i n 1 t o 2 g. t i s sue samples was determined by x-ray spectrographic (fluorescence) ana lys i s for bromine i n 10 ml . h e m e e x t r a c t s ( 8 ? ) .

143

Page 147: Florey Vol 1

R. D. DALEY

8. References

1 .

2. 3. 4. 5. 6.

7.

8.

9 .

10.

1 1 .

12,

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

R . Theimer and J. R . Nielsen, J . Chem. Phys. 2, 887-90 ( 1957). W. Kalow, Can. Anaesth. SOC. J. 4, 384-7 (1957). B. Kakac and M . Hudlicky, Talanta 2, 530-3 (1962). J. M. Pryce, personal communication. C. W. Suckling, B r i t , J. Anaesth. 2, 466-72 (1957). G. A. Bottomley and G. H. F. Seiflow, J. Appl, Chem. (London) JJ, 399-402 ( 1963) C . W. Suckling and J. Raventos, B r i t . Patent 767, 779 (1957); C.A. 51, 15546i. J. Chapman and R. L. McGinty, B r i t . Patent 8 0 5 , 764 (1958); C.A. 2, 10035~. H. Madai and R. Mueller, J. Prakt . Chem. 1p, 83-7 (1962); C . A . 2, 11200g. 0. Scherer and H. Kuhn, U.S. Patent 2,959,624 (1960); C.A. a, 8290e. M. Hudlicky and I. Lejhancova, Collect . Czech. Chem. Commun. 28, 2455-61 (1963); C.A. 2, 11227a. H. Madai, B r i t . Patent 939,920 (1963); C.A. 60, 2751e. J. Raventos, B r i t . J. Pharmacol. ll, 394-409 ( 1956) . M. Hudlicky, Czech. Patent 107,890 (1963); C.A.

J. Chapman and R. L. McGinty, B r i t . Patent 925,909 (1963); C.A. 2, 11246~. R. L. McCinty, U.S. Patent 3,082,263 (1963); 12 .A. 2, 8 5 9 2 ~ . C . W. Suckling and J. Raventos, U.S. Patent 2,921,098 (1960) ; C.A. s, 4360h. T. Satogawa and Y. Osaka, Japan. Patent 68 09,728; C.A. 70, 37152~. E. N . Cohen, J . W. B e l l v i l l e , H. Budzikiewicz, and D. H. W i l l i a m s , Science 141, 899 (1963). E. N. Cohen, H. W. Brewer, J . W. Be l lev i l le , and R . Sher, Anesthesiology 26, 140-53 (1965). W. A. Sexton and W. G. Hendrickson, Science &2,

D. S. Corrigan, G. V. McHattie, and J. Raventos, B r i t . J . Anaesth. 3, 824-5 (1963). R . A . But ler and H. W. Linde, Anesthesiology 3, 397-8 ( 1964) .

60, 5334d.

621-2 (1963).

144

Page 148: Florey Vol 1

HALOTHANE

24.

25.

26.

27.

28.

29. 30.

31. 32.

33.

34. 35.

36

37 38. 39 9

40.

41.

42.

43.

44.

45. 46.

M. S. Albin, L. A. Horrocks, and H. E. Kretchner, Anesthesiology 2, 672-5 ( 1964) ; see a l s o corres- pondence regardinq t h i s paper, i b i d . 26, 236-7 (1965). J . C . Gjaldbaek and K. Worm, Dansk Tidsskr. Farm. 2, 141-51 (1965). A. S t i e r and H. Alter, Anaesthesist x, 154-5 ( 1 966). K. Rehder, J . Forbes, H. Alter, 0. Hessler, and A. S t i e r , Anesthesiology 28, 71 1-5 (1967). A . E t ie r , H. Alter , C?. Hessler, and K. Rehder, Anesth. Analg. u, 723-8 (1964). A. S t i e r , Biochem. Pharmacol. Q, 1544 (1964). R . A . Van Dyke, M. B. Chenoweth, and A . Van Poznak, Biochem. Pharmacol. Q, 1239-47 (1964). A. S t i e r , Naturwissenschaften 51, 65 (1964). R . A. V a n Dyke, #. B. Chenoweth, and E. R . Larsen, Nature 204, 471-2 ( 1964). E. N. Cohen and N. Hood, Anesthesiology 2, 553-9 (1969). E. N. Cohen, Anesthesiology 3l, 560-5 (1969). B. R. Adlard and D . W. H i l l , Nature 186, 1045 (1960). C . 0. Rutledge, E. Seifen, M. H. Alper, and W . Flacke, Anesthesiology 3, 862-7 (1963). R . A . Theye, Anesthesiology 3, 75-79 (1964). H . J . Lowe, Anesthesiology a, 808-1 4 ( 1964). H. J . Lowe, J. Gas Chromatog. 2, 380-4 (1964). S . Koudela and J . Lukaci, Soudni Lekarstvi 10, 8-1 1 [published i n Cesk. Patol . 1. ( 1 ) 3 (1965x C.A. bJ, 13859f. K. Rehder, J. Forbes, 0. Hessler, and K. Gossmann, AnaestheSif3t E, 162-8 (1966) . S. P. Mirolyubova, Nauch. T r . Aspir. Ordinatorov, 1 - i Mosk. Med. I n s t . 1967, 141-2 (from Ref. Zh., Khim. lgbs, Abstr. No. 12N533); C.A. 70, 505053. D . J. Wortley, P. Herbert, J. A . Thornton, and D . Whelpton, B r i t . J . Anaesth. 40, 624-8 ( 1 968). M. Tienqo, Ann. Ostet. Ginecol. By 543-57 (196"); C . A . 68, 58312~. V . Patzelova, Chromatographia 4, 174-6 ( 1971 ) . B. Kakac and M. Hudlicky, Czech. Patent 112,162 (1964); C.A. 62, 8395f.

145

Page 149: Florey Vol 1

R. D. DALEY

47.

48.

49.

50.

51.

52. 53. 54.

55 56.

57.

58.

59.

60.

61 . 62.

63

64.

65.

66.

67.

J. I. Davies, S. Bakerman, G. B. Sish, S. N. Angell, and E. L. Frederickson, Anes thes io loq 3, 143-4 (1962). P. H. Sechzer, H. W. Linde, R. D . Dripps, and H. L. Price, Anesthesiology a, 779-R3 (1963). C . P. b r s o n , E. I. Eger, and J. W. Severinghaus, Anesthesiology 12, 349-55 ( 1962) . A. Robinson, J. S. Denson, and F. W. Summers, Anesthesiology a, 391-4 (1962). D . Langrehr, I. Kluge, and I. Riecken, Anaesthesist B, 340-5 ( 1970) B. Wolfson, Anesthesiology a, 1 57-9 ( 1968). W. A. M. Duncan, B r i t . J. Anaesth. 3, 316=20(19592 R. R. Goodall, B r i t . J . Pharmacol. 11, 409-10 ( 1956). M. Luder, Anaesthesist a, 360-4 (1964). Halothane monograph, Pharmacopeia of t h e United S t a t e s of America, Eighteenth Revision, Mack Pr in t ing Co., Easton, Pa., 1970, pp. 294-5. J . Chapman, R . H i l l , J. Muir, C . W. Suckling, and D . J. Viney, J. Pharm. Pharmac. B, 231-9 (1967). A. Scipioni, G. Gambaretto, G. Troilo, and C . Fraccaro, Chim. Ind. (Milan) 49, 577-82 (1967); C.A. a, 108107n. M. B. Chenoweth and H. W. Brewer, Toxicity Anesth., Proc. Res. Symp. (Pub. 1968), 65-76; C.A. 70, 60768m. 0. Scherer and W. Weigand, Anaesthesist 12, 313-4 (1964). R. A . But ler and D . W . H i l l , Nature 189, 488-9 (1961). R . A. B u t l e r and J. Freeman, B r i t . J. Anaesth. 2, 440-4 ( 1962) - P. Herbert, J . Med. Lab. Technol. (London) a( 3), 233-7 ( 1 968) . R . Douglas, D . W. H i l l , and D. G. L. Wood, B r i t . J . Anaesth. 42, 119-23 (1970). D. D. Davies and J. A . Mathias, B r . J. Pharmacol. &), 596P-7P (1970)- B. Wolfson, H. E. C i c c a r e l l i , and E. S. Siker , B r i t . J. Anaesth. 38, 591-5 (1966). A. Dyf'verman and J. S jova l l , Acta anaesthesiol . Scand. 6, 171-4 (1962).

146

Page 150: Florey Vol 1

HALOTHANE

68.

69.

70.

71.

72.

73 74.

75.

76.

77.

78.

79.

80.

81 .

R . H. Gadsden and W. M. McCord, J. Gas Chromatog. - 2, 7-11 (1964). R. H. Gadsden, K. B. H. Risinger, and E. E. Bagwell, Can. Anaesth. SOC. J. 12 ( l ) , 90-8 (1965). C . P. Larson, Jr., Uptake and Dis t r ibu t ion of Anesthetic Agents, Conf., New York 1962, 5-1 9 (Pub. 1963); C.A. 60, 4360. R. A. But ler , A. B. Kelly, and J. Zapp, Anesthesi- ology a, 760-3 (1 967). L. H. Laasberg and J. Hedley-Whyte, Anesthesiology 2, 351-6 (1970). I. F. H. Purchase, Nature 1p8, 895-6 (1963). B. R. Fink and K. Horikawa, Anesthesiology 32, 451-5 (1970). E. N. Cohen and H. W. Brewer, J. Gas Chromatog. - 2, 261-2 ( 1 964). H. J. Lowe and L. M. Beckham, i n "Biomedical Applications of G a s Chromatography,'' H. A. Szymanski, ed i tor , Plenum Press, New York (1964). T. Yokota, Y. Hitomi, K. Ohta, and F. Kosaka, Anesthesiology 28, 1064-73 ( 1967) . J. G. Robson and P. Welt, Can. Anaesth. SOC. J. 4, 388-93 (1957). J. Burns and G. A. Snow, B r i t . J. Anaesth. 3,

Y. Maeda, Osaka Ci ty Med. J. 2 ( 1 1, 1 13-28 (1963) ; C.A. 60, 16197g. M. B. Chenoweth, D. N. Robertson, D. S. Erley, and R. S. Gohlke, Anesthesiology 12, 101-6 (1962).

102-3 (1961).

Ac knowledmnent s

The w r i t e r w i s h e s t o thank M r . A. Holbrook of Imperial Chemical Indus t r ies Ltd., and D r . B. T. Kho of Ayerst Laboratories Inc., f o r t h e i r c a r e f u l reading of t h e manuscript and helpful suggestions f o r improve- ments, as w e l l a s D r . J. M. Pryce of Imperial Chemical Indus t r ies Ltd., who provided t h e mass s p e c t r a l and nuclear magnetic resonance information f o r t h i s p r o f i l e .

147

Page 151: Florey Vol 1

LEVARTERENOL BITARTRATE

Charles F. Schwender

Reviewed by E. L. Pratt el al.'

149

Page 152: Florey Vol 1

C. F. SCHWENDER

CONTENTS

A n

1 .

2 .

3 .

4 .

5 .

6 .

l y t i c a l P r o f i l e - L e v a r t e r e n o l B i t a r t r a t e

D e s c r i p t i o n 1 . 1 N o m e n c l a t u r e 1 . 2 F o r m u l a 1 . 3 M o l e c u l a r W e i g h t 1 . 4 S t r u c t u r e 1 . 5 A p p e a r a n c e P h y s i c a l P r o p e r t i e s 2 . 1 M e l t i n g P o i n t 2 . 2 S o l u b i l i t y 2 . 3 C r y s t a l P r o p e r t i e s 2 . 4 O p t i c a l R o t a t i on 2 . 5 O p t i c a l R o t a t o r y D i s p e r s i o n 2 . 6 C o n f i g u r a t i o n 2 . 7 S p e c t r o p h o t o m e t r y

2 . 7 1 U l t r a v i o l e t 2 . 7 2 D e t e r m i n a t i o n o f D i s s o c i a t i o n

2 . 7 3 I n f r a r e d 2 . 7 4 Mass S p e c t r u m

S y n t h e s ' i s a n d R e s o l u t i o n 3 . 1 S y n t h e s i s 3 . 2 R e s o l u t i o n S t a b i l i t y 4 . 1 S o l u t i o n s 4 . 2 R a c e m i z a t i o n 4 . 3 O x i d a t i o n M e t a b o l i sm 5 . 1 M e t h y l a t i o n 5 . 2 D e a m i n a t i on 5 . 3 E x c r e t i o n P r o d u c t s 5 . 4 C o n j u g a t e s 5 . 5 M i n o r P a t h w a y s 5 . 6 D i s t r i b u t i o n Methods o f A n a l y s i s 6 . 1 E l e m e n t a l 6 . 2 C o l o r i m e t r i c

C o n s t a n t s ( p K ' a )

6 . 2 1 1 , 2 - N a p h t h o q u i n o n e - 4 - s o d i u m

6 . 2 2 O x i d a t i o n w i t h I o d i n e s u l f o n a t e

150

Page 153: Florey Vol 1

LEVARTERENOL BITARTRATE

CONTENTS (cont 'd)

6 . 2 3 A r s e n o m o l y b d i c Acid R e d u c t i o n 6 . 2 4 C o l o r R e a c t i o n s

6 . 3 1 E t h y l e n e d i a m i n e 6 . 3 2 Tri h y d r o x y i n d o l e

6 . 3 F l u o r o m e t r i c

6 . 4 S p e c i f i c R o t a t i o n

7 . 1 E l e c t r o p h o r e s i s 7 . 2 P a p e r , T h i n l a y e r 7 . 3 G a s - l i q u i d

7 . Chromatography

8. R e f e r e n c e s

1 5 1

Page 154: Florey Vol 1

C. F. SCHWENDER

1 . D e s c r i p t i o n

1 . 1 Nomencl a t u re L e v a r t e r e n o l Bi t a r t r a t e ( - ) a-(Aminomethyl)-3,4-dihydroxy-

( - ) 1-(3,4-Dihydroxypheny1)-2-

( - ) -2-Amino-l-(3,4-dihydroxyphenyl)

N o r e p i n e p h r i n e , N o r a d r e n a l i n e T a r t r a t e

b e n z y l a l c o h o l B i t a r t r a t e M o n o h y d r a t e

a m i n o e t h a n o l B i t a r t r a t e M o n o h y d r a t e

e t h a n o l B i t a r t r a t e M o n o h y d r a t e

1.3 Mol ecul a r Wei q h t 3 3 7 . 2 9

1 . 4 S t r u c t u r e

H O ~ - , ! - C H Z N H Z - .CkH606 .H20

HO 1 . 5 A p p e a r a n c e

c r y s t a l l i n e p o w d e r . White o r f a i n t g r a y , o d o r l e s s

2 . P h y s i c a l P r o p e r t i e s

2 . 1 M e l t i n g P o i n t L e v a r t e r e n o l b i t a r t r a t e m o n o h y d r a t e mp 1 0 0 - 1 0 6 ° 2 mp 1 0 2 - 1 0 4 ° 3 mp 1 0 2 - 1 0 4 . 5 " Lev a r t eren o l b i t a r t r a t e , a n h y d r o u s mp 1 4 7 - 1 5 0 " d e ~ . ~ mp 1 5 8 - 1 5 9 " d e ~ . ~ mp 1 6 0 ° 7 L e v a r t e r e n o l Hydroch 1 o r i de mp 1 4 6 . 5 - 1 4 7 . 5 " L e v a r t e r e n o l mp 2 1 6 . 5 - 2 1 8 0 7

152

Page 155: Florey Vol 1

LEVARTE RE NOL BITARTRATE

2 . 2 S o l u b i l i t y * F r e e l y s o l u b l e i n w a t e r ( g r e a t e r . t h a n

10%) S l i g h t l y s o l u b l e i n a l c o h o l ( 0 . 1 - 1 . 0 % ) P r a c t i c a l l y i n s o l u b l e i n c h l o r o f o r m ,

e t h e r ( l e s s t h a n 0 . 0 0 0 1 % )

2 . 3 C r y s t a l P r o p e r t i e s 3 Lone o r t h o r h o m b i c p r i s m s o p t i c a l l y ( + ) 2V = 85" f 2 " ( c a l c d . ) e l o n g a t i o n ( - ) rlcl = 1 . 6 2 0 k 0 . 0 0 2 nB = 1 . 5 7 7 k 0 . 0 0 2 qy = 1 . 5 3 1 f 0 . 0 0 2 T w i n n i n g common, end view under

p o l a r i z e d l i g h t .

153

Page 156: Florey Vol 1

2 . 4 O p t i c a l R o t a t i o n

Le v a r t e r e n o l Form i U 3 , S o l u t i o n R e f e r e n c e - r n -

I L T

- - - B i t a r t r a t e . H 2 0 - 1 1 . 3 " 1 8 -10 t o - 1 2 " 25 c=5 , H 2 0 - 1 0 . 7 " 2 5 - 2 9 ~ = 1 . 6 , H 2 0

T a r t r a t e ,

B a s e - 3 7 . 3 " 2 5 - 2 9 c = 5 , d i l .HC1

- 3 9 . 5 " 2 0 d i l u t e HC1 - 4 1 . 7 " 2 0 - 4 4 . o o 2 0 c = 2 , H 2 0

a n h y dr ou s -12 .5 " 2 4 c = 2 ,H20 -1 1 . O " 2 4 ~ = 1 . 6 , H 2 0

-39 " 2 0 C=5 ,ti20

- - -

H y d r o c h l o r i d e - 39" 2 5 - 2 9 c = 6 ,H20 -40 " 2 5 c=5 .OY1N HC1 - 4 5 . 7 " 2 0 c=2 .OY5M HC1

- 4 7 . 5 O 2 5 c = 4 , d i l .HC1 - 4 6 . 7 " 2 0 c = 4 , d i 1 .HC1

-40 .6 ' 2 0 c=3,H,O

0 3 , 4 , N - T r i a c e t y l - 8 1 .3' 2 5 c = l yCHC1 3

1 2 2 7

3 3 7 8 8 9 4 7 7 4

1 1 1 1 1 1 1 3

0 n

Page 157: Florey Vol 1

LEVARTERENOL BITARTRATE

2 . 5 Opti c a l R o t a t o r y D i s p e r s i o n

2 5 = - 3 3 3 " ( p e a k )

2 5 '" '276.5

2 5 = -945" ( p e a k ) '"]260

2 5 = +2955" ( s h o u l d e r ) '"'238

= + 1 0 , 4 6 0 " ( p e a k ) 2 5 '']21O.5 C = 0 . 0 9 , EtOH/5% 0.1N NaOH, f 5% e r r o r

["I, 3 3

= - 2 0 5 5 " ( t r o u g h )

o f [a].

2 . 6 C o n f i g u r a t i o n o f L e v a r t e r e n o l R o t a t o r y d i s D e r s i o n c u r v e s i n d i c a t e d

t h e c o n f i g u r a t i o n t o be D t h rough i t s r e l a t i o n t o D-mandelic a c i d a n d D - l a c t i c a c i d by t h e i r n e g a t i v e Co t ton e f f e c t s . ' The a s s i g n m e n t s were conf i rmed th rough an i n d e p e n d e n t chemical t r a n s - f o r m a t i o n . 1 4

2 . 7 S p e c t r o p h o t o m e t r 2 . 7 1 " 1 t r a v i 01 e:' ' ''

S o l u t i o n A max, mp E x

0.1N H C 1 2 8 5 s h . 2 . 4 5 2 80 2 . 7 5 2 0 8 7 . 0 0 2 9 5 4 . 5 0 2 4 3 7 . 1 0 2 8 0 2 . 8 0 2 20 7 . 3 0

pH 1 0 . 5 2 9 3 4 . 9 0 2 43 7 . 6 0

I s 0s b e s t i c p o i n t s 281 2 . 7 5

2 66 1 . 4 0 2 3 2 4 . 8 0

PH 7

Page 158: Florey Vol 1

C. F. SCHWENDER

2.72 D e t e r m i n a t i o n o f D i s s o c i a t i o n C o n s t a n t s ( p K ’ a )

F i r s t phenol Amine Second p h e n o l R e f e r e n c e

8 . 7 2 9 . 7 2 1 5 8 .90 t 0 . 0 6 9 . 7 8 k 0 . 0 9 > 1 2 18

2 . 7 3 I n f r a r e d a b s o r p t i o n of L e v a r t e r e n o l Bi t a r t r a t e ’ 7 ’ 2 0

v i n cm-’ (KBr) :3450 ( O H ) ; 2700-2200 ( a c i d i c h y d r o g e n ) ; 1740 ( S O O H ) ; 1 6 5 0 , 1630, 1590 and 1400 ( C = C , C O O - , N H 3 ) .

2 . 7 4 Mass S p e c t r u m

Mass m/e ( r e l . i n t . , 9 )

169 169 ( 3 ) ; 1 5 3 ( 7 ) ; 151 ( 8 ) ; 139 ( 3 0 ) ; 137 ( 7 ) ; 124 ( 4 ) ; 123 ( 6 ) ; 111 ( 5 ) ; 9 3 ( 3 0 ) ; 77 ( 7 ) . (The s p e c t r u m was t a k e n on a H i t a c h i - P e r k i n Elmer RMU-6D w i t h e l e c t r o n beam e n e r g y of 70eV u s i n g t h e d i r e c t h e a t e d i n l e t s y s t e m . ) l g

( 2 1 ) ; 93 ( 7 5 ) ; 62 ( 6 9 ) ; 32 ( 5 2 ) ; 30 ( 9 7 ) . (JEACO JMS- 01 , p h o t o p l a t e - M a t t a u c h - H e r z o g ) . 2 0

169 169 ( 2 5 ) ; 139 ( 1 0 0 ) ; 1 1 1

3. S y n t h e s i s and R e s o l u t i o n

r e p o r t e d 2 ’ w i t h u t i l i t y i n l a r g e s c a l e p r e p a r a - t i o n . The r o u t e employed a p h o s p h o r o u s oxychl o r i d e m e d i a t e d a c y l a t i o n of c a t e c h o l ( I ) by a - c h l o r o a c e t i c a c i d . The c r u d e 4 - c h l o r o - a c e t y l c a t e c h o l ( 1 1 ) o b t a i n e d was f u r t h e r r e a c t e d w i t h ammonia i n a l c o h o l and a r t e r e n o n e ( 1 1 1 ) was

3 . 1 The s y n t h e s i s o f a r t e r e n o l ( I V ) h a s been

156

Page 159: Florey Vol 1

LEVARTEREN’OL BITARTRATE

o b t a i n e d . The p u r i f i e d a r t e r e n o n e was hydro- gena ted a s i t s h y d r o c h l o r i d e s a l t over pa l l ad ium on cha rcoa l as c a t a l y s t . Racemic a r t e r e n o l ( I V ) was o b t a i n e d by p r e c i p i t a t i o n wi th ammonia. A s i m i l a r p r e p a r a t i o n of d l - a r t e r e n o l u t i l i z i n g t h e p r o t e c t e d 3 ,4-d i ace toxy-a - ( b r o m o ) ace tophenone i n t e r m e d i a t e has been d e s c r i b e d . 2 2

H O - I

H U I 1

I11 IV

3 .2 The f i r s t s u c e s s f u l r e s o l u t i o n of racemic a r t e r e n o l was d e s c r i b e d by Tul 1 a r . ’ A n i n d u s t r i a l s c a l e r e s o l u t i o n was d e s c r i b e d us ing d - t a r t a r i c a c i d a n d methanol . The l e v a r t e r e n o l d - b i t a r t r a t e f r a c t i o n o b t a i n e d by c r y s t a l l i z a t i o n was conve r t ed t o i t s f r e e base f o r m by p r e c i p i t a - t i o n from a methanol s o l u t i o n w i t h ammonia. Repeated p r e c i p i t a t i o n s of ZLenriched a r t e r e n o l from 8 - t a r t r a t e s o l u t i o n s with ammonia gave t h e l e v a r t e r e n o l w i t h t h e r e q u i r e d o p t i c a l pu r i t y . The r e s o l v e d base was a l s o c r y s t a l l i z e d a s i t s d -b i t a r t r a t e s a l t . Ar t e reno l of l e s s e r o p t i c a l p u r i t y was r e c o v e r e d , racemi zed wi t h hydrochl o r i c a c i d a n d r e c y c l e d through t h e r e s o l u t i o n p rocedure T u l l a r 6 ” modi f ied t h e p rocedure t h r o u g h a r e c r y s t a l l i z a t i o n of t h e b i t a r t r a t e s a l t f rom

157

Page 160: Florey Vol 1

C. F. SCHWENDER

w a t e r . Ruschig a n d S t e r n have d e s c r i b e d t h e r e s o l u t i o n of a r t e r e n o l u t i l i z i n g 2-mandelic a c i d . '

4 . S t a b i l i t y of L e v a r t e r e n o l

4 . 1 Sol u t i ons Leva r t e reno l b i t a r t r a t e mav be s t o r e d a t

pH 3 .6 i n a w e l l - f i l l e d ampul i n t h ; p r e sence of 0 . 1 % NaHS03. Exposure t o a i r , i n an a l k a l i n e or n e u t r a l pH r e s u l t e d i n d e t e r i o r a t i o n of t h e sample accompanied by a da rken ing of t h e s o l u t i o n t o a b r o w n c o l o r . D i l u t i o n o f l e v a r t e r e n o l i n plasma, 5% d e x t r o s e , o r s a l i n e c o n t a i n i n g ascorblc ac id r e s u l t e d i n n o s i g n i f i c a n t l o s s of a c t i v i t y a f t e r 9 hours a t room t e m p e r a t u r e . S a l i n e d i l u e n t w i t h o u t a s c o r b i c ac id a l lowed l o s s of a c t i v i t y . Leva r t e reno l a s t h e bi t a r t r a t e s a l t o r i n t h e f r e e base form behaved s i m i l a r l y . S o l u t i o n s of l e v a r t e r e n o l bi t a r t r a t e i n t h e p re sence of sodium b i s u l f i t e coul d be s t e r i l i z e d a t 115°C f o r 30 minutes w i t h a p p a r e n t n e g l i g i b l e l o s s of a c t i v i t y . 2 3

I n f u s i o n s o l u t i o n s of l e v a r t e r e n o l i n i s o t o n i c g l u c o s e , sodium c h l o r i d e or sodium b i c a r b o n a t e were s t a b l e a t l e a s t f o u r hours a t room t e m p e r a t u r e . '

4 . 2 Racemi z a t i o n Leva r t e reno l bi t a r t r a t e monoh-ydrate wi 1 1

become racemized u p o n h e a t i n g f o r 3 minutes a t 120". Concen t r a t ed h y d r o c h l o r i c a c i d w i l l cause complete r acemiza t ion o f l e v a r t e r e n o l s o l u t i o n s a f t e r 2 hours a t 80-90".'

4 . 3 Oxida t ion Leva r t e reno l undergoes an a u t o x i d a t i on

t o noradrenochrome i n t h e p re sence of oxygen a n d d i v a l e n t metal i o n s such a s C u t ' , Mn+2 o r N i t ' . S ince c h e l a t i n g a g e n t s p reven t t h e o x i d a t i o n , a l e v a r t e r e n o l - m e t a l i o n complex probably i s necessa ry f o r t h e o x i d a t i o n t o o c c u r . The

158

Page 161: Florey Vol 1

LEVARTERENOL BITARTRATE

r e a c t i o n may p r o c e e d a t 37” i n e i t h e r s o d i u m b i c a r b o n a t e o r s o d i u m p h o s p h a t e b u f f e r a n d may be f o l l o w e d s p e c t r a l l y b y t h e a p p e a r a n c e o f t h e o x i d a t i on p r o d u c t a t 400 mu. ’

moH H

N o r a d r e n o c h r o m e

5 . M e t a b o l i s m

a c t i o n o f t w o enzymes , monoamine o x i d a s e (MAO) and c a t e c h o l 0 - m e t h y l t r a n s f e r a s e ( C O M T ) . D e a m i n a t i o n a n d 0 - m e t h y l a t i o n l e a d s t o a number o f u r i n e m e t a b o l i t e s .

L e v a r t e r e n o l ( I ) i s m e t a b o l i z e d i n man b y t h e

5 . 1 M e t h y l a t i o n L e v a r t e r e n o l ( I ) i s m e t h y l a t e d b y

c a t e c h o l 0 - m e t h y l t r a n s f e r a s e g i v i n g n o r m e t a - n e p h r i n e ( I I ) . 2 7 ’ 2 8 D e a m i n a t i o n o f I 1 t o an a l d e h y d e i n t e r m e d i a t e and o x i d a t i o n o r r e d u c t i o n o f t h e a l d e h y d e l e a d s t o 4 - h y d r o x y - 3 - m e t h o x y - p h e n y l g l y c o l ( I I I ) , o r 4 - h ~ d r o x y - 3 - m e t h o x y - m a n d e l i c a c i d ( I V ) . 2 5 ’ 2 6 ’ 2

5 . 2 D e am i n.a t i o n D e a m i n a t i o n o f l e v a r t e r e n o l b y t h e

monoami n e o x i d a s e g i v e s an a1 dehyde i n t e r m e d i a t e w h i c h l e a d s t o t h e g l y c o l ( V ) o r 3 , 4 - d i h y d r o x y - m a n d e l i c a c i d ( V I ) . C a t e c h o l 0 - m e t h y l a t i o n o f V and V I l e a d s t o 111 and I V .

5 . 3 E x c r e t i o n P r o d u c t s Human u r i n a r y m e t a b o l i t e s i s o l a t e d f r o m

p a r e n t e r a l l y a d m i n i s t e r e d , i s o t o p i c a l l y l a b e l l e d , l e v a r t e r e n o l i n d i c a t e d t h a t t h e m a j o r m e t a b o l i t e s w e r e I 1 and I V w h i c h w e r e each p r e s e n t i n q u a n t i t i e s o f 2 0 - 4 0 % o f t h e i n j e c t e d d o ~ e . ~ ~ ’ ~ ’ A n o t h e r 5 % a p p e a r e d a s t h e s u l f a t e c o n j u g a t e o f III.?’ A l s c a p p e a r i n g i n t h e u r i n e

159

Page 162: Florey Vol 1

C. F. SCHWENDER

was a b o u t 4% o f I a n d 10% o f V I . 3 1 The r a t i o s o f t h e e x c r e t i o n products changed when t h e r a t e o f i n f u s i o n var ied or endogenous l e v a r t e r e n o l was s t u d i e d . Endogenous l e v a r t e r e n o l was metabol ized mainly t o I V whi le I 1 occurred i n only one- ten th t h e a m o u n t o f I V . Other c a t e c h o l s were e x c r e t e d i n only minor q u a n t i t i e s . The methylat ion p a t h w a y was found t o account f o r t w o - t h i r d s o f a n i n j e c t e d dose whi le t h e deaminase route was the i n i t i a l r o u t e f o r only o n e - f o u r t h o f t h e dose. 3 0

5 . 4 Conjugates I n m a n , I V i s e x c r e t e d as t h e f r e e a c i d

while I 1 i s a g lucuronide a n d I 1 1 i s t h e s u l f a t e form. The metabolism o f l e v a r t e r e n o l in t h e r a t leads t o t h e same u r i n a r y p r o d u c t s . However, t h e glycol s u l f a t e ( 1 1 1 ) r e p l a c e s I V as t h e m a j o r m e t a b o l i t e . The r a t a l s o e x c r e t e s I V as t h e glucuronide while t h e f r e e a c i d i s e x c r e t e d in m a n . 3 0

160

Page 163: Florey Vol 1

LE

VA

RT

ER

EN

OL

BIT

AR

TR

AT

E

U

Y

T----l I

u II

CF

O

I

0

XI

y"

8- I

L

OI

I

0 I

mo

11

u

I

0

0

V 11

v-0

b- o

o

XI

I

0

I

0

N

0

m I

0

I

0

N I

u I XI

y-0

b I

\

0 Q>

II

161

Page 164: Florey Vol 1

C. F. SCHWENDER

5.5 M i n o r M e t a b o l i c P a t h w a y s T h e i n s t a b i l i t y o f l e v a r t e r e n o l in vitro

i s r e l a t e d t o o x i d a t i v e - c y c l i z a t i o n t o n o r a d r e n o - c h r o m e . T h e p o s s i b i l i t y e x i s t s t h a t a m i n o r r o u t e o f m e t a b o l i s m in vivo may i n v o l v e s u c h a n o x i d a t i o n . H o w e v e r , s u c h a m e t a b o l i t e h a s n o t b e e n d e t e c t e d . T h e r e f o r e , i t was c o n c l u d e d t h a t t h e o x i d a t i o n p r o d u c t i s n o t f o r m e d i n s i g n i f i - c a n t a m o u n t s i f s u c h a p a t h w a y e x i s t s .

5 . 6 D i s t r i b u t i o n S e l e c t i v e u p t a k e a n d r e t e n t i o n o f

l e v a r t e r e n o l b y t h e a d r e n a l g l a n d , h e a r t a n d s p l e e n f o l l o w e d i n t r a v e n o u s i n j e c t i o n s i n c a t s a n d m i c e . A l l t i s s u e s s t u d i e d a p p e a r e d t o b i n d s m a l l a m o u n t s o f l e v a r t e r e n o l . 3 3

6 . M e t h o d s o f A n a l y s i s

6 . 1 E l e m e n t a l A n a l y s i s C a l c d . f o r C B H ~ I N O ~ . C I + H ~ O ~ . H ~ O : C ,

4 2 . 7 3 ; H , 5 . 6 8 ; N , 4 . 1 5 ; 0, 4 7 . 4 4 . . -

C a l c d . f o r C B H ~ ~ N O ~ . C I + H ~ O ~ : C , 4 5 . 2 0 ; H, 5 . 3 3 ; N , 4 . 4 0 : 0, 4 5 . 0 7 .

6 . 2 C o l o r i m e t r i c A n a l y s i s C o l o r c o m p l e x e s w i t h c a t e c h o l a m i n e s a r e

g e n e r a l l y t h e l e a s t s p e c i f i c a n d l e a s t a c c u r a t e m e t h o d s f o r d e t e r m i n i n g c o n c e n t r a t i o n s . H o w e v e r , h i g h l y c o l o r e d c o m p l e x e s a r e o f t e n u s e f u l i n t h e v i s u a l i z a t i o n o f c h r o m a t o g r a m s .

6 . 2 1 T h e c o n d e n s a t i o n o f 1 , 2 - n a p h t h o q u i n o n e - 4 - s o d i u m s u l f o n a t e w i t h a r t e r e n o l g e n e r a t e s a ’ p u r p l e c o l o r w h i c h c a n b e q u a n t i t a t e d a t 5 4 0 mp. T h i s p r o c e d u r e i s s e l e c t i v e f o r t h e p r i m a r y a m i n e i n t h e p r e s e n c e o f e p i n e p h r i n e a n d can be a p p l i e d t o p h a r m a c e u t i c a l q u a l i t y c o n - t r 0 1 . ~ ~ ’ ~ ~ T h e s e n s i t i v i t y i s l i m i t e d t o 50 p g .

i n a n a c e t a t e b u f f e r pH 6 f o r m s a c o l o r d u e t o t h e p r o d u c t i o n o f n o r a d r e n o c h r o m e m e a s u r e d a t

6 . 2 2 O x i d d t i o n o f a r t e r e n o l b y i o d i n e

162

Page 165: Florey Vol 1

LEVARTERENOL BITARTRATE

5 2 9 The s e n s i t i v i t y i s l i m i t e d t o 20 1-19.

6 .23 The r e d u c t i o n of a r senomolybd ic ac i d by c a t e c h o l ami nes can be measured q u a n t i t a t i v e l y a t 6 9 0 mu. by t h e a p p e a r a n c e o f a b l u e c o l o r . The r e d u c t i o n i s b e l i e v e d t o p roceed th rough t h e a1 kal i n e oxi d a t i on p r o d u c t o f c a t e c h o l a m i n e s . T h i s p r o c e d u r e i s s e n s i t i v e t o 40 n g .

6 .24 Col o r R e a c t i o n s

Reagent x max. ( c o l o r ) R e f e r e n c e

s o d i u m molybdate b l u e t e t r a z o l i u m p - n i t r o b e n z e n e

di azonium c h l o r i d e Hg(OAc)2 ,HOAc,NaN02 N i nhydr i n KIFe(CN)G K j Fe ( C N ) 6 -Fen ( S o b ) 3

FeCl3

400 mu 530 mu 640 mu ( y e l l ow-green) 530 mu( p u r p l e ) mus ta rd 1 a v e n d e r - b rown b l u e green

39 40

41 43 43 43 43

2

6 . 3 F l u o r o m e t r i c A n a l y s i s Q u a n t i t a t i v e a n a l y s i s of c a t e c h l o a m i n e s

d e r i v e d f r o m b i o l o g i c a l s o u r c e s most o f t e n has been perfrjrmed u t i l i z i n g f l u o r o m e t r i c p r o c e d u r e s . The f l u o r e s c e n c e i s measured on p r o d u c t s d e r i v e d from t h e o x i d a t i o n of t he c a t e c h o l n u c l e u s of a r t e r e n o l t o noradrenochrome. Noradrenochrome i s s t a b i l i z e d a s n o r a d r e n o l u t i n w i t h a l k a l i o r c o n v e r t e d t o a t r i c y c l i c c o n d e n s a t i o n p roduc t by e t h y l e n e d i amine.

163

Page 166: Florey Vol 1

C. F. SCHWENDER

H O p / C H 2 N H 2 )M H noradrenochrome

H

O H - a r t e r e n o l

(yJ$ H H

e thy lened iamine condensa te n o r a d r e n o l u t i n

6.31 The f l u o r o m e t r i c a n a l y s i s of l e v a r t e r e n o l by t h e e thy lened iamine m e t h ~ d ~ ” ~ ~ invo lves h e a t i n g l e v a r t e r e n o l a t a c i d i c pH a n d 50’ i n t h e p re sence of e t h y l e n e d i a m i n e . The r e s u l t i n g condensa te i s measured a t a n e x c i t a t i o n wavelength of a b o u t 420 a n d f l u o r e s c e n c e a t wave- l e n g t h s of 510 a n d a b o u t 600 m u . The r e a d i n g s a r e compared wi th s t a n d a r d s o l u t i o n s . The s e n s i t i v i t y l i m i t i s 2 n g .

a r t e r e n o l a n a l y s i s u t i l i z e s t h e o x i d a t i o n o f a r t e r e n o l t o noradrenochrome a t pH 6 by f e r r i c y a n i d e . The conve r s ion o f noradrenochrome t o t h e f l u o r e s c e n t noradrenol ut i n i s accompli s h e d by t h e a d d i t i o n o f a l k a l i . The a d d i t i o n o f a s c o r b i c a c i d o r 2 -mercaptoe thanol s t a b i l i z e s n o r a d r e n o l u t i n from f u r t h e r oxi d a t i on a n d t h e subsequent l o s s o f f l u o r e s c e n c e , A ex 400-A em. 500 mu.

6.32 The t r i h y d r o x y i n d o l e method37 of

Page 167: Florey Vol 1

L E V A R T E R E N O L BITARTRATE

6 . 4 S p e c i f i c R o t a t i o n The o f f i c i a l U.S. P h a r m a c o p e i a a s s a y '

f o r l e v a r t e r e n o l i n v o l v e s t h e p r e p a r a t i o n o f t h e t r i a c e t y l d e r i v a t i v e o f l e v a r t e r e n o l f r o m an aqueous s o l u t i o n . The s p e c i f i c r o t a t i o n o f t h e i s o l a t e d t r i a c e t y l d e r i v a t i v e o f l e v a r t e r e n o l i s u t i l i z e d t o c a l c u l a t e t h e w e i g h t o f l e v a r t e r e n o l p r e s e n t i n t h e o r i g i n a l aqueous s o l u t i o n b y t h e f o r m u l a 1 .1423W(0, .5+0.5R/80) when W i s t h e w e i g h t i n mg. and R i s t h e s p e c i f i c r o t a t i o n o f t h e i s o l a t e d t r i a c e t y l l e v a r t e r e n o l .

7. C h r o m a t o g r a p h y

7.1 E l e c t r o p h o r e s i s L e v a r t e r e n o l was a P D l i e d n e a r t h e anode

o f Whatman 3MM p a p e r . An EEL a p p a r a t u s ( E v a n s E l e c t r o s e l e n i u m , L t d . ) was u s e d w i t h 0 . 0 4 M s o d i u m a c e t a t e b u f f e r pH 5 . 6 w i t h a p o t e n t i a l g r a d i e n t o f 10 V/cm. L e v a r t e r e n o l m i g r a t e d 8 - 1 0 cm. t o w a r d t h e c a t h o d e i n 2 h o u r s . The s p o t was v i s u a l i z e d b y i t s f l u o r e s c e n c e w i t h e t h y l - e n e d i ami n e .

165

Page 168: Florey Vol 1

7.2 P a p e r a n d T h i n L a y e r C h r o m a t o g r a p h i c A n a l y s i s

s o l v e n t S y s t e m a T y p e S u p p o r t K f V i s u a l i z a t i o n C R e f .

P h e n o l p a p e r b 0 . 2 2 1, 2 46 88% P h e n o l ( s a t u r a t e d

w i t h 1N HC1)d p a p e r (Whatman # 1 ) 0 . 2 7 - 0 . 3 3 1, 2 43, 52 BuOH ( s a t u r a t e d w i t h

B u O H - H O A C - H ~ O ( 4 ~ 1 ~ 5 ) p a p e r 0 . 2 8 2 45 , 48 , 49 BuOH-HOAc-H20 ( 1 2 : 3 : 5 I e p a p e r (Whatman # 4 ) 0 . 5 8 1 50 BuOH-C5H5N-HOAc ( 7 : 2 : 1 ) p a p e r 0 . 3 5 1 , 5 51 PrOH-EtOAc-NHsOH ( 7 : 9 : 1 ) p a p e r 0 . 1 3 1 , 5 51

1 N HC1) p a p e r 0 . 3 0 6 47

0 n v1 0 1

- BuOH-C5H5N-0.2M NaOAc p a p e r (Whatman # 1 ) 0 . 7 5 1, 4 52 5

B u O H - C S H S N - H ~ O ( 1 : l : l ) p a p e r (Whatman # 1 ) 0 . 7 4 1 , 4 52 2

C ~ H ~ - M ~ O H - B U O H - C S H S N - H Z O p a p e r (Whatman # I ) 0 . 6 3 1, 4 5 2 xi

( 1 : l : l )

( 1 : 2 : 1 : 1 : 1 )

cn cn

z

PhCH3-EtOAc-CsHsN-H20- p a p e r (Whatman # 1 ) 0 . 8 2 1, 4 52

H 2 0 ( s a t u r a t e d w i t h MEK) p a p e r b 0 . 1 6 1, 4 52 BuOH-EtOH-H20 ( 2 : l : 1 ) p a p e r (Whatman # 1 ) 0 . 4 0 1, 4 52 PhCH3-EtOAc-MeOH-0.1 N p a p e r (Whatman # 1 ) 0 . 7 6 1, 4 52

t - B u O H - a c e t o n e - C ~ H ~ C 0 0 H p a p e r (Whatman # 1 ) 0 . 3 4 1, 4 52

C ~ I - I ~ - C ~ H ~ C O O H - H ~ O p a p e r (Whatman # 1 ) 0 . 9 0 1 , 4 52

MeOH ( 1 :1 :1 : 1 : 1 )

HC1 ( 1 : l : l : l )

- H 2 G ( 1 6 0 : 1 6 0 : 1 : 3 9 )

( 2 : l : l )

Page 169: Florey Vol 1

S o l v e n t Sys tema Type S u p p o r t Rf Y i s u a l i z a t i o n c R e f .

PrOH-HOAc-H20 ( 7 0 : 5 : 2 5 )

B u O H ( s a t u r a t e d w i t h

Cycl o h ex a n e - C H -

Me O H Acetone MeOH

B u O H - C ~ H ~ N - H ~ O ( 4 ~ 1 ~ 1 )

3N H C 1 )

N H ( C H 3 ) 2 ( 1 5 : 3 : 2 )

E t O H .J BuOH-HCOOH-H20

( 1 2 : 1 : 7 ) 2 - P r O H - O . 1 N H C 1 ( 5 : l )

PrOH-H20 ( 6 5 : 3 5 )

Heptane-CC14-MeOH (7: 4: 3 )

p a p e r (Whatman # 1 ) 0 . 5 1 g l a s s f i b e r p a p e r 0 . 5 7 c e l l u l o s e t h i n

1 a y e r 0 . 0 2 s i l i c a g e l t h i n

l a y e r - 0 . 1 M K O H 0 . 0 2 same 0 . 2 1 same 0 . 1 5 s i l i c a g e l t h i n

l a y e r - 0 . 1 M NaHS04 0 . 6 6 same 0 . 5 0 s i l i c a ge l t h i n

l a y e r - c i r c u l a r 0 . 5 c e l l u l o s e t h i n

l a y e r 0 . 1 9 c e l l ul o s e t h i n

c e l l u l o s e t h i n l a y e r 0 . 5 6

l a y e r 0 . 0 8

1 , 2 1 , 3

2

6 6 6

6 6

1

5 , 7 9 9

1, 4 9 59 8

1 , 4 , 5 , 8

6 3 55

53

54 54 54

54 54

56

57

5 8

5 8

Page 170: Florey Vol 1

C. F. SCHWENDER

7 . 2 F o o t n o t e s a . A b b r e v i a t i o n s used: HOAc ( a c e t i c

a c i d ) , CGHG(benzene) B u O H ( b u t a n o l , CC14 ( c a r b o n t e t r a c h l o r i d e ) , CHCl3 ( c h l o r o f o r m ) , E t O H ( e t h a n o l ) , EtOAc ( e t h 1 a c e t a t e ) , H C O O H ( f o r m i c a c i d ) , MeOH ( m e t h a n o l 7 , MEK ( m e t h y l e t h y l ketone), PrOH ( p r o p a n o l ) , C 2 H 5 C O O H ( p r o p i o n i c a c i d ) , C ~ H S N ( p r i d i n e ) , NaOAc ( s o d i u m a c e t a t e ) , P h C H 3 ( t o l u e n e .

b . A s c e n d i n g d e v e l o p m e n t c . R e a g e n t s : 1 ( n i n h y d r l n ) ,

2 (K3Fe[CN]6) , 3 (ethylenediamine-fluorescence) , 4 ( d i a z o t i z e d s u l f a n i l i c a c i d ) , 5 ( d i a z o t i z e d p - n i t r o a n i 1 i n e ) , 6 ( I od i n e - m e t h a n o l ) , 7 ( f e r r o - c i t r a t e ” ) , 8 ( p - d i m e t h y l ami n o b e n z a l d e h y d e ) , 9 ( F e r r i c c h l o r i d e ) .

t a i 1 i n g .

p r e v e n t t a i l i n g and s e c o n d a r y s p o t s due t o s a l t m i x t u r e s .

7

d . 8 - H y d r o x y q u i n o l i n e added t o p r e v e n t

e . 5% t r i c h l o r o a c e t i c a c i d added t o

168

Page 171: Florey Vol 1

7 . 3 G a s - L i q u i d C h r o m a t o g r a p h i c A n a l y s i s o f L e v a r t e r e n o l

T e m p e r a t u r e , R e t e n t i on D e r i v a t i v e Col u m n F 1 ow R a t e ( m i n . ) R e f .

T r i f l u o r o a c e t y l Gaschrom P/20% G E - 1 9 0 " , 8 0 m l / m i n , 1 . 9 2 XFl105 N P

59

Gaschrom P / 1 2 % 170" 8 0 m l / m i n y 0 . 9 2

Gaschrom P/7% 1 5 0 " , 80ml /min , 0 . 8 6 DC1107 N 2

DC560 N Z T r i m e t h y l s i l y l Gaschrom P ( a c i d 715" - 125" 1 4 60

w a s h ) / 0 . 5 % I o\ QF-I, 0 . 0 5 % e t h y l - 1 . 5 Kg/cm2 , A Q e n e g l y c o l s u c c i n a t e

C h romosorb W/6% 200" , 38ml/mi n 2 . 0 4 61 SE-30 N 2

N 2

e t h e r - 2 - p e n t y l - SE-30 N 2

i m i ne

2 2 0 " , 38ml/min , 1 . 8 4

T r i m e t h y l s i l y l Gaschrom P / 3 . 5 % 1 8 0 " , 1 2 0 m l / m i n , 1 2 . 5 62

r rn < D n

Page 172: Florey Vol 1

C. F. SCHWENDER

8. References

1 .

2 .

3.

4 .

5 .

6 .

7 .

8 .

9 . 1 0 .

1 1 .

1 2 . 1 3 .

1 4 .

1 5 .

1 6 .

1 7 .

R e v i e w e d by E . L . P r a t t , M. A . B o r i s e n o k , R . S . B r o w n i n g , J . P . D u l i n , T . G . G e r d i n g , W . G . Gorman , W . W . H o u g h t a l i n g , R . K . K u l l n i g , F. C . N a c h o d , G . A . P o r t m a n n , L . D . S h a r g e l , J . U . S h e p a r d s o n , I . S . S h u p e a n d B . F . T u l l a r o f S t e r l i n g - W i n t h r o p R e s e a r c h I n s t i t u t e a n d W i n t h r o p L a b o r a t o r i e s . The U n i t e d S t a t e s P h a r m a c o p e i a , E i g h t e e n t h R e v i s i o n , Mack P u b l i s h i n g C o . , E a s t o n , P a . , 1 9 7 0 , p . 3 6 2 . R . L . C l a r k e , J . A m . Pharm. A s s o c . 43, 681 ( 1 9 5 4 ) . H . H e l l b e r g , J . Pharm. PharmacoZ. 7, 1 9 1 ( 1 9 5 5 ) . J . C . C r a i g a n d S . K . Roy , T e t r a h e d r o n 2 1 , 1 8 4 7 ( 1 9 6 5 ) . B . F . T u l l a r , J . A m . Chem. S o c . 7 0 , 2 0 6 7 ( 1 9 4 8 ) . B . F . T u l l a r , U.S. 2 , 7 7 4 , 7 8 9 (Dec 1 8 , 1 9 5 6 ) . H . R u s c h i g a n d L . S t e i n , U.S. 2 , 8 2 0 , 8 2 7 ( J a n . 2 1 , 1 9 5 8 ) . F. F a b i a n , Br i t . 8 1 6 , 8 5 7 ( J u l y 2 2 , 1 9 5 9 ) . Lucius a n d B r u n i n g , Bri t . 7 9 0 , 9 2 0 ( F e b . 1 9 , 1 9 5 8 ) . C . B . F r i e d m a n n , C . W . P i c a r d a n d F . F a b i a n , Br i t . 7 4 7 , 7 6 8 ( A p r i l 11 , 1 9 5 6 ) . W . L a n g e n b e c k , Pharrnazie 5, 5 6 ( 1 9 5 0 ) . L . H . W e l s h , J . A m . Pharm. A s s o c . , S c i . E d . 4 4 , 5 0 7 ( 1 9 5 5 ) . P . P r a t e s i , A . LaManna , A . C a m p i g l i o a n d V . G h i s l a n d i , J . Chem. S o c . 2 9 5 8 , ( 2 0 6 9 ) . T . Kappe a n d M . D. A r m s t r o n g , J . Med. Chem. 8 , 3 6 8 ( 1 9 6 5 ) . E . W a a l a s , 0 . W a l a a s a n d S . H a a v a l d s e n , A r c h . B i o c h e m . B i o p h y s . 1 0 0 , 9 7 ( 1 9 6 3 ) . 0 . R . Sammul , W . L . B r a n n o n a n d A . L . H a y d e n , J . Assoc . Off. AnaZ. Chem. 4 7 , 9 1 8 ( 1 9 6 4 ) .

I70

Page 173: Florey Vol 1

LEVARTE RE NOL BI TAR TR ATE

18.

1 9 .

20.

21 . 2 2 .

23 .

24.

2 5 .

26 .

2 7 .

28. 2 9 .

3 0 .

31.

32 .

33.

34.

35 .

3 6 .

G . P . Lewis, B r i t . J. PharmacoZ. 9 , 488 ( 1 9 5 4 ) . J . R e i s c h , R . P a g n u c c o , H . A l f e s , N . J a n t o s and H . Mol lmann,J . Pharm. PharmacoZ. 20, 81 ( 1 9 6 8 ) . R . W . K u l l n i g , S t e r l i n g - W i n t h r o p R e s e a r c h I n s t i t u t e , p e r s o n a l communi c a - t i o n . K . R . P a y n e , I n d . C h e m i s t 3 7 , 5 2 3 (1961). D. R . Howton, J . F . Mead and W . H . Clark, J . Am, Chem. S o c . 7 7 , 2896 ( 1 9 5 5 ) . G . B . Wes t , J . Pharm. P h a r m a c o l . 4, 560 ( 1 9 5 2 ) . J . Haggendal and G . J o h n s s o n , A c t a PharmacoZ. T o x i c o Z . 2 5 , 461 ( 1 9 6 7 ) . M . S a n d l e r and C . R. J . Ruthven , P r o g . Med. Chem. 6 , 200 ( 1 9 6 9 ) . J . A x e l r o d , A d r e n e r g i c Mechan i sms , C i b a F o u n d a t i o n Symposium, p . 2 8 , 1 9 6 0 . L i t t l e , Brown and Company. B o s t o n . ( E d s . J . R . Vane, G . E . W . Wols tenholme and M . O ' C o n n o r ) . J . A x e l r o d , S . Senoh and B . W i t k o p , J . B i o l . Chem. 2 3 3 , 697 ( 1 9 5 8 ) . J . A x e l r o d , S c i . 1 2 7 , 754 ( 1 9 5 8 ) . J . A x e l r o d , PharmacoZ. R e v . 11, 402 ( 1 9 5 9 ) . J . A x e l r o d , I . J . Kopin and J . D . Mann, B i o c h i m . B i o p h y s . A c t a 3 6 , 576 ( 1 9 5 9 ) . McC. G o o d a l l , P h a r m a c o l . R e v . 1 1 , 416 ( 1 9 5 9 ) . R . W . S c h a y e r and R . L . S m i l e y , J . B i o Z . Chem. 2 0 2 , 425 ( 1 9 5 3 ) . L . G . Whi tby , J . A z e l r o d and H . W e i l - M a l h e r b e , J . PharmaeaZ. E x p . T h e r . 1 3 2 , 1 9 3 ( 1 9 6 1 ) . M . E . A u e r b a c h , Drug S t a n d a r d s 2 0 , 1 6 5 ( 1 9 5 2 ) . H . P e r s k y , M e t h o d s B i o c h e m . A n a l . 2 , 57 ( 1 9 5 4 ) . H . W e i l - M a l h e r b e and A . D. Bone, B i o c h e m . J. 5 2 , 311 ( 1 9 5 2 ) .

171

Page 174: Florey Vol 1

C. F. SCHWENDER

37.

3 8 .

39.

40.

41 .

42.

43.

44 .

45.

46. 47.

48.

49.

50 .

5 1 .

52 .

53 .

54 . 55.

56.

H . W e i l - M a l h e r b e , Methods Biochem. A n a l . 1 6 , 293 ( 1 9 6 8 ) . T . Canback and J . G . L . H a r t h o n , J . Pharm. PharmacoZ. 1 2 , 764 ( 1 9 5 9 ) . J . Holmekoski and A . K i v i n e n , Farm. A i k a k 75 , 223 ( 1 9 6 6 ) , Chem. A b s t r s . 6 6 , 57969 ( 1 9 6 7 ) . E . F. S a l i m , P . E . Manni and J . E . Sinshe imer , J . Pharm. S c i . 5 3 , 391 ( 1 9 6 4 ) . K . H . B e y e r , J . A m . Chem. Soc . 6 4 , 1 3 1 8 ( 1 9 4 2 ) . H . J e n s e n , J . P . G i l l e t and E . N e u z i l , Ann. B i o Z . CZin. 2 6 , 73 ( 1 9 6 8 ) , Chem. A b s t r s . 68, 102195 p ( 1 9 6 8 ) . M . Gol -denberg , M . F a b e r , E . J . A l s t o n and E . C . C h a r g a f t , S c i . 2 0 9 , 534 (1949). C . V a l o r i , C . A . B r u n o r i , V . Renz in i and L . C o r e a , AnaZ. Biochem. 33, 1 5 8 ( 1 9 7 0 ) . H . Weil-Maherbe and A . D . Bone, Biochem. J . 6 7 , 6 5 ( 1 9 5 7 ) . W . 0 . J a m e s , Nature 2 6 1 , 851 ( 1 9 4 8 ) . C . Romano, B U Z Z . SOC. i t a l . b i o Z . s p e r . 2 6 , 1230 ( 1 9 5 0 ) Chem. A b s t r s . 4 5 , 7622e ( 1 9 5 1 ) . D. M . S h e p h e r d and G . B . West, N a t u r e 2 7 1 , 1160 ( 1 9 5 3 ) . H . W e i l - M a l h e r b e and A . D . Bone, d . C Z i n PathoZ. 2 0 , 1 3 8 ( 1 9 5 7 ) . B . Robinson and D . M . S h e p h e r d , J . Pharm. PharmacoZ. 1 3 , 374 ( 1 9 6 1 ) . . J . K r a u t h e i m and J . Blumberg , Med. EX^. 7, 8 ( 1 9 6 2 ) . E . G . McGeer and W . H . C l a r k , J . Chromatog . 1 4 , 107 ( 1 9 6 7 ) . W . P . d e P o t t e r and R . F . V o c h t e n , E x p e r i e n t i a 21 , 482 ( 1 9 6 5 ) . W . W . F i k e , A n a l . Chem. 38, 1967 ( 1 9 6 6 ) . J . A . S t e r n , M . J . F r a n k l i n and J . Mayer, J . Chromatog. 30, 632 ( 1 9 6 7 ) . A . A l e s s a n d r o and F. M a r i , G. Med. M i l .

172

Page 175: Florey Vol 1

LEVARTERENOL BITARTRATE

57. L. C h a f e t z , A . I . Kay and H . S c h r i f t m a n , J . Chromatog. 35, 5 6 7 ( 1 9 6 8 ) .

58 . J . D i t t m a n n , J . Chromatog . 32, 7 6 4 ( 1 9 6 8 ) .

5 9 . S . Kawa i and Z . Tamura , Chem. Pharm. BuZZ. 26, 699 ( 1 9 6 8 ) .

6 0 . S . L i n d s t e d t , C Z i n . Chim. A e t a 9 , 309 ( 1 9 6 4 ) .

6 1 . N . P . Sen a n d P . L . McGeer, Bioehem. B i o p h y s . R e s . Commun. 1 3 , 390 ( 1 9 6 3 ) .

6 2 . S . K a w a i , T . N a g a t s u , T . I m a n a r i and Z . Tamura , Chem. Pharm. BuZZ. 1 4 , 6 1 8 ( 1 9 6 6 ) .

6 3 . W . D r e l l , J . A m . Chem. S o c . 7 7 , 5 4 2 9 ( 1 9 5 5 ) .

173

Page 176: Florey Vol 1

MEPERIDINE HYDROCHLORIDE

Nancy P. Fish and Nicholas J. DeAngelis

175

Page 177: Florey Vol 1

NANCY P. FISH AND NICHOLAS J. DeANGELlS

1.

2 .

3. 4. 5. 6. 7.

3.

CaJTi'ENTS

Description 1.1 Name, Formula, tlolecular Weight 1.2 Appearance, Color, Odor Physical Propert ies 2.1 Infrared Spectra 2 b 2 Nuclear Nagnetic itesonance Spectra 2 . 3 Ult rav io le t Spectra 2.b Mass Spectra 2 .5 Optical Rotation 2.6 Melting Range 2.7 D i f f e r e n t i a l Thermal Analysis 2 .a S o l u b i l i t y 2.3 Crystal Proper t ies 2.10 ?olymorphism Synthesis S t a b i l i t y - Degradation Drug Metabolic Products I d e n t i f i c a t i o n Methods of Analysis 7.1 Elemental Analysis 7.2 Spectro2hotometric Assay 7.3 Ti t r imet r ic Assay 7.4 Colorimetric Assay

7.41 Acid Dye 7 bk2 Ammonium Reineckate

7.5 Fluorometric Assay 7.6 Miscellaneous 7.7 Chromatography

7.71 7.72 Colunn Chromatography 7.73 Gas Chromatograghy

Paper and Thin Layer Chromatogra7hy

References

176

Page 178: Florey Vol 1

MEPERl DI NE HYDROCHLORIDE

1. Description

1.1 Name , Formula, Molecular deight Meperidine hydrochloride i s designated by t h e

following chemical pames : e t h y l 1-methyl-b-Fhenylisonipec- o t a t e hydrochloride , N-methyl-!~-phenyl-4-carbethoxypiperi- dine hydr oc h l o r i de e t h y l 1-me t hyl-4 -p henylpiperi dine -4 - c a ~ boxylate hydrochloride2, and the hydrochloride of the e t h y l e s t e r of l~methyl-~-phenylisonipecotic acid2. In Chemical Abstracts the comnound is l i s t e d under the headinp-isonip- e c o t i c acid: dine hydrochloride. i a l names are : Demerol Hydrochloride, Pethidine flydro-

1-methyl-h-phenyl, e t h y l ester and/& mepeEi- The most commonly used t rade o r t r i v -

chloride, and Dolantin. t ion2, lists twenty-txo others .

However, t h e Merck Index, 8 t h Edi -

-

L\/ H C 1

1.2 Appearance, Color, Odor Meperidine hydrochloride i s a f i n e , w h i t e , odor-

less, c r y s t a l l i n e powder

2. Physical Propert ies

2 . 1 Infrared Spectra

chloride, U.S.iP. (Wyeth Lot No. F-665?01; 1.2. spectrum $6728) i s given i n Figure 13. The I.R. spectrum was ob- ta ined on a K B r p e l l e t and is i d e n t i c a l t o t h a t presented by FIanning4. Levi, Hubley, and Hinges published the 1.2. spectrum of meperidine HC1 taken i n a mineral o i l (Nujol) mul l and it i s e s s e n t i a l l y i d e n t i c a l t o t h a t shown i n Figure 1. Assignment of some of t h e absorptions i s given i n Table I.

1.2. spec t ra of meperidine base i n a mineral o i l (Nujol) mull have been publ i hed by Levi, Hubley and HingeS;

and Nelson7 and Levi , Kubley and :Xnge .

The i n f r a r e d (1.3.) spectrum of meperidine hydro-

s i n carbon d i s u l f i d e by Carol 2 ; and i n hloroforn by Pro

177

Page 179: Florey Vol 1

Fig. 1 I.R. Spectrum of Meperidine Hydrochloride, U.S.P., Wyeth Lot No. F-665901. 1% KBr Pellet - Instrument: Perkin Elmer Model 21.

Page 180: Florey Vol 1

MEPERlDlNE HYDROCHLORIDE

T A B U I

IR Spect ra l Assignments of Meperidhe K C 1

Xavelength of Absorption (cm.-’) Vibration Mode near 2900 CH,, CH, s t r e t c h 1730 C = 0 s t r e t c h (ester) near L!XI -CH2 - deformation

[CH, - N deformation 1230 C-0 s t r e t c h (es ter) 700 and 730 aromatic CH o u t of

plane deformation (mono- s u b s t i t u t e d benzene r i n g )

TABLE I1

NMP, Spect ra l Assignments of Meperidine HC1

Chemical Shift (PPE.) 1.1

Protons C H, -C Hz -0 t r i p l e t - 2-73 and 2 0 3 t o

3 .a r i n g CH2 groups --- 2 .as s i n g l e t L . i a q u a r t e t 7.3 aromatic s i n g l e t 11 03 H C 1 s i n g l e t

2.2 Nuclear Napetic Resonance Spectra The nuclear magnetic resonance (L1.R) spectrum

(Fig. 2 ) was obtained by preparing a sa tura ted so lu t ion of meperidine hydrochloride, U S .P. (Wyeth Lot No. : F-665901) in deutero chlorof om containing te t ramethyls i lane as intff- n a l referenceb. The only exchangeable proton i s the hydro- Ken a sociated with HC1. The NMFt proton s p e c t r a l assign- mentsE are given i n Table 11.

2.3 Ul t rav io le t Spectra Oestreicher, Farmilo, and Levi9 reported Amax . a t

251-252 mu ( f -176), 257 m i l ( E‘ -217) and 263 mi ( f -17h) f o r meperidine hydrochloride i n water. l i shed a U.V. spectrum with i d e n t i c a l max. Keperldine hydrochloride, U.S.?. (Vyeth Lot No, F-665901) when scarme

Pro and Nelson7 pub-

d3

179

Page 181: Florey Vol 1

NA

NC

Y P

. FIS

H 'A

ND

NIC

HO

LA

S J. D

eA

NG

EL

lS

180

Page 182: Florey Vol 1

ME

PE

RlD

lNE

HY

DR

OC

HL

OR

IDE

,

i i --- I-.

181

Page 183: Florey Vol 1

NANCY P. FISH A N 0 NICHOLAS J. OeANGELlS

between 350 m u and 2LO mu exhibited h m a x . a t 251.5 mu ( -174), 257.5 mu ( f -2l.4), and 263 m p ( [ -169). spectrum i s shown i n Fig. 3.

2.4 Mass Spectra

T h i s

The mass spectrum of meperidine HC1, U.S.P. (Wyeth Lot No. : F-665901) was obta inedl l by d i r e c t inser t ion of the sample i n t o an MS-902 double focusing mass spectro- meter. The ion source temperature was l h 0 " C . and the ion iz ing electron beam ener was 70 eV. Data were com7iled by Kuhlman and Shade% with the a id of an on-line PDP 8 Digi- t a l Computer.

base a t m/e 247.1563 and there i s an in tense 14-1 peak. The firs7 prominent fragment i s a t mass 232.13L5 which corresponds t o the loss of .CH,. corresponds t o the l o s s of e C 2 H 5 from t h e molEc&r ion. Fragments appear a t masses 202 and 174 which a re formed by a carbonyl cleavage with the l o s s of .OCI!,CH, and

respect ively from t h e molecular ion. ing ions &H,N, C3H7N, and C4H9N are present. m/e 42 i s tne base peak.

the prominent ions are given i n Table 1IIl-l.

Results are summarized as a bar graph (F igu re 4) .

Meperidine H C 1 gave a molecular i o n of t h e free

A peak a t m/e 218.1178

. COCH, CH, The nitrogen contain-

The peak a t

- - The high reso lu t ion mass spectrum assignments of

TABLE I11 High Resolution Mass Spectrum Assignments

of Meperidine H C 1 Measured Mass Calculated Mass Formula

2h7 el563 247 .1571 C15H2102Nl 2L6 .1490 246 -3.493 C15H2 002N1 232.1345 232 01337 chH18 @.IJ 1 218.1178 218.1180 c13H1602N1 202.1225 202.1231 c13 H16 ?LN 1 1 7 ) ~ -1292 174 .1282 c12 H16N1

I.4O007C6 l.40.0711 c7H10 2N 172 01123 172.1125 C l 2 H I . p

13 1.0860 131.0660 C l O H l l 7 1 -0723 71.0734 CL HsN 57 -0579 57 09578 C3 H7N

182

Page 184: Florey Vol 1

57

d 50

172 I

2 0 rn P 0 2 rn I < 0 R 0 0 I

6 0, P

Fig. 4 Low Resolution Mass Spectrum of Meperidine Hydrochloride, U . S . P . , Wyeth Lot No. F-665901. Instrument: AEI - Model MS 902

Page 185: Florey Vol 1

NANCY P. FISH AND NICHOLAS J. DeANGELlS

2 05

2.6

Optical Rotation Meperidine hydrochloride i s not o p t i c a l l y active.

Melting Range Neperidine hydrochloride e x h i b i t s a s h a p melting

point i n t h e temperature range of 185°C. t o 189"C.l melting tem7eratu-e range does not change s i g n i f i c a n t l y with var ia t ions i n heating rate of from 1 t o lO"C.,/min. EIelting points outside t h e range s t a t e d above have not been reported f o r pure forms of meperidine hydrochloride

T h e

2.7 Differential Thermal Analysis The d i f f e r e n t i a l thermal analysis (DTA) curve of

meperidine hydrochloride run from room temperature t o t h e melting point exhib i t s no endotherms or exotherms o ther than t h a t azsociated with t h e melt. The DTA curvelo of meperidine hydrochloride, U.S .Po (Wyeth Lot No. : F-665901) run on a Dupont 900 DTA using a micro ce l l and a heating r a t e of S°C./min. i s shown i n Figure 5.

2.8 S o l u b i l i t y The following s o l u b i l i t i e s have been determined

f o r meperidine hydrochloride a t room temDerature . U.S.?. x.71111 Author sl*

water very soluble grea te r than

95% ethanol soluble 400 mg./ml. chloroform 500 mp./ml. e t h e r spar ingly less than

soluble 0.1 mg./ml. benzene less than

1 mg./ml. acetone 2 5 mg./ml.

1 g./ml.

2.9 Crystal PrGperties a. KeenanlL reported t h e following o p t i c a l crys-

elongated s i x s ided prisms; ext inct ion: p a r a l l e l ; ta l lographic proper t ies f o r meperidine hydrochloride:

elongation sign : pos i t ive .

2o : &= 1.545; d= 1.581; j = 1.618 ( 2 0.002) fiD

In the f irst supplement t o the N.F. XIIII3 i d e n t i - c a l refract ive indexes, elongation and ex t inc t ion da ta are given with the addi t iona l information t h a t the o>t ic sign

184

Page 186: Florey Vol 1

T. OC (CORRECTED FOR CHROMEL ALUMEL THERMOCOUPLES)

Fig. 5 DTA Spectrum of Meperidine Hydrochloride, U.S.P., Wyeth Lot No. F-665901, scan speed 5O/rnin. Instrument: DuPont 500 DTA.

Page 187: Florey Vol 1

NANCY P. FISH AND NICHOLAS J. DoANGELlS

is posi t ive.

id ine h drochloride, U.S.P. (Wyeth Lot

t i o n i s shown i n Figure 6 .

p a t t e r n shown i n Fig. 6 as w e l l as t h e d spac i by Barnes and Sheppardls and Gross and Oberstlggare given i n Table IV. from a powder photograph using a c y l i n d r i c a l camera of 114.6 mm. diameter and Cobalt K d rad ia t ion . The d a t a of Gross and Oberstwere obtained from a powder photograph using a f l a t film mounted perpendicular t o the X-ray beam and C u Kx radiat ion.

b. The X-ray powder d i f f r a c t i o n p a t t e r n of meper- 0. F-665901) ob-

The calculated d spacings'O f o r t h e d i f f r a c t i o n

tainedI6 with a Phi l ips diffractometer If: using C u K z radia-

s published

The Barnes and Sheppard d a t a w m e obtained

2 .lo Polymorphism Brands t l t t e r and reported three polymor-

phic forms of rneperidine hydrochloride. I n addi t ion t o t h e s t a b l e Form I (m.p. 187 - 191"), they prepared Form I1 (m.3. 103-165"C.) and I11 (mop. 154 - 156°C.) by sublima- t ion , and described the anpearmce and melting behavior of the c r y s t a l s they cbtained . 3. Synthesis

Eis lebl& diethanol-methylam!Lhe was converted t o m e t h y l di- ( &'-chlcroethyl)-amine by means of th ionyl chlor ide. T h i s was then condensed with bcnzyl cyanide i n t h e presence of sodiun arnide t o l-rnethyl-~-phenylpiperidine-~-carboxyl.ic acid n i t r i l e which was then hydrolyzed, e s t e r i f i e d and con- ver ted t o the hydrochlaride (see Figure 7 ) . Numerous m o d i - f i c a t i oris of t h i s method employing d i f f e r e n t s t a r t i n g m a t - e r i a l s and/or condensing agents have been reported .WWLZ Another published method uses a piper idine der iva t ive as the s t a r t i n g materia123.

An a l t e r n a t e synthesis was developed by h. Smissrnan and G. H i t e2L , using a modified Favorski rearrangement . n i c o t i n i c acid was methylated, reduced t o l-methyl-lt-piperi- dinecarboxylic acid hydrochloride, and converted t o t h e a c i d chloride hydrochloride. benzene , chlor inated, t r e a t e d with a l k a l i , e s t e r f i e d , and converted t o the hydrochloride (See Figure 8) .

In the 01-iginal synthesis of me7eridine HC1 by Otto

Iso-

T h i s was then condensed with

186

Page 188: Florey Vol 1

Fig, 6 X-Ray Diffraction Pattern of Meperidhe Hydrochloride, U.S.P., Wyeth Lot No. F-665901. Radiation: Cu Instrument: Norelco Philips Diffractometer.

Page 189: Florey Vol 1

Cii2 CH2 C1 condense with ,CH2 -cF12, N aIJ H, CH3-N, C

convert to HC?

C€?2 -N ,. + C&-CN cx2 CH, c1 I

Figure 7--Eisleb Synthesis of Meperidine H C 1

Page 190: Florey Vol 1

NANCY P. FISH AND NICHOLAS DeANGELlS

u\ r i 0 % X

rl

V 0 0

8

4

Xrn

4

\o V I

u

d 0 X

H

Xrn V

z

0 - 0

I - 1 H

x cu

I Q

Figure 8 - Smissman-Hite Synthesis of Meperidine H C 1

189

Page 191: Florey Vol 1

NANCY P. FISH AND NICHOLAS J. DeANGELlS

d(;)l

8.11 7.82 6.70 5.75 5029 5 015

4 *67 & .52 4.21 4 .08 3.97 3.77 3.62 3 .59 3 e 4 l l

3 2 3

3 -07

-

2.86

2.7h

2.51 2.46

2.26 2.22

2.05

TABLE I V ltdtt Spacings f o r Meneridine €@drochloride

I/$

100 2 1 28 57 52 62

89 22 20 76 59 28 95 40 24

15

2 5

2 0

1 7

2 1 1 2

5 .10

6

d ( i ) 2

8 .04 7 -72 6.65 5.73 5.24 5 e l 4

4.67 4 -50 4 *17 4 .08 3 *96 3.73 3.51 3 .55 3 .kl 3.34 3.22 3.1L 3.06 2.99 2.94 2.86 2.80 2 *7L 2.68 2 *59

2 b43 2.33 2.25 2.22 2 e l 7 2.05

1.94

1 .8L 1 .SO

-

1.98

1.90

2 1/11

100 5

20 60 40 50

75 5 3

50 15 3 ( R )

90 5 5 3 2 2

25; 4 1

25 2

10 4

10

3 1 4 5 2 (B) 3 2 (B) 5

-

1 1 2

d(1>3 I/I13 -- 7.79 100 6.78 22 5.61 70

5 5*16] -03 80

4 059 62

3.99 50 3 *70 1 2

3 .53 80

3 035 10

3.26 10

3 .oo 10

2.81 10

2.54 10

continued. . . 190

Page 192: Florey Vol 1

MEPE R I DI NE HY DROCH LOR I DE

1. 2. 3 . (B) I1= I =

d =

TABLE N (concluded) Authors Data Data of Barnes and Sheppard (see reference 15). Data of Gross and Oberst (see reference 16). Broad I n t e n s i t y of t h e s t ronges t maximum I n t e n s i t y of the m a x i m u m corresponding to the indicated d value ( in te rp lanar dis tance) n h

2 s i n +3-

2. S t a b i l i t y - Degradation Mepe_ridine hydrochloride i n t h e s o l i d state i s very

s tableZ5; however, as i s common f o r esters it will undergo hydrolysis t o t h e corresponding a c i d i n aqueous so lu t ion . Pate1 e t a126 have s tudied t h e hydrolysis of meperidine hydrochloride i n aqueous a c i d so lu t ion and have reached t h e following conclusions.

Hydrolysis of meperidine hydrochloride i n d i l u t e hydro- ch lor ic a c i d i s a s p e c i f i c hydronium ion catalyzed reac t ion which i s first order with respec t t o hydrogen i o n concen- t r a t i o n . d i l u t e ac id solut ion. The hydrolysis of t h e protonated form of meperidine hydrochloride was found t o be first order with respec t t o meperidine hydrochloride over a wide range of hydrogen i o n concentration (pH 1-7). A catalytic effect with respec t t o meperidine hydrolysis was exhibi ted by d i - hydrogen phosphate ion, t h e only phosphate ion s tudied i n the inves t iga t ion , and the p o s s i b i l i t y of similar effects with respect t o o ther buffer systems should be recognized, The rate of hydrolysis w a s found t o be very slow i n t h e pH range of 3.5 t o 5 with maximum s t a b i l i t y a t pH 4.01. calculated h a l f - l i f e f o r meperidine hydrochloride a t pH /.J .9 is 23.8 years a t 25'C.

Mariani Marelli27 inves t iga ted the s t a b i l i t y of meperi- dine hydrochloride i n buffered aqueous solut ions during s t e r i l i z a t i o n by steam, and determined the maximum s t a b i l i t y t o be a t pH 7 - 7.5. However, temperature, i o n i c s t rength , and s p e c i f i c i o n effects were n o t considered.

polyethylene containers when exposed t o high temperature, oxygen, and W l i g h t i s reported on by Kempa e t a1.28

A pos i t ive , primary sal t e f f e c t w a s noted i n

The

The s t a b i l i t y of meperidine hydrochloride so lu t ions i n

191

Page 193: Florey Vol 1

NANCY P. FISH AND NICHOLAS J. DeANGELlS

5. Drug Metabolic Products

transformation rapidly and almost completely i n m a n 2 g v 30. I n a study by Burns e t a129 i n which the plasma levels of meperidine hydrochloride were measured after intravenous i n j e c t i o n i n manc i t w a s i n fe r r ed t h a t metabolism occurs a t a rate varying from 10 t o 20% per hour (17% average) i n t e n d i f f e r e n t subjects . peated adminis t ra t ion was found i n t h i s study and only 5% of the drug was found t o be excreted unchanged i n t he urine. Plotnikoff e t a171 determined t h a t the biotransformation products of meperidine hydrochloride excreted i n human urine a r e : normeperidine (I 9 meperidinic acid (11) nor- meperidinic acid ( I I I ) c and bound forms of meperidinic acid (IV) and normeperidinic acid (V). The following metabolic pathways were proposed:

Meperidine hydrochloride has been found t o under o bio-

No accumulation of t he drug a f t e r re-

CH,

R = unideat i f i e d conjugate

192

Page 194: Florey Vol 1

MEPERIDINE HYDROCHLORIDE

Asatoor e t a132 determined t h a t i n highly ac id i c u r ine t h e main route of removal of meperidine hydrochlocide from the body is by excret ion of meperidine and normeperidine. the u r ine is a lka l ine , excret ion of the hydrolysis products meperidinic and normeperidinic acids , both as f r e e a c i d s and as conjugates, is the more important means of elimina- t i on .

Bernheim and Bernheim33 reported t h a t meperidine hydro- chlor ide is hydrolyzed by l i v e r s of various animals but n t by brain, blood, kidney, spleen, o r hear t t issue. Clark reported on the N-demethylation of meperidine hydrochloride and the i n v i t r o i n h i b i t i o n of t h i s demethylation.

I f

3f

6. I d e n t i f i c a t i o n

of i ts c h a r a c t e r i s t i c I R , W

the formation of an orange red c o l o r when meperidine hydro- ch lo r ide is reacted with s u l f u r i c acid-formaldehyde test so lu t ion ) which d i s t ingu i shes meperidine hydrochloride from morphine and hydromorphone. point (188 - 19lOC.) of the p i c r a t e salt1 of meperidine is also use fu l as an i d e n t i t y test.

Ternikova36 and Bonino37 descr ibe several c o l o r i d e n t i - f i c a t i o n t e s t s and Levine38 gives a c r y s t a l formation iden- t i t y t e s t .

Meperidine hydrochloride can be i d e n t i f i e d by v i r t u e and X-ray s p e c t r a (see 2.1,

2.3 and 2.9b). The N.F. X I 1 3 5 descr ibes a test (based on

The c h a r a c t e r i s t i c melting

7. Methods of Analybis

* 7.1 Elemental Analysis

Element C

D e 2 ; 7 ’;” e d

H 7.81 8.00 N L.94 b e 9 5 c1 12. h9 12 33

*Meperidine HC1, U.S.P. (Wyeth Lot No.: F-655901).

7.2 Spectrophotometric Assay The UV absorption maximum of meperidine hydrochlorc

ide a t 257 mp has been extensively u t i l i z e d f o r assay pur- poses. f o r assay of the r a w material and a l s o f o r formulations a f t e r t he meperidine has been i so l a t ed .

Determination of the abso rp t iv i ty value i 6 u s e f u l

I n regard t o the

193

Page 195: Florey Vol 1

NANCY P. FISH AND NICHOLAS J. DeANGELlS

i s o l a t i o n of meperidine i t should be borne i n mind t h a t meperidine base can be readi ly steam d i s t i l l e d . more, ex t rac t ion of the base from aqueous basic so lu t ion separates i n t a c t meperidine from its hydrolytic degradation products.

Pro and Nelson quant i ta t ive ly determined meperidine i n a mixture with acetophenetidin (phenacetin) by comparing its absorbance t o t h a t of a standard a f t e r separat ing the meperidine from the whenacetin by steam d i s t i l l a t i o n .

Kaysak39 i so la ted meperidine from biological mater ia l by ethylene dichlor ide ex t rac t ion of an a lka l ine homogenate of the sample. with pH 5.8 phosphate buffer , and then meperidine w a s ex- t rac ted with O.5N qS0, and quant i ta t ive ly determined by measuring its W absorbance.

metric assay f o r a mixture of meperidine hydrochloride with benzyl-2-4-ethylpiperidine cyclohexanone-2-carboxylate hydrochloride (Cetran) . Marozzi and F a l z i L l separated mep- e r id ine from other compounds by paper chromatography, c u t out the appropriate zones, e luted them with HC1, and deter- mined meperidint by its UV absorbance.

meperidine i n pharmaceutical preparations i n which it is the only ac t ive using a CS, so lu t ion of the drug.

Further-

7

The ethylene dichlor ide ex t rac t was, washed

Nachek and Lorenzm describe an i n d i r e c t spectrophoto-

Jonas Carol developed a quant i ta t ive I R method f o r

7.3 Assay - Ti t r imet r ic

t i t r a t a b l e i n non-aqueous media. Meperidine hydrochloride is likewise t i tratable if mercuric ace ta te is added t o t i e up the chlor ide ion. Standard non-aqueous t i t r a t i o n tech- niques are applicable using e i t h e r v i s u a l ind ica tors o r potentiometric end point detection. for both mepe idine and its hydrochloride sal t have been

The t e r t i a r y amine group i n meperidine is directly

Several such methods

published L2-d,

Johnson and King t o describe a similar t i t $ a t i o n technique

Pe l le r in , Gautier, and Demah9 developed a semi- micro two-phase (CHC1, and ac id ic H20) t i t r a t i o n of organic bases including meperidine using 0.Ol.M sodium lawyl sul- fate as the titr n t and methyl yellow as t h e ind ica tor .

f o r meperidine using sodium dioctylsulphosuccinate as t h e t i t r a n t . t i l l i n g it from a Weakly a lka l ine so lu t ion by col lec t ing the base i n a standard s u l f u r i c acid so lu t ion and then

Mundell51 determined meperidine after steam dis-

194

Page 196: Florey Vol 1

MEPERl DINE H Y DROCH LORlDE

t i t r a t i n g the excess acid.

7.L Assay - Colorimetric

7.1~1 Acid dye &trac t ion Kodifications of t h e well-known a c i d dye

method of Brodie52 have been appl ied t o the determination of nieperidine succers fu l ly , Organic base-sulfonic a c i d molecular complexes a r e extracted i n t o organic solvents , and t h e concentration cjf the organic base i s determined i n d i r e c t l y by measurement of the i c solvent. Gettler and Sunshine33 appl ied t h i s method t o the determination of microgram q u a n t i t i e s of meperidine i n human t i s s u e s . water containing t a r t a r i c acid, and a modification of Brodie's method using methyl orange and chlo oform w a s used

t h y i c l blue and ex t rac ted t h e yellow meperidine-dye complex i n t o benzene from pH 7.5 buffer . dye was then determined colorinle t r i c a l l y after e x t r a c t i o n i n t o aqueous a l k a l i . Oberstss used a similar technique f o r meperidine i n ur ine, but determined the benzene so lu t ion color imetr ical ly . hydrolysis products of meperidine.

ulfonic acid. i n t h e orgar+

The t i s s u e sample w a s ex t rac ted with hot

t o determine meperiline. Lehman and Aitkens E used bromo-

The sodium sa l t of t h e

He d id not g e t color formation' with

7.42 Annnonium ,Reineckate Kum-Tatt% i d e n t i f i e d meperidine by preparing

the ammonium reineckate der iva t ive and determining several physical p roper t ies of the reineckate including i t s u l t r a - v i o l e t and v i s i b l e absorption spec t ra i n ethanol. Basu and Dut tas 7 q u a n t i t a t i v e l y determined meperidine by d i sso1vir.g the ammonium reineckate i n acetone and measuring t h e absor- bance a t 525 mp.

7.5 Fluorometric Assay Although meperidine has no nat ive fluorescence ,

Kozuki and KawaseS8 r e p o r t a determination based on induced fluorescence after the addi t ion of Marquis reagent t o mepep i d i n e i n solut ion.

7.6 Miscellanegus Wasi1ewska;~developed a method f o r t h e determina-

t i o n of t e r t i a r y and quaternary organic bases i n various pharmaceutical. preparations. He adr',ed standardized tungste

195

Page 197: Florey Vol 1

NANCY P. FISH AND NICHOLAS J. DeANGELlS

s i l i c i c acid i n excess of t h e amount required t o r e a c t with the organic base, and then q u a t i t a t i v e l y prec ip i ta ted the excess acid with bismuth n i t r a t e . The so lu t ion was f i l t e M and t h e t u n g s t o s i l i c i c a c i d i n t h e f i l t r a t e w a s t i t r a t e d with di-sodium Versenate after the addi t ion of Xylenol Orange and potassium n i t r a t e .

7.7 Chromatographx

7.71 Paper and Thin Layer Chromatography Many t h i n l a y e r and paper chromatographic

methods have been found s u i t a b l e f o r t h e i s o l a t i o n and i d e n t i f i c a t i o n of meperidine and meperidine HC1. of these a r e summarized i n Tables V and V I , Some of t h e s p e c i f i c references c i t e d give sample preparat ion tech- niques, and methods for e l u t i n g the drug from the developed chrmatogram which will enable one t o obtain q u a n t i t a t i v e . chromatographic r e s u l t s by spectrophotmetry o r some o ther s u i t a b l e means i f desired.

MaruyamaeJO used a r ing oven paper chromato- graphic method t o separate meperidine and normeperidine from t h e free acids.

A number

7.72 Column Chromatogra?h NcMartin, Simpson an: Thorpe71 developed an

automated assay procedure s i t a b l e f o r separat ing meperi- dine from urine and o ther bas ic compounds. They used two 1.2 x 6 cm. CM-cellulose columns and an e l u e n t of pH 8.5, 0,OSM borate buffer a t a flow r a t e of 0.33 ml./min. and report a re ten t ion time of 87 min. t i v e enough t h a t the authors suggest i t s a p p l i c a b i l i t y t o the determination of meperidine i n blood plasma also.

Elvidge, F’roctor, and B a i n e ~ 7 ~ found t h a t o q c e l l u l o s e used as a carboxylic cation-exchange column would separate phenol and chlorocresol from various alka- l o i d s , including meperidine before determination by ultra- v i o l e t spectroscopy. lN HZSO, followed by water was used t o e l u t e the phenol and chlorocresol and a d d i t i o n a l H,SO, eluted the meperidine. T h i s method was devised f o r t h e assay of i n j e c t i o n formulations.

S. L. Tompsett73 used a Dowex SOX-12 column t o separate meperidine from urine after the urine had been a c i d i f i e d with HC1. The meperidine was e l u t e d with s t rong acid ( s -8N HC1) and i d e n t i f i e d by paper chromatography after

The procedure i s sens i -

196

Page 198: Florey Vol 1

ME

PE

RID

INE

HY

DR

OC

HL

OR

IDE

k

gI a @

a

M

\o

m

r-

0

'9

t

u\

X

P, m

a al

k

k

b 2

44

4

rl nm

00

0

u='4 0:

2

\o

4

C

0

'9

xx

aa

m-

aa

aa

kk

9

)a

kk

. 0 . 0 a

197

Page 199: Florey Vol 1

Table V (concluded) Paper Chromatographic Systems f o r Keperidine HCl

Solvent i'aper Paper R f Visual izat ion Reference - Treatment Technicue

K Whatman No. 1 NONE 0.64 A ,C ,D,E, 65 L idhatman No. 1 N GNE 0.7b A,C,D,E 65 M Whatman No. 1 NONE 0.9h J.,C,D,E 6.5 N Thatman No. 1 Buffered, pH 5.5 0.60 A , c ,D ,E 65

Solvents A n-butanol, sa tura ted with buffer B C

I D

F G H I J K L w I\T

m - E

n-butanol-- H 2 0 (80-30) n-butanol-acetic a c i d (10-30) sa tura ted with H20 buty l acetate-butanol-acetic acid, X20 (85-15-bo-22 ) b u t y l acetate-butanol-isobutancl-acetic acid-H20 (50 :25 :25:50 :75) isobutanol-glacial acetic acid-water (100 :10:24) b u t y l ace ta te -g lac ia l a c e t i c acid-water (35 :10 :3 ) propyl a lcohol - water - d i e t h y l m i n e (1:e:l) ammonium formate i n water (10%) sa tura ted with sec.-octanol Light paraf f in - diethylamine (9:l) Isoamyl a lcohol - a c e t i c ac id (1G:l) sa tura ted with H20 Butanol - a c e t i c a c i d (1O:l) sa tura ted with H20 Isoamyl alcohol - K b O H (1O:l) sa tura ted with H20 Isoamyl alcohol sa tura ted with H,O

Visuali. za t ion

K I geagent c JLa.e$ arffls eagent D Th&lium I o h d e

- 9 ass urn iodo l a t i n a t e spray

z b z < n

n v) I

-

D z 0

R L

E Iodine

Page 200: Florey Vol 1

ME PE R I DINE H Y D R OC H LOR I DE

Table V I Thin Layer Chromatographic Sys terns f o r Meperidine HC1

Solvent Sys tern

A B C D E F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 G H

I

J

K

Visual izat ion Adsorbent Technique

S i l i c a G e l G S i l i c a Gel G S i l i c a G e l G S i l i c a Gel G S i l i c a G e l G S i l i c a G e l G S i l i c a Gel G S i l i c a G e l G S i l i c a G e l G S i l i c a G e l G S i l i c a Gel G S i l i c a Gel G S i l i c a G e l G S i l i c a Gel G S i I i c a G e l G S i l i c a G e l G S i l i c a G e l G S i l i c a G e l G S i l i c a Gel G S i l i c a G e l with Fluorescent Indica tor S i l i c a G e l with Fluorescent Indica tor S i l i c a G e l with Fluorescent Indica tor S i l i c a G e l G

A A A A A A A A A A A A A A A A A A A A -E

A -I3

A-E

C

R f 0 3 3 0.70 0.72 0.27 0.28 0 .oo 0 .C4 0.06 0.l.L 0.17 0 -32 0.43

0.54 0 .54 0.61 0.76 0.64

0.23 0 .LO

0.34

0 A 7

0.45

0 -55

Reference 66

66 66 66 66 67 67 67 67 67 6 7 67 67 67 67 67 67 67 68 69

69

69

70

Solvent Sys terns A

B Chlorof om-dioxane-etQyl acetate-ammonium hydroxide

C Ethyl alcohol-chloroform-dioxane-petroleum e t h e r (30-60")

D Etwl acetate-benzene-ammonium hydroxide (60:35:5)

E t h y l alcohol - dioxane-benzene-ammonium hydroxide (5:LO :50 : 5 )

( 25 :60 :10 : 5 )

benzene-ammonium hydroxide-ethyl ace ta te (5:lO:SO :15 :10 : 5:s)

continued.. . . 199

Page 201: Florey Vol 1

NANCY P. FISH AND NICHOLAS J. DeANGELlS

Table V I (concluded) Thin Layer Chromatogra2hic Systems f o r Meperidine H C 1

Solvent Systems : (concluded) E Ethyl acetate-n-butyl ether-ammonium hydroxide (60 :35 : 5 ) F1 - F13 Developing tank with 110 ml. solvent p lus a

beaker containing 10 m l o 28% amnonia

6; G Benzene:dioxane":ethanol: monia-25$ (SO:hO:S:5) H Acetone :Ammonia-25% (Y? :1) I Nethanol J PIethanol:Amnonia-2~$ ( 9 9 :1) K 14ethanol:Acetone:Triethanolamine (1:1:0.03)

Petroleum e t h e r (30-6G "C .) Carbon t e t r a c h l o r i d e Isopropyl e t h e r Benzene h thylene d i c hlor ide PIetl-iylene chlor ide Chlorof o m Ethyl e t h e r Ethyl ace ta te n-butyl a lcohol I sopr opyl alcohol Ace tone Methyl a lcohol

Visual izat ion Nethods : A Potassium Iodoplat inate Reagent B Ul t rav io le t Light C Drarendorff Spray D T o t a s s i m Permanganate Spray E p-Dimt,hylaminobenzaldehyde Spray

t h e eluent was made bas ic and ex t rac ted with a mixture of chloroform and isopronyl alcohol.

a semi-automated method f o r the separat ion and determina- t i o n of narcot ics mixed wi th mannitol and lactose. A SE- Sephadex C-25 cat ion exchanee column buffered with pH 4.6 phosphate buffer i s used t o effect separat ion, followed by u l t r a v i o l e t monitoring of the column e f f l u e n t f o r t h e detect ion of the narcot ics , includmg meperidine. A re ten- t i o n volume of 71.1 m l . w a s reported f o r meperidine when e lu ted with phosphate buffer from a 50 x 0.9 cm. column packed LO cm. high,

Brioch, DeIYlayo, and Dal Cortivo74 describe

200

Page 202: Florey Vol 1

MEPE R I DINE HYDROCHLORIDE

Gunderson, Heiz and Klevstrand75 used Dowex 2 r e s i n , converted t o t h e OH- form, t o form meperidine base from meperidine H C 1 i n t a b l e t preparations. 7% ethanol was followed by t i t r a t i o n of t h e base with O 0 l F H C 1 standardized by t i t r a t i o n of Borax i n 70% e thanol with bromothymol blue.

Llut ion with

7.73 Gas Chromatograph S t a i n i e r and Gloe5ener76 hydrolyzed meperi-

dine with 3.5% KOH and determined the ethanol evolved using a 2 meter Carbowax 1500 column, operate6 a t 70°C. recoveries of 97% t o 102% were reported.

column operated a t 230°C. and at 25@"C,, Parker, Fontan and Kirk77 separated meperidine from other a lka lo ids , bar- b i t u r a t e s , sympathomimetic amines and t r a n q c i l i z e r s . This work w a s d i rec ted towards development of a screening process r a t h e r than quant i ta t ive determination .

Kazyak and KnoblockT8 chromatographed meperi- dine and o ther drugs using a 4 mm. g lass , 6 f t . 1% SE-30 Aquid phase on Chromosorb TIJ column a t temperatures of l S O o , 165 "C., 180 'C. and 200 'C.

Boon and Mace79 appl ied gas chromatography to the ion-pair complex of meperidine with bromothymol blue a f t e r it was ex t rac ted from pH 5 so lu t ion with chloroform. A g lass , h f t . I$ Carbowax 20M plus 2% KCH on Gas Chrom P column a t 150°C. was used.

Alcohol

Using a 1/81!, 58, 5% SE-30 Chromosorb W

201

Page 203: Florey Vol 1

NANCY P. FISH AND NICHOLAS J. DeANGELlS

8. References

ing Co., haston, Pa.

Rahway, N.J.

cation.

1. VJnited S t a t e s Pharmacopeia", 18th Ed., Mack Pr in t -

2. Werck Index", 8 t h Edition, Yerck and Co., Inc.,

3. Peter Rulon , Wyeth Laboratories, personal communi-

4. James J. Manning, 3~11. Narcotics 1 (l), 85-100

5. L. Levi, C. E. Hubley, and R. A. Hinge, Bull.

6. J.-Carol, J. A s s . O f f . Am. Chem. 37, 692 (1954). 7. N. J. Pro and R. A. Nelson, J. AssTOff. Agr. Chem.

8 . Bruce Hofmann, Wyeth Laboratories, personal comniuni-

9. P. M. Cestreicher, C. G. Farmilo, and L. Levi, Buu,

10. N.-F'ish and N . DeAngelis, Wyeth Laboratories, un-

11. C. Kuhlman and S. Shrader, Wyeth Laboratories,

(195'5)

Narcotics 7 (l), b2-84 (1955).

40 - (4)s (1957).

cation.

Warcotics 6 ( 3 ) , 42-70 (1954).

published results.

Dersonal cornmicat ion. 12. G. J . Keenan, J. Am. ?harm. Assoc. Sci. Ed. 35 (111 -

338-9 (1946) 13 . V a t i o n a l Formulary", 13th Ed., Mack Pr in t ing Co.,

Zaston, Pa. a. Xorth American P h i l i p s Comp..ny, Mount Vernon,

N e w York. 15. W. H. Barnes and H. M. Sheppard, B u l l . Narcotics

16.

17.

18.

- 6 ( 2 ) , 27-68 (1954). S. T. Gross and F. W. Oberst, J. Lab. Clin. Ned.

M. BrandstHtter and H. Grim, Mikrochim. Acta 2 ,

Otto b is leb , Ber. Deut. Chem. Ges. a, lJ~33-50

- 32, 94-101 (1947).

1175-1182 (1956)

(1941); u.3. ; -- C.A. 35, 5646; C.A. 36, 5465. 7 9 7 Keyung Ho K i m , Taehan Naekwa Hakhoe Chapchi 6 (b) , 201-3 (1963); -- C.A. 65, 16934a.

20. F. Bergel, A. L o Morrison, H. Rinderknecht, J. W. Haworth, and N . C. Hindley, J. Chem. SOC. - 6, 261-272 (19h4) U.S . Patent 2,418,289 , L/lA2.

11/1/49; C.A. bb 7887a.

Patent 2,167,351 - 7/25/39

21. K. Meischer and H. Kaegi; U.S. Patent 2,486,792, --

202

Page 204: Florey Vol 1

MEPE R I DINE HYDROCHLORIDE

22. Tanabe Drug Co., Japan Pa ten t 153,415, 10/10/h2 ; C.A. 43, 3471 h. 7 3 7 Welcome Foundation, Ltd. and E. Walton, B r i t . Fa ten t 532,016, 9/4/L7; C.A. h2

1201 (1959)

(1966), Order No. 66-3477, C.A. 6 5 , 3604e

Xosp. Pharrn. s, 256-61 (1968).

1613h. - - 9 24.

25.

26.

27.

E. E. Smissnan and G. X t e , J. An. Chem. SOC. 8 l ,

R. 14. P a t e l , D i s s e r t a t i o n Abs t rac t - 26 (10; , 5'735-6 R. Pi. Patel , T.-F. Chin, and J. L. Lach, h e r . J.

0. Kar ian i Marelli, Rend. 1st. Super. S a n i t a (Rome) lh. 282-86 (1951). , - - , -'

26.

29.

H. Kempa, G. Brockel t , R . Pohloudek-Fabini, Gyoq-

J . 7 . Burns, B. L. Berger, P. A. Lief, A. h l l a c k , s z e r e s z e t 13 (lG), 389 (1969).

~.

E. M. Papper and B. B. Brodie, J. Pharmacol. FXp . Ther., - lI.4 (3), 289-98 (1955).

30. C.-Y. Sung

31.

32.

E. k o n g Way, A . I. Gimble, W. P. McKelway, H. Ross, and H. El lswor th , J. Pharmacol. Exp. Ther.,96 -

N . P. P l o t n i k o f f , E. Leone Way and H. Id. E l l i o t t ,

A . M. Asatoor, D. R. London, ?I. D. Milne and 1:. L.

( 4 ) y 477-84 (1949).

J. Pharmacol. Exp. Ther. 117, 4l4-19 (1956).

Sivenhoff , B r i t . J. Pharnacol. and Chemother., 20 ( 2 ) , 285-98 (1963) e

33. 'F. Grnheim and M. L. C. Bernhein, J. Pharmacol. E m . Ther -'CErk, B 'ochem. Pharnlacol.,l6 (12), 2369-85 (1367:

85 (1) , 74-77 (1945)- 35.

36. R. 31. Ternikova, (Pharm. I n s t . Moscow); Aptechnoe

37:

38.

39.

40.

fINationa1 Formularyll, 13 th Ed., Mack -Pr in t ing Co., Easton, Pa.

- Delo 6 ( 2 ) , 38-47 (1557); C J . 52, 5751b.

(Buenos Aires) 1943 I, 289-93; -- C.A. 37, 302114.

(1044); C.A. 36 4381O.

- 53, 11501b.

R. C. DlAlessio d e z n e v a l e Bonino, Semana mgd.

J. Levine, Igd. Eng. Chem., Anal. Ed. - 16, 408-10

L. Kaysak, J. Forens ic S c i . 4, 26L-75 (1959); C.A. G. Kachek and F. Lorenz, Sc i . Pharm. 31, 17-26

--

aLOe; G. Machek and F. L o r e E , Anales 237-249 (1967).

G. F a l z i , Ned. L ~ E . Ass i cu raz ion i , - 13 (3-41, 239-58 (1965); C.X. 64, 20181a.

2 03

Page 205: Florey Vol 1

NANCY P. FISH AND NICHOLAS J. DeANGELlS

- - 110 and E. I~lecarelli. I1 Farmaco -

C.A. 58, 13719d. Pohloudek-Fabini and K. K k i g , Pharlnazie 13. --

752-6 (1959); C * A * 53, 206931.1-

44. (English) ;

?oey Seng ._ BGW, Suara ?harm. P b T - 5-1-5 (1960)

46

47 (1961);

m i t t . 23, 695-701 (156m -- Schute,

L8.

- -- M. Rink and 3. Lux, Deut. Apoth - Ztg. 101, 911-18 -- C.A. 55, 25167d. J. B. Schute, Konnr. Pharm. Wiss. Vortr . Original-

-- 2 . 8 . 62 6347;C.A. 6 2 7588d; ?harm. Weekblad 9 9 ~ 1 0 5 3 - 7 0 ~ 6 ~ j T. EsDersen.n.Tidsskr. Farm. 33, 113-24 (1959) ;

-

a-

C.A. 53, 22733~ . 7 9 . F. Pe l le r in , J. A. Gautier Pharm. Fr. - 22 (8-91, 495-504 (196hj; C.A. 52, 12979g.

and D. Demay, &

50. C. A . Johnson and R. E. King, J. ?harm. Pharmacol. 15 (9)9 584-8 (1963). - 51.- M. Mundell, J. Ass. Offic. A g r . Chem. 26, 711-llr

52. B. B. Brodie. S. Udenfrlend. J. L. Baer. T. Chenkin

- (1945); -- C.A. 40, 3 8 g .

53. A. 0. Gettler and I. Sunshine, Anal. Chem. 23, 779-81 (1951). , . - , ..

54. R. A. Lehman and T. Aitken, J. Lab. Clin. Med, 28, 787-93 ( 1943

55. 56. L. Kum-Tatt, J T 57.

F. W. Oberst, J. Pharmacol. -79. 10-

K. Basu and B. N . 1 -

62.

63.

L. A. Dal Cortivo, C. H. Willumsen, S. B. Weinberg

R. Fischer and N. O t t s b e c k , Sci . ?harm. - 25, 242-8 and W. Matusiak, Anal. C h e m . 33 (9) , 1218 (1961) . (1957); C.A. 52, 13192i.

204

Page 206: Florey Vol 1

MEPERlDlNE HYDROCHLORiDE

6L. K . Genest and C. G. Farmilo, J. Chromatogr. 6 , 3J43-3h9 (1961) o

6.5.

66. 67.

66. P. Schweda, Anal. Chem. 39 ( 8 ) , 1019 (1967). 69. 70.

71.

72. D. A. Llvidge, K . A . Proctor and C. B. Baines,

73.

G. J. Marmering, A. C. Dixon, N. V. Carrol l , and

J. A. Steele , J. Chromatogr. l9, 300-303 (1965). J. L. Fhmerson and R . C . Anderson, J. Chromatogr.

A . N o i r f a i l i s e , J . Chromzogr. 20, 61-77 (1965). K . Randerath, "Thin Layer Chrom~ographytf, p. 195,

C. McMartin, P. Simpson and N. Thorpe, J. Chrona-

0. B. Cope, Jour. Lab. and Clin. Ned. & (2), 292-300(19%).

- 17, L95-%Kj (1965)

Academic Press, 2nd kd., New York.

togr . 43, 72-83 (1969)-

Analyst (London), 82, 367-72 (1957); C.Ae 51, 12L37c. S. L. Tompztt , Acta Phamacol. e t Toxicol. l7,

295-303 (1960) . 7L. J. R . Broich. i4. 1':. 3eFIavo and 1,. A. Dal Cortivo

J. Chromato 33, 5i6-529 (1968y). '*GEderson, R. Heiz and R. Klevstrand, J. Pharm. ?harmacol 6, 606-LL (1953); C.A. 47, 12754h.

C. StainiTr and E. Gloesener, Famaco, Ed. h a t . 15, 721-31 (1960); C.A. 55, 18011.

K . D. Parker, C. R . Fontan and P. L. K i rk , Anal. Chem. 3.5 (3), 356-59 (1963). -.-L. Kazyak and E. 0. Knoblock, Anal. Chem. (10

76.

77. - -- -

UL8-52 (1963) 79. P. F. G. Boon and A. W. Mace, J. Chromatogr. - L1

(I), 1 C M (1969).

205

Page 207: Florey Vol 1

MEPROBAMATE

C. Shearer and P. Rulon

2 07

Page 208: Florey Vol 1

C. SHEARER AND P. RULON

CONTENTS

1. Description 1.1 Name, Formula, Molecular Weight 1.2 Appearance, Color, Odor

2.1 Infrared Spectra 2.2 Nuclear MaEnetic Resonance Spectra 2.3 Mass Spectrum 2.L Melting Range 2 .5 Differential Thernal Analysis 2.6 Solubili ty 2.7 Crystal Properties

3. Synthesis L . Stabi l i ty 5. Drug Metabolic Products 6. Methods of Analysis

6.1 Elemental Analysis 6.2 Direct Spectrophotometric Analysis

2 . Physical Properties

6.21 Nuclear Magnetic Resonance Analysis 6.22 Infrared Spectrophotometric Analysis

6.3 Colorimetric Analysis 6 .li Oscillopolarographic Analysis 6 .5 T i t r i m t r i c Analysis 6.6 Chromatographic Analysis

6.61 Paper 6.62 Thin Layer 6.63 Gas 6.64 Column

6.7 Electrophoretic Analysis 6 .& Refractomtric Analysis

7. References

2 08

Page 209: Florey Vol 1

ME P R 0 B AM ATE

1. Description

1.1 Name, Formula, IYlolecular Weight The name used by Chemical Abstracts and U.S.?jnTIt

f o r meprobamate i s 2-methyl-2-propyl-193 propanediol d i ca r - bamate . It can a l s o be c a l l e d 2 ,2-d i (carbamoyloxymethyl) pentane o r 2-methyl-2-propyltrimethylene carbamate. The empir ical formula i s C9H18N204 - with a molecular weight of 218.25.

1.2 Appearance, Color, odor Meprobamate i s a w h i t e powder havir.g a

t i c odor.

2 . ?hysical i ' roperties

h r ac t e r i s -

2.1 In f r a red Spectra An in f r a red spectrum of meprobamate (K.F'. Refer-

ence Standard material-) has been & i n a K B ' p e l l e t . spectrum is enclosed as F i u r e 1. T h i s spectrum agrees with published s p e c t r a l 9 9 5 . The f ollowing band assign- ments have been made .

The

Wavelength, I L Charac te r i s t i c of Reference 2.9 and 3.C N H s t r e t c h i n g 5 3.4 CH s t r e t c h i n g !-I

5 *8 h i d e I band 5 6.25 h i d e 11 band 5 7 -2 CH2 spme tri cal L

7 05 h i d e 111 5 deformation

F.esonance S p e s reference sample) was diseolved

i n dimethyl gulfoxi.de with te t ramethyls i lane as the i n t e r - n a l standard . trophotometer i s enclosed as F i . T h i s spectrum con- forms with a nublished spectrum

The spectrum obtained on a 60 MHz "R spec-

following peak

209

Page 210: Florey Vol 1

Fig. 1 Infrared Spectrum - Meprobamate N.F. Reference L o t 65075.

Page 211: Florey Vol 1

ME

PR

OB

AM

AT

E

21 1

F i g . 2 NMR Spectrum - Meprobamate, N . F. Reference Lot 65075.

Page 212: Florey Vol 1

C. SHEARER AND P. RULON

assignments have been made.

Chemical S h i f t ($ ) 0 09

Proton H3C - C C - C h - C C - CH2 - 0 C - MH2

2.3 Mass Spectrum The mass spectrum of meprobamate (N.F. reference

standard) was obtained by d i r e c t - i n s e r t i o n of t he sample in- t o the KS-9 double focusing, high reso lu t ion mass s ectro- metere. The sample was run a t 100°C. and 1.6 x lo2 t o r r . The high reso lu t ion da ta w a s compiled and tabulated with the a i d of t h e PDT-8 D i g i t a l Computer. i n Table I and Figure 3.

l a r ion. 219.1361. which corresponds t o cleavaee a t t h e tert iary carbon atm with t h e loss of CH,OOCNH,.

i s observed. not or ig ina te by way of simple cleavage o r simple r e a r r a n p ment but must involve rearrangement of t h e carbamate por- t i o n of the molecule and l o s s of a n e u t r a l C6Hll.

The most abundant peak i n the spectrum ( d g 63) i s the charged ion C6Hll formed a t least p a r t i a l l y from t h e l o s s of NH,CO Hzfrom the fragment a t m/g 1 4 4 . T h i s t r a n s i - t i o n i s supported by the presence of a metastable ion z t m/e L7.8.

e l (M* 68.2) and m/e 43 t o m/e L1 (W- 39.1).--

[E'H2C, 3' and i s probably formed by the documented double

hydrogen rearrangement9.

The da ta i s given

Meprobamate (molecular weight 218) gave no molecu-

The first prominent fragment i s a t mass lll4.1007 We d i d obtain however, a ? + 1 peak a t mass

A n ion of mass l35.0406 with the fcrmla C3H704N2 T h i s fragment is of in te res t because it can-

- - There a re metGstables a l s o sharing m/e 96 t o - - m/e

The in tense fraflent-at mass 62 .C2L2 (ClII4021J) i s CH.

CH

/

2.4 PIeltinl: Range The following ne1tir.g point temperatwes ( "C.)

have been reported: 104 -lC6I1

105-10#' ~ O L -10513

212

Page 213: Florey Vol 1

ME

PR

OB

AM

AT

E

0

m

a, u c a, k

a, Ic

l

I u a, P

I v)

(I)

3 x

213

Page 214: Florey Vol 1

C. SHEARER AND P. RULON

TABLE I

Mass Spectrum of Meprobamate

Calculated Mass

219 *1344

158.1180

llc4.102lr

U S 00405

1% 1044

101,0966

96 00938

83.0860

81 .O?Oh

75.0320

71 -0) 185

62.0241

57 *0704

57.0347

55 00552

L4 .0136

hl.0391

Formula

214

Page 215: Florey Vol 1

MEPROBAMATE

2 .S D i f f e r e n t i a l Thermal Analysis A d i f f e r e n t i a l thermal analysis was performed on

meprobamate ( N .F . Reference Standard materialps. A melting endotherm a t 106°C. was observed. The endotherm d i d not aepear t o s h i f t with a chanee i n heating rate, from 5 c ./nin. t o 20 ‘C ./nin.

2.6 S o l u b i l i t The fo l l&ng s o l u b i l i t y d.ata16 were obtained a t

room temperature : 250 mg./ml. i n 95% ethanol 160 mg./ml. i n isopropyl a lcohol 110 mg./ml. i n acetone a0 mg./ml. i n chloroform 650 mg . /ml . i n dimethylformamide

The s o l u b i l i t i e s i n Water a t 20°C. and 37°C. were determined a s 3.L mg./ml. and 7.9 mg./ml., respec t ive ly The s o l u b i l i t y of meprobamate i n i s o t o n i c sodium chlor ide so lu t ion a t room temperature was found t o be 3.7 mg./m1.17

2.7 Crystal Propert ies The X-r?.y paider d i f f r a c t i o n pa t te rn of m e robmate

(N.F. Reference Standard) i s presented i n Table I1 1Y . It i s i n agreement with two published patternsl0,18.

TABLE I1

X-Ray Powder Diffract ion Pat tern

Sample: Meprobamate N .F. Reference Standard Lot 6507.5

2 0 6 -4

Source: Cu K 0 - 10 -85 12 - 9 5 17.1 10 .o 18.6 20 02 22.6

d - 13.89

215

Page 216: Florey Vol 1

C. SHEARER AND P. RULON

3. Synthesis lleprobamate has been synthesized by several procedures

(See Figure 4). The first s t e p is t o synthes $te 2 -methyl- 2-propyl-1,3-propanediol. T h i s has been done by react- ing 2-methyl pentanal and formaldehyde i n presence of KOH. The d i o l has a l s o been prepared by reducing 2-methyl-2-n- propyl Gglonic acid, d i e t h y l ester with l i thium aluminum hydridely .

The d i o l can then be r e a c t e d l 3 ~ a ~ ~ 9 , ~ ' with phosgene i n the presence of sodium hydroxide o r an organic base and then with ammonia t o give meprobamate. which have been used, include reac t ing the diol with (a urea i n the presence of l e a d ace ta te o r other salts21,2 and (b) ethyl urethane i n the presence of aluminum isoprop- oxide23 924 o r sodamide25 t o give meprobamate.

Other procedures

2

4. S t a b i l i t x Meprobamate i s very s t a b l e as a s o l i d . Meprobamate i s

s t a b l e - i n d i l u t e acid &d d i l u t e a lk li and i s not broken down i n g a s t r i c or i n t e s t i n a l f luid29. It i s recognized t h a t heating solut ions of meprobamate i n strong a c i d Will cause hydrolysis of t h e material26. It has been proposed that during treatment of meprobamate with a lka l ine a lcohol the sodium sa l t of carbamic acid27 i s formed, which may undergo a dehydration t o form a cyanate28. moieties of the carbamate can form i t s d i a c e t y l der iva t ive with a c e t i c anhydride26~27, and w i l l condense with alde- hydes 7.

The amino

5. Drug Metabolic Products Five metabolic moducts of mem-cbbamate have been iden-

t i f i e d . as 2-me thyl-2- (8-hydroxypr opyl )-l,3-propanediol dicarba- mate (Compound I, Figure 5 ) . Other as w e l l a s Ludwig's showed the presence of a glucuronide of meprobamate. characterized by Yamamoto and coworkers33. are given as 11, 111, I V and V i n Figure 5.

Ludwig29 character ized the major metabolic product

Four metabolites i n r a b b i t s and/or dogs were The s t m c t u r e s

6. Methods of Analysis The assay procedure Listed under the fol loxing sections

2 I6

Page 217: Florey Vol 1

MEPROBAMATE

cFi3 I

CH3CH2CH = 6GHO

/-. Raney Ni

CH3Ci-12CE2CCH, OH I

2. NH3 I" coc12

Figure k -- Synthesis Routes f o r 14eprcbanat.e

217

Page 218: Florey Vol 1

C. SHEARER AND P. RULON

OH

I

\ 7% R

I I1

I1

R \ /M3

/"\ H;! C CH2 CH2 CH3

\

\ GO C

IV

R = H;!b!CO2CH;!-

Figure 5 -- Metabolic Products of Keprobmate

2 18

Page 219: Florey Vol 1

MEPROBAMATE

and 6.8. The assay procedure l i s t e d under the following sec t ions have been appl ied t o determining meprobamate i n b io logica l mater ia ls : 6.372, 6.30 and 6.7. procedure does not necessar i ly m e a n it will not be appl ica- b le t o e i t h e r s i t u a t i o n . were not included i n this l i s t i n g . are not included i n t h i s l i s t i n g s ince the a r t i c l e o r a b s t r a c t d id not ind ica te t o what material the tes t was appl ied .

6 .31, 6.32 , 6 .33 , 6.3L, 6 .?5, 6.36, The absence i n the l i s t of ar, assay

The chromatographic procedures Some assay procedures

6.1 Elemental Analysis Data obtained on N.F. Reference SamFle No.: 650i5

Element $ Theory ReDorted C Tm7- L9.38 H 8.31 0.30 Ii 1 2 -84 12.99

6.2 Direct Spectropnotometric Analysis

6.21 Nuclear Magnetic Fiesonance Analysis An NNl? procedure was developed f o r the analy-

sis of meprobamate t a b l e t s using malonic a c i d as an i n t e r - n a l standard7. a t 3.8p.p.a. i~ compared t o t h e in tegra ted area of the malonic acid peak a t 3.3 p.p.ni.

The in tegra ted area of meprobamate's peak

6.22 Inf ra red Spectrophotometric Analysis Meprobamate can be assayed using i n f r a r e d

T h i s technique compares the r e l a t i v e spectrophotometry. i n t e n s i t y of the amide band a t 6 . 3 2 ~ of t h e sample dissolved i n chloroform t o t h a t of a standard meprobamate solu- tion?L,35. The K-H t re tch ing bands a t 2 . 8 2 0 ~ and 2.91Lu have a l s o been used3 i? .

6.3 Colorimetric Analysis A variety of color imetr ic methods have been used

t o a s s q meprobanate.

6.31 Meprobamate i s hydrolyzed i n an al;cal.ine alcohol ic medium t o y i e l d a cyanate which forms a blue

t h e i n t e n s i t y of the color has been determined a t 605 mi. colored complex with cobal t ions. For analyses 2&,37,3Q,39

219

Page 220: Florey Vol 1

C . SHEARER AND P. RULON

6.32 Meprobamate forms a colored complex, absorp- t i o n maximm a t C8 mu, with hydroquinone i n concentrated s u l f w i c acidhG,

6.33 A hypochlorite solut ion a t pH 10.5 r e a c t s with meprobamate t o form an tcactivett chlor ine der ivat ive. After decomposing the excess hypochlorite with phenol i n d i l u t e hydrochloric acid, t h e "active" der iva t ive i s reacted with excess potassium iodide. The color produced by t h e iodine l i b e r a t e d has been measured a t 350 m,u. The "activet1 der iva t ive will a l s o r e a c t with potassium iodide-starch solut ion t o give a color with a m a x i m u m absorbance of 625

6.3L Meprobamate when heated i n IJ NaOH i s hydro- lyzed t o armonia and carbon dioxide. The concentration of the ammonia formed was measured by t h e use of Nessler rea- genth3.

6.35 The red co lor produced when meprobamate i s heated w i t ; ? concentrat d s u l f u r i c a c i d has been used t o asssy the material3 G 3 I & 4 Y h s .

with Zhei?man's reagentQg,k7. The co lor produced has a maxinun absorbance of 395 mu.

6.36 Meprobarnap as been assayed by r e a c t i n g it

6.37 Neprobamate condenses with several d i f f e r e n t aldehydes to form colored compounds.

6.371 Furfuraldehyde has been reac ted with meprobamate i n an acid medium t o f i v e an absorbance m a

o r a t 550 m,u when i n 20% hydrochloric a c i d i n ethanollr?. When meprcIbamate was heated i n a c e t i c ac id and then reacted with f u r f r a l i n the presence of antimony t r i c h l o r i d e a

product with a m a x i m u m absorbance a t 591 m p w a s

- mum a t 5'70 m p wh'en i n lo$ s u l f u r i c a c i d i n a c e t i c a c i d EB ,

formed- colore$O . 6.372 p-Dimethylaminobenzaldehyde has been

used exten;sively a s t h e color forming reagent f o r meproba- mate.

220

Page 221: Florey Vol 1

MEPROBAMATE

6.3721 The i n t e n s i t y of t h e yellow color was determined a t 416 mu when meprobamate was r acted

*hen meprobamate was heated with p-dimethylaminobenzalde- hyde i n a s u l f u r i c a c i d medium and then d i lu ted with i c e water, a v i o l e t color w a s formed which an be used as a

with p-dimethylaminobenzaldehyde i n hydrochloric acid- 21 .

quant i ta t ive measure of the meprobamate 5 2 . 6.3722 Meprcbamate r e a c t s d t h p-

dimethylaminobenzaldehyde and antimony t r i c h l o r i d e i n ace- t i c anhydride t o give a red-violet colored species having absorbance m a x i m u m a t 550 mt5395L~55 .

6.3723 Meprobamate reacts with p- dimethylaminobenzaldehyde i n a n i s o l e i n the presence of a

a t 540 m ne - AlC1, catalyst to give a co lor with a peak

6.3 73 p-Dimethylaminocinnamaldehyde can replace t h e p-dimethylaminobenzaldehyde and i n t h e presence of 3% concentrated s u l f u r i c ac id i n acetic aci a red color was formed with a m a f i m u m abscjrbance a t 520 mu $7 .

6.4 Oscillopolarographic Analysis Meprobamate i n N KOH and a t a concentration of

10-3Fl produces a peak of Q vahe 0.55S8. For a n a l y t i c a l purposes this peak was compared t o t h a t of a standardsy. Meprobamate i n N NaOH has been observed t o give a response t o sin l e sweep A.C. osci l lographic polarography. Kalvodago i n d i c a t e s the p o s s i b i l i t y f o r the determination of substances i n concentrations from 10-5 t o 10-7 mol/l.

6.5 Ti t r imet r ic Xeprobamate , after hydrolysis , has been t i t r a t e d

i n a v a r i e t y of ways:

6.51 Meprobamate was hydrolyzed i n conc . HC1. The so lu t ion w a s neut ra l ized t o methyl r e d end poin t and then formaldehyde added t o form hexamethyltetramine , which i s then t i t r a t e d with he sodium hydroxide t o a phenol- phthalein end point27$ k

6.52 Meprobamate w a s ref luxed i n pyridine sodium methoxi.de solut ion. The excess sodium methoxide w a s

22 1

Page 222: Florey Vol 1

C. SHEARER AND P. RULON

t i t r a t e 9 - d t h 0.U benzoic ac id i n benzene using thymol blue%O3 as the end point ind ica tor .

6.53 Ibprobamate was refluxed i n hydrochloric acid and then talcen t o dryness. i n a c e t i c acid and mercuric ace ta te added. The non-aqueous t i t r a t i o n i s made with perchlor i a ' d i n a c e t i c a c i d using

The residue was taken up

methylrosaniline as an ind ica tor 8L $3. e was boi led with a measured . The excess base was then tit-

ra ted with hydrochloric acid using a combination of phenol- phthalein and a l i z a r i n yellow a s ind ica tors .

6.6 Chromatographic Analysis All of the more common chromatographic techniques

have been applied t o meprobamate.

6.61 Paper Chromatographic Analysis Meprobamate has been chromatograFhed on

pa?er i n many solvent systems. i s Fiven in Table 111. f o r the detect ion of meprobamate on paper chromatograms are given i n Table IQ.

The p e r t i n e n t information The various spray reagents used

6.62 Thin Layer Chromatographic Analysis The various eluant and adsorbent systems

used f o r t h i n layer chromatograyhy of meprobamate are given i n Table V. the detect ion of meprobamate on t h i n l a y e r chromatographs.

Table V I gives spray reagents used f o r

6.63 Gas Chromatograpb Gas phase chromatography has been used t o

analyze meprobamate. methods i s enclosed as Table V I I .

The necessary d a t a of the var ious

6.6L Column Chromatography Meprobamate has been separated from the

hydroxy-and keto meprobamate (see Figure 5 , Compound I and 11) on an alumina column using stepwise gradient e l u t i o n . The eluants used were benzene e thylace ta te acetone and methanol, both alone and i n mFxtures33.

have been separated by s e l e c t i v e e l u t i o n from a dual layer column of Celite-sodium hydroxide and Celite-phosphoric

Meprobamate and p e n t a e r y t h r i t o l t e t r a n i t r a t e

222

Page 223: Florey Vol 1

T A B U I11

PaDer ChomatoeraDhv of Memobamate

Paper Direction Eluant - R f - Ref. - 0 .oo 0 -13 0.19 0.32 0.35 0 *35 0.74 0.75 0-77

h) 0.80 2 0.81

0.85 0 .85 0.85 0.35 0.88 0 *93 0 -95 0 095

S&S 2043b asc. S&S 20h3b asc. Whatman il? des . S&S 2043b asc. Whatman il? des . n.a. asc. Whatman ,Kt des . n.a. n.a. Vhatman #l asc. whatman lh des. Toyo Roshi 6 0 asc. Toyo Roshi #SO asc. whatman #L asc. n.a. asc. Whatman iR des . n.a. asc. n.a. asc. whatman #I asc . Whatman lh des .

benzene :butanol :water (100 :3 :1) 68 Detroleum e ther : dioxane (5:2) 68 di-n-butyl e t h e r 69 methylal : decal in : chlorof om : hexane (11 : 3 : 3 :8 ) 70 carbon t e t r a c h l o r i d e :acet ic acid:water (1:2 :1) 7 1 toluene :n-butano1:water (19 :1:20) 72 chloroform 69 isoamyl alcohol:l@ a c e t i c acid 73 butano1:water (100:12’) 40 d i e t h y l e t h e r 69 butanol containing 3% conc. amonium hydroxide 33 butano1:acetic acid:water (4 :l:s) 33 butano1:acetic ac id :water (4 :l:s) 74 butanol sa tura ted with w a t e r 75 benzene :butanol:acetic acid:water ( 3 :l:l:s) 74 butanol sa tura ted wi th SN NH,OH 75

benzene :acetic acid: water ( 2 :2 :1) 74 ch1oroform:acetic acid:water (100: 2 :5) 74

butano1:acetic ac id (10 :3) s a t u r a t e d w i t h water 75

asc. - ascending des. - descending n.a, - information not ava i lab le

Page 224: Florey Vol 1

C. SHEARER AND P. RULON

TABLE IV

Reagent

A . B. C. D. E .

F.

G. H.

I. J.

K.

L. I! . I?.

Spray Xeagents f o r Paper Chrmatography

Dime thylaminobenzalde hyde -SbCl, spray Ehrlich reagent Dinitrophenol Iodine atmosnhere 10% H,SO, then 2.5% Dimethylaminoben- zaldehyde with heat 1% Co(N03), i n absolute e thanol

Dragendorff Reagent 1% Sulfur ic acid i n ethanol

Bromphenol blue Chlorine atmosphere plus SI

Chlorine atmosphere

Furf 'ural then conc. Chlorine atmosphere sodium Sodium hypochlorite K I and. s t a r c h

Color

n.a. n.a. yellow yellow

-

yellow red- yellow yellow yellow t o brown gold

br ight blue

then s ta rch plus K I blue

then benzidine

H C 1 n.a. then f luoresce in

n.a. then ethanol then

blue

n,a. - information not ava i lab le

Ref

75 76 68 68

68

68 68

-

68 Y

70 68

70 7 1 Y

77 78

79

80

acid, using c loroform and benzene, respect ively, as elut-

measured by I R spectrophotornetry as described i n Sect ion 6.22.

ing solvents9 b . Keprobamate was detected and q u a n t i t a t i v e q

6.7 Electrophoret ic Analysis Meprobamate was separated from t h e carboxymeproba-

mate and t h e glucuronides, which are formed as metabolites, but not from t h e hydroxy o r keto-meprobamate by e lec t ro- phoresis33 ,. A horizontal open s t r i p type apparatus with a 1% borax ( e l e c t r o l y t e ) so lu t ion was used. A constant vo l t - age of 400Vwas applied t o a f i l t e r paper s t r i p (2L x 1 2 cm.) f o r 1 hour.

224

Page 225: Florey Vol 1

R f 0.90 3 -03

-

0.05 0.08 0.18 0.22 0.23 0.30 9.35 0.36 0.37

N N v1

0 .ll2 0 051 0 053 o .65 0.71 0.75 0.76 0.80 0.80 0.89 n .a. n,a.

TABLE; V Thin Layer Chromatography Sys terns f o r Meprobamate

Ads orbent Spec ia l prep 1 Special prep 2 S i l i c a g e l S i l i c a g e l G S i l i c a g e l G Kieselgel G S i l i c a g e l S i l i c a g e l Special prep 1 S i l i c a g e l G S i l i c a G

Special prep 2 S i l i c a g e l G S i l i c a g e l S i l i c a g e l S i l i c a G S i l i c a g e l Special prep 2 S i l i c a S i l i c a S i l i c a g e l S i l i c a g e l Kieselguhr G

Eluant Benzene : c h l o r o s ( l : 4 ) s a t u r a t e d with formamide Cyclohexane :diethylamine :benzene (75:20:15) Ch1oroform:diethyl e ther (85:15) Benzene :12N ammonium hydroxide :ethanol ( 9 5 : s :15) Benzene:dioxane:28$ ammonium hydroxide (75:20:5) Methanol :acetic ac id :ether :benzene ( 1 : 9 :30 :60) Benzene :acetone (4 :1) Cyclohexane :ethanol (85 :15 ) Carbon t e t r a c h l o r i d e s a t u r a t e d with formamide Ace tone : chlorof orm ( 1 : 1) Acetic acid:carbon tetrach1oride:chloroform:water (100 :60 : 90 : 50) Ch1oroform:methanol (90:lO) Dioxane :benzene:25$ ammonium hydroxide (40:50:10) Ch1oroform:ethanol (90:lO) Ch1oroform:acetic a c i d (20 :1) Methanol:12N ammonium hydroxide (1OO:l.s) Chlorof o m :acetone ( 4 :1) Acetone Benzene :acetone ( 2 :1) Die thy1 e t h e r Acetone:cyclohexane:ethanol (4:4 :2) Ch1oroform:acetone: ammonium hydroxide ( 80 :20: 1) Ch1oroform:acetone (1:l)

Ref.

82

82 83

84 $35 86 8.5 87 8 1

z rn -0

48 81 XI

82 88 83

D z D 2

71r 82 74 82 74 74 8.5 89 90

n.a. = information not ava i lab le , mide,

Special prep 1 - s i l i c a g e l impregnated with forma- Special prep 2 - s i l ica g e l p l a t e s prepared using 0.W N a O H

Page 226: Florey Vol 1

C. SHEARER, A N D P. R U L O N

TABLE; V I TLC Spray Reagents f o m t e c t i o n of Meprobamate

Reagent

1. Conc. H2S04 with heat 2. C12 atmosphere then spray with KI-

benzidine ace ta te 3 . C12 atmosphere then spray with KI-

o-tolidine - H C 1 4. r% furfural :s$ H2S04 i n acetone 5. I2 vapor 6. 2 .s% p-dimethylaminobenzaldehyde 7.

8 . 9 . Ehrlich reagent then Dragendorff

10. 1% H@03

n.a. = information not ava i lab le

i n conc. H2S04 5% Vanil l in i n conc. H2S04

2% HgC12 and 0.05% diphenylcarba- zone i n diethylamine

reagent

Color Ref.

yellow 87 n.a. 83,90

-

n.3. 83

blue -black brown 89 n.a. 86

8 1 , 83

yellow,with 8 1 heat - blue pink 9 1

n .a. 85

n .a. 8L

6.8 Refrac tmet r ic Analysis Meprobamate t a b l e t s have been assayed by taking

advantage of the r e f r a c t i v e index of meprodamate-. Neproba- mate (3 t o 10% w/w) w a s dissolved i n e thanol and t h e refr- t i v e index is measured a t 20,'C. A formula w a s then used t o determine the concentration of the meprobamate99.

226

Page 227: Florey Vol 1

I3 N 4

Form of :'!em- o b m a t e

TABLL VII

Column rn I I e m .

Alkal ine 2% methyl s i l i c o n e SE; 3C on n .a. ii>-dro ly si s Gas-Chrom P

20% SE 30 on Chromosorb W Zr 0 dU c t

190°C.

Ext rac ted from Bio log ica l 3.W PIe s i l i c o n e on Diato- 160 "C. Ya t erial p o r t S

3% SE 30 on Chromosorb W 165 "c . Hi-Lff . 8 B 1% on Gas-Chrom 13 22c"c. 1% Sh 30 on Chromosorb W 16.5 "C . 1% SE 30 on Chron.osorb W 180 "c. 1% SE 30 on Chroinosorb W 220°C.

p-dimethyl- 2.5% SE: 30 on Chroniosorb G 195 "C. aminobenzaldehyde derivative

Retentiw

(minutes) Time

n.a.

n.a.

7.4 n.a.

4 10 .4 L .L 1.8

n.a.

Internal - - Standard xef.

P+ethyl 2- 92

propancdiol --butyl 1.3

93

5 d i -bu ty l 97 0

p h t h a l a t e > 96 D

D 11

W

2

z

5 d i -bu ty l 97 0

p h t h a l a t e > 96 D

D 11

W

2

z 97 ;;I 97 97

94

n.a. = in format ion no t a v a i l a b l e

Page 228: Florey Vol 1

C. SHEARER AND P. RULON

7. References '1.

Ass. Offic. Anal. Chem., 47, 918 (1964). 2.

- 13, 333 (1967) . 3. I. Sunshine and S. R. Gerber, IISpectroghotometric

Analysis of Drugs Including Atlas of Spec t ra l , Charles C. Thomas Co., Springfield, I l l i n o i s , 1963, p D 167.

Moleculesll, 2nd ed., John Wiley and Sons, Inc., New York, N.Y., 1964, Ch. 2 .

0. R. Samuel, W. L. Brannen and 0. L. Hayden, J.

R. K. Maddock, Jr., and H. A. Blomer, Clin. Chem.,

4. L. J. Bellamy, "The Inf ra red Spectra of Complex

5. Ibid, Ch. 12 . 6. Personal communication - B. Hofmann, Wyeth Labora-

7. J. W. Turczan and T. C. K r a m , J. Pharm. Sci. , 56, 8. Personal communication - S. Shrader and C. Kuhlmap,

9. F . 'VJ. McLafferty, ' IInterpretation of Mass Spec t ra t i ,

W. G. Penpraee and J. A. Biles, J. Am. Pharm. Ass. '

P . 7 . Stecher, Ed., !!The Merck Index,I1 highth Ldi -

F. M. Berger, J. Pharmacol. Exp . Ther., 112, 413

t o r i e s , Inc.

16b3 (1967)

Wyeth Laboratories, Inc . W. A . Becjamin, Inc., New York, N.Y., (1969), pp 137-138.

Sci . Ed., 47, 523 (1958).

t ion , Merck and CO., Inc., Rahway, New Jersey, (1968),p657.

(1954).

1C.

11.

1 2 .

13. F. M. Berger and B. J. Ludwig, U.S. Patent

14.

15. a t o r i e s , Inc .

16. Inc .

17. ies, Inc.

18. Dept . Socia l Affairs, a, 19 (1962).

19 . Abstr., 3, 4131i (1959).

20. (1960); Chem. Abstr., s, 20964g

21. Chem. Abstr., - 52, 1087%

2,724,720 (1955) B. J. Ludwig and 5. C. Piech, J. Am. Chem. S O C . , ~ ,

Personal communication - N . &Angelis, Wyeth Labor-

Unpublished r e s u l t s , P. Rulon, Wyeth Laboratories,

Personal communication - S. Young, Wyeth Laborator-

P. Rajeswaren and P. L. Kirk, Bull. Narcotics, U.K,

S. L a p i t i t , BrE. Patent 797,h94 (1958); Chem.

P. Nantka-Mamirsik, e t . al., Pol. Patent 42,591

G. F e r r a r i , C h i m . Ind., (Milan), @, 13 (1958);

5779 (1951)

(1961) . (1958).

228

Page 229: Florey Vol 1

MEPROBAMATE

22. S. Raymahasay, Indian Patent 67,983 (1560); Chem.

23. G. Ghielmetti , Farmaco Ed. Sci., 2, l C a (175'6);

2Lk. S. Bienfest , 3. Adams and J. Ilalpern, U.S. Patent

25,. Fabrica Espanola de Productos Quimicos y Farmaceu-

Abstr., 55, 15356a (1961)

Chem. Abstr., 56, 12&b. (1962) . 2,837,560 (15.58); Chem. Abstr., 2,17112a (15.5'8) . t i cs S.A., Span. Patent 233,310 (19.57); Chem. Abstr., 2,

?. E. Carlo i n fIPsychotropic DTugs'!, S. G a r a t t i n i 15.5'6e (1558 ) . and V. Ghetti , Ed., Elsevier Press, Amsterdam, (19571,

27. K. A. Connors i n I'Pharrnaceutical Analysis", T. Higuchi and E. Brochmann-Hanssen, Ed., In te rsc ience Pub- l i s h e r s , New York, N.Y., (1961), Ch. 6.

26.

P 392.

28. G. Devaux, P. Mesnard and J. Cren , Prod. Pharm., L 18, 2 2 1 (1963).

29. B. J. Ludwig, J. F. Douglas, L. S. Dowell, M. Keyer, and F. P?. Berger, J. Med. Pharm. Chem., 2, 53 (1961).

30. B. W. Agranoff, R. M. Bradley and J. Axelrod, proC. SOC. Exp . Biol. Med., 96, 261 (1957) .

31. H. Tsukanato,-R. Yoshimura and K. Tatsumi, Chem. Pharm. Bull., (Tokyo), ll, 4 2 1 (1963).

32. H. Tsukamato, H. Y o s h i m o and K. Tatsumi, Life Sciences, 2 , 382 (1963); Chem. Abstr., 60, 4638g (mj

33. A. Yamatnoto, 9. Yoshimura and H. Tsukamato, Chem. Pharm. Bul l . , (Irokyo), 10, 522 (1962).

34. P. H. C a s t i l l a and Ch. Farm., 9, 31 (1963); Chem. Abstr., 60, l5llla 7 5 . Wm. R. Haynard, Jr., J. Ass.Offic. A g r . Chem., &, 7Y1 (1960).

B. Leon, Anales Real Acad. (1964).

. I - I

3 6 . 3'7.

S. Sherken, J. A s s . Offic. A g r . C h z , 2, 616 (I*) G. Devaux, P. Mesnard, and J. Cren ,Bull. SOC.

Pharm. Bordeaux, - 100, 231 (1961); Chem. Abstr., 6l, 17131f (196L)-

38. Farmacia

G. Bors, L. Armasescu, I. Ionescu, and N. Ioanid, Bucharest), 2, 607 (156Q; Chem. Abstr., 62,

d 5 , 39. L. F. Cullen, L. J. Heckman and G. J. Papariel lo ,

40. J. Pharm. Sci., 2, 1537 (1969).

Pharmacol. Fxp "her, , 3, 254 (1958).

-9 Abskr - 66, 22286n (19# -

S. Walkenstein, C . Knebel, J. A. Macmullen, J.

1. M. Nedergaard, Farm Re 6.5, 622 (1966); - Chem.

229

Page 230: Florey Vol 1

C. SHEARER A N D P . RULON

42.

43.

44.

G. H. E l l i s and C. A. Hetzel, Anal. Chem., 2, l60

E. S. Harris and J. J. Reik, Clin. Chem-.,4, 241

G. Cau, A. Boucherle, M. Yacoub, and J. Faure, &

(1559).

(199)

Biol. C l ? .6 (Taris ) , - 22 , 1133 (1964); Chen. Abstr., 62, l l C O O a . 19 5,.

45. 46. S, SdYesonand R, Nissenrxeyer, Acta hndocrinol.

4‘1.

H. S. Bedson, -Lancet, 1, 288 (19.5’9).

(Copenhagen) , 29, 2?b (195’8) . 01 Metab. 2, 914 (1957). mA. Heyndrickx, M. Schauvliege, and A. Blome, J.

S . Salvesen and R. Nissen-E!ayer, J. Clin. Endocrin-

117 (196.5’); Chem. Abstr., 63, 11256b-

49. G. Lagrange and J. J. Thomas, 402 (1958); Chen. Abstr., 53, 10663b

50. B. J. Ludwig and A T J . Hoffman, Arch. Biochem.

Ichumura Yaku a h Zasshi, 78, 1183 (1958); Chem. Abstr., - 53, 360;f-

M. Chambon, Therapie, 3, 771 (1959): Chem. Abstr., - 55, 2b901c (1961) .

A. J. Hoffman and B. J. Ludwig, J. Am. Pharm. Assoc . Sci . lid., b8, 740 (1559). 7 O . D . E!adsen, Clin. C h i m . Acta, 7, 481 (1362).

G. A . Ponomarev and A. I. TerekhTna, Farnakol. Toksikol . , 2“ ’m. &&don and A. 14. Nicaise, Ann. Biol. Clin. ( P a r i s ) , 26, 897 (1968); Chem. Abstr., 70, 10072j

57. RrTulus and Y. A-nbul Univ. Eczaci l ik Fak. Kecmuasi, 3, 181 (1967); Chern. AtJStr., 69, 5264y (1968)

8. I. Hyniz and J. ProkesTChen. Zvesti , 18, 425 (1964) Che;. Abstr., 6l,l5190a (1964).

9 . I. Hynie, J. Prokes, and K . Kacl Ce; ch, 103, b12 (196k); Chem. Abstr., i3-5). --%k R. Kalvoda, Collect . Czeck. ChemTCommun., 34,

52.

5 3 .

55. 238 (1564); Cherr. Abstr., 61, m ( 1 9 6 4 ) .

( 1 9 6 9 ) .

Caso is Lekaru

1076 (1969). 61. “Pharmacopeia of t h e United S t a t e s of America,”

16th Revision, Mack Publishing Co., baston, Penna. (1970), p 401.

62. 0. Cerri and A . S p i a l t i n i , Boll. C h i m . Farm., 97, 259 (1958); Cherr. Abstr., 2, 17619f (1958).

330

Page 231: Florey Vol 1

MEPROBAMATE

63

6L.

- 21, 85

Helv . , %?

66 0

0. Cerri, A. Spial . t ini , and U. Ga l o , Pharm. Acta

0. Laurent, J. Pharm. Bel~., 2, 589 (1966); Chem.

B. Salvesen and C. S o l l i , Med. Norsk. Farm. Selskap

I. Solomen-Ionesch, D. Popescu and H. Nicola,

- 3b, 13 (1359); Chem. Abstr., 2, lbh13h (1959).

., - 66, 7965n (lm~ ( 1 9 5 9 ) ; Chem. Abstr., 2, 22732a (1959).

Farmacia (Bucharest), lo, 627 (1562); Chem. Abstr., 2, -1962 ). . . I

67.

68 . 69.

70.

71.

72.

73.

K. Boichinov and G. Chol&ova, Farmatsi a (Sof ia ) ,

H. T. Kloecking, Phannazie, 16, 60L (1961). A. C. Maehly and M . K. L i n t u x , Acta

A . Dressler, h u t . Z. ges, g e r i c h t l . Med., 50, 457

J. F. Douglas and A. Schlosser, J. Chromatogr., -, 6

L. J. Roth, K. E. Wilzbach, A. Heller, and 1). Kap-

A. Viala and R. Monnet, Trav. SOC . Pharm. Mont-

- 16, 11 (1966); Chem. Abstr., g, 1 8 L 2 9 g d

- 16, 283 (1962) . (19601; Chem. Abstr., 55, 1 1 7 6 1 ~

Chem. Scand.,

(1961).

540 (1961)

lan, J. of h e r . Pharm. kssoc. Sci . Ed., 48, 415 (19.5’9).

(1F59j. ’7 ITiIynie, J. Konig. and K. Kacl, J. Chromatogr.,

75. L. Marciues de Sa and A. F l o r i . Anais Farm. Quim.

e l l i e r , 18 , 79 (19.5’8); Chem. A b K B , 8534h

192 (1965).

(19621: Chem. A b s m

Sao Paul0 l.4, is5 (1963) ; Chem. Abstr:, 61, 7332a

.-I -,, I - Y 16986d (1962)

(1964)- K.Sato , Kagaku Keisatsu Kenkyusho Hokoku, s, 237

H. N. Rydon and P . W. G. Smith, Nature, 169, 922

‘76.

77. / . .A+* \

( L Y Y ) . - 13, 361 (1961)

2104 (1959).

(19%)

78.

79.

80.

M. S. 140~s and J. V. Jackson, J. Pharm. Pharmacol.,

J. L. Emmerson and T. S. Miya, Anal. Chem., 31,

S. C. Pan and J. D. Dutcher, Anal. Chem., 28, 836

81. T. W. McConne11 Davis, J. Chromatogr., 29, 283 (1967) . 82. I. Zingales, J. Chromatogr., 2, LO5 (1967)

(Hels inki) , &, 35.5’ (1963); Chem. Abs-tr., 60, 12346b. 83. R. Lindfors, Ann. Ned. Exp. Biol. Fenniae,

(1964)

23 I

Page 232: Florey Vol 1

C. SHEARER AND P. RULON

85. M. Tomoda, Kyritsu Yokka Daigaku Kenkyu Nempo, 2,

86. 0. V. Olesen, Acta Pharmacol. Toxicol., 2 4 , 183

67. -Arch. Krirninol., 128, 99 (1961); Chem.

J. C. Morrison and J. M. Orr, J. Pharm. Sci., 3,

18 (1965) ; Chem. Abstr . , 66, 985251~ (1957) . (1966); Chem. Abstr., 3, Li 103e

Abstr., 2, 5068i 7 36 (1966).

- (1966).

Fuwa, T. Kido and H. Tanaka, Yakuzai aku, 2, ; Chem. Abstr., &, 6L05f ( l y e Koenig, B. Chundela and 1;. Sulcova, Brat is lav.

,,- - 48, 655 (1967); Chem. Abstr., 68, 4b46a

LeFIoan. R . Rouillac. C. J o l i v e t and

96 (1967)

97.

98 . 99 .

( 1963)

(1970).

( 1966 ) ;

A. Nidrecourt, A&. Fals . ExpeGt Chem. Abstr., 72, 125090~ (1970).

0. Cerri, Boll. Chin;. Farm.,=, 217 (1969); Chem, .) Abstr - 71, 5363k (1969).

R. F. Skinner, J. Forensic Sci., l2, 230 (1967); Chem. Abstr., 67, 1@5848u (1967l0

B. S. E n k l e , J. Forensic Sci., 1 2 , 509 (1967); Chem. Abstr., 68, 3657bh (1968).

J. F. Douglas, T. K. Kelley, N . B. Smith and J. A . Stockage, Anal. Chem. ,39, 956 (1967) .

N . C. Ja in and P. L. Kirk, Microchem. J., 1 2 , 256

C h i m . , 62, 2 C 7 (1969);

92.

93.

94.

95.

-

- L. Kazyak and E. C . Knoblock, Anal. Chem., 35,11r48

J. L. Hamilton, J. Ass. Offic. Anal. Chem., 2, 59h

E. Kalinowska and Lo Majumia, Farm. Pol., 22, 406 Chem. Abstr., I 66, 3 1 9 8 9 ~

- (1967).

232

Page 233: Florey Vol 1

NORTRIPTYLINE HYDROCHLORIDE

J. L. Hale

233

Page 234: Florey Vol 1

J. L. HALE

CONTENTS

1. Description 1.1 Name, Formula, Molecular Weight 1.2 Appearance, Color, Odor

2.1 Infrared Spectrum 2.2 Nuclear Magnetic Resonance Spectrum 2.3 Ul t rav io le t Spectrum 2.4 Mass Spectrum 2.5 X-ray Powder Diffract ion 2.6 D i f f e r e n t i a l Thermal Analysis 2.7 Thermogravimetric Analysis 2.8 Melting Range 2.9 S o l u b i l i t y

2. Physical Proper t ies

3. Synthesis 4. S t a b i l i t y - Degradation 5. Drug Metabolic Products 6. Methods of Analysis

6.1 Elemental Analysis 6.2 Ul t rav io le t Spectrophotornetric Analysis 6.3 Colorimetric Analysis 6.4 Qual i ta t ive Analyses 6.5 Isotope Derivative Analysis 6.6 Chromatographic Methods of Analysis

6.61 Thin Layer 6.62 Paper 6.63 Gas-Liquid

7. Pharmacokinetics 8. References

234

Page 235: Florey Vol 1

NORTRIPTYLINE HYDROCHLORIDE

1. Description - -___

1.1 Name, Formula, Molecular Weight -- Nort r ip ty l ine Hydrochloride i s l0 , l l -dihydro-

N-methfl-5H-dibenzo [a, dl-cycloheptene- &? , ?/-propylamine hydrochloride’ . I t i s a l s o known a s 5R-dibenzo [a ,d] cycloheptene-A , v-propylamine, 10,ll-dihydro-N-methyl hydrochloridg . It i s known as 5-(W-methylamino propylidene) -dibenzo [a,d] cyclohepta[l ,41 diene hydrochloride and 3-( lO,Il-dihydro-5H-dibenzo[a, d l cyclophetene-5-ylidene)-N-methyl propylamine hydrochloride’. Common names f o r the compound a r e d e s i t y i p t y l i n a and demethylamitr iptyl ine hydrochlor idg .

CHCIE, CIE, NHCg

Cl 9 IE, , N* HC1 Mol. W t . : 299.85

1.2 Appearance, Color, Odor The compound i s a white t o off-white powder

having a s l i g h t c h a r a c t e r i s t i c odor’.

2. I Physicel Proper t ies

2.1 Inf ra red Spectrum -- The spectrum i n Figure No. 1 was obtained using

a Perkin-Elmer 221, Infrared Spectrophotometer4 . A 13 mm. I(Br p e l l e t was used. The max. a t 2930 cm-’ i s typica l of C-H s t r e t c h (C% , C g ) . 2440 cm-’ i s assigned t o the secondary m i n e hydrochloride group. The band a t 1491 cm-’ is due t o CIE, bend, and the bands a t 720-770 cm-’ a r e a mixture of ethylene and aromatic deformations.

The band a t

Page 236: Florey Vol 1

F R E OUE NC Y ICM.’1

10000 5000 4000 3000 2 5 0 0 2000 1800 1600 1400 1200 1000 950 900 8 5 0 800 750 700 650 0 0

0 6

0 8 10

I S

2 3 4 5 6 7 8 9 10 11 12 13 14 1 5 1

WAVELENGTH (MICRONS)

Fig. 1. Infrared spectrum of nortriptyline hydrochloride; instrument: Perkin-Elmer 221

Page 237: Florey Vol 1

N O R T R I P T Y L I N E H Y D R O C H L O R I D E

2.2 Nuclear Magnetic Resonance Spectrum The NMR spectrum i n Figure No. 2 w a s

using a Varian A-60 instrument4. The solvent deuterated chloroform a t ambient temera ture .

obtained w a s

The L

s i n g l e t a t 2.466 is t y p i c a l of -NC$, the mul t ip le t a t 2.5-3.36 is due t o methylene m u l t i p l e t s , the t r i p l e t a t 5.806 is due t o the v inyl hydrogen, and the mul t ip le t a t 7.0-7.56 is t y p i c a l of aromatic hydrogens.

2.3 Ult rav io le t Spectrum The A max. a t 239 nm i s t y p i c a l of s tyrene

chramophores which have undergone a wavelength s h i f t and l o s s of i n t e n s i t y due t o lack of coplanari ty among the components of the chromophore' . The solvent used w a s 95% alcohol , and a molar absorp t iv i ty value of 12,300 w a s obtained. Spectrophotometer.

The ins+.rument used w a s a Cary 14

2.4 Mass Spectrum The low reso lu t ion mass spectrum when run on a

Hitachi , Perkin-Elmer RMU6 Mass Spectrometer gives two c h a r a c t e r i s t i c m/e peaks: and 220, which is due t o [M-(C% =NC$ )

263, the M+ of the f r e e base, . 2.5 X-ray Powder Diffract ion

The p a t t e r n was obtained us ina Cu with a N i f i l t e r a t A =-1.5405. a r e tabulated i n Table I taken from ASTM 17-1197.

Readings and r e i a t i v e i n t e n s i t i e s

2.6 D i f f e r e n t i a l Thermal Analysis The DTA w a s done using a DuPont 900 Different

Thermal Analyzer. observed a t 217OC.'

A sharp melting endotherm w a s

2.7 Thermogravimetric Analysis The TGA when done with a DuPont 950 instrument

resu l ted i n 1% weight l o s s a t 2070C.'

2.8 Me1 t i n g Range Early r e p o r t s of the melting range gave values

Later repor t s were given as 216-219°C.6 of 210-212OC.'

237

Page 238: Florey Vol 1

J. L. HALE

J p

Fig. 2 . NMR spectrum of n o r t r i p t y l i n e hydrochlor ide ; i n s t r u - ment: Var ian A-60

1 0

0 9

0 8

0 7

0 6 W u 2 a 0 5

a 0 u) 0 4 m 4

0 3

0 2

0 1

o a

220 240 260 280 300 320 350

WAVELENGTH. nm

Fig . 3 . U l t r a v i o l e t spectrum of n o r t r i p t y l i n e hydroch lo r ide ; ins t rument : Cary 14

238

Page 239: Florey Vol 1

NORTR IPTY LINE HYDROCHLORIDE

TABLE I

d

10.21* 9.20 8.14 6.00 5.67 5.13 4.94 4.60 4.34 4.12 3.93 3.68 7.58

-

3-51 7-29 3-19 3.04 2.90 2.81

d I/Ip - 5 2.73 40 2.64 30 2.49 5 2.41 50 2.26 20 2.19 20 2.16 lob 2.11 70 2.08 15 2.01 15 1.93 10 00 15 15 10 15 5 5

I/I, 10 5 15 10 5b 5 10

5 5 5 5

*This value i s erroneously reported as 12.9 i n ASTM.

2.9 S o l u b i l i t y The following s o l u b i l i t y data? were obtained

a t room temperature : water - 11 mg./ml. 95”/. ethanol - 33 mg./ml. chloroform - 50 mg./ml.

239

Page 240: Florey Vol 1

J. L. HALE

methanol - 100 mg./ml. Practically insoluble in ether, acetone, and benzene'.

3. Synthesis -- Northriptyline Hydrochloride is prepared by the

reaction of 5-oxodibenzo [a ,dl cyclohepta-l,4-diene with the sodium derivate of N-methylpropargylamine, followed by hydrogenation and then dehydration'. sched follows:

A general

(A- h-/ 0

+Na -c=ccH, N H c q -

'CIE, CIE, CIE, NHcg

1-40

Qp CHCIE, CIE, NHCg

Peters and Hennion reported the method using propargylic intermediated. compound is by hydroboration of 5-allylidene-5H- dibenzo [a, d~-10,11-dihydrocycloheptene9 .

An alternate synthesis of this type of

240

Page 241: Florey Vol 1

NORTRIPTY LINE HYDROCHLORIDE

4. S t a b i l i t y - Degradation - -- N o r t r i p t y l i n e hydrochlor ide i s q u i t e s t a b l e as a

s o l i d and i n so lu t ion . Bas ic , aqueous s o l u t i o n s may be hea ted f o r a s long a s 16 hours on a steam b a t h wi thout apprec iab ly degrading t h e base’ O . Degradation t a k e s p l ace i n the presence o f s t r o n g ox id iz ing agen t s such a s hydrogen peroxide and i s evident by the i n c r e a s i n g absorbance a t 279nm‘ . I r r a d i a t i o n under u l t r a v i o l e t l i g h t i n aqueous so lu tu ion r e s u l t s i n approximately 5010 degrada t ion a f t e r 16 hour s , and i s evidenced by t h e appearance of a brownish-yellow c o l o r of t h e s o l u t i o n and p r e c i p i t a t e ” . foregoing have n o t been i d e n t i f i e d .

Degradation p roduc t s i n the

5. DrJg Metabolic Products

Four m e t a b o l i t e s have been found i n t h e u r i n e of man i n a d d i t i o n t o small amounts of t h e unchanged drug. Amundson and Manthey sepa ra t ed the m e t a b o l i t e s by e x t r a c t i o n o f t he u r i n e and then t h i n l a y e r chromatography’’. “hey i d e n t i f i e d two of t h e m e t a b o l i t e s a s 10-hydroxy n o r t r i p t y l i n e and the conjugated d e r i v a t i v e formed when the dimethylene b r idge is rep laced by a double bond. McMahon, e t a l , i n v e s t i g a t e d the metabolism of nortr iptyl ine-N-methyl” C i n r a t s and found t h a t N-demethylation and hydroxyla t ion of one of t he br idgehead carbons were the major metabol ic changes observed’ . They found t h a t t i s s u e l e v e l s of radiocarbon i n r a t s one- h a l f day a f t e r admin i s t r a t ion of r a d i o n o r t r i p t y l i n e were h ighes t i n l i v e r followed i n o rde r by kidney, l ung , plasma, b lood , and b ra in . It i s of i n t e r e s t t o n o t e t h a t n o r t r i p t y l i n e i s a metabol ic product of a m i t r i p t y l i n e , the N,N-dimethyl ana log l l .

6. Methods Of Analysis ---̂

6.1 -- Elemental Analysis (as C, FI, NC1)

“/oTheory Report ed9 -___ Element -- C H N

76.10 7.39 4.67

75.61 7.05 4.78

24 1

Page 242: Florey Vol 1

J. L. HALE

6.2 Ul t rav io le t Spectrophotometric Analysis The X max. f o r n o r t r i p t y l i n e hydrochloride i s

a t approximately 279 nm, and an absorbance of 0.482 is reported f o r a 10 mcg./ml. so lu t ion of the cirug i n 0.1N hydrochloric acid‘l . The W absorbance of the compound i s u t i l i z e d i n the N.F. XI11 assay for capsule formula- t ions. d i f f e r e n t i a t i n g spectrophotometrically between n o r t r i p t y l i n e and i ts metabolites’l .

The W spectrum i s a l s o usefu l as a means of

6.7 Colorimetric Analysis The copper sulfate-carbon d i s u l f i d e method has

been used f o r the quant i ta t ion of n o r t r i p t y l i n e , an a n i t r i p t y l i n e metabolite, i n rabbi t l s urine”‘ . The assay i s advantageous i n t h a t i t is s p e c i f i c f o r secondary amines. The ana la te i s reacted with CuSq and CS, giving a yellow t o dark-brown colored salt which is then extracted i n t o benzene. The l i n e a r port ion of the Beer‘s Law curve is i n the 1 t o 8 mcg./ml. range.

6.4 Qual i ta t ive Analyses (Other than spec tropho t ome t r i c ) 6: 41

6.42

P r e c i p i t a t e the m i n e base from a so lu t ion of 25 mg. of n o r t r i p t y l i n e hydrochloride i n 5 m l . of water by addi t ion of d i l u t e ammonia water and then f i l t e r . Acidify the f i l t r a t e with n i t r i c a c i d and add excess d i l u t e s i l v e r n i t r a t e . t a t e i s insoluble in excess n i t r i c a c i d and soluble i n d i lu ted ammonia solution’. This confirms the presence of chloride.

The prec ip i -

A so lu t ion of 5 mg. of n o r t r i p t y l i n e hydrochloride i n 2 ml. of s u l f u r i c a c i d produces a reddish-orange color. disappears upon addi t ion of 10 ml. of water’.

The co lor

6.5 Isotope Derivative Analysis This method w a s developed f o r secondary amines

by Hammer and Brodie’5 and w a s appl ied t o n o r t r i p t y l i n e by Sjoqvis t e t al.’6 The drug i s ext rac ted i n i t i a l l y i n t o hexane which excludes in te r fe rence from polar metabol i tes ; i t is then acetylated with p - a c e t i c anhydride. hexane i s evaporated, and the excess a c e t i c anhydride i s

The

242

Page 243: Florey Vol 1

NORTRIPTYLINE HYDROCHLORIDE

hydrolyzed with 0.1N NaOH. ex t rac ted i n t o heptane and quant i ta ted by s c i n t i l l a t i o n spectrometry. S p e c i f i c i t y is checked by thin-layer Chromatography.

The radioact ive amide i s

6.6 Chromatopaphic Methods of Analysis G.61 Thin Layer

~ F A Z h e d Chart )

6.62 Paper

Ref. - Rf Developer Detection - 1 5% BuOH-HC, 2 H- --- 0.?4 19

BuOH satd. with --- 0.94 19 IE, 0(12:1:7)

-----I

6.67 Gas-Liquid S t r e e t c a r r i e d out the gas-liquid phase chromatography using a Perkin-Elmer Model 800 or an F R M Model 81O2O. temperature w a s about 50" above the column temperature of 235O and detector temperature w a s about the same a s the column temperature. Oxygen-free ni t rogen w a s the c a r r i e r gas a t flow r a t e s of 50-6Gml./min. The column w a s a 6 f t . length of s t a i n l e s s s t e e l tubing 1/8 in . 0.d. and 0.085 in . i . d . Column packing w a s SET0 on Chromosorb W( 100-120 mesh). Retention time a t 235O is given as 7.7 minutes, and the minimum detectable amount a t a t tenuat ion X20 i s 0.2 ug i n 1 cL1 of ethanol.

In jec tor

7. Pharmacokinetics

Recent s t u d i e s by Sjoqvis t e t al . i n d i c a t e t h a t there a r e la rge ind iv idua l d i f fe rences i n the steady state plasma l e v e l s of n o r t r i p t y l i n e i n human be ingg ' . The time t o reach steady s t a t e has been found t o vary from

243

Page 244: Florey Vol 1

J. L. H

AL

E

co a3

rl rl

co 03

m

d

d

,-I

I+ 0

F- L

n

d

0

m

rl

In

d

In

rl

0

d

0

Page 245: Florey Vol 1

_- Thin - Layer Chromatographic Analyses (Continued)

Visual izat ion

EtOH-H, Sq ( 1 : 1) - -- _- - .- Ad sorb en t

S i l i c a Gel G

Deve 1 o p s --- Isopropanol-\ 0 (1/3 s o t . with Heat NaC1) (88 : 12)

S i l i c a Gel G CHCli -1sopro- Dragendorff 's pan01-5?Ji& OH Reagent ( 74.4 : 25 :O. 6)

Ref.

11 --

14 z 0 a -I

T -I < z

I < 0 a 0 0 I r 0 P 0 rn

n

r rn N

P v1

Page 246: Florey Vol 1

J. L. HALE

5 t o 8 d a y g 2 . ducible i n the same indiv idua l , and the drug l e v e l w a s found t o be d i r e c t l y proport ional t o the administered da i ly dose which is an ind ica t ion of a constant apparent volume over the s tudied dose r a n g d l . amounts o f the unchanged drug were found i n the feces ( l e s s than 10 mcg./g), and rena l e l iminat ion w a s negl igible even a t high plasma concentration$’ . Relat ively mall amounts were found i n the g a s t r i c j u i c e of dogs a f t e r intravenous injection’ . Half- l i fe of the drcg apparently depends again on the individual , i .e . , individuals with highest plasma l e v e l s had the longest ha l f - l i fe21 . One i n t e r e s t i n g point w a s t h a t females main- ta ined a higher plasma l e v e l than m a l e s ’ . Nort r ip ty l ine , an ami t r ip ty l ine metabol i te , w a s found i n r e l a t i v e l y high concentrations in l i v e r t i s s u e a f t e r four f a t a l , human poisonings with ami t r ip ty l ineZJ . ind ica te t h a t l i v e r t i s s u e absorbs a la rge port ion of the drug, and t h a t i n order of decreasing concentration of n o r t r i p t y l i n e or i t s metabolites, the various absorbing t i s s u e s a r e l i v e r , adrenal , kidney, lungs and brain’z. L i t t l e work has been done on the construct ion of mathematical models of the pharmacokinetic parameters of n o r t r i p t y l i n e ; however, some work has been done by Wolfgang and Brodie on desipramine, a similar, monomethylated, t r i c y c l i c antidepressent’ . Similar techniques may be appl icable t o nor t r ip ty l ine .

The steady s t a t e was found t o be repro-

Only small

R a t s t u d i e s a l s o

246

Page 247: Florey Vol 1

NORTRIPTYLINE HYDROCHLORIDE

- REFERENCES

N.F. X I 1 1 , 490-491 (1970). Chern. Abstr., Subject Index. The Merck Index, 750, Eighth Edi t ion, Merck m d C o . . Inc. , Rahway, N . J . (1968). A. D. Kossoy and C. D. Underbrink, E l i L i l l y and Company, I n t e r p r e t a t i o n of spec t ra , TGA, and DTA. E l i L i l l y and Company, Belgium Patent Application, 628, 904 (1962). L. R. Pe te rs and G. F. Hennion, J. Med. Chem. 7 , 370-392 (1964) . R. W. Shaffer , E l i L i l l y and Company, personal communication. Drugs of Today, 1, 25 (1965). R. D. Hoffsommer, D. Taub, and N. L. Wendler, J. Org. Chem., 27, 4134-4137 (1962). Analytical Development Dept. E l i L i l l y and Company. M. E. Amundson and J. A. Manthey, J. Pharm. Sci.

R. E. McMahon, F. J. Marshall, H. W. Culp, a d M. M. Mi l le r , Biochem. Pharm. 12 , 1207-1217 (1963). H. B. Hucker, Pharmacologist 4 7 1 7 1 (1962). G. L. Corona and R. M. Facinoy Biochem. Pharm. 17, 2045-2050 (1968). W. M. Hammer and B. B. Brodie, J. Pharmacol. and Exper. Therap. 157, 503-508 (1967). F Sjoqvust, F. FeFglund, 0. Borga, W. Hammer, S. Andersson and C. Thorstrand, Clin. Pharm. and Therap. B. Davidow, N. L. P e t r i , B. Quame, Amer. J. Of Clin. Path. 50, 714-719 (1968). I. Z i n E l e s , J. Chrom. 34, 44-51 (1968). Chem. Abstracts 65, 1428% (1966). H. V. S t r e e t , J.Chromatog. 29, 68-79 (1967). F. Sjoqvis t , W. Hammer, C. M.Idestrom, M. Lind, D. Tuck, and M. Asberg, Proceedings of European Society Study of Drug Toxicity, P a r i s , 1967, Excerpt Med. Intermed. Congr., Ser. No. 145, pp. 246-257 (1968) .

-

55, 277-280 (1966).

-

1. 2. 3.

4.

5.

6.

7.

8. 9.

10. 11.

12.

13. 14.

15.

16.

17

18. 19 20. 21.

22.

27.

W. Hammer and F. S joqvis t , Life Sci. 6 , 1895-19075 ( 1967).

-

E. C. Munksgaard, Acta Pharmacol. e t toxicol . z, 129-134 (1969).

247

Page 248: Florey Vol 1

POTASSIUM PHENOXYMETHYL PENICILLIN

John M. Dunham

249

Page 249: Florey Vol 1

JOHN M . DUNHAM

TABLE OF CONTENTS

1.1. Name, Formula, Appearance 1.2 . Definition of International Unit

2.1. Spectra

1. Description

2. Physical Properties

2.11 . Infrared Spectra 2.12 . Nuclear Magnetic Resonance Spectra 2.13. Ultraviolet Spectra 2.14. Mass Spectrometry

2 .21 . Change from Amorphous to Crystalline

2.22 . Differential Thermal Analysis 2.23. Melting Range

2.3. Solubility 2.4 . Ionization Constant, pKa 2.5. Optical Rotation

3.1 . Modes of Penicillin Degradation 3.2. Degradation of Phenoxymethyl Penicillin

2 .2 . Crystal Properties

Form

3. Penicillin Degradation

3.21. Degradation of crystalline Phenoxy- methyl Penicillin

3.22 . Degradation in Solution 3.3. Enzymatic Degradation 3.4. Degradation of Frozen Systems 3.5. Cupric Ion Hydrolysis

4. Synthesis 5. Purification and Analysis of Impurities

5.1 . Purification 5.2. Countercurrent Distribution - Solvent

Partitioning 5.3. Assay Methods for Intermediates and

Impurities 5.31. Phenoxyacetic Acid 5.32. Penicilloic Acid 5.33. p-Hydroxyphenoxymethyl Penicillin

6. Methods of Analysis 6.1. Identification Tests 6.2. Ultraviolet Methods

250

Page 250: Florey Vol 1

POTASSI UM PHENOXY METH Y L PEN I CI LLI N

6.3. Ti trations 6.31. Iodometric 6.32. Nonaqueous 6.33. p-Chloromercuribenzoate

6.4. Colorimetric Methods 6.41. Hydroxamic Acid 6.42. Dye Complex 6.43. Nitration 6.44. Folin Phenol Reagent

6.51. Paper 6.52. Thin Layer 6.53. Ion Exchange 6.54. Gas Liquid

6.6. Electrophoretic Analysis 6.7. Polarography 6.8. Microbiological Methods

7. Serum Protein Binding 8. Drug Metabolism 9. References

6.5. Chromatographic Analysis

25 1

Page 251: Florey Vol 1

JOHN M. DUNHAM

1. Description

1.1. Name, - Formula, Appearance Potassium Phenoxymethyl Penicillin

(Potassium Penicillin v)- -

Molecular Weight = 3 8 8 . 4 9 1 6 H1 7 KN2 5

Potassium phenoxymethyl penicillin is a white, practically odorless,crystalline powder.

1 . 2 . Definition of International Unit The International Standard for phenoxy-

methyl penicillin (free acid) is defined as having a potency of 1 6 9 5 Tnternational Units per mg, or the International Unit is defined as the activity containef in 0 . 0 0 0 5 9 0 mg of the Inter- national Standard .

One mg. of potassium phenoxymethyl penicillin represents 1 5 3 0 phenoxymethyl penicil-

-

lin units 2 . 2 . Physical Properties

2 . 1 Srsectra

2.11. Infrared Spectra The infrared spectrum of phenoxymethyl

penicillin (free acid) is number 88 in Hayden's compilation of spectra measured on a Perkin-Elmer Model 21 sodium chloride prism spectrophotometer3. Infrared spectra of fourteen penicillins in the 1 5 8 0 to 1 8 8 0 cm-I region are discussed by Ovechkin . Figure 1 is the spectrum of the Squibb Primary Reference Substance of potassium phenoxy- methyl penicillin recorded as a potassium bromide

252

Page 252: Florey Vol 1

PO

TA

SS

IUM

PH

EN

OX

YM

ET

HY

L P

EN

ICIL

LIN

b E 3i X 0 r

:k

m

EE

?

-d

0

rno

rnm

a\

4J

m

OE

P

I In

253

Page 253: Florey Vol 1

JOHN M. DUNHAM

pellet with a Perkin-Elmer Model 21 spectropho- tometer.

2.12. Nuclear Magnetic Resonance Spectra Structural assignments have been made

for each peak in the proton magnetic resonance spectrum of sodium phenoxymethyl penicillin (fourth line of Table 5 in reference 5) by Green and co-workers. Proton resonance lines were measured in D20 solution at 38',with either t-butyl alcohol or sodium 3-(trimethylsilyl) propane-1-sulfonate (assumed to be 2 cycles per second below Me4Si) as the internal standard, with the results referred to tetramethylsilane (Me4Si=lo.O~). Cohen and Puar6 made structural assignments for the peaks of potassium phenoxy- methyl penicillin measured in D20 solution at 33' with the results referred to tetramethyl- silane as the external standard (Me4Si=10.0T). Figure 2 is the spectrum of the Squibb Primary Reference Substance from which proton assign- ments were made6. were measured on Varian A-60 spectrophotometers.

Spectra in both laboratories

Chemical Shift, T (Coupling Constant, Hz)

Assianment

2 -Me 2 3-H 5-H 6-H 5-H, 6-11 (AB quartet) Phenoxymethyl

P henoxy -OCH2-

Cohen and Puar'

8.54 5.78 - -

4.50 q (J=4.0)

2.50-3.2m 5.48

Greenet a15

8.50 5.74

4.50d (J=4.0) 4.44d (J=4.0) -

2.60-3.72m, 5.48

d = doublet, m = multiplet, q = quartet

There is good correlation between the penicillin V assignments, taking into account differences in

254

Page 254: Florey Vol 1

I ' I I I , I I I _.

F i g u r e 2. NMR Spectrum. Potass ium Phenoxymethyl P e n i c i l l i n Squibb Pr imary Refe rence Subs tance .

I I I I I I . . 6 . I . . . 1 I

Page 255: Florey Vol 1

JOHN M. DUNHAM

calibration, except for Green's upper limit of 3.72~ for the phenoxymethyl assignment. Cohen and Puar6 find the coupling profile for the aromatic proton resonance of 2.5 to 3.2~ to be consistent with the phenoxy assignment and con- clude the upper limit assigned by Green is in error.

spectra for a large number of penicillins,in- cluding phenoxymethyl penicillin,at different temperatures. They conclude that intra- or inter- molecular complexes are formed. Proton spectra have also been used8 to assign the cis structure of the protons on C-5 and C-6 and to assign the proper conformation of the thiazolidine rincrg.

Recently, structural studies wi h 1% nuclear magnetic resonance were reportedfo for phenoxymethyl and other penicillins and the re- lated sulfoxides. 13C chemical shift assignments were made for the different carbon atoms.

Pek and co-workers7 studied proton N.M.R.

2.13. Ultraviolet S ectrum Parker et. h 1955 determined the

ultraviolet properties of a highly purified sample of penicillin V (free acid). In water they reported :

x nm E

268 max. 1330 272 min. 274 max. 1100

Beer's law is obeyed at both maxima up to 0.04 per cent. However, they note the free acid begins to decompose in aqueous solution after only a few.hours. Chloroform solutions of peni- cillin V have a similar spectrum to those in water with the maxima shifted slightly to 270 and 276 nm.

methyl penicillin (free acid) in methanol is given as number 88 in Bayden's collection3. There are 3 maxima at 263, 268 and 275 nm.

The ultraviolet spectrum of phenoxy-

256

Page 256: Florey Vol 1

POTASSI U M PH E N O X Y ME T H Y L PEN I C I L LI N

P a r k e r and h i s coworkers 11 p r e p a r e d t h e r e a d i l y s o l u b l e sodium s a l t o f p e n i c i l l i n V i n s o l u t i o n from t h e f r e e a c i d and a s o l u t i o n o f sodium b i c a r b o n a t e . I t s spec t rum was v e r y s i m i l a r t o t h a t of t h e f r e e a c i d w i t h a b s o r p t i o n

maxima a t 268 and 274 nm. Absorp t ion a t each max- imum f o l l o w s B e e r ' s law up t o 0 . 0 3 % . I n con- t r a s t t o t h e f r e e a c i d , s o l u t i o n s o f t h e sodium s a l t showed n o d e t e c t a b l e changes i n a b s o r p t i o n i n t e n s i t i e s a f t e r 1 0 days a t room t e m p e r a t u r e (pH n o t s t a t e d ) .

Rogers 1 2 , 1 3 demons t r a t ed t h a t g r e a t care must be t a k e n t o measure t h e u l t r a v i o l e t a b s o r p t i o n of p e n i c i l l i n V a t a f i x e d and narrow s l i t w i d t h , For phenoxymethyl p e n i c i l l i n and i t s s a l t s , h e de t e rmined t h e e f f e c t o f s l i t wid th a t t h e 268nm maximum :

Maximumh (nm) f o r abso rbance e r ror less t h a n

P e r Cent 0 .2 1 2

h (nm) 0 . 7 0 . 9 1.1

The h a l f w i d t h of the a b s o r p t i o n band ,h , i s the range of wavelengths r e a c h i n g t h e sample w i t h a t l e a s t one h a l f t h e i n t e n s i t y of t h e nominal wave- l e n g t h s e t t i n g o f t h e i n s t r u m e n t .

Andersen 14 h a s a l s o shown conce rn a b o u t t h e impor tance o f s l i t wid th on the u l t r a v i o l e t spec t rum of po ta s s ium phenoxymethyl p e n i c i l l i n .

R e s i d u a l p r e c u r s o r phenoxyace t i c a c i d h a s been shown t o g i v e h i g h abso rbance v a l u e s b y Unterman and Mironeanu 15.

Page 257: Florey Vol 1

JOHN M. DUNHAM

2.14. Mass Spectrometry Biemann 1 6 i n 1964 examined t h e

methyl es te rs of bo th p e n i c i l l i n G and p e n i c i l l i n V by h igh - re so lu t ion mass spectrometry, This enabled him t o determine t h e e x a c t mass and thereby t h e e lementa l composition of a l l t h e fragment i o n s formed.

I n 1967,Russian workers 17 s t u d i e d t h e mass s p e c t r a of p e n i c i l l i n V d e r i v a t i v e s wi th d i f f e r - e n t s u b s t i t u e n t s on C-3 by p l ac ing samples d i r e c t l y i n t h e i o n beam. Fragmentation i n i t i a t e d with t h e r u p t u r e of t h e B-lactam r i n g . Both r i n g s of t h e molecular ion M' may a l s o rupture .

2 . 2 . C r y s t a l P r o p e r t i e s

2 .21 . Change from Amorphous t o C r y s t a l l i n e Form Mathews and h i s coworkers 18

descr ibed a n unusual behavior f o r samples of f r eeze -d r i ed potassium b e n z y l p e n i c i l l i n and potassium phenoxymethyl p e n i c i l l i n . These samples absorbed mois ture from t h e a i r up t o a maximum con ten t of 7-14 pe r c e n t . Then t h e samples suddenly con t r ac t ed i n volume and beganto l o s e weight u n t i l they had r e t u r n e d t o t h e i r o r i g i n a l weight.

They conclude t h e ab rup t change a t t h e p o i n t of maximum moisture con ten t i s a spontaneous c r y s t a l l i z a t i o n of s u b s t a n t i a l l y amorphous m a t e r i a l . potassium b e n z y l p e n i c i l l i n decomposed w i t h i n 16 hours. A f t e r exposure t o a i r , i t was s t a b l e f o r 96 hours a t t h i s tempera ture ,as was a c o n t r o l sample c r y s t a l l i z e d from aqueous-butanol. The h e a t of s o l u t i o n of t h e f r eeze -d r i ed sample

A t 120°, a f r eeze -d r i ed ,sample of

258

Page 258: Florey Vol 1

POTASSIUM PHENOXYMETHYL PENICILLIN

d e c r e a s e d by a f a c t o r o f f i v e a f t e r a i r exposure .

T h i s c o n c l u s i o n a g r e e s w i t h e a r l y o b s e r v a t i o n s t h a t c r y s t a l l i n e forms o f p e n i c i l l i n were much more s t a b l e t h a n amorphous forms l g C 7 20. F l o r e y , - 0 e t a1 r e p o r t e d i n 1949 t h a t t h e a l k a l i s a l t s of t h e p e n i c i l l i n s a r e h y g r o s c o p i c i n t h e impure s t a t e , b u t n o t when c r y s t a l l i n e lga.

2 . 2 2 . D i f f e r e n t i a l Thermal A n a l y s i s

t he rma l a n a l y s i s c u r v e s of po ta s s ium phenoxy- methyl p e n i c i l l i n on a duPont D i f f e r e n t i a l Thermal A n a l y z e r , w i t h a t e m p e r a t u r e r i se o f 15' p e r minute . A s m a l l endotherm o c c u r s n e a r 225O. The t e m p e r a t u r e o f t h e f i n a l exotherm i s somewhat dependent on t h e sample examined. A h i g h l y p u r i f i e d sample had an exotherm a t 265'.

Jacobson 2 1 r e c o r d e d d i f f e r e n t i a l

2 .23. M e l t i n g Range The m e l t i n g r ange o f phenoxymethyl

p e n i c i l l i n ( f r e e a c i d ) h a s been r e p o r t e d by a number of i n v e s t i g a t o r s :

Range Refe rence Comme n t

127 - 1 2 8 O 2 2 P u r i f i e d - c o u n t e r c u r r e n t d i s t r i b u t i on

p u r i f i c a t i o n 11 9O-dec. 23 E x t e n s i v e

124-127O 24 Kof l e r H o t S t a g e 120-123O 24 Immersed i n

s i l i c o n e o i l 128-132O 24 Flowing N 2

a tmosphere 118- 1 2 5O 24 S e a l e d tube-

N 2 a tmosphere Sheehan r e p o r t e d t h e m e l t i n g r ange f o r t h e

259

Page 259: Florey Vol 1

JOHN M. DUNHAM

potass ium s a l t o f p e n i c i l l i n V:

Range Reference

263Odec. 25 264-265Odec. 26

2.3. S o l u b i l i t y S o l u b i l i t i e s i n w a t e r of p e n i c i l l i n V

and t h e potass ium and ca lc ium s a l t s a r e r e s p e c t i v e l y 0.06, 7 7 5 and 1.4% 27 .

Weiss and h i s a s s o c i a t e s 28 de termined t h e sol- u b i l i t y of 18 a n t i b i o t i c s , i n c l u d i n g phenoxymethyl p e n i c i l l i n ( f r e e a c i d ) , i n 24 s o l v e n t s a t room t empera tu re (28 f 4'). They i n d i c a t e t h a t a h i g h o r d e r of accu racy i s l i k e l y because o f t h e procedure used.

S o l u b i l i t y of P e n i c i l l i n V Acid 2 8 ,

mg/ml S o l v e n t 0 2 0 mg./ml. 0.037 a c e t o n e

S o l v e n t i sooc tane cyclohexane carbon t e t r a c h l o r i d e

pe t ro leum e t h e r t o l u e n e carbon d i s u l f i d e benzene wa te r

d i e t h y l e t h e r l f 4 - d i o x a n e

e t h y l e n e c h l o r i d e isoamyl a l c o h o l

0.08 0.097

0.245 0.26 0.30 0.45 0.90

11.75 12.60

12.65 16.95

benzy l a l c o h o l ch loroform e t h a n o l e t h y l a c e t a t e e t h y l e n e g l y c o l f ormamide isoamyl a c e t a t e i s o p r o p y l a l c o h o l m e t hano 1 methyl e t h y l ke tone p y r i d i n e

2.4. I o n i z a t i o n C o n s t a n t , pKa Rapson and B i r d 29 de te rmined t h e

"appa ren t " i o n i z a t i o n c o n s t a n t Ka f o r phenoxy-

260

Page 260: Florey Vol 1

POTASSIUM PHENOXYMETHYL PENICILLIN

methyl p e n i c i l l i n by t i t r a t i n g t h e s a l t w i t h 0.4M h y d r o c h l o r i c a c i d .

Ka = (€I+) [A-7 (H') a c t i v i t y de t e rmined by pH me te r

T A - 7 and [m, a r e concen- L-m?

- t r a t i o n s

I n w a t e r a t 25O:

0.0098 2 . 7 3 k 0 . 0 5 0.0054 2 . 7 4 f 0 . 0 4

2.5. O p t i c a l R o t a t i o n Phenoxymethyl p e n i c i l l i n h a s t h r e e

asymmetric carbon atoms ( formula sec t ion 1 . l ) a n d i s s t r o n g l y d e x t r o r o t a t o r y . I n v e s t i g a t o r s have de te rmined t h e s p e c i f i c r o t a t i o n under a number of c o n d i t i o n s . Potass ium Phenoxymethyl P e n i c i l l i n

C o n c e n t r a t i o n Temp. and S o l v e n t Comment Ref.

L Z J D

+ 223O 25O 0.2% i n w a t e r s y n t h e t i c

+ 223O 20° 1% i n w a t e r n a t u r a l

+229.8O 27' 0.2% i n w a t e r Squibb

sample 25

sample 25

p r imary r e f . s u b s t a n c e 30

Phenoxymethyl P e n i c i l l i n ( f r e e a c i d )

+ 207O 25O 1% i n methanol 31 + 195O 25O 1% i n e t h a n o l 3 1 + 1 8 8 O 25O 1% i n b u t a n o l 3 1 + 193O 20° 1% i n b u t a n o l e x t e n s i v e l y 23

Sodium b e n z y l p e n i c i l l i n h a s a s t r o n g e r r o t a t i o n p u r i f i e d

26 1

Page 261: Florey Vol 1

JOHN M. DUNHAM

f o r t h e mercu ry l i n e , = + 3689 t h a n f o r t h e sodium D l i n e , B J D = 546a 294 Igb. T h i s m i g h t a l s o he t r u e f o r p o t a s s i u m phenoxymethyl p e n i c i l - l i n .

3. P e n i c i l l i n D e g r a d a t i o n 3.1.Modes o f P e n i c i l l i n D e g r a d a t i o n

been widely s t u d i e d d u r i n g t h e l a s t q u a r t e r c e n t u r y 19, 3 2 , 3 3 . B e f o r e d i s c u s s i n g p e n i c i l l i n V s p e c i f i c a l l y , it w i l l be p r o f i t a b l e t o examine p e n i c i l l i n s i n g e n e r a l . T h e i r d e g r a d a t i o n may be summarized i n F i g u r e 3 2 0 , 34.

P e n i c i l l i n c h e m i s t r y i s complex and h a s

The @- lac t am r i n g i n t h e l a c t a m - t h i a z o l i d i n e s t r u c t u r e o f p e n i c i l l i n ( I ) i s much more s e n s i - t i v e t o n u c l e o p h i l i c a t t a c k t h a n s i m p l e l3-lactams. The d i b a s i c p e n i c i l l o i c a c i d (111) i s t h e p r o d u c t formed u n d e r m i l d h y d r o l y s i s c o n d i t i o n s i n n e u t r a l and a l k a l i n e s o l u t i o n s . F o r p e n i c i l l i n G a t c o n s t a n t t e m p e r a t u r e t h e r e a c t i o n i s f i r s t o r d e r w i t h r e s p e c t t o p e n i c i l l i n and h y d r o x i d e i o n c o n c e n t r a t i o n s . The mechanism i n n e u t r a l s o l u t i o n i s n o t c o m p l e t e l y u n d e r s t o o d , b u t t h e c h a r a c t e r i s t i c u l t r a v i o l e t a b s o r p t j o n 2o a n d p o l a r o g r a p h y 33 c e e d s t h r o u g h p e n i c i l l e n i c a c i d (11). Benzyl - p e n i c i l l e n i c a c i d ( f rom p e n i c i l l i n G ) h a s b e e n i s o l a t e d and shown t o have a n a b s o r p t i o n maximum i n i t s u l t r a v i o l e t spec t rum a t 322 nm. Dur ing the h y d r o l y s i s o f p e n i c i l l i n G a t pH 7 . 5 , t h e a b s o r b a n c e a t 322 iiin i n c r e a s e s , i n d i c a t i n g the p r e s e n c e o f b e n z y l p e n i c i l l e n i c a c i d . The l a t t e r compound i s c o n v e r t e d r a p i d l y t o the c o r r e s p o n d - i n g p e n i c i l l o i c a c i d ( I I I ) , w i t h a h a l f - l i f e of 6 . 5 m i n u t e s a t p H 7 . 5 and 37O. P e n i c i l l i n G i s p r o b a b l y h y d r o l y z e d d i r e c t l y t o a s a l t o f p e n i c i l l o i c a c i d i n s t r o n g l y a l k a l i n e s o l u t i o n

i n d i c a t e t h e d e g r a d a t i o n p ro -

20 . I n a c i d s o l u t i o n , b o t h p e n i c i l l o i c a c i d

262

Page 262: Florey Vol 1

POTASSIUM PHENOXYMETHY L PEN ICI LLlN

F i g u r e 3 . P e n i c i l l i n D e g r a d a t i o n

l ? C O N U C H ( , C H o 4- co, -ccoz Penilloaldehyde (VIII)

263

Page 263: Florey Vol 1

JOHN M. DUNHAM

(111) and p e n i l l i c a c i d (V) a r e formed c o n c u r r e n t l y 35.

S a l t s o f p e n i c i l l o i c a c i d (111) a r e s t a b l e . How- e v e r , on a c i d i f i c a t i o n , t h e r e s u l t i n g f r e e p e n i c i l l o i c a c i d s r e a d i l y l o s e c a r b o n d i o x i d e t o form t h e c o r r e s p o n d i n g p e n i l l o i c a c i d (117).

P e n i c i l l o i c a c i d s (111) r e a c t i n s t a n t l y i n aqueous s o l u t i o n w i t h m e r c u r i c ch lor ide Igd, g i v i n g p e n i c i l l a m i n e (VII) and p e n a l d i c a c i d (VI). P e n a l d i c a c i d s d e c a r b o x y l a t e r a p i d l y t o form t h e c o r r e s p o n d i n g p e n i l l o a l d e h y d e (VIII). T h i s de- g r a d a t i o n forms t h e b a s i s f o r a s e n s i t i v e a n a l y t i c a l

3 . 2 .

3 .21 .

pen i c i 11 i n ,

~~

method f o r b e n ~ y l p e n i c i l l i n ~ ~ . D e q r a d a t i o n o f Phenoxymethyl P e n i c i l l i n

D e g r a d a t i o n of C r y s t a l l i n e Phenoxy- me thy l P e n i c i l l i n The g r e a t e r i n s t a b i l i t y o f amorphous compared w i t h t h e c r y s t a l l i n e form, i s

d i s c u s s e d i n s e c t i o n 2 .21 .

3 .22 . D e g r a d a t i o n i n S o l u t i o n The mechanism o f t h e a c i d - c a t a l y z e d re-

a r r angemen t of p e n i c i l l i n t o p e n i c i l l e n i c a c i d (11) and p e n i l l i c a c i d (V) i s r e p r e s e n t e d a n d d i s c u s s e d b y Doyle and Nay le r33 . S i n c e t h e amide side c h a i n i s d i r e c t l y i n v o l v e d t n t h e f o r m a t i o n o f t h e s e p r o d u c t s , i t s n a t u r e h a s a g r e a t e f f e c t on t h e c o u r s e of t h e h y d r o l y s i s . S u b s t i t u t i n g t h e e l e c t r o n - a t t r a c t i n g phenoxy g r o u p f o r t h e b e n z y l g r o u p of p e n i c i l l i n G d o e s g i v e g r e a t l y i n c r e a s e d a c i d s t a b i l i t y 20, 33, 35, 3 7 , 38, 39, A c i d S t a b i l i t y ( p H 1 . 3 , 35O, 50% aq. E t O H ) 33

P e n i c i l l i n H a l f - l i f e , m i n u t e s G 3 . 5 V 160

264

Page 264: Florey Vol 1

POTASSIUM PHENOXYMETHYL PENlCl LLlN

Hydrolys is of phenoxymethyl p e n i c i l l i n and 14 d e r i v a t i v e s wi th benzene r i n g s u b s t i t u e n t s was s t u d i e d by Panarin and Solovski i 40 a t p H 2 . 0 and 30, 35 and 40°. Enhanced a c i d s t a b i l i t y was shown by e l ec t ron -accep t ing s u b s t i t u e n t s wh i l e t h e h y d r o l y s i s r a t e was inc reased by electron- donor s u b s t i t u t i o n .

Under somewhat d i f f e r e n t cond i t ions , phenoxy- methyl p e n i c i l l i n i n 0 . 1 3 hydroch lo r i c a c i d a t 370was r e p o r t e d t o have a h a l f - l i f e of 2 9 minutes

A t a p p r o p r i a t e t i m e i n t e r v a l s , 2 m l a l i q u o t s w e r e removed and added t o 8 m l o f 0 . 1 M phosphate b u f f e r , pH 7 .0 , mixed and f rozen f o r l a t e r b ioassay . Because t h e s e samples w e r e f rozen b e f o r e they were assayed, t h e v a l i d i t y of t heseda ta i s s u b j e c t t o doubt ( r e f e r t o s e c t i o n

41.

3 . 4 ) .

Kondrat 'eva and Bruns 42 r e p o r t phenoxyrnethyl p e n i c i l l i n shows maximum s t a b i l i t y i n aqueous s o l u t i o n i n the . pH range from 6 . 0 t o 7 .0 . They prepared nomograms t o show p e n i c i l l i n V i n a c t i - v a t i o n a s a func t ion of pH and temperature .

Parker e t a 1 11, i n t h e i r s tudy of t h e u l t r a - v i o l e t abso rp t ion spectrum of p e n i c i l l i n V ( s e c t i o n 2 . 1 3 ) , r e p o r t e d t h e e f f e c t s of a c i d i c and b a s i c degrada t ion . They r epor t ed complete decomposition of p e n i c i l l i n V a t room temperature i n 0 . 5 3 sodium hydroxide a f t e r 15 minutes .

Dennen and Davis 35 r epor t ed from t h e L i l l y Research Labora to r i e s i n 1961 on t h e i r k i n e t i c s tudy of t h e formation of p e n i l l i c a c i d ( V ) and p e n i c i l l o i c a c i d (111) from phenoxymethyl and f i v e o t h e r p e n i c i l l i n s i n a c i d s o l u t i o n . They made no mention of p e n i c i l l e n i c a c i d (11) a s an

265

Page 265: Florey Vol 1

JOHN M. DUNHAM

i n t e r m e d i a t e i n p e n i c i l l o i c a c i d (111) fo rma t ion . Recent ly , J a p a n e s e 43 and I n d i a n 44 worke r s have i n v e s t i g a t e d the k i n e t i c s of the d e g r a d a t i o n of p e n i c i l l i n V and o t h e r p e n i c i l l i n s i n a c i d b u f f e r s . J o s h i -- e t a l . measured abso rbances a t 322 nm and t h e i o d i n e t i t e r t o f o l l o w t h e decom- p o s i t i o n s t o t h e p e n i c i l l e n i c a c i d s (11). Recen t ly ,B l inova and Khokhlov have s t u d i e d t h e i s o m e r i z a t i o n o f phenoxymethyl p e n i c i l l i n i n t o t h e co r re spond ing p e n i c i l l e n i c a c i d (11) 45 and phenoxymethyl p e n i c i l l i c a c i d [peni l l ic a c i d ( V ) g

46 . However, an a b s t r a c t t o an e a r l i e r paper by Khokhlov and Bl inova 47 repor t s phenoxymethyl p e n i c i l l i n does n o t i s o m e r i z e t o p e n i l l i c a c i d .

The decomposi t ion r a t e i n an 8 t o 10 pH r a n g e was fo l lowed b y Rozenberg 48. It i s i n t e r e s t i n g t o n o t e t h a t p e n i c i l l i n V deg rades 2 . 2 t i m e s f a s t e r t han p e n i c i l l i n G a t pH 9.08 t o 9.’80 and t h a t b o t h show a 1 . 6 - f o l d i n c r e a s e i n d e g r a d a t i o n on i n c r e a s i n g t h e sodium c h l o r i d e c o n c e n t r a t i o n from 0 . 1 t o 0 . 5 M . Mata and G a l l e g o 31 r e p o r t e d a t p H v a l u e s g o r e a l k a l i n e t h a t 6 .2 p e n i c i l l i n V i s i n a c t i v a t e d more r a p i d l y t h a n p e n i c i l l i n G w h i l e Doyle and Nayler33 r e p o r t e d phenoxymethyl p e n i - c i l l i n i n n e u t r a l s o l u t i o n p roduces much le,ss o f t h e co r re spond ing p e n i c i l l e n i c a c i d (11) t h a n does a n e u t r a l s o l u t i o n o f b e n z y l p e n i c i l l i n .

A number of b u f f e r s a r e r e p o r t e d t o c a t a l y z e the d e g r a d a t i o n o f phenoxymeth 1 p e n i c i l l i n i n a ueous s o l u t i o n s a t 800 ”. I n o t h e r s t u d i e s

e x c i p i e n t s , s u r f a c t a n t s , p r e s e r v a t i v e s and sus - pending and t h i c k e n i n g a g e n t s reduced the s t a b i l i t y of p e n i c i l l i n V i n aqueous s o l u t i o n s . Amino a l k y l c a t e c h o l s have been s t u d i e d a s model compounds t h a t s i m u l a t e t h e a c t i o n of p e n i c i l l i n a s e 136.

jl0, 51 the p r e s e n c e o f p h a r m a c e u t i c a l

266

Page 266: Florey Vol 1

POTASSI UM PHENOXY M ETHY L PEN I CI L LI N

3.3. Enzymatic Degradation P e n i c i l l i n V i s r a p i d l y hydrolyzed by

p e n i c i l l i n a s e , a t e r m app l i ed t o any enzyme t h a t s p e c i f i c a l l y c a t a l y z e s t h e formation of t h e corresponding p e n i c i l l o i c a c i d . Ea r ly work on t h e occurrence , p r e p a r a t i o n and phys ica l and chemical p r o p e r t i e s of p e n i c i l l i n a s e s i s summarized by Florey , e t a1.19e. Goodey, e t a152 r epor t ed t h e i n a c t i v a t i o n of phenoxymethyl peni- c i l l i n by p e n i c i l l i n a s e , when examined microbio- l o g i c a l l y , was found t o be complete i n a s h o r t per iod . Osc i l l og raph ic polarography was s e l e c t e d by Dusinsky53 t o measure t h e enzymatic i n a c t i v a - t i o n of p e n i c i l l i n s t o p e n i c i l l o i c a c i d s . H i s r e s u l t s were i n good agreement wi th p rev ious ly determined enzyme s t a b i l i t i e s of phenoxymethyl and t h r e e o t h e r p e n i c i l l i n s . P e n i c i l l i n a s e s were reviewed r e c e n t l y by Rauenbusch54.

-- --

Two d i s t i n c t types of enzymes ( p e n i c i l l i n amidases) capable of removing t h e s i d e cha in a t t a c h e d t o t h e amino p o s i t i o n of 6-aminopeni- c i l l a n i c a c i d have been encountered i n micro- organisms33955:

P e n i c i l l i n + H 2 0 '6-APA + RC02H.

One type found among t h e act inomycetes and f i lamentous fung i , and p r e s e n t i n c e r t a i n y e a s t s , r e a d i l y hydro lyzes penty l - , hep ty l - and phenoxy- methyl p e n i c i l l i n s , b u t s p l i t s b e n z y l p e n i c i l l i n only very slowly. The o t h e r type i s of b a c t e r i a l o r i g i n and hydrolyzes b e n z y l p e n i c i l l i n very r a p i d l y , b u t p e n i c i l l i n V on ly slowly. Under s u i t a b l e c o n d i t i o n s , t h e r e a c t i o n i s r e v e r s i b l e , pe rmi t t i ng enzymatic s y n t h e s i s of p e n i c i l l i n s .

3 .4 . Degradation of Frozen Systems Grant , Clark and AlburnSb r epor t ed on

Page 267: Florey Vol 1

the imidazole and base-catalyzed hydrolysis of penicillin frozen systems. They found cleavage of the @-lactam ring occurred in frozen, but not in supercooled,systems.

@-Lactam Hydrolysis at Various Temperatures (a)

Catalyst

Imidazole

OH-, pH 9.9

Imidazole

% Hydrolysis Substrate 2 2 0 oo (b) -00 -100 -280 -780

Pen-G 23 4 71 64 20 4

Pen-G 75 14 3

z Pen-V 24 8 72 70 48 4 :

I D (a) Conditions 65 hours, pH^ 7.7, 0.01g catalyst and substrate. Buffer z

at pH 9.9 is 0.05M borate. (b) Unfrozen.

Solid and liquid phases in equilibrium at -20 were separated and assayed. Imidazole and penicillin (presumably Grant et al, used penicillin G) concentrations changed by less than 10% from their initial values. Subsequent storage of the solid at -2O led to as much as 77% hydrolysis while storage of th,e liquid at both -2O (unfrozen) and +22O gave no hydrolysis.

Page 268: Florey Vol 1

POTASSIUM PHENOXYMETHYL PENICILLIN

3 . 5 C u p r i c I o n H y d r o l y s i s - - N i e b e r g a l l and h i s coworke r s 5 8 9 5 9 9 6 o y

‘ lyreported t h a t c u p r i c i o n p romoted t h e r a p i d h y d r o l y s i s o f b o t h p e n i c i l l i n G and V t o a p e n i - c i l l o i c a c i d , r a t h e r t h a n s i m p l y fo rming a complex w i t h p e n i c i l l i n . I n t h e p r e s e n c e o f e x c e s s p e n i c i l l i n , t h e r e a c t i o n f o l l o w s second-o rde r k i n e t i c s and ceases when t h e a v a i l a b l e c u p r i c i o n h a s b e e n consumed. Rea r rangemen t o f e i t h e r p e n i c i l l i n i n pH 5 .5 a c e t a t e b u f f e r t o p e n i c i l l e n i c a c i d (compound I1 i n s e c t i o n 3 .1) does n o t o c c u r i n t h e p r e s e n c e o f a n e q u i m o l a r amount o f c u p r i c c h l o r i d e . P e n i c i l l o i c a c i d i s formed d i r e c t l y . T h u s , t h e mechanism a s w e l l a s t h e r a t e o f p e n i c i l l i n d e c o m p o s i t i o n a r e i n f l u - enced by t h e p r e s e n c e o f c u p r i c i o n s . A c o m p l e x i s formed w i t h i n t a c t p e n i c i l l i n f o l l o w e d b y r a p i d h y d r o l y s i s o f t h e complex i n t o t h e c o r r e s p o n d i n g p e n i c i l l o i c a c i d - c u p r i c i o n complex. A s s o c i a t i o n c o n s t a n t s a t room t e m p e r a t u r e f o r t h e complex w i t h c o p p e r a r e :

l o g K P e n i c i l l i n V 2.24 ( i n t h e a b s e n c e o f

i o n i c s t r e n g t h c o n t r o l )

P e n i c i l l i n V 2 .09 ( i o n i c s t r e n g t h

P e n i c i l l o i c V a c i d 4 . 5 0 0.01M)

N o i n t e r a c t i o n was e v i d e n t w i t h c a l c i u m , c o b a l t , magnesium or n i c k e l . I n t e r a c t i o n w i t h z i n c was r e p o r t e d , b u t n o t s t u d i e d .

4 . S y n t h e s i s Both b e n z y l p e n i c i l l i n a n d phenoxymethyl

p e n i c i l l i n a r e p roduced c o m m e r c i a l l y b y f e r m e n t a - t i o n . However, from t h e b e g i n n i n g o f t h e v a s t B r i t i s h - A m e r i c a n c o o p e r a t i v e program d u r i n g World

269

Page 269: Florey Vol 1

JOHN M. OUNHAM

War 1 1 , a t t e m p t s w e r e made i n many l a b o r a t o r i e s t o s y n t h e s i z e p e n i c i l l i n 19, 3 2 . The f i r s t r a t i o n a l t o t a l s y n t h e s i s of p e n i c i l l i n V was a c h i e v e d b y Sheehan and Henery-Logan 2 5 9 26 i n 1957, a f t e r a n i n e - y e a r r e s e a r c h e f f o r t 1 3 7 . S y n t h e s e s f o r b o t h p e n i c i l l i n s a n d c e p h a l o s p o r i n C are summarized i n a recent book by Manhas and ~ 0 s e 1 3 8 .

5. P u r i f i c a t i o n and A n a l y s i s of I m p u r i t i e s

5 . 1 . P u r i f i c a t i o n P u r i f i c a t i o n p r o c e d u r e s u s e d f o r a n a l y s i s

a r e d e s c r i b e d u n d e r c h r o m a t o g r a p h i c a n a l y s i s ( s e c t i o n 6 . 5 . ) and e l e c t r o p h o r e t i c a n a l y s i s ( s e c t i o n 6 . 6 . ) . P a r k e r , Cox and R i c h a r d s d e s c r i b e t h e p u r i f i c a t i o n a n d c h a r a c t e r i z a t i o n o f t h e phenoxymethyl p e n i c i l l i n ( f r e e a c i d ) u s e d l a t e r a s t h e I n t e r n a t i o n a l S t a n d a r d l. Samples were d i s s o l v e d i n w a t e r w i t h sodium b i c a r b o n a t e , p r e c i p i t a t e d b y d i l u t e h y d r o c h l o r i c a c i d a n d r e c r y s t a l l i z e d from aqueous a c e t o n e . Samples a p p e a r e d t o be p u r e b y p a p e r ch romatography and p h a s e s o l u b i l i t y a n a l y s i s . P u r i f i c a t i o n o f t h e f r ee a c i d was l a t e r s t u d i e d b y Unterman and Mironeanul5 .

Fo r p u r i f i c a t i o n o f t h e S q u i b b P r imary R e f e r e n c e p o t a s s i u m phenoxymethyl p e n i c i l l i n , t h e s t a r t i n g m a t e r i a l was d i s s o l v e d i n w a t e r and c r y s t a l l i z e d by t h e a d d i t i o n o f a s a t u r a t e d p o t a s s i u m a c e t a t e s o l u t i o n . These c r y s t a l s w e r e t h e n r e d i s s o l v e d i n w a t e r , d i l u t e d w i t h b u t a n o l , and c r y s t a l l i z e d a g a i n b y a n a z e o t r o p i c vacuum d i s t i l l a t i o n t o y i e l d t h e f i n a l p r o d u c t 30. P u r i f i c a t i o n and i s o l a t i o n o f t h e p o t a s s i u m s a l t were t h e s u b j e c t s o f two C z e c h o s l o v a k i a n p a t e n t s 6 2 , 6 3 .

Eg e p u r i f i e d sodium p e n i c i l l i n V b y

270

Page 270: Florey Vol 1

POTASSIUM PHENOXYMETHYL PENICILLIN

p r e c i p i t a t i n g t h e N,N’-dibenzyl-ethylenediamine s a l t .

5 .2 . C o u n t e r c u r r e n t D i s t r i b u t i o n - S o l v e n t P a r t i t i o n i n g T h a d a n i -- e t a1 .22 s t u d i e d t h e p u r i t y

of commerc ia l p e n i c i l l i n V b y c o u n t e r c u r r e n t d i s t r i b u t i o n i n d i f f e r e n t s o l v e n t sys t ems . They found 95.0% p e n i c i l l i n V and 2 . 9 % p e n i c i l l i n J.

P a r t i t i o n i n g be tween b u t y l a c e t a t e a n d aqueous a c i d i c and b a s i c s o l u t i o n s h a s been u s e d as a s e p a r a t i o n p r o c e d u r e b y many i n v e s t i g a t o r s ,

V a c i d i n t o b u t a n o 1 , a n d t h e s a l t b a c k i n t o aqueous p h o s p h a t e b u f f e r . Such p r o c e d u r e s a re found i n many o f t h e p a p e r s d e s c r i b i n g a n a l y t i c a l methods. I n s t u d i e s c o r r e l a t i n g serum p r o t e i n b i n d i n g w i t h p a r t i t i o n c o e f f i c i e n t s , t h e l o g of t h e n - o c t a n o l - w a t e r p a r t i t i o n c o e f f i c i e n t f o r phenoxymethyl p e n i c i l l i n ( f r e e a c i d ) i s g ive r , 66 a s 2 . 0 9 and t h e d i s t r i b u t i o n c o e f f i c i e n t be tween s i l i c o n e o i l a n d w a t e r was d e t e r m i n e d 67.

e . g . , 6 4 9 65. B e t h e l and Bond 64 e x t r a c t p e n i c i l l i n

5 .3 . Assay Methods f o r I n t e r m e d i a t e s a n d I m p u r i t i e s

5 .31 . P h e n o x y a c e t i c Acid P h e n o x y a c e t i c a c i d was s e p a r a t e d from

f e r m e n t a t i o n f l u i d s , c r u d e phenoxymethyl p e n i c i l l i n and f i n i s h e d p h a r m a c e u t i c a l p r o d u c t s . D e t e r m i n a t i o n s o f t h e s e p a r a t e d a c i d were made b y u l t r a v i o l e t s p e c t r o p h o t o m e t r y o r a bromometric t i t r a t i o n u s i n g an amperomet r i c end p o i n t 6 8 . A s t u d y o f p h e n o x y a c e t i c a c i d i n p e n i c i l l i n V by u l t r a v i o l e t s p e c t r o s c o p y h a s been d e s c r i b e d r e c e n t l y 15.

I n f o u r p a p e r s , I d a - e t -. a 1 d e s c r i b e d t h e d e t e r -

27 I

Page 271: Florey Vol 1

JOHN M. DUNHAM

mination of phenoxyacetic a c i d i n p e n i c i l l i n pro- duc t ion . A f t e r s e p a r a t i o n from p e n i c i l l i n V by an i sop ropy l e t h e r e x t r a c t i o n , it was determined c o l o r i m e t r i c a l l y wi th chromotropic acid69. I n fermented b r o t h , p e n i c i l l i n V was converted t o p e n i c i l l o i c a c i d by a l k a l i b e f o r e chloroform ex- t r a c t i o n of t h e phenoxyacet ic a c i d from t h e ac id i - f i e d s o l u t i o n . The l a t t e r compound was n i t r a t e d and determined polarographica l ly70 . For fermenta- t i o n b r o t h , a more e l a b o r a t e s o l v e n t e x t r a c t i o n clean-up was used b e f o r e determining phenoxyacetic a c i d c o l o r i m e t r i c a l l y wi th chromotropic acid65. I n t h e f i n a l paper71, phenoxyacet ic a c i d was sepa ra t - ed from p e n i c i l l i n V, brorninated wi th excess b romine and t h e excess determined iodomet r i ca l ly .

Addi t iona l c o l o r i m e t r i c procedures have been descr ibed by o t h e r workers. B i r n e r 7 2 , a f t e r conver t ing phenoxymethyl p e n i c i l l i n t o p e n i c i l l o i c a c i d i n base , e x t r a c t e d phenoxyacet ic a c i d from t h e a c i d i f i e d s o l u t i o n i n t o benzene. H e n i t r a t e d t h e phenoxyacetic a c i d and measured t h e r e s u l t i n g yellow c o l o r i n ammoniacal s o l u t i o n . Nogami and Kanazawa73 r epor t ed t h a t p e n i c i l l i n V and phenoxy a c e t i c a c i d can be determined s e p a r a t e l y by a dye procedure us ing methyl green. U b e r t i 7 4 converted phenoxymethyl p e n i c i l l i n t o p e n i c i l l o i c a c i d i n base , e x t r a c t e d t h e phenoxyacet ic a c i d from t h e a c i d i f i e d s o l u t i o n i n t o to luene and t r a n s f e r r e d the l a t t e r m a t e r i a l back i n t o aqueous base . H e r e a red c o l o r i s formed with 2 ,7-naphtha lenedio l .

Niedermayer developed a gas-chromatographic pro- cedure f o r determining phenoxyacet ic a c i d dur ing

'6. The phenoxyacetic a c i d i s e x t r a c t e d i n t o benzene, e s t e r f i e d wi th BF3-methanol and t h e methyl phenoxyacetate r e a c t i o n mixture

e n i c i l l i n product ion and i n t h e f i n i s h e d drug759

chromatographed. A 6 - foot

212

Page 272: Florey Vol 1

POTASSIUM PHENOXYMETHY L PENICILLIN

column of Gas Chrom A t r e a t e d w i t h 2% b y w e i g h t o f p h o s p h o r i c a c i d and c o a t e d w i t h 10% b y w e i g h t o f d i e t h y l e n e g l y c o l a d i p a t e w a s u s e d a t 210°. Kawai and Hash iba 77 h y d r o l y z e d phenoxymethyl and s i x o t h e r p e n i c i l l i n s b y r e f l u x i n g i n aqueous b a s e . The s i d e - c h a i n a c i d , g.q., p h e n o x y a c e t i c a c i d , was c o n v e r t e d t o t h e m e t h y l e s t e r w i t h d i azomethane a n d ch romatographed on a 1 . 5 meter column o f 3.5% SE-30 a t 120-150°.

5.32 . P e n i c i l l o i c A c i d Both p a p e r ch romatography 78 and t h i n

l a y e r ch romatography 79 t e r m i n e phenoxymethyl p e n i c i l l o i c a c i d i n t h e p r e s e n c e of t h e i n t a c t p e n i c i l l i n .

have been u s e d t o de-

E l e c t r o p h o r e t i c a n a l y s i s of p e n i c i l l o i c a c i d i n phenoxymethyl p e n i c i l l i n was d e s c r i b e d r e c e n t l y ( r e f e r t o s e c t i o n 6 . 6 . ) .

The o s c i l l o g r a p h i c p o l a r o g r a p h y of p e n i c i l l o i c a c i d i n t h e p r e s e n c e o f phenoxymethyl p e n i c i l l i n h a s b e e n d e s c r i b e d 53.

5 .33 . p -Hydroxyphenoxymethyl P e n i c i l l i n p-Hydroxyphenoxymethyl p e n i c i l l i n h a s

been d e t e r m i n e d b y B i r n e r 80 i n p e n i c i l l i n V f e r m e n t a t i o n samples and b y Vanderhaeghe e t a l .

a s a m e t a b o l i t e o f p e n i c i l l i n V i n u r i n e . Both p a p e r s d e s c r i b e p a p e r chromatography p r o c e d u r e s .

6. Methods of A n a l y s i s A r e v i e w a r t i c l e on t h e e s t i m a t i o n of

p e n i c i l l i n s a p p e a r e d i n 1963 84. D i s - c u s s i o n s on t h e a n a l y s i s of p e n i c i l l i n and e x p l i c i t r o c e d u r e s a r e p r o v i d e d b y Connors and Higuch i 8 5 .

773

Page 273: Florey Vol 1

JOHN M. DUNHAM

6 .1 . I d e n t i f i c a t i o n Tes t s P o e t and Keeler 81 e x t r a c t e d phenoxy-

me thy l p e n i c i l l i n from f o r m u l a t i o n s and d i s t i n - g u i s h e d t h e d r u g from a m p i c i l l i n , p e n i c i l l i n G and d i c l o x a c i l l i n b y i n f r a r e d . Bands a t 6 . 7 a n d 9 .45 p. a r e p a r t i c u l a r l y u s e f u l f o r i d e n t i f y i n g p e n i c i l l i n V ( a c i d ) .

Pape r Chromatography ( s e c t i o n 6 .51 . ) , t h i n l a y e r chromatography ( s e c t i o n 6 .52 . ) and g a s chroma- t o g r a p h y ( s e c t i o n 6 . 5 4 . ) h a v e a l l been u s e d a s i d e n t i f i c a t i o n p r o c e d u r e s .

P a r k e r , Cox and R i c h a r d s 11, i n t h e i r o r i g i n a l p p e r c h a r a c t e r i z i n g p e n i c i l l i n V , d e s c r i b e d t h e color r e a c t i o n w i t h c h r o m o t r o p i c and s u l f u r i c a c i d s . The decompos i t ion o f t h e p h e n o x y a c e t i c a c i d moie ty t o formaldehyde i s t h e b a s i s o f t h e d i s - t i n c t i v e color formed. P rocedure :

Add a few c r y s t a l s o f c h r o m o t r o p i c a c i d and 2 m l of c o n c e n t r a t e d s u l f u r i c a c i d t o a sma l l amount of solid sample . Immerse t h e m i x t u r e i n a 1500 g l y c e r o l b a t h f o r 1 t o 2 m i n u t e s . Remove and n o t e t h e c o l o r . ( D i l u t e w i t h c o n c e n t r a t e d s u l f u r i c a c i d i f n e c e s s a r y ) .

Chromot rop ic Ac id Compound p l u s H2SO4 H2SO4 a l o n e

Ph enox ya ce ti c a c i d Deep red Brown P e n i c i l l i n V Deep b l u e p u r p l e Orange brown Pheny lace t i c a c i d P a l e y e l l o w Colorless P e n i c i l l i n G Brown L i g h t brown

Kawai and Hashiba 77 recommend t h e d i f f e r e n t p e n i c i l l i n s be d i f f e r e n t i a t e d b y g a s chromato-

174

Page 274: Florey Vol 1

POTASS I UM PH E NOXY METHY L PEN I C I L LI N

g r a p h y . A sample i s h y d r o l y z e d u n d e r b a s i c con- d i t i o n s , t h e n the o r g a n i c a c i d from t h e s i d e c h a i n a t C-6 i s c o n v e r t e d t o t h e m e t h y l e s t e r w i t h d i a zome t h a n e and ch roma t o g r aphe d . The re t e n t i o n t i m e s e r v e s t o i d e n t i f y the o r i g i n a l p e n i c i l l i n . Phenoxymethyl p e n i c i l l i n can be c h a r a c t e r i z e d b y h y d r o l y s i s t o t h e p h e n o x y a c e t i c a c i d and conve r - s i o n o f t h e l a t t e r t o t h e s p a r i n g l y s o l u b l e p- b romophenoxyace t i c a c i d ll. A f t e r r e c r y s t a l l - i z a t i o n from benzene , i t melts a t 158O.

Turback 82, a f t e r a c i d i f y i n g a n aqueous s o l u t i o n o f p e n i c i l l i n V , e x t r a c t s t h e d r u g i n t o b u t y l a c e t a t e . A d d i t i o n o f m e t h a n o l i c ammonia forms a w h i t e p r e c i p i t a t e . T h i s c o n s t i t u t e s a p o s i t i v e t e s t f o r phenoxymethyl p e n i c i l l i n .

I d e n t i f i c a t i o n o f v a r i o u s p e n i c i l l i n s i n pharma- c e u t i c a l dosage forms was d e s c r i b e d r e c e n t l y by W e i s s & & . 83. U l t r a v i o l e t a b s o r p t i o n , t h i n l a y e r chromatography and t h e p a r t i t i o n r a t i o be tween c h l o r o f o r m and an aqueous b u f f e r were u s e f u l i n i d e n t i f y i n g phenoxymethyl p e n i c i l l i n .

6 . 2 . U l t r a v i o l e t Methods The u l t r a v i o l e t a b s o r p t i o n p r o p e r t -

i e s o f phenoxymethyl p e n i c i l l i n and i t s d e c o m p o s i t i o n p r o d u c t s a r e d i s c u s s e d i n s e c t i o n s 2 .13 . and 3.22.

Phenoxymethyl p e n i c i l l i n i n f e r m e n t a t i o n l i q u i d s may be d e t e r m i n e d s e l e c t i v e l y b y m e a s u r i n g a t 268 a n d 2 7 5 n m , a f t e r p r e l i m i n a r y p u r i f i c a t i o n b y s o l v e n t e x t r a c t i o n and d e c o m p o s i t i o n i n base. Background u l t r a v i o l e t a b s o r b a n c e i s c o r r e c t e d b y measurements made w i t h o u t bas ic d e c o m p o s i t i o n 86. Beer' s law w a s v a l i d f o r 0 t o 280 u n i t s per m l .

For d e t e r m i n i n g p e n i c i l l i n s , i n c l u d i n g p e n i c i l l i n

275

Page 275: Florey Vol 1

JOHN M. DUNHAM

V, i n aqueous and p r o t e i n s o l u t i o n s , t h e u l t r a - v i o l e t a b s o r p t i o n o f p e n i c i l l e n i c a c i d (compound I1 i n F i g u r e 3) i s measured a t 322 nm 8 7 9 88. T h i s r e a r r a n g e d p r o d u c t o f p e n i c i l l i n i s s t a b i - l i z e d b y forming t h e mercury s a l t of t h e s u l f h y d r y l p o r t i o n o f t h e molecu le .

U l t r a v i o l e t s p e c t r o p h o t o m e t r y h a s b e e n u s e d f o r q u a n t i t a t i o n o f p e n i c i l l i n V f o l l o w i n g i t s sep - a r a t i o n b y b o t h p a p e r a n d t h i n - l a y e r chromatography ( r e f e r t o s e c t i o n s 6 .51 . a n d 6 . 5 2 . ) .

6 . 3 . T i t r a t i o n s 6 .31 . I o d o m e t r i c T i t r a t i o n s

I o d o m e t r i c methods f o r t h e a s s a y o f p e n i c i l l i n s were f i r s t d e s c r i b e d b y A l i c i n o 89 i n 1946. P e n i c i l l i n i s i n e r t t o i o d i n e i n n e u t r a l aqueous s o l u t i o n . B u t a f t e r h y d r o l y s i s w i t h a l k a l i or p e n i c i l l i n a s e , t h e r e s u l t i n g p e n i c i l l o i c a c i d (111) consumes from 6 t o 9 e q u i v a l e n t s p e r mole, depend ing on t h e c o n d i t i o n s used . The d i f f e r e n c e i n consumpt ion o f i o d i n e b y p e n i c i l l i n p r e p a r a t i o n s b e f o r e and a f t e r a l k a l i n e h y d r o l y s i s w a s found p r o p o r t i o n a l t o t h e q u a n t i t y o f t h e d rug . A l i c i n o found p e n i c i l l i n G consumed 8 . 9 7 e q u i v a l e n t s o f i o d i n e p e r mole u n d e r t h e c o n d i t i o n s u s e d i n h i s a s s a y p r o c e d u r e . H e l a t e r d e m o n s t r a t e d o t h e r d e a c t i v a t e d p e n i c i l l i n s , i n c l u d i n g phenoxymethyl p e n i c i l l i n , consume n i n e e q u i v a l . e n t s o f i o d i n e p e r mole w h i l e 6-amino- p e n i c i l l a n i c a c i d consumes o n l y e i g h t e q u i v a l e n t s of i o d i n e p e r mole.

Goodey e t a l e 5 2 i n 1955 d e s c r i b e d t h e f i r s t a p p l i c a t i o n of A l i c i n o ' s iodometric p r o c e d u r e s t o phenoxymethyl p e n i c i l l i n , u s i n g e i t h e r a l k a l i o r p e n i c i l l i n a s e f o r t h e f o r m a t i o n o f p e n i c i l l o i c a c i d . T h e i r p u r e s t sample a f t e r p e n i c i l l i n a s e

276

Page 276: Florey Vol 1

POTASSIUM PHENOXYMETHYL PENICILLIN

d e a c t i v a t i o n had a consumption o f o n l y 8 . 6 1 e q u i v a l e n t s o f i o d i n e per mole. Two o t h e r p u r i f i e d samples consumed an a v e r a g e o f 8 . 4 7 e q u i v a l e n t s p e r mole by t h i s p rocedure , w h i l e a f t e r a l k a l i n e h y d r o l y s i s , t h e y consumed 9.00 e q u i v a l e n t s o f i o d i n e per mole a s A l i c i n o demons t r a t ed l a t e r .

K l e i n e r and Dendze-Pletman 23 a f t e r e x t e n s i v e p u r i f i c a t i o n de te rmined phenoxymethyl p e n i c i l l i n i o d o m e t r i c a l l y . They found the consumption o f i o d i n e by t h e p r o d u c t s o f a l k a l i n e h y d r o l y s i s i s n o t s toichiometr ic b u t e q u a l t o 8.68 e q u i v a l e n t s o f i o d i n e p e r mole.

B e t h e l and Bond64 d e s c r i b e d t w o i o d o m e t r i c a s s a y p rocedures f o r p e n i c i l l i n V i n fe rmented broths. I n t h e f i r s t , p u r i f i c a t i o n b y e x t r a c t i o n from a c i d i n t o b u t a n o l and back i n t o an aqueous phospha te b u f f e r was fo l lowed b y opening t h e l ac t am r i n g w i t h base and an i o d o m e t r i c t i t r a t i o n . E f f e c t s o f i m p u r i t i e s r ema in ing a f t e r s o l v e n t e x t r a c t i o n were r e n d e r e d n e g l i g i b l e by a d j u s t i n g t h e p H t o 3 .6 b e f o r e adding t h e i o d i n e . To e l i m i n a t e t h e s t e p s i n v o l v e d i n s o l v e n t e x t r a c - t i o n , a d i r e c t p rocedure was deve loped b y opening t h e l a c t a m r i n g w i t h p e n i c i l l i n a s e . The d i f f e r e n c e i n i o d i n e consumption b e f o r e and a f t e r p e n i c i l l i n a s e t r e a t m e n t w a s e q u a t e d w i t h pen i - c i l l i n c o n t e n t . A f t e r the a l k a l i n e h y d r o l y s i s p rocedure , w e may c a l c u l a t e from the i r d a t a t h a t 9 .29 e q u i v a l e n t s o f i o d i n e were consumed per mole o f po ta s s ium p e n i c i l l i n V.

T h i s somewhat e r r a t i c i o d i n e consumption h a s l e d b o t h t h e F e d e r a l Reg i s t e rg1 and the B r i t i s h Pharmacopeiag2 t o r e q u i r e t h e u s e o f a working s t a n d a r d f o r t h i s t i t r a t i o n .

277

Page 277: Florey Vol 1

JOHN M. DUNHAM

The r e a c t i o n mechanism i n t h e i o d o m e t r i c de- t e r m i n a t i o n o f phenoxymethyl p e n i c i l l i n h a s b e e n s t u d i e d r e c e n t l y ' b y Glombi t za and P a l l e n b a c h g 3 , 94, 95,

I n t h e i o d o m e t r i c p r o c e d u r e s d e s c r i b e d u p t o t h i s p o i n t , a n e x c e s s o f i o d i n e i s added t o p e n i c i l l o i c a c i d . A f t e r an a p p r o p r i a t e t i m e i n t e r v a l (15 t o 30 m i n u t e s ) , t h e e x c e s s i s b a c k - t i t r a t e d w i t h t h i o - s u l f a t e . I n 1967 ,Ka l inowsk i a n d Czlonkowski 96 d e s c r i b e d a d i r e c t c o u l o m e t r i c t i t r a t i o n o f un- h y d r o l y z e d p o t a s s i u m b e n z y l p e n i c i l l i n w i t h c h l o r i n e . Samples a f t e r a l k a l i n e h y d r o l y s i s were a l s o t i t r a t e d c o u l o m e t r i c a l l y w i t h c h l o r i n e , b romine o r i o d i n e . I t i s i n t e r e s t i n g t o n o t e i n t h e s e m e t h o d s , e i g h t e q u i v a l e n t s o f h a l o g e n re- a c t e d w i t h one mole o f p e n i c i l l i n G . The b a c k t i t r a t i o n s d e s c r i b e d e a r l i e r u s u a l l y r e q u i r e d n i n e e q u i v a l e n t s p e r mole. N o i n f o r m a t i o n was l e p o r t e d on t h e d i r e c t c o u l o m e t r i c t i t r a t i o n o f p e n i c i l l i n V o r phenoxymethyl p e n i c i l l o i c a c i d . These same i n v e s t i g a t o r s 97 l a t e r d e s c r i b e d a t i t r a t i o n i n which an e x c e s s o f i o d i n e w a s g e n e r a t e d cou lo - m e t r i c a l l y a f t e r t h i s d r u g was h y d r o l y z e d b y a l k a l i . A f t e r s t a n d i n g f o r 1 5 m i n u t e s , a known e x c e s s of sodium t h i o s u l f a t e s o l u t i o n w a s added and t h e g e n e r a t i o n o f i o d i n e was resumed. The method w a s s u i t a b l e f o r r o u t i n e u s e .

6 .32 . Nonaqueous T i t r a t i o n s S i n c e phenoxymethyl p e n i c i l l i n i s a

s t r o n g a c i d (pKa i n w a t e r i s 2 . 7 4 ) , Mohoric found a nonaqueous t i t r a t i o n t o be more a c c u r a t e and f a s t e r t han the iodometric method. A 100-mg sample d i s s o l v e d i n 20 m l of d imethyl formamide i s t i t r a t e d w i t h 0.1N sodium methox ide t o a thymol b l u e end p o i n t .

F l o r i s and Simonyi 99 p r e f e r u s i n g t e t r a m e t h y l -

278

Page 278: Florey Vol 1

POTASSIUM PHENOX Y METH LY PEN I CI L LI N

ammonium hydrox ide a s t h e t i t r g n t w i t h t h e p e n i - c i l l i n V d i s s o l v e d i n dimethylformamide. A n a l t e r n a t e p rocedure used anhydrous methanol a s t h e s o l v e n t . Phenoxymethyl p e n i c i l l i n h a s been t i t r a t e d t o a p o t e n t i o m e t r i c end p o i n t w i t h sodium methoxide100.

6 .33. p-Chloromercur ibenzoate

t h e s p e c t r o p h o t o m e t r i c t i t r a t i o n of p e n i c i l l i n w i t h p -ch lo romercur ibenzoa te a f t e r i t s c l e a v a g e by p e n i c i l l i n a s e . The t h i a z o l i d i n e moie ty

r e a c t s w i t h e x c e s s mercu r ibenzoa te . A f t e r 30 minutes t h e e x c e s s i s t i t r a t e d w i t h a s o l u t i o n o f c y s t e i n e or g l u t a t h i o n e . The e n d p o i n t i s d e t e r - mined by measur ing t h e abso rbance a t 250 nm. A s l i t t l e a s 0 . 1 pM of p e n i c i l l i n can be de te rmined , P r e p a r a t i o n o f a s t a b l e p -ch lo romercur ibenzoa te

Siegmund and Korber 101 d e s c r i b e d

s o l u t i o n h a s been d e s c r i b e d r e c e n t l y by M u f t i c 1 0 2

6.4. 6 .41 .

hydroxylamine

C o l o r i m e t r i c Methods Hydroxamic Acid R e a c t i o n of p e n i c i l l i n w i t h l e a d s t o t h e fo rma t ion of a

hydroxamic a c i d . The c o l o r e d c h e l a t e formed w i t h f e r r i c i o n and t h e hydroxamic a c i d o f benzy l - p e n i c i l l i n was deve loped i n t o an a s s a y p r o c e d u r e i n 1949 103. The c o l o r was s t a b l e i f s o l u t i o n s were r e a d w i t h i n 5 minu tes . E x t r a c t i o n o f t h e c o l o r e d complex i n t o n -bu tano l lo4 c o l o r . D e t a i l s of the hydroxamic a c i d p r o c e d u r e f o r a number of p e n i c i l l i n s , i n c l u d i n g phenoxy- methyl p e n i c i l l i n , w e r e p u b l i s h e d i n t h e F e d e r a l Regis te rg1 .

I n 1 9 6 0 , t h e method was adop ted a s an au to - mated p rocedure u s i n g t h e Technicon Au toana lyze r . T h i s p rocedure i s used r o u t i n e l y f o r t h e d e t e r -

gave a s tab le

279

Page 279: Florey Vol 1

JOHN M. DUNHAM

m i n a t i o n o f p e n i c i l l i n v 106. D e t a i l s o f t h e au tomated p r o c e d u r e a p p l i e d t o phenox e t h 1 p e n i c i l l i n h a v e now been p u b l i s h e d l0yT l o x

P l i g i n and Por tnov log t h e hydroxamic a c i d a n d e x t r a c t e d t h e c h e l a t e i n - t o b u t a n o l . The r e s u l t i n g s o l u t i o n s obeyed Bee r ' s l a w and were s tab le f o r 2 h o u r s .

added coba l t n i t r a t e t o

6 .42 . Dye Complex The phenoxymethyl p e n i c i l l i n dye complex

w i t h me thy l g r e e n can be e x t r a c t e d from a pH 3 b u f f e r i n t o benzene and d e t e r m i n e d color imetr ic- a l l y 73. P e n i c i l l i n V and p h e n o x y a c e t i c a c i d can be d e t e r m i n e d s e p a r a t e l y , The p r o c e d u r e i s c l a i m e d t o be simple, r a p i d and a c c u r a t e , a n d t h e v a l u e s o b t a i n e d a g r e e w i t h p o t e n c i e s o b t a i n e d b y b i o l o g i c a l tes ts .

6.43. N i t r a t i o n P e n i c i l l i n V may be n i t r a t e d b y 10%

p o t a s s i u m n i t r a t e i n c o n c e n t r a t e d s u l f u r i c a c i d 7 2 9 'lo. The y e l l o w d e r i v a t i v e i n ammonia

s o l u t i o n can be d e t e r m i n e d c o l o r i m e t r i c a l l y . B i r n e r ' s 7 2 method e s t i m a t e s b o t h p e n i c i l l i n V and p h e n o x y a c e t i c ac id i n f e r m e n t a t i o n b r o t h s . S e l e c t i v i t y i s a c h i e v e d b y s o l v e n t e x t r a c t i o n t e c h n i q u e s .

6 .44 . F o l i n Pheno l Reagent S i l v e r m a n 111 r e p o r t e d t h a t s e v e r a l

p e n i c i l l i n s , i n c l u d i n g phenoxymethyl p e n i c i l l i n , i n t e r f e r e w i t h t h e F o l i n c o l o r i m e t r i c p r o t e i n d e t e r m i n a t i o n . S i n c e p e n i c i l l i n V g i v e s a Pro- nounced color f o r m a t i o n i n t h e a b s e n c e o f p r o t e i n , it migh t be p o s s i b l e t o u s e t h i s r e a c t i o n f o r i t s d e t e r m i n a t i o n .

280

Page 280: Florey Vol 1

6.5. Chromatographic Analysis

6.51. Paper Chromatography The following systems have been described for the paper

chromatography of phenoxymethyl penicillin:

Solvent System Paper RF References

1.

w 2. W -

3.

4.

H20-saturated ether

Butanol-2:HCOOH:H20 75: 15:lO

Propanol-2:H20 60:40 70:30

Propanol- 1 : Et OH: H20 30:40:30 5 0 : 20: 30 50:30:20

& - pH 6.6 phosphate 0.31 buffer on Whatman #4 paper (a,e)

Schleicher and Schule 2043 b paper (b) 0.92

Same

Same

0.81 0.70

0.80 0.71 0.65

57 114

78

78 78

78 78 78

4 D KJ C z -0 I rn z 0 X

rn -I I < r

rn z 0 r I-

cn

2

D

z

Page 281: Florey Vol 1

Solvent System Paper

5. Butanol-l:Propanol-l:H20 25 :40: 35 Same 20: 50: 30 25: 50: 25

6. H20 Whatman NO. 1 paper (c)

7. H20 saturated Same n- Bu t ano 1

N 00 N

8. H S saturated E t O A c Same

9. H20 saturated Benzene Same

10. 3% NH4Cl in H20 Same

11. Isoamyl acetate: MeOH : HCOOH : H20 65:20:5:10(upper phase)

Same

0.60 0.60 0.55

0.93

0.33

0.80

0.00

0 .84

0 . 8 9

References

78

78

-- f t 3

112

112

112

112

112

112

Page 282: Florey Vol 1

t 3 m LJ

So 1 vent S y s t em Paper

1 2 . n-Butyl acetate :me thy1 Same ethyl ketone: 0.15M - phosphate buffer, pH 7.4, 50 : 25 : 5 (upper phase)

13. Et0Ac:n-hexane:O. 15g Same phosphate buffer, pH 6.0, 65:15:20 (upper phase)

References R f - 0.43 1 1 2

0 .00 1 1 2

14. Isopropyl ether:isopropanol: Paper impregnated H 2 0 70:30:100 (two phases) with pH 5.0 0.33

phthalate buffer (d)

15. Ether saturated with 28% pH 5 . 5 citrate buffer

0.60 (NH4 1 2SO4 on Whatman No.1 (f)

Detection systems:

(a) Bioautographic plates; Bacillus subtilis 288. (b) Alkaline hydrolysis + AgN03. (c) Bioautographic plates, Bacillus subtilis. (d) A number of chemical system suggested.

113

8 0

V 0 -I

?? C s 0 I rn z 0 X <

-I I < r

E;

5

Page 283: Florey Vol 1

(e ) Bioautographic p l a t e s , Staphylococcus aureus 209P ( f ) Spray wi th s t a rch - iod ine s o l u t i o n a f t e r b a s i c h y d r o l y s i s

Rohr 78 h y d r o l y s i s prcC71~cts. Separ=.t ic?n nf e i g h t penicillins by paper a n d t h i n - l a y e r chromatography was r epor t ed by Hel lberg 113 chromatographic s e p a r a t i o n of f i v e p e n i c i l l i n s was achieved by Watanabe, Endo and I i d a 139.

descr ibed t h e s e p a r a t i o n of p e n i c i l l i n V and i t s enzymatic

wh i l e t h e paper

6.52.

N Solvent System cc P

1.

2 .

3 .

4.

0.1M - NaCl

Thin-Layer Chromatography Systems f o r t h i n - l a y e r chromatography a r e summarized here : L

Rf Reference E

C e l l u l o s e ( a ) 0.82 115 I

I 2

- P l a t e 0 C 2

> < 0.3M C i t r i c a c i d s a t u r a t e d Same wi th n-BuOH

0.76 (0.56) 115

Organic phase of isoamyl S i l i c a G e l G ( a ) 0.66 115 acetate:MeOH:HC02H:H20 a c t i v a t e d llOo 65:20:5:10

Acetone :HOAc 95: 5

Same 0.75 very temperature- dependent

115

Page 284: Florey Vol 1

Solvent System P l a t e Rf Reference - 5. pH 6.0 phosphate

b u f f e r

6. CC14: Isopropanol:H20 65:35:4

Sephadex G-15 0 . 9 (b) 119 (b) b u f f e r e d a t pH 6.0

Kieselgahn b u f f e r e d a t pH 5.3 (c) 0 . 5 113

Detect ion Systems

a. Spray r eagen t i s f r e s h l y prepared FeC13-K3Fe(CN)6 h, b. Bioautographic p l a t e s , B a c i l l u s s u b t i l i s ATCC 6633; v, R f r e l a t i v e t o p e n i c i l l i n G . 03

c. Various spray r eagen t s

Separa t ion of e i g h t p e n i c i l l i n s by paper and t h i n l a y e r chromatography was descr ibed by Hel lberg 'I3. i n t a c t p e n i c i l l i n s and t h e methyl e s t e r s of t h e p e n i c i l l o i c ac ids .

Mc Gilveray and S t r i c k l a n d r epor t ed f o u r t h i n - l a y e r systems and spray reagents f o r d i f f e r e n t i a t i n g t e n p e n i c i l l i n s . The comparative behavior of 18 o t h e r a n t i b i o t i c s was presented a l s o . Nussbaumer

t a b l e t s , f o l l o w e d by removal of t h e s p o t and q u a n t i t a t i o n by spectrophoto- metry. Sephadex t h i n - l a y e r chromatography was app l i ed t o 1 7 a n t i b i o t i c s

Thin- l a y e r methods a r e descr ibed f o r t h e

116, 117,

descr ibed t h i n l a y e r chromatography of phenoxymethyl p e n i c i l l i n i n

Page 285: Florey Vol 1

JOHN M. DUNHAM

119

An ex t r eme ly s e n s i t i v e p rocedure I2O can d e t e c t 0 .76 ng o f phenoxymethyl p e n i c i l l i n . A f t e r h y a r o l y s i s , t h e secondary amine o f p e n i c i l l o i c a c i d i s coupled w i t h 9-isothiocyanatoacridine t o form a f l u o r e s c e n t compound. Fol lowing t h i n - l a y e r chromatography, f l u o r e s c e n c e of t h e s p o t i s measured, w i t h l i n e a r i t y i n t h e 3 t o 30 ng r ange .

Reversed-phase t h i n - l a y e r chromatography h a s been

a c t i v i t y r e l a t i o n s h i p s of c e p h a l o s p o r i n s and p e n i c i l l i n s l 2 3 . The s t a t i o n a r y phase was S i l i c a Gel G impregnated w i t h S i l i c o n e DC 200. Mobile phases w i t h b u f f e r s and 0 t o 50% a c e t o n e gave Rf v a l u e s f o r p e n i c i l l i n V from 0 . 1 t o 0 . 9 .

122 t o s t u d y s t r u c t u r e - a n t i b a c t e r i a l

6.53. Ion-Exchange Chromatography Russ ian i n v e s t i g a t o r s l 2 4 , 125 have

d e s c r i b e d t h e a b s o r p t i o n c a p a c i t y and s e l e c t i v i t y of two s t r o n g an ion exchange r e s i n s f o r phenoxy- methyl p e n i c i l l i n and t h r e e o t h e r p e n i c i l l i n s . A phosphate b u f f e r i s t h e e l u a n t .

0 .54 . Gas-Liquid Chromatography The methyl es te rs o f benzyl-and

phenoxymethyl p e n i c i l l i n s can be s e p a r a t e d on columns of e i t h e r 0.75% QF-1 o r 0.4% SE-521269 127. L i g h t l y loaded SE-30, SE-52 and QF-1 columns w e r e s t u d i e d , w i t h SE-52 be ing t h e most s u i t a b l e l i q u i d phase. N o ev idence of t he rma l decom- p o s i t i o n was found, a s shown b y t h e s i n g l e r e p r o d u c i b l e peaks. P roduc t s c o l l e c t e d from t h e e x i t of t h e QF-1 column had t h e same t h i n - l a y e r and g a s chromatographic p r o p e r t i e s a s t h e s t a r t - i n g m a t e r i a l s . Samples of t h e methyl e s t e r s i n a c e t o n e were i n j e c t e d d i r e c t l y o n t o 130-cm by 4-mm g l a s s columns c o n t a i n i n g t h e s t a t i o n a r y pham

286

Page 286: Florey Vol 1

POTASSIUM PHENOXYMETHYL PENICILLIN

c o a t e d on 100-200 mesh acid-washed s i l a n i z e d ' G a s Chrom P . '

SE-52 SE-52 -- S t a t i o n a r y Phase QF-1 SE-30

Loading 0.75% 0.4% 0.4% 0.4%

Column Tempera ture 225O 200° 180° 240°

R e l a t i v e R e t e n t i o n T i m e , M e e s t e r :

P e n i c i l l i n G 1 .00 1.00 1 .00 1 .00

P e n i c i l l i n V 1 .17 1 .24 1 . 3 5 1.18

R e t e n t i o n T ime M e e s t e r Pen.G 11 min. 6 min. 28 min. 1 . 5

min.

P r e p a r a t i o n and p r o p e r t i e s of some phenoxymethyl p e n i c i l l i n e s t e r s , i n c l u d i n g the methyl e s t e r , w a s t h e s u b j e c t o f a r e c e n t s t u d y l3l.

These s t u d i e s were concerned w i t h s e p a r a t i o n and gave no d e t a i l s on q u a n t i t a t i o n . Claims o f t he rma l s t a b i l i t y and r e p r o d u c i b l e peaks 127 make the method a p p l i c a b l e f o r q u a n t i t a t i v e ana- l y s i s . Q u a n t i t a t i v e c o n v e r s i o n t o t h e methyl e s t e r o r o t h e r s u i t a b l e v o l a t i l e d e r i v a t i v e would be r e q u i r e d .

nay

6.6. E l e c t r o p h o r e t i c A n a l y s i s Thomas and Broadbr idge 128

e l o p e d a low-vol tage e l e c t r o p h o r e s i s method f o r the r a p i d s e p a r a t i o n of a p e n i c i l l i n from i t s p e n i c i l l o i c a c i d . Phenoxymethyl p e n i c i l l i n was one o f 1 2 p e n i c i l l i n s s t u d i e d . The method was found t o be p a r t i c u l a r l y u s e f u l f o r r a b b i t s e r a and u r i n e and t h e p r o d u c t s cf b a c t e r i a l h y d r o l y s i s

have dev-

287

Page 287: Florey Vol 1

JOHN M. DUNHAM

of p e n i c i l l i n s i n b r o t h c u l t u r e s .

6 .7 . Po la rography DusinskyS3 r e p o r t e d 1 c a t h o d i c i n c i s i o n

on t h e o s c i l l o g r a p h i c polarogram i n p H 7 phos- p h a t e b u f f e r f o r phenoxymethyl and t h r e e o ther p e n i c i l l i n s . T h i s i n c i s i o n d e c r e a s e s and d i s - appea r s a s t h e p e n i c i l l i n i s i n a c t i v a t e d b y p e n i c i l l i n a s e . Three more p o s i t i v e i n c i s i o n s t h a t appea r a r e t h e r e s u l t o f t h e p e n i c i l l o i c a c i d formed.

6 .8 . M i c r o b i o l o g i c a l Methods Goodey e t a l . 52 r e p o r t e d i n 1955 on

t h e compara t ive m i c r o b i o l o g i c a l a s s a y s o f p e n i - c i l l i n V and p e n i c i l l i n G . Dose-response c u r v e s f o r t h r e e s p e c i e s , S t aphy lococcus a u r e u s 209P, B a c i l l u s s u b t i l i s 288 and S a r c i n a l u t e a , w e r e de termirfed.

-

The F e d e r a l R e g i s t e r 91 S taphy lococcus a u r e u s 6538P f o r t h e d e t e r m i n a t i o n o f po tency o f pot a s s ium ph e nox yme t h y 1 pen i c i 1 1 i n . The S. a u r e u s 6538P s t r a i n i s t h e same a s S . a u r e u s 209P.

s p e c i f i e s t h e u s e o f

George 129 m o d i f i e d t h e b i o - a s s a y p r o c e d u r e deve loped b y P l a t t , W e i s b l a t t and Guevrekian 130 f o r u s e i n a s s a y i n g p e n i c i l l i n V i n b u l k powders f o r s o l u t i o n s and t a b l e t s . T h i s au tomated , t u r b i - d o m e t r i c p rocedure r e l a t e s t h e w e i g h t o f a n t i - b i o t i c t o t h e t i m e r e q u i r e d t o d i l u t e a sample t o a c o n c e n t r a t i o n y i e l d i n g a s p e c i f i e d growth i n h i - b i t i o n . The method u s e s S t r e p t o c o c c u s f a e c a l i s ATCC 1 0 , 5 4 1 a s t h e t e s t organism. For t h e a s s a y of p e n i c i l l i n v i n o r a l s u s p e n s i o n s , Levin 132 d e s c r i b e s a p rocedure u s i n g S taphy lococcus a u r e u s 209P.

288

Page 288: Florey Vol 1

POTASSIUM PHENOXYMETHYL PENICILLIN

7. Serum P r o t e i n Binding Binding of d r u g s , i n c l u d i n g p e n i c i l l i n V,

w i t h plasma p r o t e i n s h a s been reviewed r e c e n t l y 133, 134. S t u d i e s c o r r e l a t i n g serum p r o t e i n

b i n d i n g w i t h p a r t i t i o n c o e f f i c i e n t s were summar- i z e d i n s ec t ion 5 .2 .

8. Drug Metabolism Many p e n i c i l l i n s , i n c l u d i n g p e n i c i l l i n V,

a r e me tabo l i zed i n t h e human b o d y . t o o t h e r a c t i v e compounds. Rol inson and B a t c h e l o r 140 adminis- t e r e d t h e d r u g s o r a l l y o r by i n t r a m u s c u l a r i n j e c - t i o n and e v a l u a t e d b o t h b lood and u r i n e samples by pape r chromatography. A c t i v e m e t a b o l i t e s were d e t e c t e d b y b i o a u t o g r a p h i c p l a t e s . Vanderhaeghe, Pa rmen t i e r and Evra rd 141 i d e n t i f i e d the major m e t a b o l i t e o f p e n i c i l l i n V as p-hydroxyphenoxy- methyl p e n i c i l l i n . I t r e p r e s e n t e d a b o u t 10% of t h e m i c r o b i o l o g i c a l a c t i v i t y i n t h e u r i n e . A s m a l l amount of o-hydroxyphenoxymethyl p e n i c i l l i n was a l s o obse rved w h i l e i n t h e u r i n e of some p a t i e n t s a n o t h e r m e t a b o l i t e was d e t e c t e d . They s p e c u l a t e d t h i s might be t h e d ihydroxy d e r i v a t i v e .

Re fe rences C i t e d

1. Humphrey, J. , J. Lightbrown and M. M u s s e t t ,

a. K.E.0. 20, 1221 (1959) .

2. Un i t ed S t a t e s Pharmacopeia X V I I I , 526 (1970) .

3. Hayden, A . , 0. Sammul, G . S e l z e r and J .Caro1 , J. Assoc. O f f i c . s. Chem. 45, 797 (1962) . - -

4. Ovechkin, G . , gh. Obshch. K h i m . 33, 1923 (1963) ; C. A. 59 , 11190b (1963) .

5. Green, G . , J. Page and S. S t a n i f o r t h , J . C h e m .

289

Page 289: Florey Vol 1

JOHN M. DUNHAM

- SOC. 1595 (1965) .

6.

7.

8.

9.

10.

11.

1 2 .

13.

14.

15 .

Cohen, A . and M. Puaq Squibb I n s t i t u t e , p r i v a t e communication,

Pek, G . , V. Bys t rov , E. K l e i n e r , I. Bl inovo and A. Khokhlov, I z v . Akad. Nauk SSSR, S e r . Khim. 1968, 2213; -- C.A. 70, 28229 (1969) .

- -- Manhas, M. and A . Bose, " S y n t h e s i s of P e n i c i l l i n , Cephalospor in C and Analogs", Marcel Dekker, N e w York, 1969.

Cooper, R . , P. D e Marco, J. Cheng and N.Jones, J. Amer.Chem SOC. 9 l , 1408 (1969) . --- - Archer , R . , R. Cooper, F. D e Marco and L. Johnson, Chem. Commun. 1291 (1970) .

Pa rke r , G., R. Cox and D. R icha rds , J. Pharm. Pharmacol. I, 683 (1955) .

Rogers, A . , i b i d 11, 291 (1959) .

Andersen, H. Dan. T i d s s k r . Farm. 3 8 , 1(1964); C. A . 2 , 7871b (1964) .

Unterman, H. and T. Mironeanu, Rev. Chim. (Bucha res t ) l8, 530 (1967) ; -- C.A. 68,43130(1968)

16. R i c h t e r , W. and K. Biemann, Monatsh. Chem. - 95,766 (1964) ; - C.A. 61, 14015 g (1964) .

1 7 . Bochkarev, V . , N. Ovchinnikova, N. Vull f s o n , E. K l e i n e r and A. Khokhlov, Dokl. Akad. Nauk -- SSSR 172, 1079 (1967) ; C . A . 67, 116843 (1967) .

290

Page 290: Florey Vol 1

POTASSIUM PHENOXYMETHYL PENlCl LLlN

18. Mathews, A . , C . Schram and D. Minty, Nature -9 2 1 1 959 (1966) .

19. F l o r e y , H . , E . Chain, N. Hea t l ey , M.Jennings, A. Saunders , E. Abraham and M. F lo rey , "Ant i - b i o t i c s , ' I V o l . 2 , Oxford U n i v e r s i t y Press , London, 1949. ( a ) p. 787, (b) p. 789, ( c ) p . 795 ( d ) p. 804 and (e ) p. 1090.

20. Schwar tz , M. and F. Buckwalter, J . Pharm.Sci. - 51, 1119 (1962) .

21 . Jacobson, H . , Squibb I n s t i t u t e , p r i v a t e communication.

2 2 . Thadani, S . , G. Sen and D. Ghosh, Hindust,an Antibiot; . . B u l l . - - 3, 69 (1960) : C . A . 55,979433 (1961) .

23. K l e i n e r , G. and B. Dendze-Pletnam, Med. Prom. -- SSSR 13, 42 (1959) ; - - C.A. 53, 18389 d (1959) .

24. K u h n e r t - B r a n d s t a t t e r , M. and L. Mul l e r , Microchem. 2. l3, 20 (1968) .

25. Sheehan, J. and K. Henery-Logan, J. A m e r . Chem. - SOC. 8 l , 3089 (1959) .

26. Sheehan, J. and K. Henery-Logan, i b i d 84 , 2983 (1962).

27. Ganapath i , K. Hindus tan A n t i b i o t , B u l l . 1, 29 (1958) ; u. 54, 21637 b (1960) .

2 8 . W e i s s , P . , M. Andrew and W. Wright , Ant i - b i o t . Chemother. - 7 , 374 (1957) .

29. Rapson, H. and A. B i r d , 2. Pharm.Pharmaco1. - 15, 222T ( 1 9 6 3 ) .

29 1

Page 291: Florey Vol 1

JOHN M. DUNHAM

30.

31.

32.

33.

34.

35,

36.

37.

38.

39.

40.

M c ( J red ie , R . , Squibb I n s t i t u t e , p r i v a t e communication.

Mata, J. and A . Ga l l ego , An. I n s t . Farmacol. Espan. 4, 8 7 (1955) : Q. 52, 1480b (1958) .

--

Cla rke , H . , J. Johnson and R. Robinson, Eds. "The Chemistry of P e n i c i l l i n , ' ' P r i n c e t o n U n i v e r s i t y Press, P r i n c e t o n , 1949.

Doyle, F. and J. Nayler , Advan. Druq:#Res. 1, 1 (1964) .

White, A. i n "Textbook of Organ ic Medic ina l and Pharmaceut ica l Chemis t ry" , 5 t h ed: C. Wilson, 0. Giswold and R. Doerge, E d s . ; J. B. L i p p i n c o t t , P h i l a d e l p h i a , 1966, p. 326.

Dennen, D. and W. Davis , A n t i b a c t . Agents Chemo t h e r , 1961, 531.

Katz, S. and A. W i n n e t t , J . A q r . Food Chem. - 10, 284 (1962) .

E l i a s , W. and H. Merrion, A n t i b i o t . Annu,. 510 (1955-1956).

Naras imhachar i , N. and G . Rao, Hindus tan A n t i b i o t . - - Bul l . 6 , 114 (1964) : z. 63, 16134 c (1965) .

Naras imhachar i , N. ,and G. Rao and J. Ta tke , i b i d z, 127 (1965): G. 3, 16134 d (1965) .

Pana r in , E. and M. S o l o v s k i i A n t i b i o t i k i (Moscow) l5, 426 (1970) : u. 73, 44514 (1970)

292

Page 292: Florey Vol 1

POTASSIUM PHENOXYMETHYL PENICILLIN

41. F o r i s t , A . , L. Brown and M. Royer, J. Pharm. - - S c i . 54, 476 (1965).

42. Kondra t ' eva , A . and B. B r u n s , Khim.-Farm.Zh. 1, (12), 30 (1967); C.A. 68, 72247 (1968).

43. Umemura, K. and M. Nagasawa, M e i j i S e i k a Kenkyu N e m p o 1965 (7), 6; C . A . 64,8973 d (1966).

- -

44. J o s h i , V., S. Kr ishnan and N. Na ras imhacha r i , Hindustan A n t i b i o t . B u l l . 9, 16 (1966) : Q. - 6 6 , 68885 (1967).

- -

45. Bl inova , I. and A . Khokhlov, A n t i b i o t i k i ll, 99 (1966) ; u. 64, 17568 g (1966).

46. Blinova , I. and A . Khokhlov, - i b i d - 9 12 275 (1967); u. 67, 64289 (1967).

47. Khokhlov, A. and I. B l inova , i b i d 8, 35(1963) C . A . 61, 2908 a (1964). - -

48. Rozenberg, A . , Med. Prom. SSSR 17, 43 (1963); C.A. 59, 11193 a (1963). - -

49. Finho ld , P . , R. E r i ckson and R. Pedersen , Medd. Norsk Farm. Selsk. 30, 69 (1968):C.A. - 69, 109781 (1968).

-

50. Thoma, K . , E. Ullmann and G. Z e l f e l , Acta

Pharm. Hunq. 35, 1 (1965); C . A . 63, 1664 g (1965).

51. El-Nakeeb, M. and R. Yousef, Acta Pharm. Suec. -9 5 1 (1968) ; u. 68, 89857 (1968).

52. Goodey, R . , K. Reed and J. S tephens , J.Pharm. Pharmacol. - 7, 692 (1955).

293

Page 293: Florey Vol 1

JOHN M. DUNHAM

53. Dusinsky, G . , S c i . Pharm., P r O C . 25 th 2,241 (1965) : u. 70, 18568 (1969) .

14 54. Rauenbusch, E . , A n t i b i o t . Chemother, -9

95 (1968) .

55. Singh, K . , S. S e h g a l and C. Vezina , A p p l . Microbiol. 17, 643 (1969) .

56. G r a n t , N . , D. C l a r k and H. Alburn , 2. A m e r . Chem. SOC. 83, 4476 (1961) . -I_ -

57. Stephens , J. and A. G r a i n g e r , 2. Pharm. Pharmacol. I, 702 (1955) .

58. N i e b e r g a l l , P . , D. Hussar , W. Cressman, E. S u g i t a and J. D o l u i s i o , i b i d 18, 729 (1966) .

59. Cressman, W. and P. N i e b e r g a l l , i b i d 19, 774 (1967) .

60. Cressman, W . , E. S u g i t a , J. D o l u i s i o and P. N i e b e r g a l l , i b i d 18, 8 0 1 (1966) .

61. Cressman, W . , E. S u g i t a , J. D o l u i s i o and P. N i e b e r g a l l , 2. Pharm. S c i . 58, 1471(1969).

62. Sokol , M . , D. Zemla and B. Okanik, Czech. 124,845, October 15, 1967; u. 69,34690 (1968) .

63. Chorvat , I . , Czech. 127,853, June 15,1968; C . A . 70, 90739 (1969) . --

64. B e t h e l , M. and C. Bond, A n a l y s t 86, 448 (1961) .

65. I d a , K . , J. A n t i b i o t . (Tokyo) S e r . . B. ll, 189 (1958) ; C . A . 53, 17224 f (1959) . - -

294

Page 294: Florey Vol 1

POTASSIUM PHENOXYMETHYL PENICILLIN

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

B i r d , A. and A . M a r s h a l l , Biochem. Pharmacol. - 16, 2275 (1967) .

B i a g i , G . , Antibiotics ( R o m e ) 5,198 (1967) . - -

Doskoci lova , D , , H. Pa r i zkova and J .Doskoci1 , Pharmazie l2, 608 (1957) : u. 52, 3260 f (1958) .

I d a , K. ,T . Onga, K. K i n o s h i t a and S. Kawaji , J. A n t i b i o t . (Tokyo) S e r . B. - 10, 37 (1957) : C . A . 53, 17224 C (1959) . - - I d a , K . , S. z u s h i and S. Kawaji , i b i d , 40 ; - - C . A . 53, 17224 e (1959) .

I d a , K . , i b i d 11, 192 (1958) : u. 53, 17224 g (1959) .

B i r n e r , J . , Anal. Chem. 31, 2 7 1 (1959) .

Nogami, H. and S. Kanazawa, Yakugaku Z a s s h i - 80, 1101 (1960) : u. - 54, 25581 d (1960) .

U b e r t i , L . , Squibb I n t e r n a t i o n a l , p r i v a t e communication.

Niedermayer , A. , Squibb I n s t i t u t e , p r i G a t e communication.

Niedermayer, A. , Squ ibb I n s t i t u t e , p r i v a t e communication.

Kawai, S. and S . Hashiba, Bunseki Kagaku l3, 1223 (1964) ; u. - 62, 6339 f (1965) .

Rohr, M . , Mikrochim. Acta , 705 (1965) .

B i r n e r , J . , J. Pharm. S c i . 59, 757 (1970) .

295

Page 295: Florey Vol 1

JOHN M. DUNHAM

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

B i r n e r , J . , i b i d 57, 1606 (1968) .

P o e t , R . and B. Keeler, S q u i b b I n s t i t u t e , p r i v a t e communicat ion.

Turback , C. , Squ ibb I n t e r n a t i o n a l , p r i v a t e communicat ion.

Weiss, P. , B. T a l i a f e r r o , R. Huckins a n d R. Chas tonay , J. A s s . O f f i c . Anal . Chem. -9 50 1294 (1967) .

Hami l ton -Mi l l e r , J . , J. Smi th and R. Knox, J. Pharm. Pharmacol . l5, 8 1 (1963) .

Connors , K. and T. H iguch i i n "Pha rmaceu t i - c a l A n a l y s i s " , T. H iguch i and E. Brochmann- Hanssen ,Eds . , N e w York, I n t e r s c i e n c e , 1961, p. 593.

Unterman, H . , Rev. Chim. lS, 283 (1964) ; - - C . A . 61, 7654 d (1964) .

B r a n d r i s s , M . , E. Denny, M. Huber a n d H. S t e inman , Ant imicrob . Agen t s Chemo- t h e r . 626 (1962) .

S a c c a n i , F. and G. P i t r o l o , B o l l . C h i m . Farm - 108, 89 (1969) ; %. 7l, 33454 (1969) .

A l i c i n o , J . , I n d . Eng. Chem., Anal . Ed. l8, 619 (1946) .

A l i c i n o , J . , Anal . C h e m . - 33, 648 (1961) .

- Fed . R e g i s t . 33, 4099 (March 2, 1968) , 1 4 1 a . 81, 1 4 1 a . 82, 1 4 1 a. 1, 1 4 1 a . l O f .

B r i t i s h Pharmacopeia , 1968, 756.

296

Page 296: Florey Vol 1

POTASSIUM PHENOXYMETHYL PENICILLIN

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

Glombitza, K. W. and D. Pa l l enbach , Pharmazie 23, 157 (1968) .

G b m b i t z a , K. W. and D. Pa l l enbach , Arch. Pharm . ( W e inheim 1 - 302, 695 (1969) ;Q. - 71, 116568 (1969) .

Glombitza, K. W. and D. Pa l l enbach , i b i d , 9 8 5 ; -- C.A. 72, 90359 (1970) .

Kal inowski , K. and F. Czlonkowski, Acta P o l . - Pharm. -, 24 31 (1967) ; u. 67, 67632 (1967) .

Kal inowski , K. and F. Czlonkowski, i b i d 25, 29 ( 1 9 6 8 ) ; G. 68, 117162 (1968) .

Mohoric, J., Farm. Ves tn , ( L j u b l j a n a ) - 14,74 (1963) ; u. 60, 5280 f (1964) .

F l o r i s , G. and I. Simonyi, Acta Pharm.Hung. - 39, 74 (1969) ; C . A . 7 1 , 42386 (1969) .

Regosz, A . , Farm. Po l . 24, 797 (1968) ; u. - 71, 42391 (1969) .

Siegmund, P. and F. Korber, C l i n . Chem. l4, 808 (1968) .

Muf t i c , M . , Anal. Biochem. 36, 539 (1970) .

Boxer, G. and P. Eve re t t ,Ana l .Chem.21 ,670 (1949) .

Henstock, H . , Na tu re 164, 139 (1949) .

Niedermayer, A , , F. Russo-Alesi , C. Lendzian and J. K e l l y , -- Anal. Chem. 32, 664 (1960) .

207

Page 297: Florey Vol 1

JOHN M. DUNHAM

106. Russo-Alesi, F., Squibb Institute, private communication.

107. Stevenson, C., L. Bechtel and L. Coursen, Advan. Automat. Anal., Technicon Int. Conq. - 2, 251 (1969): - C.A. 73, 80528 (1970).

108. Oedegaard, E. and K. Oeydvin, Medd. Nor. Farm. Selsk. 2, 57 (1969) : C.A. 72 15791 (1970).

- -9

109. Pligin, S. and A. Portnov, Issled. - Obl. Farm. 1959, 40: -- C.A. 54, 25570 c (1960). --

110. Fursov, A., Aptech. Delo 11, 63 (1962): C.A. 60, 10480 b (1964). - -

111. Silverman, D., Anal. Biochem. 2 7 , 189 (1969).

112. Betina, V., J. Chromatogr. - 15, 379 (1964).

113. Hellberg, H., J. Ass. Offic. Anal. Chem. - 51, 552 (1968).

114. Roberts, H., Squibb Institute, private communication.

115. Mc Gilveray, I. and R. Strickland, JrPharm. Sci. 56 77 (1967). - -9

116. Nussbaumer, P., Pharm. Acta Helv. 37, 65 (1962) ; u. 57, 961b (1962).

117. Nussbaumer, P., ibid 38, 245 (1963): - C.A. - 59, 4977 h (1963).

118. Nussbaumer, P., ibid, 758: -- C.A.60,1541e (1964) .

298

Page 298: Florey Vol 1

POTASSIUM PHENOXYMETHYL PENICILLIN

119.

120.

1 2 1 .

122.

123.

124.

125.

126.

127.

128.

129.

Zuidweg, M . , J. Oos tendorp and C. BOS, 2. Chromatogr. 42, 552 (1969) .

Sinshe imer , J . , D. Hong and J. B u r c k h a l t e r , J. Pharm. S c i . 58, 1 0 4 1 (1969) . - - B i a g i , G . , A. Barbaro , M. Gamba and M. Guer ra , J. Chromatoqr. 41, 371 (1969) . - B i a g i , G . , A . Barbaro and M. Guer ra , i b i d 5 1 548 (1970) .

B i a g i , G . , M. G u e r r a , A. Barbaro a n d M. Gamba, J . Med. Chem. l3, 5 1 1 (1970) .

Vedeneeva, V . , T. Vikhoreva and G . Samsonov, - T r . Leningrad. Khim. -Farm. I n s t . 1968,85: - - C . A . 71, 53511 (1969) .

Samsonov, G . , V. Vedeneeva, T . Vikhoreva, A. Pashkov, A. Se l ezneva and E . T ros tyanskaya , U.S.S.R. 213, 261, March 12, 1968: G. 69, 18033 (1968) .

Vanderhaeghe, H . , E. Ev ra rd and M. C l a e s e n , I n s t . Konqr. Pharm. W i s s ; V o r t r . Q r i q i n a l m i t t . 2 3 r d . , 1963, 405: u. 62, 5140 d (1965) .

Evrard , E . , M. C laesen and H. Vanderhaeghe, N a t u r e 201, 1124 (1964) .

Thomas, A. and R. Broadbr idge , A n a l y s t 55, 459 (1970) .

George, M . , Squibb I n s t i t u t e , p r i v a t e communication.

299

Page 299: Florey Vol 1

JOHN M. DUNHAM

130. P l a t t , T., H. W e i s b l a t t and L. Guevrekian , Ann. N. Y. Acad. S c i . 153, 571 (1968).

131. G o m i s , P., M. I z q u i e r d o and A. J u r a d o , B u l l . SOC. Chim. E. 1968, 420; u. 69, 2898 (1968). -

132. Levin, J . , Squibb I n s t i t u t e , p r i v a t e communication,

133. Meyer, M. and D. Guttman, J. Pharm. S c i . - 57, 895 (1968).

14 134. S c h o l t a n , W . , A n t i b i o t . Chemother. - -9

53 (1968) .*

135. Ege, H., Dan. 116,361 May 25, 1970; u. - 73, 98934 (1970)

136. Kinget , R. and M. Schwartz, J. Pharm. S c i . - 58, 1102 (1969).

137. Sheehan, J . , Ann. N.Y. Acad. S c i . 3, 216 (1967).

138. Manhas, M. and A. Bose, " S y n t h e s i s of . P e n i c i l l i n , Cepha lospor in C and Analogs", Marcel Dekker, New Yark, 1969.

139. Watanabe, T., S. Endo and Y. I i d a , J. A n t i b i o t . (Tokyo) S e r . A, - 15, 112 (1962); - C.A. 57, 1213 g (1962).

140. Rol inson , G. and F. B a t c h e l o r , Ant imicrob .

s, Chemother. 1962, 654.

141. Vanderhaeghe, H., G. Pa rmen t i e r and E. Evrard , Na tu re 200, 891 (1963).

3 00

Page 300: Florey Vol 1

PROPOXYPHENE HYDROCHLORIDE

B. McEwan

30 I

Page 301: Florey Vol 1

6. McEWAN

CONTENTS

1. Description 1.1 Name, Formula, Molecular Weight 1.2 Appearance, Color, Odor, Other Physical.

Pr ope r t i e s 2. Synthesis 3. Identification Techniques With Spectral Data

3.1 Crystal Properties 3.2 Infrared Spectra 3.3 Nuclear Magnetic Resonance Spectra 3.4 Ultraviolet Spectra 3.5 Mass Spectra 3.6 Differential Thermal Analysis 3.7 Thermogravimetric Analysis 3.8 Microchemical Tests

4.1 Non-aqueous Titration 4.2 Infrared Absorption 4.3 Ultraviolet Absorption 4.4 Gas Chromatography 4.5 Visible Absorption (With an

Autoanalyzer) 4.6 Thin Layer Chromatography

4. Methods of Analysis

5. Stability 6. Metabolism 7. Pharmacokinetics 8. References

3 02

Page 302: Florey Vol 1

PROPOXYPHENE HYDROCHLORIDE

1. D e s c r i p t i o n

1.1 Name, Formula, M o l e c u l a r Weight Propoxyphene H y d r o c h l o r i d e i s ( + ) - @ - 4

(Dimethylamino)-3-methyl-l,2-diphenyl-2-butanol P r o p i o n a t e H y d r o c h l o r i d e . S i n c e n o m e n c l a t u r e can become v e r y burdensome, r e f e r e n c e s w i l l b e made t o t h e common name, propoxyphene h y d r o c h l o r i d e , whenever p o s s i b l e .

0 II

C22H2sN02- H C 1 M . W . = 375.94

T h i s m o l e c u l e h a s two asymmet r i c c e n t e r s , t h u s f o u r d i a s t e r e o i s o m e r s a r e p o s s i b l e . Here we a r e conce rned o n l y w i t h t h e "a-d" i somer .

1 . 2 Appearance, Co lo r , Odor, O t h e r P h y s i c a l P r o p e r t i e s Propoxyphene h y d r o c h l o r i d e i s a w h i t e ,

c r y s t a l l i n e powder w i t h no n o t i c e a b l e odor a n d a b i t t e r t a s t e . The m e l t i n g r a n g e i s 162.5Oc - 168.5"C. The s p e c i f i c r o t a t i o n f o r a one p e r - c e n t s o l u t i o n s h o u l d b e be tween +52' and +5701. Propoxyphene h y d r o c h l o r i d e has a u n i q u e c h a r - a c t e r i s t i c , i n t h a t t h e s p e c i f i c r o t a t i o n v a l u e has an a p p a r e n t dependency upon t h e c o n c e n t r 3 g t i o n of t h e s o l u t i o n b e i n g measured. $n [ a ] D v a l u e o f + 5 9 . 8 " i s g i v e n i n l i t e r a t u r e ( f o r a 0 .6 p e r c e n t s o l u t i o n ) .

3 03

Page 303: Florey Vol 1

B. McEWAN

2. Synthesis The original synthesis was of the "w-dl"

mixture3. -In brief, this synthesis is as fol- lows: A solution o f benzylmagnesium chloride (in ether) was added to a solution of cu-methyl- 8-dimethylaminopropiophenone (in ether), this solution was refluxed one hour. The reaction mixture was decomposed with saturated aqueous ammonium chloride. The ether solution con- taining the 1,2-diphenyl-2-hydroxy-3-methyl- 4-dimethylaminobutane was decanted and then treated to form the hydrochloride. This product was then refluxed with propionic anhydride (.in pyridine) for five hours. The reaction product was then precipitated and purified. The final product was a-dl-1,2-diphehyl-2-propionoxy- 3-methyl-4-dimethylaminobutane hydrochloride.

Later investigations showed that the I'a-d" form was the analgesic, while the "a-1" form exhibited no analgesic properties. A descrip- tion of the resolution of the "cu-dl" mixture is found in literature2. Essentially, the resolu- tion is achieved by fractional crystallization of the d-camphorsulfonic acid salt. This tech- nique allows production of the pure "a-dll isomer now known as propoxyphene hydrochloride.

3 . Identification Techniques With Spectral Data

3.1 Crystal Properties A comprehensive study of the crystallo-

graphy of propoxyphene hydrochloride is documentedd. All the following crystallographic data are from this article.

Crystallization from ethyl acetate re- sulted in orthorhombic prisms elongated parallel to the b axis. These crystals showed the prism {llOj and the orthodome (101).

304

Page 304: Florey Vol 1

PROPOXYPHENE HYDROCHLORIDE

The interfacial angles are llO>ilO (polar), 94" 18' (ogtical), 93O 58' (X-ray); 101>101 (polar), 86 03' (optical), 86" 10' (X-ray).

Optical crystallographic data (58931, 25Oc) (Y = 1.560, e = 1.582, y = 1.638

Optidal Axial Angle (+)2V = 66" (Cal- culated from a, 8, and y ) .

Optic Axial Plane 100

Acute Bisectrix Y' = C

X-ray crystallographic data Unit cell dimensions a. P 1?.831, bo = 13.751,

Formula weight per cell i,s 4. Formula weight is 375.94 Density 1.173 gm/cc (flotation); 1.181 gm/cc (X-ray). Axial Ratio a:b:c = 0.9331:1:0.8727 Space Group P212121

co = 12.001

Tabular data

d( 1) 9.50 8.79 7.40 6.39 6.02 5.60 5.38 5.06 4.55 4.38 4.08 3.86 3.76 3.65 3* 50

on X-ray powder diffraction:

I/ 11 3 33 20 3

100 3 3 27 20 20 67b 7 20 7 20

d(1) 3.01 2.92 2.86 2.78 2.70 2.62 2.52 2.46 2.40 2.34 2.27

2.14

2.02

2.23

2.09

I/ I1 7 13 7 3 3 7 13 7 3 7b 3 3 3b 3b 3

3 05

Page 305: Florey Vol 1

0. McEWAN

3*35 7 2.00 3 3 .21 13 1.95 3 3.10 7 1 .89 3

3.2 I n f r a r e d Spec t r a An I R spectrum of propoxyphene hydro-

c h l o r i d e i s shown i n f i g u r e No. 1. This is a s o l i d s t a t e spectrum ( K B r p e l l e t ) run on a Perkin-Elmer 221. i s t y p i c a l o r t e r t i a r amine hydrochlor ides . The bands a t 1725 cm-' and 1170 cm'l a r e i n d i c - a t i v e o f a s a t u r a t e d e s t e r l inkage . The bands a t 762 cm'l and 703 cm-1 show t h e presence o f a monosubst i tuted benzene r ing . So lu t ion s p e c t r a ( i n C H C 1 3 ) a r e very s i m i l a r i n d e t a i l t o t h a t shown by t h e K B r p e l l e t spectrum. L i l l y Lot No. P-88455 i s t h e sample used f o r a l l of t h e s p e c t r a l da ta . The o p e r a t i n g parameters a r e a s fo l lows: Sample weight 1.26 mg i n 200 mg of KBr , prism-NaC1, r e s o l u t i o n - 927, response - 1100, gain - 6 . 0 , speed - 30, suppress ion - 5.5, and s c a l e - 1X.

The broad band a t 2360 cm"

3.3 Nuclear Magnetic Resonance Spec t ra A NMR spectrum of propoxyphene hydro-

c h l o r i d e i s shown i n f i g u r e No. 2. This i s a s o l u t i o n ( C D C 1 3 ) spectrum run on a Varian A-60 spectrometer . A t r i p l e t a t - 1 6 i n d i c a t e s -CHz-CHa. A double t a t -1.3 6 i s t y p i c a l of - C H - C C The unresolved q u a r t e t a t - 2 . 3 6 i s

due t o CH3-CH2-C- . The l a r g e peak at-2.7 6 i s a c t u a l l y d u r t o two over lapping doub le t s which

a r i s e from t h e -N<= . should merge i n t o o n e s i n g l e peak, b u t a sma l l excess o r d e f i c i e n c y o f * H C 1 l e a d s t o t h e over - l app ing doub le t s o r a p p a r e n t , s i n g l e t . The s i n g l e t a t -3.8 6 indicates,C-CHp-t)-. r e so lved m u l t i p l e t a t -3.5 6 i y d u e t o C H s - h H - C H z - . aromaTic hydrogens. The bToad peak a t -11.5 6

9 - -

V C l C H 3 I n t h e o r y t h e s e protons

C H 3

The un-

The m u l t i p l e t a t -7.2 6 i d e n t i f i e s

3 06

Page 306: Florey Vol 1

0

In-

0

0 0-

h

0

In

h

0 0

m

0

In

(D

0 0

Q.

0

In

0

0 0 2

0

a

2 0

0

f

a 0

2 0 0

0

a a a

n

0

VI n

0

0

(.:

0

0

9

0

2 a 0

E I

' m

ot

x

0 0"

p! 0

?

DN

VB

UO

SB

V

307

n -

Page 307: Florey Vol 1

B. McEWAN

c

8 .O 7 .O 6.0 5 .o 4.0 3 .O 2 .o 1 .o 0 PPM (6)

Fig. 2.

3 08

Page 308: Florey Vol 1

PROPOXYPHENE HYDROCHLORIDE

is due to OHC1. All the integrated areas (shown by upper line in figure) correlate with the above assignments. The operating parameters of the A-60 are: temperature-ambient, filter band width - 4, R. F. field - 0.14, sweep time - 250, sweep width - 500, sweep offset - 300, spectrum amplitude - 5.0, and integral amplitude 20.0.

3.4 Ultraviolet Spectra An ultraviolet spectrum of propoxyphene

hydrochloride is shown in figure No. 3 . This is a solution spectrum (41.04 mg 25 ml; 10 25 dilution using 95% ethanol) run on a Cary 14. The 1 max of 242, 247, 252, 258, 264, and 267 nm are typical of fine structure due to isolated benzene chromophore. Using the spectrum and the molar concentration of propoxyphene hydrochlo- ride (1.94 x moles/liter), the following table can be constructed.

c h(nm) Absorbance (corrected) - 0.266 0.389 0.541 0.698 0.559 0.303

13 7 200 279 3 60 288 156

The operating parameters for this spectrum are: slit program-50, dynode-2, and speed 5A/sec, with use of 1-cm silica cells.

3.5 Mass Spectra The mass spectrum of propoxyphene hydro-

chloride was run on a Hitachi Perkin-Elmer RMU-6 mass spectrometer (low resolution). Since the salt (*HCl) ionizes s o rapidly, no m/e 376 is seen. Propionoxy is also lost s o rapidly that no m/e 339 (for the free base) is found. Three likely cletvages are: CH3-CH2-C-O-(m/e 266), (2) loss of CH3-CHe-8-0- and -CH2 N-(CHs)a(m/e 208) and (3) loss of CHs-CHz-e-O-, -CH2-N-(CH3)2, and -CHs(m/e 193).

(1) The loss of

309

Page 309: Florey Vol 1

6 . McEWAN

1.0

0.9

0.8

0.1

0 .6 z a m

0.5 v1 m a

0.4

0.3

0.2

0.1

0.0

A

Fig. 3 .

10

310

Page 310: Florey Vol 1

PROPOXYPHENE HYDROCHLORIDE

Using the m/e 208 as 100&, the intensity (rela- tive to m/e 208) of m/e 193 is 674 and of m/e 266 is 1.346. The sampling was done at 130°C.

3.6 Differential Thermal Analysis

phene hydrochloride. A DuPont 900 D.T. Analyzer using 2mm microtubes and N2 atmosphere is used to obtain this curve. Two sharp phase transitions are shown, the first at 169°C and the second at 233OC. Melting is associated with the first transition, and decomposition with second. The operating parameters are: glass beads for reference, rate of heating 20"C/min, scale 20°C/in and A T of O.S"C/in.

Figure No. 4 is a DTA curve of propoxy-

3.7 Thermoaravimetric Analysis Figure No. 5 shows a TGA curve of propoxy-

phene hydrochloride. Instrumentation is a DuPont 950 TGA unit, This curve shows a 1% weight loss at 16g°C, 5& at 191°C, and 20& at 205°C. A sample size of 10.25 mg, temperature scale of 20°C/in, heating rate of S"C/min, and a N:! atmosphere are the operating parameters.

3.8 Microchemical Tests In addition to instrumental methods of

identification, an analyst may make use of some method of microchemical testing. An excellent discussion of the latter is available5. This work is a systematic study of precipitate tests, color tests, and crystal formation for modern analgesics. Through manipulation of the various testing parameters, Clarke identified a large number of analgesics. Even with the sophisti- cated instrumentation now available, "wet" methods of identification are still very useful.

While all types of spectral data can be compiled, the data of most interest to the analytical chemist are those which lend them- selves to a quantitative assay. Infrared, ultra- violet, and visible absorption spectroscopy plus

31 1

Page 311: Florey Vol 1

B. McEWAN

20 40 69 79 98 117 137 157 177 197 217 197 217 236 266 276 295 314 334 353

T , 'C (CHROMEL: ALUMEL)

Fig. 4 .

TEMPERATURE .'C

Fig. 5 .

312

Page 312: Florey Vol 1

PROPOXYPHENE HYDROCHLORIDE

g a s chromatography a r e e x c e l l e n t methods f o r t h e a s s a y o f propoxyphene h y d r o c h l o r i d e .

4. Methods o f A n a l y s i s

4 . 1 Non-aqueous T i t r a t i o n The non-aqueous t i t r a t i o n (NAT) o f p r o -

poxyphene h y d r o c h l o r i d e i s a f a s t , s i m p l e procedure ' . A c c u r a t e l y weigh a b o u t 600 mg. o f sample , d i s s o l v e i n 40 m l . o f g l a c i a l a c e t i c a c i d and add 1 0 m l . o f m e r c u r i c a c e t a t e T.S. Add c r y s t a l v i o l e t T.S. and t i t r a t e w i t h 0.1N p e r c h l o r i c a c i d ( t a k i n g c a r e t o u s e t h e same end p o i n t as i n t h e s t a n d a r d i z a t i o n o f t h e p e r c h l o r i c a c i d ) . Perform a b l a n k t i t r a t i o n and c o r r e c t t h e sample t i t r a t i o n when n e c e s s a r y . Each m l . of 0.1N p e r c h l o r i c a c i d i s e q u i v a l e n t t o 37 .59 mg o f propoxyphene h y d r o c h l o r i d e .

4 .2 I n f r a r e d A b s o r p t i o n I n most forms o f q u a n t i t a t i v e s p e c t r o -

scopy, t h e sample and s t a n d a r d s h o u l d b e h a n d l e d i d e n t i c a l l y . I n t h i s I R asSay6, one a c c u r a t e l y weighs a b o u t l 3 O mg. of sample and o f USP Pro - poxyphene H y d r o c h l o r i d e r e f e r e n c e s t a n d a r d ; t r a n s f e r b o t h ( q u a n t i t a t i v e l y ) t o 125 m l . s e p a - r a t o r y f u n n e l s , c o n t a i n i n g 25 m l . o f w a t e r . Add 0 . 4 m l . o f sodium h y d r o x i d e s o l u t i o n (1 i n 2 ) and 50 m l . o f ch lo ro fo rm. E x t r a c t f o r 3 . m i n u t e s and t h e n a l l o w t h e l a y e r s t o s e p a r a t e . D r a i n t h e o r g a n i c p h a s e t h r o u g h anhydrous sodium s u l - f a t e i n t o a 250 m l . b e a k e r . Repea t t h e e x t r a c - t i o n w i t h 3 - 50 m l . p o r t i o n s o f c h l o r o f o r m and p o o l them i n t h e 250 m l . b e a k e r . E v a p o r a t e (on steam b a t h w i t h a i r ) t o a s m a l l volume; t h e n t r a n s f e r ( q u a n t i t a t i v e l y ) t o a 50 m l v o l u m e t r i c f l a s k , d i l u t e t o volume w i t h c h l o r o f o r m and mix. Us ing a s u i t a b l e i n f r a r e d s p e c t r o p h o t o m e t e r and 1 mm. c e l l s , r e a d t h e sample and s t a n d a r d a t t h e maximum ( a b o u t 5.80 LL) u s i n g c h l o r o f o r m as t h e b l a n k . The c a l c u l a t i o n i s t h e n : samp. Abs.

S td . Abs.

Std* wt* x 100 = $ propoxyphene h y d r o c h l o r i d e . samp. w t .

313

Page 313: Florey Vol 1

B. McEWAN

As an a l t e r n a t e I R a s s a y , a c c u r a t e l y weigh a b o u t l3O mg. of sample and USP Propoxyphene H y d r o c h l o r i d e r e f e r e n c e s t a n d a r d . Q u a n t i t a t i v e l y t r a n s f e r b o t h t o 50 m l . v o l u m e t r i c f l a s k s and d i l u t e w i t h ch lo ro fo rm. Read b o t h a t t h e maxi- mum ( a b o u t 5.75 k ) w i t h c h l o r o f o r m as t h e b l a n k , u s i n g 1 inm. c e l l s and a s u i t a b l e spec t ropho tome- t e r . The c a l c u l a t i o n i s t h e same as f o r t h e " e x t r a c t e d " I R a s s a y . For a t r u e measure of p r o - poxyphene h y d r o c h l o r i d e c o n t e n t i n a sample, t h e e x t r a c t i o n t e c h n i q u e i s b e t t e r . The e x t r a c t i o n t e c h n i q u e removes many ( i f n o t a l l ) o f t h e a c i d i c c o n t a m i n a n t s which a b s o r b i n t h e c a r b o n y l r e g i o n .

4 .3 - U l t r a v i o l e t A b s o r p t i o n A c c u r a t e l y weigh a b o u t 25 mg o f sample and

of USP Propoxyphene H y d r o c h l o r i d e r e f e r e n c e s t a n d a r d ; t r a n s f e r b o t h ( q u a n t i t a t i v e l y ) t o 100 m l . v o l u m e t r i c f l a s k s , d i l u t e t o volume w i t h p u r i f i e d w a t e r and mix. Determine t h e a b s o r b a n c e of b o t h s o l u t i o n s a t t h e maximum ( a b o u t 257 m l ~ . ) ~ u s i n g 1 cm. s i l i c a c e l l s w i t h p u r i f i e d w a t e r as t h e b l a n k , on a s u i t a b l e UV s p e c t r o p h o t o m e t e r . The c a l c u l a t i o n i s :

Stdo wt* x 100 = $ propoxyphene samp. A b L S td . Abs. samp, w t . h y d r o c h l o r i d e .

4 .4 - Gas Chromatography Most s p e c t r o s c o p i c t e c h n i q u e s q u a n t i t a t e

r e s u l t s by compar ison o f sample v a l u e s w i t h s t a n d a r d v a l u e s . I n g a s chromatography, t h e p r e f e r r e d q u a n t i t a t i v e t e c h n i q u e makes u s e o f a n i n t e r n a l s t a n d a r d . For t h e a s s a y o f propoxyphene h y d r o c h l o r i d e , p y r r o l i p h e n e h y d r o c h l o r i d e , i s an e x c e l l e n t choice'. The m u l t i - e x t r a c t i o n o f sample and s t a n d a r d i s d e s c r i b e d , as w e l l as t h e o p e r a t i n g p a r a m e t e r s o f t h e g a s chromatograph . I n d i v i d u a l a n a l y s t s u s u a l l y have p r e f e r e n c e s on o p e r a t i n g c o n d i t i o n s . For t h i s a s s a y a flame i o n i z a t i o n d e t e c t o r i s d e s i r a b l e , b e c a u s e of i t s s e n s i t i v i t y . D e t e c t i o n of microgram q u a n t i t i e s i s p r a c t i c a b l e unde r t h e c o n d i t i o n s d e s c r i b e d by

3 14

Page 314: Florey Vol 1

PROPOXYPHENE HYDROCHLORIDE

Wolen and Grubera. O t h e r i n v e s t i g a t o r s have used much t h e same technique ' .

4 .5 V i s i b l e A b s o r p t i o n (With an A u t o a n a l y z e r ) Propoxyphene h y d r o c h l o r i d e can b e a s s a y e d

by v i s i b l e a b s o r p t i o n s p e c t r o s c o p y . An au tomated a s s a y o f t h i s t y p e i s found i n l i t e r a t u r e ' ' . S i n c e a v a r i e t y o f dyes w i l l complex w i t h t e r t i - a r y amines , s t u d i e s were u n d e r t a k e n t o d e t e r m i n e which dye i s most s p e c i f i c and h a s t h e l e a s t r e - t e n t i o n on t h e a n a l y t i c a l t r a i n . Bromocreso l p u r p l e seems b e s t s u i t e d f o r t h i s t y p e a s s a y . E s s e n t i a l l y t h e a s s a y i s as f o l l o w s : a n aqueous sample ( o r s t a n d a r d ) i s mixed w i t h r e a g e n t , c h l o r o f o r m i s used t o e x t r a c t t h e dye complex, t h e e x t r a c t i s t h e n r e a d on a c o l o r i m e t e r ( a t 420 m p ) and r e c o r d e d on a l i n e a r i z e d r e c o r d e r . Comparison o f sample and s t a n d a r d peak h e i g h t s e n a b l e t h e a n a l y s t t o q u a n t i t a t e t h e propoxyphene h y d r o c h l o r i d e . The same a s s a y can be pe r fo rmed by manual e x t r a c t i o n , b u t t h e au tomated assay i n c r e a s e s a s s a y o u t p u t n e a r l y t w e n t y f o l d . Twenty samples p e r hour c a n - b e a s s a y e d w i t h a r e l a t i v e s t a n d a r d d e v i a t i o n o f 0 .5 - 1.2% ( f o r 5 o b s e r v a t i o n s ) . Thus good p r e c i s i o n i s demon- s t r a t e d . Accuracy e q u a l t o t h a t o f a manual I R a s s a y i s shown by t a b u l a r d a t a .

4 .6 Th in Layer Chromatography TLC o f propoxyphene h y d r o c h l o r i d e ( a n d

o t h e r a n a l g e s i c s ) i s w e l l documen ted l l . Emmerson and Anderson g i v e R f v a l u e s f o r t h i r - t e e n s o l v e n t sys t ems . The u s e o f s l i g h t l y a l k a - l i n e a b s o r p t i o n l a y e r s and ammonium s a t u r a t e d d e v e l o p i n g chambers i s d i s c u s s e d i n d e t a i l . The s l i g h t a l k a l i n i t y f a c i l i t a t e s s p o t movement on t h e p l a t e s . An i o d o p l a t i n a t e s p r a y was used t o l o c a t e t h e s p o t s . For t r u e q u a n t i t a t i v e r e s u l t s t h e s p o t s s h o u l d b e removed and t h e propoxyphene h y d r o c h l o r i d e d e t e r m i n e d by UV o r o t h e r i n s t r u - m e n t a l methods7.

Another s o u r c e 1 2 g i v e s R f v a l u e s f o r f i v e s o l v e n t sys t ems . These sys t ems a r e u n i q u e

315

Page 315: Florey Vol 1

B. McEWAN

because they are "salted" (with either ammonium chloride or sodium chloride), which results in greatly reduced tailing and zone diffusion.

5 . Stability

analysis in a stability study of propoxyphene hydrochloridel3. In this study, propoxyphene hydrochloride was stored at 80°C, l05"C, and 130°C. Both the solubility analysis and the alternate IR assay showed the thermal stability of propoxyphene hydrochloride. Gas chromatogra- phy can be used to measure the slow hydrolysis of propoxyphene hydrochloride in aqueous solutions. The hydrolytic products are propionic acid and (+)-~-4-(Dimethylamino)-3-methyl-1,2-diphenyl- 2-butanol. With suitable gas chromatographic conditions either product can be quantitated. A chloroform extraction of an alkaline solution of propoxyphene hydrochloride (where degradation has occurred) can be assayed using the previously described IR method.

An interesting use was made of solubility

6 . Metabolism -- At present only one metabolite of propoxyphene

hydrochloride has been discovered. This metabo- lite, des-N-methyl propoxyphene, is produced by enzymatic N-demethylation in the liver. To study this metabolic process, propoxyphene hydrochlo- ride labelled with C 1 4 in the N-methyl position was utilized14. Laboratory rats and human beings were dosed with the labelled analgesicls. C 1 4 0 2 was detected in incubates of rat liver and in the expired air of rats. The dinitrophenyl deriva- tive of des-N-methyl propoxyphene was isolated from human urine.

7. Pharmacokine t i c s Emmerson, Welles, and Anderson16 used CI4

labelled propoxyphene hydrochloride to study tissue distributions. The patterns o f tissue distribution differ according to the route of administration. Thus, such parameters as elim- ination rates and distribution rates depend on

316

Page 316: Florey Vol 1

PROPOXYPHENE HYDROCHLORIDE

the route of administration as well as the specific tissue being examined. A pharmaco- kinetic model would have to be formulated for each route of administration in conjunction with the tissue in question. These models and the associated mathematics are beyond the scope of this paper.

3 17

Page 317: Florey Vol 1

B. McEWAN

R e f e r e n c e s

1. U.S. Pharmacopeia X V I I I , p. 556. 2. A. Pohland and H. R. S u l l i v a n , J. Am. Chem.

3. U.S. P a t e n t 2,728,779 ( P a t e n t e d Dec. 27,

4. Harry A. Rose, J. Am. Pharm. Assoc. 47, 228

5 . E. G. C C la rke , B u l l . N a r c o t i c s ll, No. 1,

6. N a t i o n a l Formulary X I I I , p. 606-8. 7 . S. J. Mule, Anal. Chem. 36, 1907-14 (1964) . 8. R. L. Wolen and C. M. Gruber , Anal. Chem.

9. B. F o s t e r and C. S. F r i n g s , C l i n . Chem. 16, 177-179 (March 1970).

10.K Kuzel , J. Pharm. S c i . , 57 ( 5 ) , 852-5 (1968).

1l.J. L. E m e r s o n and R. C. Anderson, J. Chromatog. ( 3 ) , 495-500 (1965) .

12.5. A. Manthey and M. E. Amundson, J. Chromatog. 19, 522-526 (1965).

1 3 . J. P. Comer and L. D. Howell, J. Pharm. S c i . , 53 ( 3 1 , 335-7 (1964).

1 4 . x Pohland and H. R . S u l l i v a n , J. Am. Chem.

l 5 . H . Lee, E. S c o t t , a n d A. Pohland, J.

16.~. L. Emmerson, J. S. Wel l e s , and R. C.

SOC. 7'7, 3400-1 (1955) .

1955 )

(1958).

27-44 (1959).

40, 1243 (1968).

SOC. - 79, 1442-4 (1957) .

Pharmacol. E x p t l . Therap. 125, 14-18 (1959) .

Anderson, Tox ico l . Appl. Pharmacol . 11 ( 3 ), 482-8 (1967).

S p e c i a l t h a n k s go t o M r . c. D. Underb r ink and D r . A. D. Kossoy of t h e A n a l y t i c a l Development D e p a r t - ment a t E l i L i l l y and Company f o r t h e i r h e l p i n g a t h e r i n g and i n t e r - p r e t i n g t h e s p e c t r a l d a t a i n s e c t i o n s 3.2 t h r o u g h 3.7.

3 18

Page 318: Florey Vol 1

SODIUM CEPHALOTHIN

R. J. Simmons

3 19

Page 319: Florey Vol 1

R. J. SIMMONS

C O N T E N T S

1.

2.

3 .

4. 5. 6.

7 . 8.

D e s c r i p t i o n 1.1 Name, F o r m u l a , M o l e c u l a r Weight 1.2 A p p e a r a n c e , C o l o r , Odor P h y s i c a l P r o p e r t i e s 2.1 I n f r a r e d S p e c t r a 2.2 N u c l e a r M a g n e t i c R e s o n a n c e S p e c t r a 2.3 Mass S p e c t r a 2.4 U l t r a v i o l e t S p e c t r a 2.5 O p t i c a l R o t a t i o n 2.6 S o l u b i l i t y 2.7 D i f f e r e n t i a l T h e r m a l A n a l y s i s 2.8 T h e r m o g r a v i m e t r i c A n a l y s i s 2.9 C r y s t a l P r o p e r t i e s S y n t h e s i s 3.1 B i o s y n t h e s i s 3.2 C h e m i c a l S y n t h e s i s S t a b i l i t y - D e g r a d a t i o n Drug 1 4 e t a b o l i c P r o d u c t s - P h a r m a c o k i n e t i c s Methods o f A n a l y s i s 6.1 E l e m e n t a l A n a l y s i s 6 .2 M i c r o b i o l o g i c a l A s s a y 6.3 I o d o m e t r i c T i t r a t i o n 6.4 C o l o r i m e t r i c A n a l y s i s 6.5 U l t r a v i o l e t A b s o r p t i o n 6.6 Non-Aqueous T i t r a t i o n 6.7 P o l a r o g r a p h i c A n a l y s i s 6.8 C h r o m a t o g r a p h i c A n a l y s i s

6.81 P a p e r 6 .82 T h i n L a y e r

D e t e r m i n a t i o n i n Body F l u i d s a n d T i s s u e s R e f e r e n c e s

320

Page 320: Florey Vol 1

SODIUM CEPHALOTHIN

1. Description

i.1 Name., Formula, Molecular Weighc Cephalothin is 3(Hydroxymethyl)-8-oxo-

7-[2-(2-thienyl)-acetamido]-5-thia-l-azabicyclo [4.2.0]oct-2-ene-2-carboxylic acid acetate, and is also known as 7-(2-thienylacetamido) cepha- losporanic acid. The antibiotic is supplied as the sodium salt.

H N Na06S2 ‘16 15 2 Mol. Wt.: 418.43

1.2 Appearance, Color, Odor bihite to off-white crystalline powder

having essentially no odor.

2. Physical Properties

2.1 Infrared Spectra The infrared spectrum of sodium

cephalothin presented in Fig. 1 was taken in a KBr pellet.’ A spectrum of the same standard taken in a Nujol Mull was essentially identical to the one presented. Characteristic stretching frequencies (cm”) of sodium cephalothin were as follows:

a. N-H stretching band: 3300 b. p-lactam carbonyl: 1760 C. ester carbonyl: 1735 d. secondary amide carbonyl: 1660

and 1535

32 1

Page 321: Florey Vol 1

WAVELENGTH IN MICRONS

2.5 3 3.5 4 5 6 7 8 9 10 12 14 1618 22 30 50

n L

W N N

4060 3600 3200 2800 2400 2000 1800 1600 1400 1200 1000 000 600 400 200 WAVENUMBER CM-'

E I z 0 m

Fig. 1. Infrared spectrum of sodium cephalothin.

Page 322: Florey Vol 1

SODIUM CEPHALOTHIN

8 e. c a r b o x y l c a r b o n y l : f . C - 0 s t r e t c h i n g b a n d (CH -0):125O

The c a r b o n y l s t r e t c h i n g r e g i o n , w h i c h e x i s t s b e t w e e n 1500 a n d 1800 cm-’, i s t h e m o s t c h a r a c t e r i s t i c r e g i o n i n t h e i n f r a r e d s p e c t r a o f c e p h a l o t h i n . E s t e r c l e a v a g e , l a c t o n e f o r m a - t i o n , a n d o p e n i n g o f t h e $ - l a c t a m c a n b e i n d i - c a t e d by c h a n g e s i n t h i s p a r t o f t h e s p e c t r u m . Of t h e t h r e e c a r b o n y l s t r e t c h i n g f r e q u e n c i e s ( P - l a c t a m , e s t e r , a r n i d e ) , t h e o n e o f m o s t d i a g n o s t i c v a l u e i s t h a t o r i g i n a t i n g f r o m t h e p - l a c t a m c a r b o n y l . The i m p o r t a n c e o f t h i s s t r e t c h i n g f r q u e n c y h a s b e e n d i s c u s s e d i n a r e c e n t r e v i e w , a n d c h a r a c t e r i s t i c s t r e t c h i n g f r e q u e n c i e s f o r t h e d i f f e r e n t c a r b o n y l g r o u p s i n many e r i v a t i v e s o f c e p h a l o s p o r i n s h a s b e e n

3-

2

r e p o r t e d 9 . 2.2 N u c l e a r M a g n e t i c R e s o n a n c e S p e c t r a

The N M R s p e c t r u m F i g . 2 w a s o b t a i n e d by p r e p a r i n g a s o l u t i o n o f s o d i u m c e p h a l o t h i n i n d e u t e r a t e d w a t e r . The s p e c t r a l a s s i g n m e n t s shown i n F i g . 2 h a v e b e e n d i s c u s s e d i n d e t a i l by DeMarco a n d N a g a r a j a n e 2 I n t e r p r e t a t i o n a n d a s s i g n m e n t o f t h e a b s o r p t i o n a n d r e s o n a n c e f r e q u e n c i e s t o t h e d i f f e r e n t a t o m i c f e a t u r e s o f many c e p h a l o s p o r i n d e r i v a t i v e s h a s b e e n d i s - c ~ s s e d . ~ * J

u s e f u l t o o l i n c e p h a l o s p o r i n C c h e m i s t r y . I n c e p h a l o s p o r i n s t h e c a r b o n s a r e u n s a t u r a t e d o r h i g h l y s u b s t i t u t e d w i t h h e t e r o a t o r n s , a n d t h e p r o t o n s a r e u s u a l l y w i d e l y s e p a r a t e d i n c h e m i - c a l s h i f t a n d h a v e s i m p l e c o u p l i n g p a t t e r n s . R e c e n t l y , s o l v e n t i n d u c e d c h e m i c a l s h i f t s , n u c l e e r O v e r h a u s e r e f f e c t s , a n d t h e a n i s o t r o p y o f t h e s u l f o x i d e bond h a v e b e e n u t i l i z e d i n c h e m i c 1 s t u d i e s o f c e p h a l o s p o r i n C d e r i v a - t i v e s . ’ f r o m NMR s p e c t r a o f c e p h a l o t h i n by o b s e r v i n g t h e c o n t r i b u t i o n o f t h e p-lactarn p r o t o n s , t h i o p h e n e p r o t o n s , r n e t h y l e n e g r o u p s , a n d m e t h y l p r o t o n s ( f r o m a c e t a t e ) .

N M R s p e c t r o s c o p y h a s b e e n t h e m o s t

A n a l y t i c a l i n f o r m a t i o n may b e d e r i v e d

323

Page 323: Florey Vol 1

R. J. S

IMM

ON

S

u d

1

324

Page 324: Florey Vol 1

SODIUM CEPHALOTHIN

2 8 3 Mass S p e c t r a On e l e c t r o n i m p a c t i n t h e mass s p e c t r o -

m e t e r , t h e s o d i u m s a l t o f c e p h a l o t h i n d i d n o t y i e l d a s a t i s f a c t o r y s p e c t r u m . However , t h e f r e e a c i d o f c e p h a l o t h i n g a v e a mass s p e c t r u m when t h e s a m p l e was f l a s h e d i n t o t h e i o n s o u r c e u s i n g a n i o n s o u r c e t e m p e r a t u r e o f a b o u t 300 C a n d a s e p a r t e l y h e a t e d d i r e c t p r o b e i n t o t h e i o n s o u r c e .

The s p e c t r u m o f t h e f r e e a c i d s h o w e d no m o l e c u l a r i o n . I o n s o f h i g h e s t mass, m/e 304 a n d 292 , p r o b a b l y a r o s e from t h e f r e e a c i d by t h e h y d r o l y t i c e l i m i n a t i o n o f a c e t i c a c i d a n d s u l f u r , a n d a c e t i c a c i d a n d c a r b o n d i o x i d e r e s p e c t i v e l y . An i n t e n s e p e a k a t m / e 4 4 ( C 0 2 ) s u p p o r t e d t h i s c o n c l u s i o n 8 P e a k s a t m/e 216 a n d 2 1 5 , e x p e c t e d f r o m t h e f i s s i o n a c r o s s t h e p - l a c t a m r i n g , w e r e n o t o b s e r v e d . T h r e e p e a k s w h i c h may be a s s i g n e d t o t h e s i d e c h a i n a n d p a r t o f t h e p - l a c t a m r i n g w e r e m/e 97 (@ - C H 2 + ) , m/e 1 2 4 ( @ - C H - C Z O + ) , a n d m/e 1 8 1 ( !$-CH2- C O - N H - C H = C = O + ) . O c c o l o w i t z c o n c l u d e d t h a t t h e s p e c t r u m a r o s e by i o n i z a t i o n o f h y d r o l y s i s p r o d u c t s o f t h e f r e e a c i d .

F o r d e t a i l e d i n f o r m a t i o n r e l a t i n g t o t h e mass s p e c t r a l a n a l y s i s o f c e p h a l o s p o r i n C d e r i v a t i v e s , t h e r e a d e r i s r e f e r r e d t o t h e p a p e r by R i c h t e r a n d Biernannfj a n d t o t h e r e v i e w

t

by DeMarco a n d N a g a r a j a n 2 8

284 U l t r a v i o l e t S p e c t r a When s c a n n e d b e t w e e n 2 2 0 a n d 310 nm,

a n a q u e o u s s o l u t i o n (25 p g / m l ) o f s o d um c e p h a - l o t h i n e x h i b i t e d maxima a t 2 3 7 nm (El 1h cm= 336)

a n d a t 265 nm (El 1% cm= 204)86 The a b s o r p t i o n a t 2 3 7 nm i s m a i n l y t h i e n y l c o n t r i b u t i o n w h e r e a s t h e a b s o r p t i o n a t 265 nm i s d u e t o t h e f u s e d r i n g s y s t e m , 7 - a m i n o c e p h a l o s p ~ r a n i c a c i d .

285 O p t i c a l R o t a t i o n The s p e c i f i c ro a t i o n i g a 5g (w/v )

6 a q u e o u s s o l u t i o n was + 1 2 9 2 5 c a l c u - l a t e d w i t h r e f e r e n c e t o ?he a n h y d r o u s s u b s t a n c e .

325

Page 325: Florey Vol 1

R. J. SIMMONS

2.6 S o l u b i l i t Marsh a n d Y W e i s s 7 d e t e r m i n e d t h e s o l u -

b i l i t i e s i n 2 6 s o l v e n t s a t 2 1 2 1 C. I n gen - e r a l , s o d i u m c e p h a l o t h i n i s v e r y s o l u b l e i n water , f o r m a m i d e , d i m e t h y l s u l f o x i d e , a n d e t h y l e n e a n d p r o p y l e n e g l y c o l , s l i g h t l y s o l u b l e i n l o w e r a l c o h o l s , a n d i n s o l u b l e i n n o n - p o l a r o r g a n i c s o l v e n t s .

2.7 D i f f e r e n t i a l T h e r m a l A n a l y s i s

p e r f o r m e d o n s o d i u m c e p h a l o t h i n ( E l i L i l l y r e f e r e n c e s t a n d a r d #P-89448) . A t a h e a t i n g ra t ,e o f 2 0 C/min. a n e x o t erm p e a k e d a t 2 2 0 C

A d i f f e r e n t i a l t h e r m a l a n a l y s i s was

i n d i c a t i n g d e c o m p o s i t i o n . 1 2.8 T h e r m o g r a v i m e t r i c A n a l y s i s

A t h e r m o g r a v i m e t r i c a n a l y s i s p e r f o r m e d on s o d i u m c e p h a l o t h i n ( E l i L i l l y r e f e r e n c e s t a n d a r d #P-89448) showed no w e i g h t l o s s u n t i l 154 C ; a t 154 w e i g h t loss b e g i n s r e s u l t i n g i n d e c o m p o s i t i o n . The m e a s u r e m e n t was p e r f o r m e d u n d e r n i t r o g e n s w e e p a t a h e a t i n g r a t e o f 5 C/min,

2.9 C r y s t a l P r o p e r t i e s The o p t i c a l c r y s t a l l o g r a p h i c p r o p e -

t i e s o f c e p h a l o t h i n was d e t e r m i n e d by R o s e . tj The d a t a r e p o r t e d w e r e a s f o l l o w s :

O p t i c a l C r y s t a l l o g r a p h i c Data: R e f r a c t i v e i n d i c e s : a=1.568, p=1 .592 , )f =1.684 O p t i c a l a x i a l a n g l e : @ 2V=56' 3 4 ' O r i e n t a t i o n : OAP=010, y = a X-Ray D i f f r a c t i o n Data: U n i t c e l l d i m e n s i o n s : b ,=34 .20 I., c,=5.05 x. F o r m u l a w e i g h t s p e r c e l l : 4 F o r m u l a w e i g h t : 418.4 D e n s i t y : 1 . 4 7 7 G r n / m l by f l o t a t i o n , 1 , 4 6 3 G m / m l by X-ray A x i a l R a t i o : 0 3 2 1 6 : 1 : 0 . 1 4 7 7

a, =11.00 I . ,

S p a c e G r o u p : D2-P2 ,2 ,2 , 4

326

Page 326: Florey Vol 1

SODIUM CEPHALOTHIN

The X-ray powder diffraction pattern of cephalothin is presented in Table I. Data were obtained using copper radiation and nickel filter with a camera 114.6mm in diameter. Indexing of the powder pattern was done on the basis of single crystal rotation patterns around both the 5 and 5 axes, and a wavelength of 1.5418 1 was used in the calculations.

3. Synthesis

3 . 1 Biosynthesis Cephalothin is a semisynthetic p-lactam

antibiotic prepared by the reaction of thio- phene-2-acetyl chloride with 7-aminocephalos- poranic acid (7-ACA) .lo The cephalosporanic nucleus is obtained from cephalosporin C which is produced by a fungus identified as Cephalos- orium acremonium No. 49137 (Imperial Mycologi-

:a1 Institute, England), or strains thereof. Although cephalosporin C is divisable

into a-aminoadipic acid, cysteine, and valine, the actual mechanism whereby Cephalosporium sp. incorporates the three amino acids into cephalosporin C has not been established, Arnstein and Morris” isolated 8 (a-aminoadipyl) cysteinyl valine from mycelia of Penicillium chrysogenum and suggested that the tripeptide is a precursor in a l l penicillin biosynthesis. This same tripeptide also appears to be found in the intracellular pool of Cephalosporium SP l2 synthesis of penicillin is an acyl transfer reaction, or the production of 6-aminopeni- cillanic acid if precursor is not added. Cephalosporium sp. apparently do not produce sidechain amidases or acyl transferases, and no 7-ACA has been reported found in the fermen-

antibiotics, chemical manipulation of cephalos- porin C is necessary. Synthesis of many 7-acyl derivatives was possible once a practical cleavage reaction made availab e large amounts of 7-ACA from cephalosporin C. ’3 Of these derivatives, sodium cephalothin was the first

The final postulated step in the bio-

’ tation. Thus, to obtain clinically useful

321

Page 327: Florey Vol 1

d

16T52 10.53

6 .71 9.21

5.71 5.44 5.20 5.05 4.82 4.49

4.25

4.05

3.78 3.67 3.59

3.49

2 .91

2.86

2.78

2.65 2.72

2.61

2.43

2.36 2.29 2.24

2.53

2-33

TABLE I

X-Ray Powder D i f f r a c t i o n

1/11

0.50

0.27 0.50

0.20 0.07 0.07 0.27 0.27 0.07 1.00b

0.67

1.00

0.03 0.07 0.03

0.50

0.13 0.20 0.20 0.13

0.20

0.03

0.07 0.13 0.03 0.03 0.03 0.07 0.03

hK1

020 110 1 2 0 1 4 0 060 2 1 0 220 1 6 0 02 1 1 1 4 1 7 0 1 2 1 080 131 051 1 4 1 0 6 1 2 1 1 190 320 0 7 1 330 340 081 1 8 1 111

0 2 1 0

0 01 2

0

420 01 1

3 4 1

440 002

d ( c a l c d . )

1 7 . 1 0 10 .47

9.25 6.75 5.70 5 .43 5.24 5.06 4.84 4.55 4.47 4.43 4.28 4.26 4.06 4.04 3.78 3.70 3.59 3.59 3.51 3.49 3.37 3.26 3.13 2.99

2.90

2.85

2.80 2.72 2.65

2.62 2.53

328

Page 328: Florey Vol 1

SODIUM CEPHALOTHIN

o n e m a r k e t e d ( P a t e n t : E l i L i l l y a n d C O . , b y E.H. F l y n n , Belg. 618, 663, Dec. 7 , 1 9 6 2 ; U.S. App l . J u n e 8, 1 9 6 1 ; Chem. a b s t r a c t s 2, 5176, 1963 1.

3.2 C h e m i c a l S y n t h e s i s A f t e r t h e s t r u c t u a1 d e t a i l s o f c e p h a -

l o s p o r i n C w e r e r e p o r t e d "9l5, many c h e m i s t s a t t e m p t e d i t s s y n t h e s i s . E f f o r t s were d i r e c t e d t o w a r f u s i o n o f a p-lactam t o a d i h y d r o t h i a z i n e r i n g l t , c o n v e r s i o n o f a e n i c i l l i n n u c l e u s i n t o a c e p h a l o s p o r i n n u c 1 e u s l 3 , a n d c o n s t r u c t i o n o f t h e P - l a c t a m r i n g f r o m L(+) c y s t e i n e as t h e i n i t i a l m o n o c y c l e f r o w h i c h t o s y n t h e s i z e t h e c e p h a l o s p o r i n n u c l e u s T 8 . s u l t e d i n t h e s t e r e o s p e c i f i c t o t a l s y n t h e s i s o f c e p h a l o s p o r i n C a n d c e p h a l o t h i n . c o n v a n i e n t l y s u p p l i e s d e t a i l s o f t h e b i o s y n - t h e s i s a n d c h e m i c a l s y n t h e s i s o f c e p h a l o s p o r i n s .

The l a t t e r e f f o r t re -

A r e v i e w l 9

4. S t a b i l i t y - D e g r a d a t i o n S o l i d d r y s o d i u m c e p h a l o t h i n , s t o r e d i n

t i g h t l y c l o s e d g l a s s c o n t a i n e r s a n d p r o t e c t e d f r o m m o i s t u r e , i s s t a b l e f o r a t l e a s t t h r e e y e a r s a t 2 5 C . Aqueous s o l u t i o n s h e l d a t 2 5 C f o r 24 h o u r s l o s t a p p r o x i m a t e l y 8% a c t i v i t y , a n d r a t e o f l o s s o f a c t i v i t y was a b o u t t h e same i n b u f f e r s b e t w e e n pH v a l u e s o f 3 * 0 a n d 7.0. Ampoules o f c e p h a l o t h i n r e c o n s t i t u t e d i n s a l i n e , U.S.P. w a t e r f o r i n j e c t i o n , o r 5% d e x t r o s e ma in - t a i n e d l a b e l p o t e n c y a f t e r 3 d a y s s t o r a g e a t 4 C . C e p h a l o t h i n i n w a t e r s o l u t i o n o n l y s l o w l y h y d r o l y z e d t o p r o d u c e d e a c e t y l c e p h a l o t h i n , a n d u n d e r m i l d a c i d c o n d i t i o n s t h e d e a c e t y l com- p o u n d a n d c e p h a l o t h i n was c o n v e r t e d i n t o c e p h a l o t h i n l a c t o n e .

I

coo- D e a c e t y l c e p h a l o t h i n

329

Page 329: Florey Vol 1

R. J. SIMMONS

Cephalothin lactone

Alkaline solutions above pH 8.0 rapidly lose biological activity on standing at room tempera- ture. The p-lactam is more stable to strong acids than to strong bases, but under vigorous conditions the entire nucleus was disrupted to biolo ically inactive thienylacetamidoacetalde-

The cephalosporin nucleus was reported‘’ to hyde. $0

be labile to ultraviolet light (260 nm). The decomposition of an aqueous solution of cepha- losporin C, measured by l o s s of biological activity, was 90% within half an hour.

Activity of cephalothin in human serum was fully maintained for a period of 14 days at -20 C. At 5 C, 12% inactivation occurred in 2 days and 5O:h in 14 days. At room temperature inactivation was rapid and only 15% of the original activity was detected after 2 days. Wick22 reported that cephalothin and its de- acetyl metabolite were stable in human sera incubated at 37 C for 2.5 hours. reported finding very little, if any, deacetyl- cephalothin in serum and heparinized whole blood after incubation with cephalothin for 1 hour at 37 C. This suggested that neither serum nor whole blood contained a significant amount of esterase capable of hydrolyzing cephalothin,

Chemical degradations of cephalosporin c and its analogues did not lead to structural equivalents of penicillin degradation products. Cephalosporins did not give the expected ana- logue of penicilloates or penicillenates, nor

Lee et G e 2 3

24

330

Page 330: Florey Vol 1

SODIUM CEPHALOTHIN

did they form penicillamine. Reactions with alcohols, in either the presence or absence of metal salts, failed to cleave the lactam ring, whereas reaction with alkoxide resulted in expulsion of the acetate groupingm25

with p-lactamases was found to be accompanied by expulsion of acetate and strikin changes in ultraviolet absorption spectra.2E The reac- tion yielded labile compounds with maximum at 230 nu that disappeared in several hours. The tentative structures of the compounds formed on hydrolytic degradation with p-lactamase or ammonia have been reported27, and support for the proposed structures has been obtained from studies of proton-magnetic-resonance spectra.28

Acyl esterases. may attack cephalothin at the acetyl function attached to the C-3 methyl to yield deacetylcephalothin. Although quite stable under physiological conditions22, the deacetyl corn ound was unstable when its p-lactam was openedm2% However , cephalothin lactone was exceptional. The presence of the five-membered lactone caused the reaction with p-lactamases to proceed as with the penicillins and a stable reaction product formed.29

Amidases were capable of splitting off relatively non-polar sidechains from cephalos- poranates.3°*31 However, the naturally occur- ring a-aminoadipic amide of cephalosporin C was resistant to amidases.

Opening of the p-lactam ring of cephalothin

5 . Drug Metabolic Products - Pharmacokinetics Cephalothin was partially converted to

deacetylcephalothin after parenteral administra- tion to experimental animals and to mane23 In the dog, initial excretion was distributed equally between cephalothin and its deacetyl metabolite; later excretion showed a preponder- ance of the metabolite over the parent compound. Cephalothin persisted over a longer period of time when administered by the intramuscular route than when given intravenously. In man, the total amount excreted in the urine was

331

Page 331: Florey Vol 1

R. J. SIMMONS

measured after intramuscular administration of 1 gram of cephalothin. Hecovery of cephalothin and its deacetyl metabolite averaged 460 and 240 mg, respectively, a ratio of 2:l in favor of cephalothin.

Deacetylcephalothin is biologically active. -- In vitro studies22 demonstrated that the meta- bolite has an antimicrobial spectrum similar to cephalothin, but from 2 to 16 times more meta- bolite is needed for inhibition of representa- tive strains of test organisms. Although data on therapeutic effectiveness of deacetylcephalo- thin in man are not available, treatment of experimental infections in mice has been stud- ied.22 The curative effect of the metabolite was less than that of cephalothin, a finding in agreement with results of the 5 vitro evalua- tion.

Urinary excretion was the major route of elimination for cephalothin both in men and in dogs.23*32 From 60 to 90% of the dose appeared in the urine during the 6 hours following injec- tion. Renal clearance studies in dogs indicated that the antibiotic activity was secreted through the renal tubules, and this tubular secretion could be completely blocked by pro- benecid.

Serum reached pea els within % hour after administration. 53:gr The microbiological half-life in serum of do s averaged 42.3 22.5 minutes for cephalothin23 as compared with 25.9 20.8 minutes for deacetylceghalothin22. The short half-life in serum was attributable to rapid urinary e~cretion.3~

bution of cephalothin in blood and tissues and its passage to body fluids. Since the average relative volume distribution was greater than one (1.413 $0.244 ml/Gm), the authors suggested that cephalothin distributed beyond extra- cellular space and concentrated in the tissues.

Lee and co-work$rs23*33 reported the distri-

6 . Methods of Analysis

332

Page 332: Florey Vol 1

SODIUM CEPHALOTHIN

34 6.1 Elemental Analysis Found 46.05

Element C H 3.61 3.82

0 22.94 23.26 N 6.70 6.41

S 15.33 15.52 Na 5.49 5.22

6.2 Microbiological Assay Potency of cephalothin is routinely

determined by agar-diffusion (plate) assay using Staphylococcus aureus or Bacillus subtilis, and by t u r b i d i m e t r i c e ) assay using & aureus.35 Of the two plate methods, the B. subtilis assay produces better defined zones of inhibition. The sharp, single-edged zones obtained offers greater ease and accuracy of measurement. The turbidimetric assay has the advantages of speed, reproducibility, and accuracy. Although good precision is obtainable by manual performance of the turbidimetric assay, even better precision (,+2-3:/0) is possible by use of semi-automated methods such as the Autoturba System36, equivalent37.

lactone are microbiologically active hydrolysis products of cephalothin. Since these hydrolysis products Give dose-response curves with the same slope as cephalothin, their presence can inter- fere with potency determinations of the parent compound. In the presence of high levels of hydrolysis products, the plate method using 5 subtilis is recommended35 for assaying cephalo- thin because the method is quite insensitive to these substances. The presence of 15$, or less, of deacetylcephalothin does not interfere with the assay for cephalothin, when measured rela- tive to a cephalothin standard curve, and the low activity of cephalothin lactone precludes its interference.

or its

Deacetylcephalothin and cephalothin

6 . 3 Iodometric Titration In lieu of microbiological assays des-

cribed above, the iodometric assay is used as

333

Page 333: Florey Vol 1

R. J. SIMMONS

an alternate method t determine the potency of cephalothin. Alicin03~ originally developed a manual titration procedure for quantitative assay of penicillins then, later, applied the assay to the determination of cephalosporin C. Based on the original method, Stevenson and Bechtel39 developed an automated iodometric assay for cephalosporins. The iodometric tech- nique is rapid, reliable, reproducible to 1-2:6, and compares favorably with the microbiological cylinder-plate assay. The standard used in assaying cephalothin should correspond to the sample both in concentration and in composition. Cephalothin degradation products having an in- tact p-lactam ring and intermediates used in synthetic processes such as 7-aminocephalos- poranic a id titrate as well as the parent CompoUnd. 8

6.4 Colorimetric Analysis Cephalothin can be determined by means

of the colored complex formed on the addition of a ferric reagent to the corresponding hy- droxamic acid produced by treatment with hy- droxylamine. The method used is essentially the same as the procedure described for peni- cillins. 4o The ferric hydroxamate procedure is not specific for cephalothin or penicillins. For example, many amides, esters, and anhydrides form h droxamic acids when reacted with hydroxyl- amine. {1 nated by the blank determination wherein cepha- lothin is rendered incapable of forming hydrox- amic acid by use of basic hydrolysis or enzy- matic hydrolysis with cephalosporinasee6 Since cephalothin degradation products having an intact p-lactam ring react as well as the parent compound, the method measures total p-lactam content.

Redstonelt2 developed a specific colori- metric assay to determine cephalosporin deriva- tives containing the acetyl moiety. In this assay the acetoxyl portion of cephalothin is displaced by nicotinamide and the resulting

This type of interference is elimi-

3 34

Page 334: Florey Vol 1

SODIUM CEPHALOTHIN

derivative is reacted with 1,3-dihydroxyacetone. The final product has a chromophore which ex- hibits a maximum absorbance at 360 nm. Thus, deacetylcephalothin and cephalothin lactone, if present, do not interfere in the determina- tion of the parent compound.

6.5 Ultraviolet Absorption Ultraviolet absorption in the range

220-310 nm of a 0.0025% (w/v) solution is useful €or identification. The spectrum should compare qualitatively to that of a 0.0025% solution of cephalothin sodium standard. An increase in the ratio of the extinction at the maximum at 237 nm to that at 265 nm provides. an indication o f the onset of deterioration of aqueous solu- tions. 6

6 . 6 Non-Aqueous Titration Cephalothin content can be determined

by non-aqueous titratione6 Dissolve an accur- ately weighed sample (approximately 200 mg) in 40 ml of glacial acetic acid, add 1 drop of crystal violet indicator ( 2 percent in acetic acid), and titrate the solution with standard- ized 0.1N perchloric acid. Calculate percent cephalothin as follows: Percent cephalothin = m l of HC104 X N of H C 1 0 4 X 418.4 X 100

sample weight in mg

6.7 Polaroaraphic Analysis Ha1143 determined the half-wave poten-

tial of sodium cephalothin. The E% value was dependent upon both pH and concentration. The equation for the pH dependence at a concentra- tion of 0.45 mM in McIlvaine,buffers was E% = -0.992-0.078 pH. All data obtained were versus the saturated calomel electrode at 25 C . The method was not considered sufficiently accurate for u s e as a quantitative assay since the rela- tive standard deviation was about 5%.

6.8 Chromatographic Analysis

335

Page 335: Florey Vol 1

R. J. SIMMONS

Solvent systems used for paper chro- matographic analysis of cephalosporin deriva- tives and their degradation g&oducts are sup- plied in a review by Betina. Paper and thin layer chromatographic procedures having par- ticular application for cephalothin are given below.

6.81 Paper For identification, modification

of a system reported by Loder et G o 4 5 is commonly used:

Solvent: water-saturated ethyl acetate for both the mobile and stationary phase.

Paper: Nhatman No, 1 buffered with 1.25M phosphate buffer, pH 5.5.

Developing Time: 5 hours descending in chambers equilibrated at least 24 hours.

Load: 1 pl of a 1 rng/ml aqueous solution.

46 Rf: 0.50 For detection of metabolites:

Solvent: butanol/ethanol/water 4:1:5. Paper: Whatman No. 1 buffered with 0.05M

Developing Time: 18 hours descending. Comparative R f : deacetylcephalothin, 0.52;

sodium phosphate, pH 6.0.

sodium cephalothin, 0.67; cephalothin lac tone 0.83.

For quantitation of deacetyl and lact e deriva-

Solvent: water-saturated methylethylketone;

tives in the presence of cephalothin: 87

both phases of solvent in bottom of chamber.

Paper: Whatman No. 1 strips 0.25 x 20 inches.

Developing Time: 3 hours descending at 23 C wi hout prior equilibration.

Hoehn et e.48 used a modification of this system.

limited usefulness for cephalothin. The problem is that although cephalothin can be made to migrate as an anion or to remain immobile as the free acid, many of the chemical differences

Paper electrophoresis has had

336

Page 336: Florey Vol 1

SOD1 UM CEPHALOTH I N

between degradation products and impurities do not result in a significant difference in elec- trophoretic mobility at a given pH. Reference to electrophoresis of cephalot in is found in an article by Martin and Shaw. b!3

6.82 Thin Layer Experience with thin layer chro-

matography of cephalothin on silica gel is pre- sented in Table 11.50 Hussey5O used solvent system 3 to follow the stability of: cephalothin. Vanillin dissolved in a mixture of phosphoric acid/methanol, 1:1, was used as a spray for detection. When deacetylcephalothin mobility needed to be increased, system 4 was used.

TABLE I1

Rf Values of Cephalothin on Silica Gel

Solvent System+

+Solvent system: 1. Acetonitrile/H20, 4:l 2. Ethyl acetate/acetone/H 0, 2:4:2 3. Ace tone/chlorof orm/ace tfc acid, 50: 50: 7 4. Ethanol/chloroform/acetic acid, 50:100:7.5 5. Acetone/acetic acid, 20:l 6 . Ethyl acetate/acetic acid/H20, 3:l:l 7. Methanol/ethyl acetate/acetic acid,

50: 100: 5

Methods useful to detect cepha- losporins on chromatograms are short wave (254 nm) ultraviolet light, ninhyd n spray, sodium hydroxide-iodine-starch spray3', and bioauto- Rrapha using Bacillus subtilis ATCC 6 6 3 3 ,

337

Page 337: Florey Vol 1

R. J. SIMMONS

Staphylococcus aureus 6538P, or, for maximum sensitivity, Sarcina lutea ATCC 9341.

7. Determination in Body Fluids and Tissues

- lutea ATCC 9341 has application for assay of urine, serum, and tissue extracts because of its sensitivity.35 activities as low as 0.2 pg/ml of cephalothin and 0.4 pg/ml of deacetylcephalothin. In this assay, deacetylcephalothin is one-half as ac- tive as cephalothin, and since the dose-response curve of the deacetyl compound parallels that of the parent compound the method measures total activity of mixtures of these substances in terms o f one of the pure standards.

Paper chromatographic methods have been devised to determine cephalothin and its micro- biologically active metabolite deacetylcepha- lothin in body fluids. method that is satisfactory f r analysis of

method that affords quantitative disassocia- tion o f cephalothin from plasma proteins, and developed a chromatographic technique to measure l o w levels of cephalothin and its meta- bolite in urine, plasma, synovial fluid, and cerebrospinal fluid.

estimate a number of P-lactam antibiotics, in- cluding cephalothin, in serum. The entire operation of venipuncture, separation of serum, ultrafiltration of serum, and polarographic analysis was accomplished in two hours.

The conventional plate assay using Sarcina

The method can measure

Miller4? developed a

urine samples. Hoehn et &. 4 8 described a

Benner52 used a polarographic method to

3 38

Page 338: Florey Vol 1

SODIUM CEPHALOTHIN

I.

2.

3.

4.

5 .

6.

7.

8.

9.

$ 0

11.

1 2 .

13.

14

15.

16.

8. R e f e r e n c e s _I C..D. U n d e r b r i n k , L i l l y R e s e a r c h

L a b o r a t o r i e s , p e r s o n a l c o m m u n i c a t i o n . P.V. DeMarco a n d R. N a g a r a j a n , I n "The C e p h a l o s p o r i n a n d P e n i c i l l i n Compounds: T h e i r C h e m i s t r y a n d B i o l o g y " , I n P r e s s . C.F.H. G r e e n , J . E . P a g e , a n d S.E. S t a n i f o r t h , J , Chem. S O C . , 1595 (196.7). J . L . O c c o l o w i t z , L i l l y R e s e a r c h L a b o r a t o r i e s , u n p u b l i s h e d a r e s e a r c h . 1V. R i c h t e r a n d K. B iemann, M o n a t s h , Chem. 96, 484 ( 1 9 6 5 ) . L.P. M a r r e l l i , L i l l y R e s e a r c h Labo- r a t o r i e s , p e r s o n a l c o m m u n i c a t i o n . J . R . Marsh a n d P . J . W e i s s , J . A . O . A . C .

0 No. 2 , 457 ( 1 9 6 7 ) . ?.E. C o l e , L i l l y R e s e a r c h L a b o r a t o r i e s , p e r s o n a l c o m m u n i c a t i o n , H . A . R o s e , J. Pharm. S c i . 52, 1008 ( 1 9 6 3 ) . R . R . C h a u v e t t e , E.H. F l y n n , B.G. J a c k s o n , E.R. L a v a g n i n o , R.B. M o r i n , R.A. M u e l l e r , R.P. P i o c h , R O W . R o e s k e , C.1V. Ryan, J . L . S p e n c e r , a n d E. Varr H e y n i n g e n , J . A m . Chem. S O C . 5 4 , 3401 ( 1 9 6 2 ) . 1I.R.V. A r n s t e i n a n d D. M o r r i s , 'Uiochem. J. 76, 357 ( 1 9 6 0 ) - E.P. Abraham a n d G.G.F. Newton, I n I tAdvances i n C h e m o t h e r a p y " , v o l . 2 , p . 44 . Academic P r e s s , New York a n d London ( 1 9 6 5 ) . R.B. M o r i n , B.G. J a c k s o n , E.H. F l y n n , a n d R.W. R o e s k e , J. Am. Chem. S O C . 8.4, 3400 ( 1 9 6 2 ) . E.P. Abraham a n d G.G.F. Newton, Biochem. J. Zp, 377 ( 1 9 6 1 ) . D.C. Hodgkin a n d E.N. M a s l e n , a i o c h e m . J. 2, 393 ( 1 9 6 1 ) . R. Heymhs, G. A m i a r d , a n d G. Nomink, Compt. Rend. Acad. Sc. P a r i s S e ' r i e C a, 1 7 0 ( 1 9 6 6 ) .

I

339

Page 339: Florey Vol 1

A. J. SIMMONS

18.

1 9 .

20.

21. 22.

24.

25.

26.

27.

28 .

30. 31

3 2

33

34

R.B. M o r i n , B.G. J a c k s o n , R.A. M u e l l e r , E.R. L a v a g n i n o , W.B. S c a n l o n , a n d S.L. Andrews , J. Am. Chem. SOC. &, 1897 ( 1 9 6 3 ) ; J. A m . Chem. SOC. 91, 1 4 0 1 ( 1 9 6 9 1 . R.B. Woodward, K . H e u s l e r , J. G o s t e l l i , P. N a e g e l i , W. O p p o l z e r , fl. Ramage, S. R a n g a n a t h a n , a n d H . V o r b r u g g c n , J. Am. Chem. S O C . 88, 8 5 2 ( 1 9 6 6 ) . E. Van H e y n i n g e n , A d v a n c e s i n Drug R e s e a r c h Vol . 4 , 1 ( 1 9 6 7 ) . H . R . S u l l i v a n a n d R.E. McMahon, Biochem. J. 1 0 2 976 ( 1 9 6 7 ) . -9

A.L. Demain, N a t u r e 210, 4 2 6 ( 1 9 6 6 ) . W.E. Wick, A n t i m i c r o b i a l A g e n t s a n d C h e m o t h e r a p y 1965, 870 ( 1 9 6 6 ) . C . C . L e e , E.B. Herr , Jr . , a n d R.C. A n d e r s o n , C l i n . Med. 70, 1 1 2 3 ( 1 9 6 3 ) . E.P. Abraham, Am. J. K d . 2, 6 9 2 ( 1 9 6 5 ) . S.H. E g g e r s , T.R. Emerson , V.V. Kane , a n d G . Lowe, P r o c . Chem. S O C . ( L o n d o n ) , p . 248 ( 1 9 6 3 ) . L.D. S a b a t h , M. J a g o , a n d E.P. Abraham, Biochem. J. 96, 739 ( 1 9 6 5 ) . J.M.T. H a m i l t o n - M i l l e r , G.G.F. Newton, a n d g . P . Abraham, Biochem. J. - 1 1 6 , 371 ( 1 9 7 0 ) . J.M. T. H a m i l t o n - M i l l e r , EL R i c h a r d s , a n d E.P. Abraham, Biochem. J. 1 1 6 -' 385 (1970). G.G.F, Newton, E.P. Abraham, a n d S . K u w a b a r a , A n t ' i m i c r o b i a l A g e n t s a n d C h e m o t h e r a p y 1967 , 4 4 9 ( 1 9 6 8 ) . M. C o l e , N a t u r e 203, 519 ( 1 9 6 4 ) .

R .S . G r i f f i t h a n d H . R . B l a c k , J. Am. 14ed. A s s o c . 189, 8 2 3 ( 1 9 6 4 ) . C .C . Lee a n d R.C. A n d e r s o n , A n t i - m i c r o b i a l A g e n t s a n d C h e m o t h e r a p y -~

1 9 6 2 , 695 ( 1 9 6 3 ) . G. M a c i a k , L i l l y R e s e a r c h L a b o r a t o r i e s , p e r s o n a l c o m m u n i c a t i o n .

340

Page 340: Florey Vol 1

SODIUM CEPHALOTHIN

35

36

37

38

39

40 . 4 1 . 42. 43

44 . 45

46.

47

48.

49

50

51 5 2

R . J . Simmons, I n " A n a l y t i c a l M i c r o - b i o l o g y t t , Vol. 11, (ed. by F . K a v a n a g h ) Academic P r e s s , I n P r e s s . N.R. K u z e l a n d F. Kavanagh, J. Pharm. S c i . , I n p r e s s . F . Kavanagh, I n " A n a l y t i c a l M i c r o - b i o l o g y " , Vole 11, ( e d . F. K a v a n a g h ) Academic P r e s s , I n P r e s s . J .F. A l i c i n o , I n d . Eng. Ckrezi. Anal . Ed. 18 , 619 ( 1 9 4 6 ) ; A n a l . Chem. z , 648, n961). C.E. S t e v e n s o n a n d L.D. B e c h t e l , I n P r e s s . G.E. Boxer a n d P.M. E v e r e t t , Anal . Chem. 2, 670 ( 1 9 4 9 ) . F, Lipmann a n d L.L. T u t t l e , J. B i o l . Chem. a, 21 ( 1 9 4 5 ) . M.O. R e d s t o n e , I n P r e s s . D.A. H a l l , L i l l y R e s e a r c h L a b o r a t o r i e s , u n p u b l i s h e d r e s e a r c h . V. B e t i n a , I n I t C h r o m a t o g r a p h i c R e v i e w s t t . ( M e L e d e r e r e d . , E l s e v i e r P u b l i s h i n g Co., N e w York, Vole 7,

B. L o d e r , G.G.F. Newton, a n d E.P. Abraham, Biochem. 3. 2, 408 ( 1 9 6 1 ) . C.H. O ' C a l l a g h a n a n d P.W. M u g g l e t o n , Biochem, J. &, 304 ( 1 9 6 3 ) . R.P. M i l l e r , A n t i b . C h e m o t h e r a p y l2, 689 ( 1 9 6 2 ) . M.H. Hoehn, H.W. Murphy, COT. Pugh, a n d N.E. D a v i s , Appl . M i c r o b i o l . 20, 734 ( 1 9 7 0 ) . J.L. M a r t i n a n d W.H.C. Shaw, I n l t P r o c e e d $ n g s o f t h e S.A.C. C o n f e r e n c e , N o t t i n g h a m , 1965", W e H e f f e r a n d S o n s , C a m b r i d g e , p. 7, ( 1 9 6 5 ) . R.L. H u s s e y , L i l l y R e s e a r c h L a b o r a - t o r i e s , u n p u b l i s h e d r e s u l t s . R. Thomas, N a t u r e 191, 1 1 6 1 ( 1 9 6 1 ) . E.J, B e n n e r , A b s t r a c t 124 , T e n t h I n t e r s c i e n c e C o n f e r e n o e On A n t i - m i c r o b i a l A g e n t s And C h e m o t h e r a p y ,

pa 119 ( 1 9 6 5 ) .

( 1 9 7 0 ) .

34 1

Page 341: Florey Vol 1

SODIUM SECOBARBITAL

I. Comer

343

Page 342: Florey Vol 1

I. COMER

CONTENTS

1. Description 1.1 Name, Formula, Molecular Weight 1.2 Appearance, Color, Odor

2.1 Infrared Spectrum 2.2 Nuclear Magnetic Resonance Spectrum 2.3 Ultraviolet Spectrum 2.4 Mass Spectroscopy 2.5 Melting Range 2.6 Differential Thermal Analysis 2.7 Thermogravimetric Analysis 2.8 Solubility 2.9 Crystal Properties 2.10 pH Range 2.11 pK 2.12 Heat of Solution

2. Physical Properties

3. Synthesis 4. Stability - Degradation 5. Drug Metabolic Products 6. Methods of Analysis

6.1 Elemental Analysis 6.2 Gravimetric Analysis 6.3 Direct Spectrophotometric Analysis 6.4 Nonaqueous Titration 6.5 Chromatographic Analysis

6.51 Paper 6.52 Thin Layer 6.53 Gas 6.54 Ion Exchange and Column

7. References

344

Page 343: Florey Vol 1

SODIUM SECOBARBITAL

1. Description

1.1 Name, Formula, Molecular Weight Sodium secobarbital is 5-allyl-5- (1-

methylbutyl) barbituric acid sodium salt1. It is also known as sodium propyl-methyl-carbinyl ally 1 barbiturate 2 ; sodium allyl 1-me thyl- buty 1 barbiturate2y3; sodium allyl (methyl propyl carbonyl) barbiturate3; 5-allyl-5-(l-methylbutyl) malonylurea sodium salt4; sodium 5-allyl-5-(1- methylbutyl)-barbiturate4.

H

cl 2H17N203Na Mol. wt.:260.27

1.2 Appearance, Color, Odor White, hygroscopic, odorless po~derl$~.

2. Physical Properties

2.1 Infrared Spectrum The infrared spectrum, Fig. 1, was

obtained from a KBr pellet of the sample5'. Several papers have been published using infrared spectroscopy in reference to barbi- turates6~7, their derivatives8,9,10 and degradation productsll.

band at 3.1 microns in barbiturates to the hydrogen bonded NH and the strong band at 6 . 4 microns is present when the di-alkyl substituted carbon atom carries the propyl or butyl group.

Manning and O'Brien6 attribute the

2.2 Nuclear Magnetic Resonance Spectrum The NMR spectrum of sodium secobarbital

in deuterated water is shown in Fig. 2. Underbrink12 has given the spectral assignments,

345

Page 344: Florey Vol 1

F R E 0 U E N C Y ( CM-l I

1(

oc

Y U z 0: a m U

- 2 & t 0.4

0.6

08 1.c 1 5

2 3 4 5 6 7 8 9 10 11 12 13 14 1s W A V E L E N G T H (MICRONS)

Fig . 1. I n f r a r e d spectrum of sodium s e c o b a r b i t a l KBr p e l l e t ; ins t rument : Perkin-Elmer 221

Page 345: Florey Vol 1

SO

DIU

M S

EC

OB

AR

BIT

AL

347

F ig . 2 . Nuclear magnetic resonance spectrum of sodium seco- barb i ta l ; instrument: Varian A-60

Page 346: Florey Vol 1

I. COMER

Table I, in delta units measured in ppm down- field from the 3-(trimethylsilyl)propanesulfonic acid sodium salt reference peak. The approx- imate coupling constants (J) are given in Hz where appropriate.

Avdovich and Neville13 gave chemical shift data of barbiturates from proton magnetic resonance spectroscopy in different solvents.

TABLE I

NMR Spectral Assignments of Sodium Secobarbital

Group Shape Chemical Shift J(Hz)

CH3CH2CH2$H- Triplet 0.90 ppm 6.5

CH3CH2CH,CH - Doublet 0.96 ppm 6.5

- CH3

CH3

CH3CH ZCH 2CH- Broad Approx. ___- Mu1 t iplet 1.30 ppm

CH 3

CH 2sCHCH 2 - Doublet 2.68 6

CHzrCH - Mu1 t iple t 4.9 - 5.8

Nevillex4 used NMR for structure studies of the methylated derivatives of 5,5- disubstituted barbituric acids by various methylation techniques.

2.3 Ultraviolet Spectrum The maximum absorbance of a 0.0013%

solution in 0.003 sodium hydroxide occurs at (about) 241 nm; Alcm. ?% I 36215.

(See also Section 6.3.)

348

Page 347: Florey Vol 1

SODIUM SECOBARBITAL

2.4

the mass

Mass Spectroscopy Coutts and Locock16,17 in a study of mectra of barbiturates made the follow-

ing observations concerning secobarbital. The parent peaks m/e 238 and 224 were absent, and the M+l ions m/e 239 and m/e 225 were present in less than 1% abundance. The ion m/e 168 is formed by loss of CH3CHzCH2CH=CHz from the molecular ion. The formation of the ion m/e 167 results from the loss of the radical- CH3CH2CH2CHCH3. Since the mass spectra of secobarbital and 5-allyl-5(2-methyl propyl) and 5-allyl-5( 1-methyl propyl) barbiturate are virtually identical,l6y1' the spectra are not reproduced here. Minor differences are observed above m/e 16816. The loss of a propyl radi- cal in the alkanyl side chain from the molecular ion gives an ion of significant abundance (26%) of m/e 195. (m/e calculated for C9Hl,Nz03: 195.0775; measured: 195,0764.) The loss of an ethyl radical gives an ion of low abundance (3%) of m/e 209.

2.5 Melting Range The m.p. of the acid is 98-10OoC.2,4,l8

and of the p-nitrobenzyl derivative is 163"C.19

2.6 Differential Thermal Analysis The differential thermal analysis of

sodium secobarbital at the rate of 20"C./min. showed an endothermic phase transition at 305°C.5

2.7 Thermogravimetric Analysis The thermogravimetric analysis per-

formed on sodium secobarbital at the rate of 5"C./min. under nitrogen sweep showed a 1% weight loss at 59"C., a 5% weight loss at 301"C., and a 20% weight loss at 320"C.5

2.8 Solubility Sodium secobarbital is very soluble in

water, soluble in alcohol, and practically insoluble in ether1. Burlagea0 reported the

349

Page 348: Florey Vol 1

I. COMER

solubility in isopropyl alcohol as 60.7620 g./100 ml. of solution.

2.9 Crystal Properties Castle" reported the optical crystal-

lographic properties of the free acid secobarbi- tal:

Lath-shaped crystals; monoclinic; Z 11 b; 2V = 31" calculated; horizontal dis- persion r>v; optic sign is negative; a = 1.487, B = 1.557 andym 1.563.

The indices of refraction of sodium secobarbital were published by Eisenberg22:

a = 1.490, B = 1.500 (intermediate index) andrn 1.525.

The X-ray diffraction pattern for sodium secobarbital was published in the "X-Ray Powder Data File"23 and is shown as follows:

dA 1/11 dA 1/11

14.1 67 12.2 53 11.1 20 10.3 100 8.87 3 8.45 3 6.74 3

6.11 3 5.72 3 5.49 3 5.21 3 4.66 7 4.45 3 3.84 3

2.10 pH Range The pH of a 5% solution is between

9.8 ana 10.ll5.

2.11 pK - For secobarbital the pK1 was 7.92

at 20°C.24,25 and the pK, 12.60 at 38"C.26

350

Page 349: Florey Vol 1

SODIUM SECOBARBITAL

2.12 Heat of Solution Udani and Autian2’ reported a solu-

bility study of secobarbital in water at various temperatures. From the data the heat of solu- tion was calculated and reported as 4358.0 cal./ degree/mole.

3. Synthesis

CH 3CH 2CH H >C’ HBr CH3CH2CH2 H

CH3 ‘OH- ’C’ I I1 CHf \Br

,C02C2H, Na CH3CH2CH2\ , H CH 2, C2H5OH C CO2C2H5

c02c zH5 Ref lux* CH( ‘C’ I11 IV H’ \COzC,Hs

H2N, Na CH3CH2CH2, , H

H2N’ Ref lux‘ Dil. CH3 A C CO-NH,

co / \ / CO C2H5OH H2O

v Acid VI H C O - N d

CH2=CHCH2Br H2O KOH CH3CHzCH2, ,H C2H5OH * /C\ ,CO-NH,

CH3 ,c\ co CH 2=CHCH CO-NH’

VI I VIII

NaOH + Sodium Secobarbital

The synthesis of sodium secobarbital is described in the patent2. Propyl-methyl- carbinol (I) is treated with anhydrous gaseous H B r , at a low temperature to reduce isomer formation, to produce 2-bromopontane (11). Malonic ester (111) is added to a solution of sodium in alcohol. This is followed by a slow addition of 11. The solvent is removed by

35 1

Page 350: Florey Vol 1

I . COMER

vacuum d i s t i l l a t i o n , and water added t o d i s s o l v e t h e N a B r . The o i l y l a y e r of propyl-methyl- c a r b i n y l malonic ester ( I V ) is p u r i f i e d by f r a c t i o n a l d i s t i l l a t i o n i n vacuo. Urea ( V ) and

IV are added t o a s o l u t i o n i n a l c o h o l and t h e mixture r e f l u x e d f o r 2 t o 4 hours . Af t e r re- moval of t h e s o l v e n t , t h e r e s i d u e is d i s so lved i n water . D i l u t e a c i d is added t o p r e c i p i t a t e t h e propyl-methyl-carbinyl b a r b i t u r i c a c i d (VI) . An aqueous-alcohol s o l u t i o n of VI, KOH, and a l l y l bromide ( V I I ) is a g i t a t e d f o r 50-75 hours , concen t r a t ed , and cooled t o s e p a r a t e t h e v i scous mass of propyl-methyl-carbinyl a l l y l b a r b i t u r i c acid ( V I I I ) . Unreacted V I is f i l t e r e d from a benzene s o l u t i o n of V I I I . Addition of petroleum ether p r e c i p i t a t e s an o i l y mass of V I I I which hardens when d r i e d . A s o l u t i o n of NaOH is added t o a l c o h o l i c s o l u t i o n of VII I i n an equa l molecular p o r t i o n . The f i l t e r e d s o l u t i o n is evaporated under vacuum u n t i l sodium s e c o b a r b i t a l s e p a r a t e s i n s o l i d form.

4 . S t a b i l i t y - Degradation

White e t a1.28 found t h a t samples of seco- b a r b i t a l i n blood and water can be kept a t room temperature f o r one week and f rozen f o r 60 days.

Kapadia and A ~ t i a n ~ ~ s e p a r a t e d and i d e n t i - f i e d 3 degrada t ion products from heated s o l u t i o n s of sodium s e c o b a r b i t a l : One a c i d i c compound - monoureide of 1-methyl-butyl a l l y l malonic a c i d ; one n e u t r a l compound-1 methylbuty l a l l y l acetyl- u r e a ; and u r e a . A f o u r t h compound, l-methyl- b u t y l a l l y l ace t ic a c i d , w a s formed i n t h e degrada t ion but could no t be i s o l a t e d . Watson and Pernarowski l l ob ta ined t h e i n f r a r e d s p e c t r a i n a KBr p e l l e t of 1-methylbutyl a l l y l a c e t y l - u rea , m . p . 128- 130 'C . 5 . Drug Metabolic Products

Cochin and Daly30 i s o l a t e d 5-a l ly l -5(1- hydroxy-1-methylbutyl) b a r b i t u r i c a c i d from

3 5 2

Page 351: Florey Vol 1

SODIUM SECOBARBITAL

human urine. They reported detecting other metabolic products and identified one-as 5- (methylbutyl) barbituric acid. Waddel131 in a later study reported three major metabolites of secobarbital: 5- (2,3 dihydroxypropy1)- 5-(1 methylbutyl) barbituric acid and two diastereoisomers of hydroxysecobarbital or 5- allyl-5- (3- hydroxy- 1-methylbu ty 1) barbi- turic acid. A fourth metabolite 5-( l-methyl- butyl) barbituric acid was found in the urine of some human patients. Horningsz used gas chromatography and mass spectroscopy to isolate hydroxysecobarbital from the urine of newborn infants.

6. Methods of Analysis

6.1 Elemental Analysis The elements and '% composition4 are as

follows: CIz - 55.37%, Hi7 - 6.58%, N2 - 10.76%, O3 - 18.44%, Na - 8.84%.

are described in New and Nonofficial Remedies3. The sodium and nitrogen assay methods

6.2 Gravimetric Analysis Historically the gravimetric procedure

has undergone changes in procedure, from extraction solvents to methods of drying the residues, 33,34,35,36,37,38. The present ravi- metric procedure is given in U.S.P. XVIII .

6.3 Direct Spectrophotometric Analysis

f

(See a l s o Section 2.3.) G~ldbaurn"~ extracted the barbiturate

from biological iiuids into chloroform and then extracted the chloroform with 0.5 N sodium hydroxide, and read this solution at 255 nm fo r quantitation. To differentiate from other barbiturates, the optical density at 235, 230 and 225 nm are recorded and ratios to the optical density at 255 nm are calculated.

blood, Walker et a1.40 used dilutions of 12.5 For quantitation of barbiturates in

353

Page 352: Florey Vol 1

I. COMER

mcg. per ml. in pH 10 solutions read at 239 nm. To correct for interference in blood extracts the optical density in acid solution pH 2 was subtracted.

density difference method for differentiating barbiturates. The absorption spectra in strong alkali 0.45 N sodium hydroxide and in pH 10.5 were recorded. The absorption spectra in strong alkali show characteristic maxima at 255 nm and minima at about 235 nm. In a buffer solution at pH 9 . 8 to 10.5 higher maxima occur at 240 nm with no minima. The optical density differences at specific wavelengths were recorded. The differences are greatest at 260 nm decreasing through zero at about 250 nm (isobestic point) to a maximum negative at about 235 nm and in- creasing through zero at about 227 nm (iso- bestic point) to a positive difference at the lower wavelengths. The optical density differ- ences at specific wavelengths are divided by the optical density difference at 260 nm to provide ratios to be used for differentiation of barbi- turates. For quantitation the optical density difference at 260 nm in alkaline solution containing 2-30 mcg. per ml. is used.

Rotondaro42 described an extraction procedure for pharmaceuticals and listed various methods of assay, one of which is the ultra- violet spectrophotometric procedure. Dilutions were made to 1-2 mg. per 100 ml. in the final solution having an alkalinity of 0.01-0.02 N sodium hydroxide or 0.1 to 1.0% NH3 and a pH 10.5-11.5 to give a maximum at 240 nm fl. These readings were made in reference to a barbiturate of known purity prepared under the same conditions.

Goldbaum41 introduced the optical

6.4 Nonaqueous Titration Various methods of extraction of seco-

barbital prior to titration with nonaqueous titrants have been r e p 0 r t e d ~ ~ , ~ ~ ~ ~ 5 ~ ~ 6 . End- points were determined visually or potentiomet-

354

Page 353: Florey Vol 1

SODIUM SECOBARBITAL

rically. Johnson and Byers47 titrated the sodium salts in glacial acetic acid using 0.1 N perchloric acid in glacial acetic acid and methyl violet as the indicator. A nonaqueous titra- tion method is given for the assay of secobarb- ital in u.S.P. XVIII48.

6.5 Chromatographic Analysis

6.51 Paper Chromatography Some data from various authors on

paper chromatography are shown in Table I1 and refer to identification of barbiturates in biological f l ~ i d s ~ ~ r ~ ~ , in pharmaceuticals51, and organic acidic compounds52.

TABLE I1

Paper Chromatography of Secobarbital b Rf X

- Ref. Solventa Method Detect ion 100

49 A Ascending 2 , 3 , 4 76 50 A Descending 2 , 3 , 4 76 51 B Ascending 5 56 52 C Descending 1 80

A, n-Butyl Alcohol saturated with 5 N Ammonia; B, Ethylene chloride; C, Chloroform.

a

bl, Examine under ultraviolet light; 2, 1% silver acetate solution; 3, Lemaire Reagent; 4, KMn04; 5 , 0.05 N silver nitrate in alcohol solution.

For the identification of barbit- urates, Algeri and Walker49 applied 50-100 mcg. samples in the acid form to the paper. These samples could be obtained by further extraction of samples used in the ultraviolet spectra- photometric procedure.

355

Page 354: Florey Vol 1

I. COMER

Hilf et a1.50 used the paper chromatography method by Algeri and Walker49 using descending chromatography. After develop- ment and detection of the barbiturate spot, the silver-barbiturate salt spot was cut out of the paper, shredded and extracted in order to obtain confirmation of identity by ultraviolet spectral ratios.

rate in acid form in a suitable solvent about 1 inch from the edge of an 8" x 8" Whatman No. 1 sheet of paper. A standard barbiturate solution (0.001 ml. of a 20 mg./lO ml. alcohol) was spotted along with the sample. The paper was mist sprayed with 0.5 M sodium carbonate and placed in the chromatograph tank containing redistilled ethylene chloride as the mobile solvent. After development of 4-6" above the spotting line, the paper was removed and dried at 100°C. in a forced draft oven. It was then sprayed with 0.05 N silver nitrate in alcohol solution and placed in the oven until tan spots on a brown background appeared.

Sabatino51 applied the barbitu-

6.52 Thin Layer Chromatography

layer chromatography provide a convenient method for the analysis of secobarbital, as evidenced by the numerous publications. The data shown in Table I11 from the paper of Comeras, has been expanded to include some of the references since 1967.

The following method was outlined from the paper of Heaton and Blumberg5'. They used the popular solvent system, CHC13-acetone (9:l). (See Table I11 for 7 references using this system.) They have successfully employed the method for detection of barbiturates, narcotics, and amphetamines in urine of patients receiving psychotropic drugs. The procedure can be used for pharmaceutical dosage forms.

Shake 5 ml. urine with 2.5 ml. 1M potassium phosphate buffer pH 6 and 30 ml.

The rapidity and economy of thin

356

Page 355: Florey Vol 1

SODIUM SECOBARBITAL

TABLE I11

TLC of Secobarbital

-- Ref. Solv. a,b Rf xl00 Ref. Solv. Rf xl00

30 54 55 56 57 58 59 30 58 30 58

A A A A A A A B B C C

64 55 41 55

51 64 46 36 54 44

X

60 61 55 55 58 62 62 63 63 64 59

D E F G H I J K L M N

75 29 39 59 78 63 43 83 63 85 73

A , CHC13-Acetone (9: 1) ; B, Benzene-Acetic Acid (9: 1) ; C, Dioxane-Benzene-aq.NH3 (20: 75: 5) ; D, Diisopropyl Ether- CHC13 (1: 1); E, Acetone- n-Butyl Alcohol-NH40H (9:9:2) prel. treat samp. with H2S04; F, Benzin-Dioxane (5:2) DMF stationary phase; G, Benzol-Ether (1: 1) ; H, Isopropanol-NH40H - CHC13 (45: 10: 45) ; I, Ethyl Acetate-n-Hexane-NH40H (20: 9: 10) ; J, CHC13-CC14 (1:l); K, Isopropanol-CHC13-25% NH40H (60:30: 10); L, isopropyl ether aq. sat.; M, n-amyl methyl ketone; N, Ethyl Acetate-CH3OH-NH40P (85: 10: 5).

bAdsorbent used was silica gel except for sol- vent J-Kiesilguhr with formamide and solvent M-cellulose.

a

ether f o r 2 min. Separate, filter, and evapo- rate the ether layer. Dissolve the residue in 0.2 ml. CHC1, and spot on a 20 x 20 cm. Silica Gel G glass plate with appropriate standards, Develop for 10 cm. in CHC13-Acetone (9:l). Dry and spray with a suitable detection reagent.

357

Page 356: Florey Vol 1

I . COMER

Secobarbital was detectable for 4-6 days after a single 3 grain dose by this method57.

selected for specificity based on other drugs or metabolites expected in the sample, A sensitivity of 1-10 mcg. is normally obtainable. The following means of visualization have been used: 0.5-1% silver nitrate or a~etate-white~~, 6 2 mercuric nitrate-~hite~',~~, HgS04 then diphenyl~arbazone-blue~~~56 0 . 0 2 M and 0 .2% KMnO4-yellow58,30, 5% cobalt nitrate in ethanol, then NH, vapor-violet60, iodine vapor-brown65.

Morrison and C h a t t e ~ ~ ~ ~ developed a quantitative method by measuring secobarbital coupled mercury with dithizone at 475 nm.

Detection reagents may be

6.53 Gas Chromatography The analysis of barbiturates in-

cluding secobarbital has been the subject of many papers. A good review with 77 references was presented by Brochmann-Hanssen66.

The method outlined is from the paper of Sibert and F r i ~ k e ~ ~ .

powdered dosage form (tablets) containing the secobarbital equivalent to 50 mg. of barbitu- rate in 25 ml. of hot methanol for 5 min. Cool and decant or filter through S and S No. 589 black filter paper into a 100-nil. volumetric flask. Wash with methanol, add 10 ml. of internal standard, and dilute to volume with methanol.

Use a similar concentration of a barbiturate (amobarbital), not contained in the sample and that is completely resolved from seco- barbital, as the internal standard. Inject 5 p 1 of the sample plus internal standard solution into the gas chromatograph, and then a standard solution of secobarbital containing the internal standard. For dosages containing sodium seco- barbital, extract the secobarbital from 10% HC1 with CHCl,, evaporate and continue as above with methanol.

Pharmaceutical Dosage Forms:

Sample Preparation: Stir the

358

Page 357: Florey Vol 1

SODIUM SECOBAABITAL

Column: 6' x 4 mm. packed with 4.5% cyclohexanedimethanol succinate from CHC1, solution on 80/100 mesh Gas Chrom Q, conditioned 24 hr. at 240°C. with a flow of 60 ml./min. nitrogen . 240"C., flame ionization detector 260"C., in- jection port 250"C., nitrogen 85 ml./min., detector hydrogen 60 and air 550 ml./min. (A Packard Series 7800 instrument was used67.)

Calculation: Mg. secobarbital per dose = ratio area of sample to internal std. in sample soln. x conc. std. x diln. factor stds. x ave. wt. dosage form divided by ratio area std. to area of internal std. in std. soln. x wt. sample.

column for a general quantitative procedure for various drugs including secobarbital. Allen6' used 10% SE-30 on Gas Chrom Q column at 180°C. for mixtures of barbiturates in tablets.

Biological Materials: Kazyak and Knoblock70, in their work in analytical toxicology, recommended that the specimen be adjusted to pH 4.0-7.5, extracted with chloro- form, and filtered. The CHC1, is washed with phosphate buffer pH 7.4, filtered and evaporated. Parker and Kirk71, and Anders72 used CHC1, and Jain and Kirkv3 used acetone-ether as the initial solvent with modifications of the procedure for purification.

redissolved in the appropriate solvent for in- jection into the gas chromatograph.

Columns: The column described under dosage form analysis may be used. Jain and Kirk7, used a 1% cyclohexanedimethanol succinate on 100/120 mesh silanized Gas Chrom P, 3 ' x 1/8" O . D . glass column, with a flow rate of carrier gas at 22OoC. of 15.8 ml./min.

column preparation for maximum sensitivity was described by McMartin and Street74. Using a 6 ft. SE-30 on Chromosorb W column they were

Operating Conditions: Column

Rader and Aranda68 used a similar

The CHC1, solvent residue may be

The ultimate in details for

359

Page 358: Florey Vol 1

I . COMER

able to detect 0.01 mcg. of secobarbital.

77,78 derivatives may be used to change retention time for identification purposes.

Trimeth~lsilyl~~ and methy114,76,

6.54 Ion Exchange and Column Chromatog-

Ion exchange and column chromatog- raphy

raphy have been used to separate secobarbital from interfering substances in pharmaceutical preparations46,79,80 and biological samples81, Table IV, prior to quantitative determination.

TABLE IV

Ref. Resin of adsorbant a

Solvent a

Eluant

46 Cation Resin A A Amberlite IRC-50

79 9 Anion Resin B D 80 Dowex 2-X8

81 Adsorban t Flor isil

a A, Dimethylformamide; B, 50% Ethanol; C, Chloroform; D, 50% Acetic Acid in 95% Ethanol; E , 10% Anhydrous Methanol in Chloroform.

3 60

Page 359: Florey Vol 1

SOD1 UM SECOBAR Bl TAL

References

1.

2.

3.

4.

5.

6.

7. 8.

9.

10.

11.

12.

13.

14. 15.

16.

17.

18.

"The United States Pharmacopeia," 18th revision, Mack Publishing Co., Easton, Pa. 18042 (1970) p. 662. United States Patent 1,954,429; Patented Apr. 10, 1934. "New and Nonofficial Remedies," American Medical Association, Chicago, Ill. 60610 (19421, p. 472. "The Merck Index," 8th ed., Merck and Co., Inc., Rahway, N.J. 07065 (19681, p. 939. Underbrink, C. D. and KOSSOY, A.D., personal communication, Eli Lilly and Company, Indianapolis, Indiana 46206. Manning, J. J. and O'Brien, K. P., Bull. Narcotics, - 10, 25 (1958), Cleverley, B., Analyst, - 85, 582 (1960). Chatten, L. G. and Levi, L., Applied Spectroscopy, 11, 177 (1957). Levi, L. and Hzley, C. E., Anal. Chem., - 28, 1591 (1956). Umberger, C. J. and Adams, G., Anal. Chem., - 24, 1309 (1952). Watson, J. R. and Pernarowski, M., J. Assoc. Offic. Anal, Chem., 45, 609 (1962). Underbrink, C. D., personal communication, Eli Lilly and Co., Indianapolis, Indiana 46206. Avdovich, H. W. and Neville, G. A., Can. J. Pharm. Sci., 4, 51 (1969). Neville, G. AT, Anal. Chem., 42, 347 (1970). "New and Nonofficial Remedies7 American Medical Association, Chicago, Ill. 60610 (19521, p . 688. Coutts, R. T. and Locock, R. A., J. Pharm. Sci., 57, 2096 (1968). CouttsTR. T. and Locock, R. A.. J. Pharm. Sci., 58, 775 (1969). Shonle, H. A., J. Am. Chem. Soc., 56, 2490 (1934) .

36 1

Page 360: Florey Vol 1

I . COMER

19.

20.

21.

22.

23.

24.

25. 26.

27.

28.

29.

30 .

31.

32 .

33.

3 4

35.

36.

37 .

Cast le , R . N . and Poe , C . F . , J . Am. Chem. SOC. , 66, 1440 ( 1 9 4 4 ) . Bur l age , H . M . , J . Am. Pharm. ASSOC., S c i . Ed . , 37 , 345 ( 1 9 4 8 ) . C a s t l e , R . N . , J . Am. Pharm. Assoc., S c i . Ed . , - 38, 47 (1949) . E i senbe rg , W . V . , J . Assoc. O f f i c . Anal . Chem., 36 , 730 ( 1 9 5 3 ) . "X-ray Powder D a t a F i l e , " Am. SOC. f o r T e s t i n g Materials, (5-00851, P h i l a . , Pa . (1960) . Clowes, G . H . A , , K e l t c h , A. K . and K r a h l , M . E . , J . Pharmacol. and E x p t l . T h e r a p . , - 68 , 312 ( 1 9 4 0 ) . K r a h l , M . E . , J . Phy. Chem., 44, 449 (1940) . B u t l e r , T, C . , Ruth, J . M . a n r l h c k e r , J r . , G . F . , J . Am. Chem. S O C . , 77 , 1486 ( 1 9 5 5 ) . Udani, J . H . and Au t i an , J Y J . Am. Pharm. ASSOC., S c i . Ed . , 49, 376 (1960) . White, E. C . , B r i g z , J . R . and Sunsh ine , I . , h e r . J . C l i n . P a t h . , - 29, 506 (1958) . Kapadia, A . J . and Au t i an , J . , J . Am. Pharm. ASSOC. , S c i . Ed . , 49, 380 ( 1 9 6 0 ) . Cochin, J . and Daly, J . Wx J. Pharmacol. and E x p t l . The rap . , 139 , 154 (1963) . Waddell, W . J . , J . Pharmacol. and E x p t l . T h e r a p . , 149, 23 (1965) . Horning , M . G . , A b s t r a c t s 9 t h N a t ' l . Meeting A.Ph.A. Academy P h a r m a c e u t i c a l S c i e n c e s , Washington, D . C . , Nov. 1970. "The Un i t ed S t a t e s Pharmacopeia ," 1 5 t h r e v i s i o n , Mack P u b l i s h i n g Co. , Eas ton , P a . 18042 (1955) p . 626. "The Uni ted S t a t e s Pharmacopeia, I' 1 6 t h r e v i s i o n , Mack P u b l i s h i n g Co. , E a s t o n , Pa . 18042 (1960) p . 639. "The Un i t ed S t a t e s Pharmacopeia," 1 7 t h r e v i s i o n , Mack P u b l i s h i n g Co., Eas ton , Pa . 18042 (1965) p . 642. Warren, L. E . , J . Assoc. O f f i c . Anal . Chem., - 25, 799 (1942) . Warren, L. E . , J . Assoc. O f f i c . Anal . Chem., - 26, 101 (1943) .

-

362

Page 361: Florey Vol 1

SODIUM SECOBARBITAL

38.

39 .

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57 .

58.

Warren, L. E . , J . Assoc. O f f i c . Anal . Chem., - 27, 352 (19441, Goldbaum, L . R , , J . Pharmacol. and E x p t l . The rap . , 9 4 , 68 (1948) . Walker, J T T . , F i s h e r , R . S. and McHugh, J . J . , Am. J . C l i n . P a t h . , 18, 451 (1948) . Goldbaum, L . R , , Anal. C h e m z - 24, 1604 ( 1 9 5 2 ) . Rotondaro, F. A . , J . Assoc. O f f i c . Anal. Chem., 38, 809 (1955) . Ryan, J 'T -C . , Yanowski, L . K . and P i f e r , C . W . , J . Am. Pharm. ASSOC. , 43, 656 (1954) . Swartz, C . J . and FOSS, N . E . , J . Am. Pharm. ASSOC., 44, 217 (1955) . C h a t t e n , L. G . , J . Pharm. Pharmacol . , - 8, 504 (1956) . V incen t , M . C . and B lake , M , I . , J . Am. Pharm. Assoc . , 48, 359 (1959) . Johnson, L. Y . a n d Byer s , T . E . , J . Assoc. O f f i c . Anal. Chem., 43, 255 (1960) . "The Un i t ed S t a t e s P G r m a c o p e i a , " 1 8 t h re- v i s i o n , Mack p u b l i s h i n g C o . , Eas ton , Pa . 18042 (1970) p , 600. A l g e r i , E. J . and Walker, J . T . , Am. J . C l i n . P a t h . , 22, 37 (1952) . H i l f , R . , L i g m b u r n , G . A . and Cas tano , F. F . , J . Lab. C l i n . Med., 54 , 320 (1959) . S a b a t i n o , F. J . , J . Assoc. O f f i c . Anal. Chem., 37 , 1001 (1954) . Schmal lTM. , Wol l i sh , E . G . , C o l a r u s s o , R . , Keller, C . W . , and S h a f e r , E . G . E . , Anal. Chem., 29, 791 (1957) . C o m e r , J . P . a n d C o m e r , I . , J . Pharm. S c i . , 56 , 413 (1967) . S t o l m a c A . , " P r o g r e s s i n Chemical Toxi- co logy , " Academic P r e s s , I n c . , N e w York, N . Y . (1965) v o l . 2 , p . 321. S a h l i , M . and Oesch, M . , J . Chromatog., - 14, 526 (1964) . Sunshine , I , , Am. J . C l i n . P a t h . , 40, 576 ( 1963) . Heaton, A. M . and Blumberg, A . G . , J . Chromatog., - 41, 367 (1969) . Mule, S . J . , J . Chromatog., - 39 , 302 (1969) .

-

363

Page 362: Florey Vol 1

I . COMER

59.

60.

61.

62.

63.

64.

65.

66.

67.

68

69.

70.

71.

72. 73.

74.

75.

Dole, V. P . , K i m , W . K . and E g l i t i s , I . , J . Amer. Med. Assoc., 198, 349 (1966) . S h e l l a r d , E. J , and Osis iogu , I . U . , Lab. P r a c t . , 13, 516 (1964) . P e t z o l d , J . A . , Camp, W . J . R . and Kirch , E . R . , J . Pharm. S c i . , 52, 1106 (1963). Ahmed, Z . F . , E l -Darawy , Z . I . , Aboul-Enein, M . N . , El-Naga, M . A . A . , and El-Lei thy, S. A . , J , Pharm. S c i . , 55, 433 (1966) . Morrison, J . C , and Chat ten , L. G . , J . Pharm. Pharmacol. 17, 655 (1965) . Curry, A. S. and F G . R . H . , Analys t , - 93, 834 (1968) . Huang, J . T . and Wang, K . T . , J . Chromatog., - 31, 587 (1967) . Brochmann-Hanssen, E . "Theory and Appl. of G a s Chromatog. i n Ind. and Med.," Kroman, H . S. and Bender, S. R . , Eds. , Grune and S t r a t t o n , N e w York, N . Y . (1968) p . 182. S i b e r t , J . L. and F r i cke , F. L . , J . Assoc. O f f i c . Anal. Chem., 51, 1326 ' (1968) . Rader, B. R . and Araxa , E . S . , J . Pharm. Sci., 57, 847 (1968). Al len , J . L . , J. Assoc. O f f i c . Anal. Chem., - 51, 619 (1968) . Kazyak, L. and Knoblock, E . C . , Anal. Chem., - 35 , 1448 (1963). P a r k e r , K . D. and Kirk, P . L . , Anal. Chem., - 33, 1378 (1961) . Anders, M . W . , Anal. Chem., - 38, 1945 ('1966). J a i n , N . C . and Kirk, P. L . , Microchem. J . , - 12, 249 (1967) . McMartin, C . and S t r e e t , H . V . , J . Chroma- t o g . , 22, 274 (1966) . S t r e e t T H . V . , J . Chromatog., - 41, 358 (1969) .

76. Stevenson, G . W . , Anal. Chem., 2, 1948

77. Mar t in , H . F . and D r i s c o l l , J . L . , Anal.

78. Brockmann-Hanssen, E. and Oke, T. O . , J .

79. Blake, M . I . and S i e g e l , F. P . , J . Pharm.

( 1966) . Chem., 3, 345 (1966) .

Pharm. S c i . , 58, 370 (1969) .

S c i . , 51, 944 (1962) .

364

Page 363: Florey Vol 1

SODIUM SECOBARBITAL

80. B lake , M . I . and Nona, D . A . , J. Pharm.

81. S t o k e s T D . M., Camp, W . J. R . and Kirch, S c i . , 5 3 , 570 ( 1 9 6 4 ) .

E. R., J. Pharm. S c i . , 51, 379 (1962).

365

Page 364: Florey Vol 1

TRIAMCINOLONE

K. Florey

Reviewed by N. E. Rigler

367

Page 365: Florey Vol 1

K. FLOREY

CONTENTS

1. Descr ip t ion 1.1 Name, Formula, Molecular Weight 1 . 2 Appearance, Color , Odor

2 . 1 I n f r a r e d Spec t ra 2 . 2 Nuclear Magnetic Resonance Spec t r a 2 .3 U l t r a v i o l e t Spec t r a 2 . 4 Mass Spec t r a 2 . 5 Op t i ca l Rotat ion 2 .6 Melt ing Range 2 . 7 D i f f e r e n t i a l Thermal Analysis 2 . 8 Thermogravimetric Analysis 2 .9 S o l u b i l i t y 2.10 C r y s t a l P r o p e r t i e s

2 . Phys ica l P r o p e r t i e s

3. Synthes is 4 . S t ab i l i t y , Isomer i z a t ion , Degradation 5 . Drug Metabolic Products 6. Methods of Analysis

6 . 1 Elemental Analysis 6 .2 D i r e c t Spectrophotometr ic Analysis 6 . 3 Co lo r ime t r i c Analysis 6 . 4 Polarographic Analysis 6 . 5 Chromatographic Analysis

6 .51 Paper 6.52 Thin Layer 6.53 Column

7 . Determinat ion i n Body F lu ids and T i s s u e s 8. References

368

Page 366: Florey Vol 1

TRIAMCINOLONE

1. Des cr ipt ion

1.1 Name, Formula, Molecular Weiqht Triamcinolone is 9a-Fluor0-11~,16a, l7 ,21-

tetrahydroxypre na-1,4-diene-3,20-dione. It is also known as A -9a-fluoro-16a-hydroxyhydrocorti-

hydroxy-9a-fluorohydrocortisone and 16a-hydroxy- 9a-fluoroprednisolone.

5! sone; 9a-fluoro-16a-hydroxyprednisolone; A 1 -16a-

2 1CH20H

2 lH2 7F06 Mol. Wt.: 434.49

1.2 Appearance, Color, Odor White to off white, odorless crystalline

powder,

2. Physical Properties

2.1 Infrared Spectra Depending on solvent of crystallization

triamcinolone exists in two polymorphic forms (see also 2.7; 2.9; 2.10 for further discussion of polymorphs) with different infrared spectra. The infrared spectra "A" and "B1I1 presented in figures 1 and 2 correspond to the spectra "A" and "B" of Mesley2 and "I" and "11" of Smith et.al.3 respectively .

369

Page 367: Florey Vol 1

FREQUENCY (a') 3000 2500 2000 la00 lboo 1400

I I , , I I so i

I I I I 'i :

I 2 3 4 5 6 7 8 9 10 II 12 13 14 15

WAVELENGTU (MICRONS)

Fig. 1 Triamcinolone polymorph "A" . Sample #4789/35-1 (Dr. Michel) re- cryst. from 60% isopropanol/H20. 1.R.curve #28523. Taken in mineral oil; Instrument: Perkin-Elmer 621.

Page 368: Florey Vol 1

37 1

Fig. 2 Triamcinolone polymorph "B" . Sample #4783-33-1 (Dr. Michel) re- cryst. from dimethylacetamide/water. I . R . curve #28522. Taken in min- eral oil. Instrument: Perkin-Elmer 621

Page 369: Florey Vol 1

K. FLOREY

R . J. Mesley2 i n a d i scuss ion of "The in- f r a r e d s p e c t r a of s t e r o i d s i n t h e s o l i d s t a t e " a s s igns t h e fo l lowing bands (em-') t o t r iamcino- lone :

a. c h a r a c t e r i s t i c f o r 11B-OH: 1043

b. 'I f o r 17a-OH: 1132,1119 c. 'I f o r 21-OH: 1105,1090,

d. I' f o r 1,4-diene-3- 1402,1300,

Type A

1059

ketones 1244,954, 937,926, 890 , 887, 854,828, 710

Type B

1039 1136,1121 1104,1090, 1056 1406,1304, 1242 , 955, 943 , 928, 889,848, 833 , 699

These assignments a s w e l l as t h o s e p rev ious ly made3j4j5 e s s e n t i a l l y ag ree wi th t h e peaks o r shoulders presented i n t h e s p e c t r a o f f i g u r e s 1 and 2 .

2 . 2 Nuclear Maqnet ic Resonance Spec t r a The NMR spectrum6 of t r iamcinolone , d i s -

so lved i n deuterodimethylsulfoxide con ta in ing t e t r a m e t h y l s i l a n e as an i n t e r n a l r e fe rence , shows t h e presence of t h e c r o s s conjugated dienone, C - 1 proton resonance a t 2.74 (double t , J1, = 10 Hz), c-2 pro ton resonance a t 3.80 quartet, J 2 , 4 = 1 . 5 Hz, J1, = 10 Hz) and C-4 proton resonance a t 3 . 9 9 ~ ( m u l t i p l e t ) ( c f F igure 3 ) . The C - 1 8 pro- t ons a r e ass igned t o t h e 3-proton s i n g l e t a t 9 . 1 5 ~ whi le t h e C-19 protons are ass igned t o t h e 3-proton s i n g l e t a t 8 . 5 2 ~ . By adding deuterium oxide t o t h e s o l u t i o n , exchange of t h e hydroxyl protons f o r deuterium is achieved and wi th t h e coupl ing of t h e hydroxyl pro tons t o t h e pro tons on carbons bea r ing t h e hydroxyl groups el iminated, a s i m p l i f i e d spectrum of t r iamcinolone is achiev- ed ( c f F igure 4 ) . The AB q u a r t e r o f t h e C - 2 1

312

Page 370: Florey Vol 1

W 4 W

Fig.3 NMR spectrum of triamcinolone, Squibb House Standard #30197-503 in deuterodimethylsulfoxide containing tetramethylsilane as internal refer- ence. Instrument: Varian A-60

Page 371: Florey Vol 1

w -4 P

m m

I I I I I I I

I I , I I I D 1 0 I 0

I I . . . , . . I

I ...... I

0 c* , 7 0 6 0 10 .o

Fig.4 NMR spectrum of t r iamcinolone , Squibb House Standard #30197-503 i n deuterodimethylsulfoxide con ta in ing t e t r a m e t h y l s i l a n e as i n t e r n a l s t a n - dard and deuterium oxide. Instrument: Varian A-60

3

n r 0 n rn i

Page 372: Florey Vol 1

TRIAMCINOLONE

geminal proton centered a t 5 . 6 9 ~ is observed and t h e doublet a t 5 . 2 ~ is ass igned t o t h e resonance of t h e C-16P proton. (see t a b l e I ) . These d a t a agree wi th publ ished da ta57 .

TABLE I

NMR S p e c t r a l Assignments of Triamcinolone

C hem i c a 1 S h i f t

T Protons a t

c-1 c-2

c-4 C-16 C-18 c-19 c-2 1

2.74 d ;J1 ,2 = 10

J 1 , 2 = 10 3.80 q ;J2 ,4 = 1 . 5

3.99 m 5 .2 d 9.15 S

8.52 S

5.69 ABq

s = s i n g l e t ; d = doublet : m = m u l t i p l e t : A% = AB q u a r t e t ; ,T = coupl ing cons t an t i n Hz.

2.3 U l t r a v i o l e t Spec t r a The fol lowing u l t r a v i o l e t s p e c t r a l d a t a

have been repor ted :

Ref. 3 Ref. 4 , 7 Ref. 8

xmax . i n e thanol 239 mp 238 mp 239 mp. 15,224 15,800 15,900 €

Squibb House Standard 30194-503 (0.0016% i n abso- l u t e e thanol ) when scanned between 340 and 210 mp

375

Page 373: Florey Vol 1

K. FLOREY

( Instrument: Cary 15) exh ib i t ed a s i n g l e band (El 381) peaking a t 239 mp8. t h e 1,4-diene-3-keto system.

T h i s band is due t o 1

2 . 4 Mass Spec t r a The high r e s o l u t i o n mass spectrum6 of t r i -

amcinolone was t aken on a MS-9 instrument and is summarized i n Table 11. Unlike i t s ace ton ide de- r i v a t i v e , t h i s more p o l a r compound degrades t h e r - mal ly ex tens ive ly . The peak a t t h e molecular i on ( m / e 394) is almost impercept ib le i n t h e l o w r e s e l u t i o n spectrum and w a s no t de t ec t ed a t a l l i n t h e high r e s o l u t i o n spectrum. A peak occurs a t m / e 374 which corresponds t o t h e loss of H F from t h e M+. m a s s range is t h e m / e 326 ion , corresponding t o t h e formula C20H22O4 which appears t o r e s u l t from t h e loss of t h e CHzOH, H 2 0 and HF groups. The base peak of t r iamcinolone ace tonide of m / e 375 (C22H2804F) arises from t h e cleavage of t h e C-20 and C - 2 1 carbons whi le t h e base peak of t r iamcino- lone occurs a t m / e 1 2 2 (C8H100), which t o g e t h e r w i t h t h e ion a t m/e 1 2 1 demonstrates t h e presence of t h e A1j4-e-keto group. S i g n i f i c a n t peaks of t h e l o w r e s o l u t i o n spectrum are shown i n F igure 5.

The most s i g n i f i c a n t peak i n t h e high

2 .5 Opt ica l Rota t ion The fol lowing s p e c i f i c r o t a t i o n s have been

r epor t ed :

+ 750 (c = 0.20 i n acetone)‘,’

[a]E3 + 71° (C = 0.35 i n ace tone) 5

[a]i2 + 67.1° 2 1.9O (C = 0 . 5 i n MeOH) 3

9 [a];’ + 70.5O (C = 1 i n dimethylformamide)

376

Page 374: Florey Vol 1

TR

IAM

CIN

OL

ON

E

.o

5

k

rd 5

c rd 4J v)

al

t

0

0

a3 N

w 0

rd k

[I!

3 c c 0

377

Page 375: Florey Vol 1

K. FLOREY

TABLE I1

High Resolut ion Mass Spectrum of Triamcinolonea

b Found Calcd. Mass Mass Unsat. O/EC C H 0 F

374.1747 374.1729 9.0 0 21 26 6 0 326.1528 326.1518 10.0 0 20 22 4 0 122.0741 122.0732 4.0 0 8 1 0 1 0 121.0659 121.0653 4.5 E 8 9 1 0

Only t h o s e peaks cons idered t o be s i g n i f i c a n t t o t h e d i scuss ion are l i s t e d . A complete element map can be obta ined from D r . A. I . Cohen, The Squibb 1 :ns t i tu te on r eques t .

a

b N u m b e r of double bonds and r i n g s . cO - odd e l e c t r o n ion; E - even e l e c t r o n ion .

2.6 - M e l t inq Range Like many s t e r o i d s , t r iamcinolone does no t

m e l t s h a r p l y . wide and depends on t h e ra te of h e a t i n g and prob- a b l y a l s o t h e polymorphic form.

(OC) have been r e p o r t e d without s p e c i f y i n g t h e polymorphic form:

The mel t ing temperature range is

The r e s u l t i n g mel t ing p o i n t tempera tures

260-262. 54y 269-2 714 262-2643 2 48-2 50 264.2-267.9 (USP Method)

378

Page 376: Florey Vol 1

TR I AMCl NOLONE

2 . 7 D i f f e r e n t i a l Thermal Analysis Triamcinolone polymorphs "A" and "B" (see

a l s o 2 . 1 ; 2 .9 and 2.10) gave d i f f e r e n t DTA pa t - t e r n s when hea ted a t a r a t e of 15'/min. ( I n s t r u - ment: DUPOnt 900) .

a. Polymorph A , r e c r y s t a l l i z e d from 60% aqueous isopropanol (Sample #4789-35-1; D r . G . Michel) .

1. Small endotherm a t 262O 2 . Small exotherm a t 266O 3. Endotherm a t 286' 4 . Exotherm a t 297O

10

Programming t h e sample t o 270' wi th subsequent coo l ing and r ehea t ing gave endotherms wi th double peaks a t 277O and 281° and an exotherm a t 290°. The p a t t e r n appears t o be s h i f t i n g t o t h e B t y p e conf igu ra t ion (see below). This i n d i c a t e s t h a t t h e "B" polymorph is t h e s l i g h t l y favored form''.

b. Polymorph B, r e c r y s t a l l i z e d from d i - methylacetamide-water ( D r . Michel, Sample #4789- 33-1) :

1. Very s m a l l exotherm a t 237O 2 . Endotherm ( r e l a t i v e l y broad a t 2 7 8 O 3. Exotherm a t 287O

Programming t h i s sample t o 250° wi th subsequent cool ing and r ehea t ing gave an endotherm at' 273O and an exotherm a t 2 8 2 O - i . e . very s i m i l a r t o i n i t i a l run.

2 .8 Thermoqravimetric Analysis When Squibb House Standard #30194-503 w a s

hea ted a t a ra te of 15'/min. under n i t rogen sweep no weight loss was observed t o 250°. ( Instrument: DuPont 9001 10,

2 .9 S o l u b i l i t The f o l l o l i n g s o l u b i l i t y da ta9 (w/v) w e r e

ob ta ined a t room temperature:

379

Page 377: Florey Vol 1

K. FLOREY

>lo% i n dimethylformamide 71% i n methanol

0 . 7 i n e thano l 2 . 4 i n t e t r ahydro fu ran 0.5% i n dioxane 0.3% i n acetone 0.09% i n e t h y l acetate 0.05% i n chloroform 0.03% i n methyl-isopropyl ke tone

I n water a t 25O t h e s o l u b i l i t is 0.008% f o r bo th types o f polymorphs (A and B) K i .

2 . locrys ta l p r o p e r t i e s Triamcinolone may e x i s t i n two polymorphs,

as i n f r a r e d d a t a (see s e c t i o n 2 . 1 ) show. The in - f r a r e d d a t a a r e supported by powder x-ray d i f - f r a c t i o n d a t a which show 2 d i s t i n c t p a t t e r n s (see Tables 1 I : I and I V ) which correspond t o t h e A and B i n f r a r e d s p e c t r a .

mines which polymorph i s formed. Polymorph A ( I ) is obta ined from pyr id ine , aqueous py r id ine3 , 60% aqueous j.sopropano1 and potassium t e t r a b o r a t e - water12, <polymorph B (11) from methanol, aqueous

The s o l v e n t used f o r c r y s t a l l i n e d e t e r -

methanol'' and dimethylacetamide-water 1 2 . The o p t i c a l c r y s t a l l o g r a p h i c p r o p e r t i e s of

t r iamcinolone have been repor ted13 as fol lows without s t a t i n g which polymorph was used:

System: Orthorhombic; C r y s t a l H a b i t : Columnar Op t i ca l s i g n +: Axial angle: 52 ' ; Optic o r i e n t a t i o n (ass igned acc. t o c r y s t a l h a b i t ) . XXlla; wllc; Z Z l l b Dispers ion: None observed; R e f r a c t i v e Indexes: a ( w ) = 1.561; @ ( E) = 1.582; y = 1.680: Densi ty = 1.426; Refrac t ion Experimental = 95.50; Ca lcu la t ed = 95.50.

380

Page 378: Florey Vol 1

TRIAMCINOLONE

TABLE I11 Powder x-ray diffraction pattern of triamcinolone po lymorph

d (Ao) * 1 2 . 5

7 . 8 6 . 3 5 .92 5 .69 5 .37 5 .05 4 .78 4 .69 4 . 1 9 4 .10 3 .90 3 . 8 1 3.72 3 .63 3.37 3 .27 3.22 3.06 2.94 2 .75 2 .44 2 . 36 2 .30 2 . 2 2 2 . 1 2

a . 37

"A" sample #4789/35-1 (Dr. Michel) re- crystallized from 60% IPA

Relative Intensity** 0 . 0 9 0 .12 0 .20 0 . 1 8 0 . 3 4 0 . 5 7 1 . 0 0 0 .52 0 . 2 5 0.60 0 .24 0 . 5 1 0 . 2 8 0 .22 0 .32 0 . 2 1 0 . 2 7 0 .30 0 . 2 9 0 . 2 1 0 . 2 9 0 . 2 3 0 . 0 6 0 .10 0 .05 0 . 0 9 0 . 0 3

n?- * d = (interplanar distance) 2 sin 8 & = 1 . 5 3 9 Ao

Radiation: Kal and Ka2 Copper **Based on highest intensity of 1.00

38 1

Page 379: Florey Vol 1

K. FLOREY

TABLE I V

Powder x-ray d i f f r a c t i o n p a t t e r n of t r iamcinolone polymorph "B" sample #4789/33-1 D r . Michel r e c r y s t a l l i z e d from DMA, H 2 0

d (Ao) * R e l a t i v e I n t e n s i t y * *

1 1 . 7 10 .5

8 . 4 6 .57 5 . 913 5 . 6 5 5 .45 5.22 4 .87 4.67 4 .43 4 .26 4 .17 3 . 78 3.67 3 .48 3.37 3 .26 3 .09 2 .97 2 . 8 5 2 . 76 2 . 72 2 . 5 8 2 . 4 4 2 . 3 6 2 . 3 3 2 . 3 0 2 .20 2 . 1 3 2 . 1 0 2 .06 2 .00

n h * d = ( i n t e r p l a n a r d i s t a n c e ) sin

%= 1.539A0

Radiat ion: K a l and K a 2 Copper

** Based on h i g h e s t i n t e n s i t y of 1 . 0 0

0 . 1 8 0 . 3 4 0 . 2 2 0 .24 1 . 0 0 0 . 8 7 0 . 3 0 0 . 5 2 0 .39 0 . 5 3 0 . 3 0 0 . 32 0 . 5 3 0 . 3 7 0 . 4 8 0 . 2 9 0 . 3 0 0 . 2 0 0 . 2 9 0 . 3 9 0 . 2 1 0 . 2 3 0 . 1 8 0 . 2 5 0 . 1 8 0 . 0 9 0 . 0 5 0 .07 0 . 0 9 0 .14 0 . 0 7 0 .05 0.04

382

Page 380: Florey Vol 1

TRIAMCINOLONE

3. Synthesis , Purification Triamcinolone (I, Figure 6) is most commonly

synthesized by microbiological dehydrogenation at C-l,2 of 16a-hydroxy-9a-fluorohydrocortisone (11) directly5 or with intermediate formation of the 16,17-borate ester14, l5 or 16, 21-diacetate4y (V). A variety of microbiological organisms, capable of 1-dehydrogenation have been reported16 or pat- entedl7.

Dehydrogenation with isolated bacterial cell powders have also been reportedl9t 20, 21. cinolone has a l s o been obtained from 9a-fluoro- prednisolone (VII) l8 by 16-hydroxylation and from triamcinolone acetonide (VI) by hydrolysis with organic acids22, 23. Methods of purification have been patented24.

Triam-

4. Stability, Isomerization, Deqradation Triamcinolone is very stable as a solid. In

aqueous and alcoholic solutions the a-ketol side chain, as in all such corticosteroids, is prone to oxidative rearrangement and degradation at alkaline pH's.

It has been reported25 that hydrocortisone and prednisolone, when exposed to ultraviolet light or ordinary fluorescent laboratory light- ing in alcoholic solution, undergo photolytic degradation of the A-ring. Since triamcinolone has the same A-ring as prednisolone it probably also is labile under these conditions. In solu- tion triamcinolone readily isomerizes to a D- homo-analog22 9a-f luoro-llf3,16a, 17aa-trihydroxy- 17a~-hydroxymethyl-ly2-~-homo-androstadiene-3~l7- dione (VIII, Figure 6) under a variety of condi- tions, particularly in the presence of traces of metal cations26. When triamcinolone is fermented

383

Page 381: Florey Vol 1

K. FLOREY

a n a e r o b i c a l l y w i t h a number of microorganisms which normally dehydrogenate a t C1-2 under aero- bic cond i t ions , t h e 20-ketone is reduced t o t h e 20B-alcohol ( I V , F igure 6 ) and/or t h e 1,2-double bond is hydrogenated ( I I I )27 . Both of t h e s e r e a c t i o n s a re i n d i v i d u a l l y r eve r s ib l e2* .

5 . Drug Metabolic Products When t r i t i u m - l a b e l e d t r iamcinolone w a s i n j e c t -

ed in t r avenous ly i n t o beagles 20% of t h e dose w a s recovered from t h e u r i n e as unchanged t r iamcino- lone , 25% as 6f3-hydroxy-triamcinolone ( I X , Fig- u r e 6) and 5% as a t h i r d u n i d e n t i f i e d component which probably i s no t a glucuronide o r s u l f a t e conjugate . Examination of human u r i n e a f t e r o r a l admin i s t r a t ion of non-rad ioac t ive t r iamcinolone gave s imi la r r e s u l t s 2 9 .

When t h e plasma p r o t e i n b inding p r o p e r t i e s o f t r iamcinolone w e r e s t u d i e d it w a s found t h a t t r i - t ium-labeled t r iamcinolone w a s p r e s e n t i n t h e un- bound s t a t e t o a much g r e a t e r ex ten t t h a n hydro- c o r t i s o n e . 30

6 . Methods o f Analysis

6 . 1 E lemen ta l Analysis E 1 ement % Theory R e o r t e d

9

C 63.94 64.19 63.68 H 6.90 7.17 6 .89 F 4. a2 4.90 4.76

R e f . 2;97 Ref.

mile i n t h e s e l a b o r a t o r i e s t h e oxygen f l a s k combustion method has been used wi thout any d i f f i c u l t y f o r t h e de te rmina t ion of f l u o r i n e i n t r iamcinolone and o t h e r f l u o r i n a t e d s t e r o i d s 3 1 use of t h e Pregl-Roth d i s t i l l a t i o n method has a l s o been r e c ~ m e n d e d ~ ~ .

384

Page 382: Florey Vol 1

385

Page 383: Florey Vol 1

K. FLOREY

6.2 Direct Spectrophotometric Analysis The ultraviolet absorption band at 239 mw

of triamcinolone (see 2.3) is due to the diene-3-keto system of the A-ring (see also Sec- tion 4).

The absorbance is useful as a measure of purity from extraneous materials and can serve as a formulation batching assay. It can be used for chromatographic detection and q~antitation~~.

6.3 Colorimetric Analysis A variety of colorimetric methods have

been used to detect and determine triamcinolone.

6.31 Tetrazolium Blue, in modifications of the original method for steroids with an a- ketol side chain34 is perhaps the most widely used39 35. Reaction of triamcinolone with tetra- zolium blue in alkaline medium measures the re- ducing power of the a-ketol side chain by produc- ing a blue color (520 mp) which can be quantita- ted. Color production can be stabilized by addi- tion of chl~roform~~. The response is about 70% greater than that for non-16a-hydroxylated ana- logs3. The method is useful for general formula- tion assays. in paper and 6.5). It is ing power of ferricyanide ted steroids

6.32

It also is used as a spray reagent thin layer chromatograms (Section noteworthy that an increased reduc- triamcinolone towards alkaline as compared with non-16a-hydroxyla- has also been observed37.

Reaction of 1,4-diene-3-ketosteroids with isonicotinic acid hydrazide (isoniazid) pro- duces a yellow hydrazone with an ahorption maxi- mum of 404 my3*. This reaction can be adapted to triamcinolone for formulation assays. It also has been used as a spray reagent and for quanti- tation in paper and thin layer chromatography

386

Page 384: Florey Vol 1

T R I AMCl NOLONE

(Sec t ion 6 . 5 ) . I t should be noted t h a t 1,4- diene-3-ketosteroids react much less r e a d i l y wi th i s o n i c o t i n i c a c i d hydrazides than do 4-ene-3-keto s t e r o i d s 38.

6 .33 For i d e n t i f i c a t i o n and d i f f e r e n t i a - t i o n from o t h e r s t e r o i d s i n formulat ions t r i a m - c ino lone can be reacted wi th phenol and hydro- quinone i n a phosphor ic -su l fur ic acid mixture producing a pink c o l o r 56 .

6.34 The absorp t ion s p e c t r a of t r iamcino- lone i n concent ra ted s u l f u r i c a c i d wi th maxima a t 260, 310 and 390 mp (15 min . reac t ion t i m e ) have been repor ted 3, 40

6.35 Since t r iamcinolone does not produce chromogens when reacted wi th a s u l f u r i c ac id , f ruc tose , c y s t e i n e mixture t h i s method can be used t o determine s m a l l amounts of non-16a-hydrox- y l a t e d s t e r o i d s such as 9a- f luoro-hydrocort isone i n t h e presence of t r i a m c i n ~ l o n e ~ ~ .

6.36 Lzact ing t r iamcinolone and o t h e r 16a, 17a, 21-trihydroxy-20 ketones wi th phenylhydra- z i n e i n t h e presence of s u l f u r i c a c i d (Por t e r - S i l b e r t es t ) g ives a response of less t h a n 10% o f t h e chromo en formation of non-16a-hydroxylated analogs 3 9 and t h e r e f o r e renders u s e l e s s t h i s assay s o popular f o r t h e de te rmina t ion of 17a- c o r t i c o s t e r o i d s i n b i o l o g i c a l systems.

6 .4 Polaroqraphic A n a l y s i s The h a l f wave p o t e n t i a l (E1/2 versus sat-

u ra t ed calomel e l e c t r o d e ) w a s determined as -0.98 t o -1.03 v o l t s i n tetra-n-butylammonium hydroxide- phosphate-methanol b u f f e r pH z ? ~ . hydrotriamcinolone e x h i b i t s a h a l f wave p o t e n t i a l of ca -1.20 v o l t s , t h i s d i f f e r e n c e can be used t o

S ince 1 , 2 - D i -

387

Page 385: Florey Vol 1

K. FLOREY

determine t h e percentages o f each i n mixtures o f t h e two s t e r o i d s 3 .

6 .5 Chromatographic A n a l y s i s Q u a l i t a t i v e chromatographic methods can be

used f o r i d e n t i f i c a t i o n ; q u a n t i t a t i v e methods f o r assessment of p u r i t y and s t a b i l i t y of t r iamcino- lone ace tonide .

6 .51 Paper Chromatographic Analysis Paper chromatographic Rf va lues of

t r iamcinolone and r e l a t e d s t e r o i d s are r e p o r t e d i n Table V .

A method has been developed33 t o use formation o f 16a, 17a-ke ta l s and acetals i n s i t u . on papergrams f o r t h e e a r l y r ecogn i t ion of t h e 16a , l7a-d io l f e a t u r e of t r iamcinolone and r e l a t e d 16a-hydroxylated s t e r o i d s .

Applying a gene ra l method44 t h e pu r i - t y of t r iamcinolone can be q ~ a n t i t a t e d ~ ~ i n t h e presence of 1,2-dihydrotriamcinolone, t r iamcino- lone isomer, 9a- f luorohydrocort i sone and 9a- f luo- roprednisolone. Whatman #1 f i l t e r paper w a s i m - pregnated wi th e thy lene g l y c o l as t h e s t a t i o n a r y phase. Triamcinolone w a s s p o t t e d a t t h e 100 m i - crogram l e v e l and t h e chromatogram was developed wi th chloroform-ethyl a c e t a t e (3:2) f o r 20 hours . The f r o n t end of t h e chromatogram w a s allowed t o run o f f t h e paper . The t r iamcinolone zones w e r e l oca t ed by t h e i r absorbance i n t h e u l t r a v i o l e t , c u t ou t , e l u t e d wi th an a c i d i f i e d methanolic so- l u t i o n of i s o n i c o t i n i c acid hydrazide and read a g a i n s t a s t anda rd a t 415 mi l l imicrons .

i ng s o l v e n t system A (Table V) has' a l s o been re- ported33.

The q u a n t i t a t i o n of t r iamcinolone us-

6.52 Thin Layer Chromatographic Analysis Experience w i t h t h i n l a y e r chromato-

388

Page 386: Florey Vol 1

TABLE V

Paper Chromatoqraphic Rf Values

Solvent System* Compounds :

Tr iamc in0 lone Triamcinolone acetonide Triamcinolone 16a, 2 1-

Triamcinolone isomer** 1,2-Dihydrotriamcinolone 1,2-Dihydrotriamcinolone

9a-Fluoroprednisolone 9a-Fluorohydrocortisone

diacetate

isomer

A(1) 33

0.18 - -

0.10 0.24 0.12

0.37 0.45

B(II) 33 c (111) 33

0.42 0.14 - - - -

0.22 0.08 0.52 0.22 0.30 0.13

0.67 0.37 0.80 0.47

0.13 0.22 0.93 0.88 - - 0.89 - - -I

9 D

0.06

* The roman numerals refer to the solvent system numbers of ref.33 **9a-Fluoro-11~,16a,17aa-trihydroxy-l7a~-hydro~-methyl 1,4-D-homoandro- ~tadiene-3,17-dione~~.

Page 387: Florey Vol 1

The solvent systems used in Table V are the following:

Developing Time

A (I) 33 4 hrs. B (11) 3 3 benzene/acetone/water 2 : 1: 2 4 hrs. C(III)33 benzene/dioxane/water/acetic acid 4 : 1 : 2 : 1 5 hrs. D (IV) 33 benzene/ethanol/water 2 : 1: 2 5 hrs.

F4

benzene/ethanol/water 2 : 1 : 1

E42 chloroform/methanol/water 2:1:2 - Methyl ethyl ketone - 0.1N NH40H 4 hrs. (180 sec?

*When run by centrifugal chromatography.

The following detection systems were used:

W v3 0

1. The modified Haines, Drake ultraviolet scanner33 2 . Isonicotinic acid hydra~ide~~, 38 3 . Alkaline tetrazolium blue spray339 4 2 9 43

F n r 0 9 rn <

Page 388: Florey Vol 1

TABLE VI Rf or "Running distance" values (for explanation of individual values see below) Sys tem : 1 2 3 4 5 6 7 8 Triamcinolone 0.63 0.59 0.08 0.14 0.28 0.04 0.01 0.03 Triamcinolone isomer 0.44 - Triamcinolone acetonide - 1.39 0.59 0.73 0.74 2.6 0.50 - 1,2-Dihydrotriamcinolone 0.72 - 0.14 0.18 0.31 0.19 - - 9a-Fluoroprednisolone - - - - - - - - 9a-Fluorohydrocortisone - - 0.24 0.33 0.63 0 . 7 0 - - System 146:

- - - - - -

Heat activated Brinkmann 200 micron silica gel plastic plate ether/N,N-dimethylformamide/acetone/methanol/water (81:12:3:3:1) 2 hours

iD w development at 5OC. Detection by U.V.light. Values given are Rf values. +

System 247: Kieselguhr G plate: methylene chloride/dioxane; water 2:l:l Spray reagent: Alkaline 2,4-diphenyl-3(4-styrylphenyl)tetrazoliu salt "Running distance" values related to cortisone = 1.00.

Systems 3-648:Kieselguhr GF 254 plates: Spray reagent: Tetrazolium blue Solvent systems : 3 - 1,2-Dichloroethane/methanol/water 95: 5: 0.2 4 - 1, & dichloroethane/2-methoxyethyl acetate/water 80:20:1 5 - Cyclohexane/ ethyl acetate/water 25:75:1 6 - Stationary phase: 20% v/v formamide in acetone. Mobile phase: Chloroform/ether/water 80:20:0.5

Stationary phase: 10% Formamide in acetone. Mobile phase: 7 - methy- lene chloride/toluene (60:40). 8 - Chloroform. Values given are Rf values.

Systems 7,849: Kieselguhr G Plates Spray reagent: Tetrazolium blue

Page 389: Florey Vol 1

K. FLOREY

graphy of t r i a m c i n o l i n e and r e l a t e d s t e r o i d s is

s e v e r a l rnethods5O, 5 1 9 5 2 9 53 have been r e p o r t e d t o i d e n t i f y t r iamcinolone i n mixtures of o t h e r cor- t i c o s t e r o i d s , among them a method f o r t h e detec- t i o n i n ho r se u r i n e .

summarized i n Table V I 4 6 9 4 7 , 4 8 , 4 9 . I n a d d i t i o n

54

6 . 5 3 Column Chromatoqraphic Analys is A column p a r t i t i o n chromatographic

procedure f o r t r i amc ino lone and r e l a t e d s t e r o i d s

on diatomaceous e a r t h ( C e l i t e ) us ing dioxane/cy- clohexane/water mixtures i n t h e r a t io s 5:2:1, 5: 3: 1 o r 5: 4: 1. The e l u a t e is monitored by ul- t r a v i o l e t abso rp t ion . The o r d e r of e l u t i o n is 9a-fluorohydrocortisone, 9a-f luoroprednisolone, 1,2-dihydrotriamcinolone, 1,2-dihydrotriamcino- lone isomer, t r iamcinolone , t r iamcinolone isomer, 20~-hydroxytriamcinolone. For q u a n t i t a t i o n of i n d i v i d u a l f r a c t i o n s r e a c t i o n w i t h i s o n i c o t i n i c a c i d hydraz ide (see S e c t i o n 6 . 3 2 ) has been used55. A s l i t t l e as 0.05% of a comparison s t e r o i d can be d e t e c t e d .

has been r e p o r t e d 33 . The sample i s f r a c t i o n a t e d

7 . Determinat ion i n Body F lu ids and T i s sues

of t r i amc ino lone and o t h e r c o r t i c o s t e r o i d s i n ho r se u r i n e has been des ~ r i b e d ~ ~ .

A method f o r t h e d e t e c t i o n and i d e n t i f i c a t i o n

REF ERENC ES

1. B. Keeler, Squibb I n s t i t u t e , pe r sona l

2 . R . J . Mesley, Spectrochemica A c t a 2 2 , 889,

3. L . L . Smith and M . Halwer, J. Am. Pharm.

communication.

(1966) .

ASSOC., S c i . E d . 48, 348 (1959) .

393,

Page 390: Florey Vol 1

TRIAMCINOLONE

References Cont' d. (4) S . B e r n s t e i n , R . H. Lenhard, W. S . A l l e n , M.

H e l l e r , R. L i t t e l l , S . M . S t o l a r , L . I . Feldman, R . H. Blank, J. Am. Chem. SOC, 78, 5693 (1956) .

Grabowich, J. Am, Chem. SOC. 79, 4818 (1957) .

munication.

H e l l e r , R , L i t t e l l , S . M . S t o l a r , L . I . Feldman aiid R . H. Blank, J. Am. Chem. Soc.81, 1689 (1959) .

munication.

c a t i o n .

munication.

munication.

cat ion .

( 5 ) R . W . Thoma, J . F r i e d , S . Bonanno, P .

( 6 ) A . I . Cohen, Squibb I n s t i t u t e , pe r sona l com-

( 7 ) S. Berns te in , R . H. Lenhard, W . S. A l l e n , M .

(8) J. Dunham, Squibb I n s t i t u t e , pe r sona l com-

(9) H. Cords, Squibb I n s t i t u t e , pe r sona l communi-

(10 H. Jacobson, Squibb I n s t i t u t e , personal com-

(11 H. Jacobson, Squibb I n s t i t u t e , pe r sona l com-

( 1 2 ) G . Michel, Squibb I n s t i t u t e , pe r sona l communi-

( 1 3 ) J . A. B i l e s , J. Pharm. S c i . - 50, 464 (1961) . (14)R. W. Thoma and J . W. Ross, U.S.Patent

3,119,749 (1964) ; C . A. 60,987211 (1964) . (15) E . Ivashkiv, U. S . P a t e n t 3,316,282 (1967) ;

C . A . 67, 1 1 7 1 1 m (1967) . (16)R. W. Thoma, A. I . Laskin, W. H. T re jo , H.

K r o l l , G . E . Pe te rson and G. P. S t i c k l e , Sc. Rept. I n s t . Super S a n i t a 1, 326 (1961); C . A . 56, 15960h (1962) .

( 1 7 ) c I. Feldman, A. J. Shay and N . E . R ig l e r , U . S . P a t e n t 3,037,913 (1962); C . A. -9 57 7746h (1963) .

(18)J. Martinkova and J. D y r , C o l l . Czech. C h e m . Commun. 30, 2994 (1965) .

( 1 9 ) J . W. Ross, U . S . P a t e n t 3,022,226 (1962) ; C . A . - 57, 1388a (1963) .

393

Page 391: Florey Vol 1

K. FLOREY

References Cont' d'. ( 2 0 ) C . H. S ih , J. Pharm. S c i . 50, 712 (1961) . ( 2 1 ) R . C.Erickson, W . E . Brown, and R. W. Thoma,

U. S. Pa ten t 3,360,439 (1967) ; C . A. f57, 1 1 7 1 1 m (1967) .

F o e l l , V . E . Origoni and J. J. Goodman, J . A m . Chem. SOC. 82, 4616 (1960) .

( 2 3 ) J . Fr ied , U. S . P a t e n t 3,177,231 (1965); C . A . 62, 19342a (1965) .

( 2 4 ) c J. Leeson, S . A. Muller and G . M . S i ege r , U. S . Pa t en t 3,005,839 (1961); C . A . -9 56 7396a (1962) .

(25)W. E. H a m l i n , T. Chulski , R . H. Johnson and J. G . Wagner, J. Am. Pharm. ASSOC., S c i . Ed. - 49, 253 (1963) and D. R . Barton and W. C . Taylor , J. Am. C h e m . SOC. 80, 244 (1958); J. Chem. SOC. 1958, 2500.

b i o l . 8, 363 (1960) .

( 2 2 ) L . L . Smith, M. Marx, J. J. Garba r in i , T .

( 2 6 ) J . J. Goodman and L. L . Smith, Appl. Micro-

( 2 7 ) L . L . Smith, J. J . Garba r in i , J. J. Goodman, M . Marx and H . Mendelsohn, J. Am. Chem. SOC. - 8 2 , 1437 (1960) and J. Schmidt-Thome, G . Nesemann, H. J. Huebner and I . A l e s t e r , Biochem. Z . - 336, 322 (1962) . J . J. Goodman, M. May and L . L . Smith, J. Bio l . Chem. 235, 965 (1960) . J . R . F l o r i n i , L. L . Smith and D . A . Buyske, J. Bio l . Chem. - 236, 1038 (1961) . J. R . F l o r i n i and D . A. Buyske, J. B io l . Chem. 236, 247 (1961) .

(31) J. Al ic ino , Squibb I n s t i t u t e , pe r sona l com- munication.

(32)P . Joos and R. Ruyssen, J. Pharm. Belg. 19, 525 (1964) ; C . A. 62, 15995c (1965) .

(33)L. L . Smith, T . Foe l l , R. deMaio and M . H a l w e r , J. Am. Pharm. Assoc. S c i . Ed. 48, 528 (1959) and L . L . Smith and T . F o e l l , J. Chromatog. 2, 381 (1960) .

3 94

Page 392: Florey Vol 1

TR I AMCl NOLONE

References Cont ' d . (34 W. J. Mader and R. R. Buck, Anal . Chem. 24,

(35 See a l so USP and N F . (36)P. Ascione and C . Fogel in , J . Pharm. S c i . 52,

(37)N. R . Stephenson, Can. J. Biochem. and

(38)L. L. Smith and T . F o e l l , Anal. Chem. 3l, 102

(39)C. J. S ih , S . C . Pan and R. E . Benne t t , Anal.

(40)L. L. Smith and W. H . Muller, J. Org. Chem.

( 4 1 ) K Walser and H. P. Schlunke, Exper ien t ia l5,

( 4 2 ) s . C . Pan, J . Chromatog. 9, 81 (1962) . ( 4 3 ) J . A . Lowery and J. E. Cassidy, J. Chromatog.

( 4 4 ) r R. Roberts and K. Florey, J. Pharm. S c i .

( 4 5 ) K R. Roberts, Squibb I n s t i t u t e , personal

(46)A. Vahidi and H. R. Roberts, Squibb I n s t i t u t e ,

(47)A. H a l l , J. Pharm. Pharmacol. l6, Suppl. 9T

(48)C. J. C l i f f o r d , J. V. Wilkinson and J. S.

666 (1952) .

709 (1963) .

Physiol . 37, 391 (1959) .

(1959) .

Chem. 32, 669 (1960) .

23, 960 (1958) .

71 (1959) .

13, 467 (1964) .

51, 794 (1962) .

communication.

personal communication.

(1964) .

Wragg, J. Pharm. Pharmacol. l6, Suppl. l l T (1964) .

Muhlemann, Pharm. A c t a . Helv. 40, 302 (1965) .

Commun. 28, 101 (1963) .

195 (1964) : C. A . 63, 7288d (1965) .

C . A . 63, 11250b (1965) .

(49)Di, Sonanini, R . H o f s t e t t e r , L . Auker and H.

(50)V. Schwarz and K. Sykora, C o l l . Czech. Chem.

(51)w.vlassak and G. W i l l e m s , J. Pharm. Belg. -, 19

(52 )R .S ta in i e r , J. Pharm. Belg. 20, 89 (1965) :

395

Page 393: Florey Vol 1

K. FLOREY

References Cont' d . (53)V.Rosse t t i , Biochim. A p p l . l.2, 113 (1965); C.

(54)M. S. Moss and H. J. Rylance, J. Pharm.

(55) R. Poet, Squibb I n s t i t u t e , personal communi-

(56)E. Ivashkiv, J. Pharm. Sci. 5 l , 698 (1962). (57)M. H e l l e r and S . Berns te in , J. Org. Chem. 32,

A. 64, 11504g, (1966).

Pharmacol. 18, 13 (1966).

c a t i o n .

1264 (1967).

396

Page 394: Florey Vol 1

TRIAMCINOLONE ACETONIDE

K. Florey

Reviewed by N. E. Rigler

397

Page 395: Florey Vol 1

K. FLOREY

CONTENTS

1. Descr ip t ion 1.1 Name, Formula, Molecular Weight 1 . 2 Appearance, Color, Odor

2 . 1 I n f r a r e d Spec t r a 2 . 2 Nuclear Magnetic Resonance Spec t r a 2 .3 U l t r a v i o l e t Spec t r a 2 .4 Mass Spec t r a 2 . 5 Op t i ca l Rota t ion 2 . 6 Melting Range 2 . 7 D i f f e r e n t i a l Thermal Analysis 2 . 8 Thermogravimetric Analysis 2 . 9 S o l u b i l i t y 2 .10Crys ta l P r o p e r t i e s

2 . Phys i ca l P r o p e r t i e s

3. Synthes is 4. S t a b i l i t y - Degradation 5. Drug Metabolic Products 6 . Methods of Analysis

6 . 1 Elemental Analysis 6 .2 Direct Spectrophotometr ic Analysis 6 . 3 Co lo r ime t r i c A n a l y s i s 6 . 4 Polarographic Analysis 6 . 5 Chromatographic Analys is

6 .51 Paper 6.52 Thin Layer 6 .53 column

7 . Determination i n Body Flu ids and Tissues 8. References

398

Page 396: Florey Vol 1

TRl AMCl NOLONE ACETONI DE

1. Description

1.1 Name, Formula, Molecular Weight Triamcinolone Acetonide is 9a-fluoro-llf3,

16a,l7,21-tetrahydroxypregna-1,4-diene-3,20- dione cyclic 16,17-acetal with acetone. It is also known as 9a- f luoro- 16a-hydroxyprednisolone acetonide; triamcinolone 16,17-acetonide; 9a- fluoro-ll~,21-dihydroxy-l6a,l7a-isopropylidene- dioxy-1,4-pregnadiene-3,2O-dione; 9a-fluoro-l6a, 17a-isopropylidenedioxyprednisolone.

2 lCH2 OH

20c=o I

Mol. Wt.: 434.49 24H3 lF06

1.2 Appearance, Color, Odor White to off-white, odorless crystalline

powder.

2. Phys ical Properties

2.1 Infrared Spectrum The infrared spectrum of triamcinolone

acetonide (Squibb House Standard #45885-008; IR spectrum #24226)l is presented in Fig. 1. The

399

Page 397: Florey Vol 1

FREQUENCY (CM I

i - . Q o

WAVELENGTH (MICRONS)

Fig.1 Triamcinolone ace ton ide - House Standard Batch #45885-008 - K B r pe l - l e t from MeOH s o l u t i o n - I. R. spectrum #24226 - Instrument: Perkin-Elmer 621

Page 398: Florey Vol 1

TR I AMCl NOLONE ACETON I DE

spectrum w a s taken i n a K B r p e l l e t from methanol s o l u t i o n . A spectrum of t h e same s t a n d a r d taken i n a Nujol Mull is e s s e n t i a l l y i d e n t i c a l t o t h e one presented .

R . J. Mesley2 i n a d i scuss ion of "The i n f r a r e d s p e c t r a of s t e r o i d s i n h e s o l i d s t a t e " ass igns t h e fol lowing bands (cm ) t o t r iamcino- lone acetonide: a . c h a r a c t e r i s t i c f o r llf3-hydroxy groups : 1035 b. c h a r a c t e r i s t i c f o r 21-hydroxy groups: 1100,

1057 c . c h a r a c t e r i s t i c f o r 1,4-diene-3-ones: 1408,

1300, 1247, 948, 940, 928, 892, 857, 031, 700. These assignments a s w e l l as t h o s e made by F r i ed3 and Bernstein4 e s s e n t i a l l y agree wi th peaks o r shoulders presented i n t h e spectrum Fig. 1.

-i

2 . 2 Nuclear Magnetic Resonance Spec t r a The NMR spectrum Fig . 2 w a s ob ta ined by

prepar ing a s a t u r a t e d s o l u t i o n of Squibb Stan- dard #45885-008 i n deuterochloroform con ta in ing t e t r a m e t h y l s i l a n e a s i n t e r n a l r e f e r e n c e . The spectrum is t h e r e s u l t of n ine teen i n d i v i d u a l s p e c t r a processed by a d a t a a c q u i s i t i o n - t i m e averaging program33. i n Table I agree wi th t h o s e of t h e p rev ious ly publ ished spectrumlo.

32

The assignments shown

NMR has a l s o been used t o q u a n t i t a t i v e l y analyze t r iamcinolone ace tonide i n dosage forms34.

2 .3 U l t r a v i o l e t Spec t r a Berns te in4 r epor t ed max. 238 - 239 mp

( € 14,600) i n e thanol .

Squibb House Standard #45885-008(0.001268% i n methanol) when scanned between 340 and 210 mw exh ib i t ed a s i n g l e band peaking a t 238 mb (Elcm 1% =

Page 399: Florey Vol 1

C H C 1 3

I

i I I

I / I

3w 1x3

il n

I 1 1

I ' 1 I I "

l i /

I I '

I i '

Fig. 2 T i m e averaged NMR spectrum of t r iamcinolone ace tonide . Squibb House Standard #45885-008 i n deuterochloroform con ta in ing t e t r ame thy l - s i l a n e a s i n t e r n a l r e fe rence . Instrument: Varian A-60

Page 400: Florey Vol 1

TRIAMCINOLONE ACETONIDE

3.54 1,4-diene-3-one system.

1%; E 15,400) 3 2 . This band is due t o t h e

Protons a t

TABLE I

NMR S p e c t r a l Assignments of Triamcinolone Acetonide

c-1 c- 2

c-4 c-11 C-16 C - 1 8 c-19 c-2 1 c-2 1 B-Acetonide methyl a-Acetonide methyl

Chemica 1 S h i f t

7

2.83 3.68

3.88 5 .6 4.93 9 .11 8 . 4 6 5.82 ) 5.34 ) 8.86 8 .58

m m d ; J = 4 S

S

A%; J = 20.3

S

S

s = s i n g l e t ; d = doublet : m = m u l t i p l e t ; ABq = AB q u a r t e t ; J = coupl ing cons t an t i n Hz; q = q u a r t e t .

2 . 4 Mass Spec t r a The mass spectrum of t r iamcinolone ace to-

n i d e was obta ined from Squibb House Standard #45885-008 by d i rec t i n s e r t i o n of a sample i n t o an MS-9 double focusing m a s s s p e ~ t r o m e t e r ~ ~ . I n t e n s i t i e s w e r e measured from t h e l o w r e s o l u t i o n m a s s spectrum. Resul t s are summarized as a bar graph (F ig . 3 ) . The h igh r e s o l u t i o n mass spec-

403

Page 401: Florey Vol 1

K. FLOREY

t r u m (Table 11) w a s recorded on magnetic t a p e and an element map cons t ruc t ed with t h e a i d of an IBM 1800-360 computer32. A l l peaks between mass 69 and 440 w e r e eva lua ted . Ions o f i n t e r e s t are l i s t e d i n Table 11. The molecular i on (M+434) is q u i t e prominent. The only fragment con ta in ing a l l atoms o t h e r t han carbon and hydrogen is t h e ion a t m / e 419, corresponding t o t h e loss of one o f t h e a x i a l methyl groups.

There is a prominent odd-electron ion ( m / e 414) wi th formula corresponding t o t h e loss

o f hydrogen f l u o r i d e . The base peak ( i n t e n s i t y = 100) a t m / e 375 corresponds t o t h e loss of C2H302 . ( s ide cha in ) through c leavage between carbon atoms 1 7 and 20. This t r a n s i t i o n is supported by t h e presence of a metastable ion a t m / e 324, ob- s e rved i n t h e l o w r e s o l u t i o n spectrum. The base ion ( m / e 375) is f u r t h e r fragmented by loss of ace tone through c leavage of t h e k e t a l t o m / e 317. This i s supported by t h e presence of a metastable ion a t m / e 268. The remaining C-16 o r -17 oxygen i s e l imina ted from ion m / e 317 as water g i v i n g r i se t o peak m / e 299. Ion m / e 317 a l s o goes t o m / e 279 by dehydrat ion and dehydrof luor ina t ion aga in v i a metas tab le ion t r a n s i t i o n ( m / e 2 9 5 . 5 ) .

The l a s t i n a series of l o w i n t e n s i t y f rag- ments wi th two oxygens and one f l u o r i n e i s ion m / e 209 which probably r e p r e s e n t s t h e A- and B-ring and C-11 carbons wi th t h e f u l l number of pro tons p lus one re-arranged pro ton . The i n t e n s e peak a t m / e 121 r e p r e s e n t s t h e i n t a c t dienone A-ring wi th t h e C-6 methine and C-10 angular methyl group s t i l l a t t ached .

404

Page 402: Florey Vol 1

P

8

1oo-J

28 -

26 -

24 -

22 - 20 -

> -

m - z w 16- F - z

I4 -

12-

10-

8-

6-

4 -

2 -

0

-

-

-

-

k 18-

- -

-

-

-

-

20

6 I

I

60 80 100 I

I

135 159

263 237

140 160 180 200 220 240 260 280 300 320 340 360

MASS TO CHARGE RATIO

M + 434

, 1, 0 400 420440

Fig. 3 Low r e s o l u t i o n m a s s spectrum of t r iamcinolone ace tonide . Squibb House Standard #45885-008. Instrument: A E I M S 902

Page 403: Florey Vol 1

K. FLOREY

TABLE I1

High Resolu t ion M a s s Spectrum of Triamcinolone Acetonidea

Found Calcd. Mass Mass unsa t .b O/EC c H o F

434.2114 419.1884 414.2052 375.1970 317.1542 299.1416 279.1365 209.0950 121.0655

434.2094 9 . 0 0 24 31 6 1 419.1870 9 .5 E 23 2 8 6 1 414.2043 1 0 . 0 0 24 30 6 0 375.1972 8 . 5 E 2 2 2 8 4 1 317.1554 0 . 5 E 19 22 3 1 2 99.1448 9 . 5 E 19 20 2 1 279.1365 10 .5 E 19 19 2 0 209.0978 5 . 5 E 11 11 2 0 1 2 1.0654 4 . 5 E 8 9 1 0

Only t h o s e peaks cons idered t o be s i g n i f i c a n t t o t h e d i scuss ion are l i s t e d . A complete element map can be obta ined from D r . A . I . Cohen, The Squibb I n s t i t u t e , on r e q u e s t .

a

bNumber of double bonds and r i n g s .

cO - odd e l e c t r o n ion ; E - even e l e c t r o n i o n .

2 .5 O p t i c a l Rota t ion The fo l lowing r o t a t i o n s have been

r e p o r t e d :

3 [aID + 109O (chloroform)

[ a ] i5+ 1 1 2 O (c = 0.537 i n chloroform)

[a]25+ 124O ( c = 0 . 5 i n dimethylformamide)

4

5 D

406

Page 404: Florey Vol 1

TRIAMCINOLONE ACETONIDE

2.6 Mel t in s Range Like many s t e r o i d s , t r iamcinolone aceto-

n i d e does not exhibit a s h a r p mel t ing p o i n t . The mel t ing temperature range is wide and depends on t h e ra te o f hea t ing .

The fol lowing mel t ing po in t temperatures (OC) have been repor ted :

292 - 2943 274 - 2J84 277 - 2816 276 - 2 7 8 (USP method)

2 . 7 D i f f e r e n t i a l Thermal Analysis A d i f f e r e n t i a l thermal a n a l y s i s w a s per -

formed on t r iamcinolone ace tonide (Squibb House Standard #45885-008) 12.

A mel t ing endotherm, followed by a s m a l l exotherm w a s observed.

The tempera ture of t h e endotherm v a r i e d w i t h t h e h e a t i n g ra te . A t a h e a t i n g ra te of 15O/min. t h e endotherm peaked a t 300° and t h e exothc :m a t 305O. A t a r a t e of 3'/min. t h e endo- therm s h i f t e d t o 281' and t h e exotherm t o 284O.

2.8 Thermogravimetric Analysis A thermal g rav ime t r i c a n a l y s i s performed

on t r iamcinolone ace ton ide (Squibb House Stan- dard #45885-008) l2 showed a 1 .0% weight loss complete a t about 105O. The measurement w a s per- formed under n i t rogen sweep: t h e h e a t i n g ra te w a s 15O/min. a f t e r t h e sample had melted a t 300°.

Addi t iona l weight w a s r a p i d l y l o s t

2 .9 S o l u b i l i t The f o l l o i i n g s o l u b i l i t y da t a5 w e r e ob-

t a i n e d a t room temperature:

407

Page 405: Florey Vol 1

K. FLOREY

50 mg./ml. i n 95% e thano l 40 mg./ml. i n i sopropyl a l coho l 90 mg./ml. i n ace tone 25 mg./ml. i n chloroform 250 mg./ml. i n dimethylformamide

The s o l u b i l i t i e s i n w a t e r as w e l l as i so - t o n i c s a l i n e (pH 7 ) a t 23O and 37O w e r e determined a s 0.004 0.002% (40 p,g./ml.).

2.10 C r y s t a l P r o p e r t i e s a . The o p t i c a l c r y s t a l l o g r a p h i c p r o p e r t i e s

o f some g l u c o c o r t i c o i d s , among them t r iamcinolone ace tonide , w e r e determined by B i l e s 2 2 .

The d a t a r epor t ed f o r t r iamcinolone ace ton ide a r e as fol lows: System: Tr igonal ; C r y s t a l H a b i t : columnar; Op t i ca l Sign: -; Axial ang le Oo; Optic o r i e n t a -

w // d. E //* c ' t i o n (ass igned acc. t o c r y s t a l h a b i t ) :

Dispersion: none observed; Re f rac t ive Ind ices : a ( w ) = 1.595, B ( E ) = 1.546; Density: 1 .323; Molar Ref rac t ion : Experimental = 109.08, Calcu- l a t e d = 107.39.

b. The x-ray powder d i f f r a c t i o n p a t t e r n of t r iamcinolone ace ton ide (Squibb House Standard #45885-008) is p resen ted i n Table I11 . 23

c . Mesley2, who inspec ted t r iamcinolone ace ton ide by i n f r a r e d spectroscopy, d i d not d i s - cover polymorphism. (see a l s o Sec t ion 2 . 1 ) .

3 . Synthes is Triamcinolone ace ton ide i s prepared by t h e

r e a c t i o n of ace tone wi th t r iamcinolone i n t h e presence of ca t a l t i c amounts of mineral a c i d . Fr ied3 and H e l l e r ' used p e r c h l o r i c a c i d , Bernstein4 hydroch lo r i c a c i d . An a l t e r n a t i v e

408

Page 406: Florey Vol 1

TRIAMCINOLONE ACETONIDE

TABLE I11

*d (Ao)

8.72 ? 0.05 7.02 5.98 5.81 5.49 5.10 4.98 4.88 4.43 4.13 3.89 3.56 3. 30 3.26 3.07 2.91 2.83 2.75 2,62

* d = ( i n t e r p l a n a r I = 1.539 Ao Radiat ion: K a l &

Based on h ighes t **

Rela t ive I n t e n s i t y * *

0.80 0.15 1.00 0.30 0.20 0.15 0.45 0.15 0.15 0.05 0.10 0.35 0.05 0.10 0.05 0.15 0.05 0.05 0.05

d i s t a n c e ) n X sin

Ka2 Copper i n t e n s i t y of 1 .00

s y n t h e s i s i s t h e 1-dehydrogenation of t h e ace- t a t e of 1,2-dihydrotriamcinolone ace ton ide wi th 2,3-dibromo-5,6-dicyan~quinone~ (see Figure 4) and subsequent s a p o n i f i c a t i o n of t r iamcinolone ace tonide 2 1-ace ta te .

409

Page 407: Florey Vol 1

K. FLOREY

F i g . 4 Syn the t i c Pathways t o Triamcinolone Acetoinide.

410

Page 408: Florey Vol 1

TRIAMCINOLONE ACETONI DE

4. S t a b i l i t y - Deqradation Triamcinolone ace tonide is ve ry stable as a

s o l i d . I n aqueous and a l c o h o l i c s o l u t i o n s t h e a -ke to l - s ide chain, as i n a l l such c o r t i c o s t e - r o i d s , is prone t o o x i d a t i v e rearrangement and

oxid ized t r iamcinolone ace tonide t o t h e cor re- sponding e t i a n i c acid ace tonide w i t h sodium bis- muthate i n 50% aqueous a c e t i c acid. It has been repor ted8 t h a t hydrocor t i sone and prednisolone, when exposed t o u l t r a v i o l e t l i g h t o r o rd ina ry f luo rescen t l a b o r a t o r y l i g h t i n g i n a l c o h o l i c sol- u t ion , undergo p h o t o l y t i c degrada t ion of t h e A- r i n g . S ince t r iamcinolone ace ton ide has t h e same A-ring a s predniso lone it probably a l s o is l ab i l e under t h e s e cond i t ions .

degrada t ion a t a l k a l i n e p H 1 s . Smith, e t . a1 . 10

The c y c l i c k e t a l group of t r iamcinolone ace- t o n i d e can be cleaved by a v a r i e t y of organic acids''. For i n s t ance , s u b j e c t i n g t h e 21-ace- t a t e t o t h e a c t i o n of formic acid a t s l i g h t l y e l eva ted tempera tures , followed by sapon i f i ca - t i o n of t h e 16,21-diformate, y i e l d s t r iamcino- lone? While t r iamcinolone e a s i l y isomerizes t o a D-homo-analog'O under a v a r i e t y of cond i t ions , p a r t i c u l a r l y i n t h e presence of traces of m e t a l c a t i o n s , formation of a c y c l i c k e t a l s t a b i l i z e s t h e molecule and no s i m i l a r i somer iza t ion has been observed wi th t r iamcinolone ace tonide .

5 . Druq Metabolic Products While i n an experiment wi th t r i t i u m l abe led

t r iamcinolone i n t h e dog F l o r i n i , e t . a l . iden- t i f i e d 6B-hydroxytriamcinolone as t h e major m e t a - b o l i c product , no t r iamcinolone ace tonide m e t a - b o l i c products have been r epor t ed thus f a r .

41 1

Page 409: Florey Vol 1

K . FLOREY

6 . Methods of Analysis

6 . 1 - Elemental Analysis

E 1 ement % Theory Reported : 4 -- Ref. Ref. C 66.34 66.49 66.85 H 7.19 7 .31 7.23 F 4.37 - 4.71

--

6 .2 D i r e c t Spectrophotometr ic Analysis The u l t r a v i o l e t absorp t ion band a t 238 mw

of t r iamcinolone ace ton ide ( s e e 2 .3) i s due t o t h e A1Y4-diene-3-one system of t h e A-ring (see a l s o Sect.ion 4 ) -

The absorbance is u s e f u l a s a measure of p u r i t y from extraneous materials and can a l s o s e r v e as a formulat ion ba tch ing assay . I t can be used f o r chromatographic de t ec t ion13 and quan t i - t a t i on .

6 .3 g ) l o r i m e t r i c Analysis A v a r i e t y of c o l o r i m e t r i c methods can be

used t o a s say t r iamcinolone ace tonide .

6 . 3 1 Tetrazol ium Blue, i n modi f ica t ions o f t h e o r i g i n a l method f o r a -ke to l s t e r o i d s by Mader and Buck'-', is perhaps t h e most widely l 8 9

Reaction of t r iamcinolone ace ton ide wi th tetrazo1:Lum b l u e i n a l k a l i n e medium g ives a b l u e c o l o r (520 mk) which can be q u a n t i t a t e d . It measures t h e reducing power of t h e a-ketol-s i d e cha in and is u s e f u l f o r gene ra l formula t ion a s says . It a l s o is used as a sp ray r eagen t i n paper and t h i n l a y e r chromatograms (Sec t ion 6 .5 ) .

6.32 Reaction o f 1,4-diene-3-one s t e r o i d s wi th i s o n i c o t i n i c a c i d hydraz ide ( i s o n i a z i d ) pro-

412

Page 410: Florey Vol 1

TRIAMCINOLONE ACETONIDE

duces a yel low hydrazone wi th an absorp t ion maxi- mum a t 404 mp20. This r e a c t i o n can be adapted to tr iamcinolone ace ton ide f o r formulat ion a s says . It a l s o has been used as sp ray reagent and f o r q u a n t i t a t i o n i n paper and t h i n l a y e r chromato- graphic systems (Sec t ion 6 . 5 ) . I t should be noted t h a t 1,4-diene-3-one s t e r o i d s react much less r e a d i l y w i t h i s o n i c o t i n i c a c i d hydrazides t h a n do 4-ene-3-one s t e r o i d s . 20

6.33 For i d e n t i f i c a t i o n and d i f f e r e n t i a - t i o n from o t h e r s t e r o i d s i n formulat ions t r i a m - c inolone ace tonide can be r e a c t e d wi th phenol and hydroquinone i n a phosphoric s u l f u r i c acid mix- t u r e producing a pink color2’.

6 .4 Polarographic Analysis The h a l f wave p o t e n t i a l ( E l l 2 versus s t an -

dard calomel e l e c t r o d e ) w a s determined as -1.45 v o l t s i n l i t h i u m c h l o r i d e i n methanol14. The method w a s no t considered s u f f i c i e n t l y a c c u r a t e t o be used as a q u a n t i t a t i v e assay .

Cohen15 sub jec t ed t r iamcinolone ace tonide t o polarographic r educ t ion i n dimethylformamide and found two reducing waves:

Wave 1 Wave 2 El12 ( v o l t s vs mercury pool anode) -1.44 -2 .00 I d ( d i f f u s i o n c u r r e n t c o n s t a n t ) 1 . 3 5 . 6

0.40 n (Apparent number of e l e c t r o n s ) o . 92 t r a n s f e r r e d ) )

6 .5 Chromatoqraphic Analysis Q u a l i t a t i v e chromatographic methods can be

used f o r i d e n t i f i c a t i o n ; q u a n t i t a t i v e methods f o r ass essment of p u r i t y and s t ab i l i t y of t r i a m c ino- lone acetonj.de.

413

Page 411: Florey Vol 1

K. FLOREY

6 .51 Paper Chromatoqraphic Analysis Paper chromatographic Rf va lues of

t r iamcinolone ace ton ide and r e l a t e d s t e r o i d s i n a number of so lven t systems are r epor t ed i n Table I V .

13,24,25

The s o l v e n t systems used i n Table I V a r e t h e fol lowing:

Developing T i m e

5 h r s .

methanol/water 1 2 : 8: 3 : 7 2- 1 / 2 h r s .

methanol/water 5:5:7:3 3- 1 /2 h r s . w a t e r 5: 5: 7: 3 -

,propylene g l y c o l . S t a t i o n a r y phase: propylene g l y c o l 20 h r s .

F2 :mobile phase: metbyl i sobuty l ketone/fOrmami.de 20:l S t a t i o n - a r y phase: formamide 3 h r s .

A ( IV!i3: benzene/ethanol/water 2: 1: 2 B ( V )

C ( V I ) 13:benzene/pet. e t h e r ( b . p . 90-looo)/

D2 :n-hexane/toluene/methanol/

E 2 5 :mobile phase: t o l u e n e s a t . w i t h

: to luene /pe t . e t h e r (b. p. 30-60°) /

The fol lowing d e t e c t i o n systems w e r e used : 1. A modified Haines, Drake u l t r a v i o l e t scan-

2 . I s o n i c o t i n i c acid hydrazide13. 20 , 25 3 . A lka l ine t e t r a z o l i u m b l u e sprayl39 24

ner l3 ,25 ,26

Applying h i s g e n e r a l method27 H. R . Roberts has worked out q u a n t i t a t i v e determina- t i o n s us ing s o l v e n t systems E and F25 (see above) . Solvent system F w a s p a r t i c u l a r l y w e l l s u i t e d t o q u a n t i t a t e r e s i d u a l t r iamcinolone . Whatman #1 paper w a s impregnated wi th t h e s ta- t i o n a r y phase. Triamcinolone ace ton ide w a s s p o t

414

Page 412: Florey Vol 1

TABLE IV

Paper Chromatoqraphic Rf Values of Triamcinolone Acetonide

*13 D24 E25 25 Solvent system A ( IV) *13 B (v) *I3 c (VI)

Compounds :

Triamcinolone 0.13 Triamcinolone acetonide 0.88 Tziamcinolone isomer** 0.60 Triamcinolone isomer acetonide** 0.62

2 1,2-Dihydrotriamcinolone 0.19 1,2 - Dihydrot r iamc ino lone acetonide 0.92

1,2 -Dihydrot riamcino lone isomer 0.10

1,2 - Dihydrot r iamc ino 1 one isomer acetonide -

VI

- 0.36 -

0.10 -

0.46

0.16

- - - 0.31 0.13 0.21 0 . 0 7 0.81 - - - -

* The Roman numerals refer to the solvent system number of Smith13 **These compounds are 9 a - F l u o r o - 1 1 ~ , 1 6 a , l 7 a a - t r i h y d r o x y - 1 7 a g - h e t h y l

1,4-D-homoandrostadiene-3,17-dione and its cyclic 16aa,l7aa-ketal with acetone (ref. 10) .

Page 413: Florey Vol 1

K. FLOREY

t e d a t t h e 100 microgram l e v e l i n method E and a t t h e 500 microgram l e v e l f o r method F. A f t e r de- velopment, s p o t s w e r e c u t ou t , e l u t e d wi th 0.1% i s o n i c o t i n i c a c i d hydraz ide i n methanol, acidi- f i e d wi th 0.1% concen t r a t ed hydrochlor ic acid f o r one hour , and r ead a g a i n s t a s t anda rd a t 415 nlv.

6.52 Thin Layer Chromatoqraphic Analysis Experience wi th t h e t h i n l a y e r

chromatography o f t r iamcinolone ace ton ide is sum- marized i n Table V .

6 .53 Column Chromatoqraphic Analysis

procedure f o r t r iamcinolone ace ton ide and r e l a t e d s t e r o i d s has been worked ou t by Poet3’, fo l lowing e s s e n t i a l l y t h e procedure descr ibed by Smith e t . a 1 . I 3 . The sample (40 mg) is f r a c t i o n a t e d on C e l i t e ( 2 5 g ) u s ing a dioxane; cyclohexane:2- methoxyethanol: w a t e r 40: 80: 10: 8 s o l v e n t system, followed by a methanol s t r i p . The u l t r a v i o l e t absorp t ion of t h e e l u a t e i s monitored, and i n d i - v i d u a l f r a c t i o n s are q u a n t i t a t e d w i t h i s o n i - c o t i n i c a c i d hydraz ide . The o rde r o f e l u t i o n i s 1,2-dihydrotriamcinolone ace tonide , t r i amc ino lone ace tonide and f i n a l l y t r iamcinolone ( i n t h e methanol s t r i p ) .

A column p a r t i t i o n chromatographic

7 . Determination i n Body F lu ids and T i s sues

a f t e r in t ramuscular i n j e c t i o n , have been deter- mined, us ing chloroform e x t r a c t i o n , t h i n l a y e r chromatography and de termina t ion o f U . V . absor- bance i n t h e presence of f l u o r e s c e i n 3 5 - o r v i s u a l comparison t o s tandards36 .

The plasma l e v e l s of t r iamcinolone ace ton ide ,

416

Page 414: Florey Vol 1

TABLE V

Rf or "Running distance" values(for explanation of individual values, see below) :

1 2 A B C D E a b C d ----------- System

Triamcinolone - 0.59 0.08 0.14 0.27 0.04 0 0.01 - - 0.03 Triamcinolone acetonide 0.50 1.39 0.59 0.73 0.74 2.6 0.99 0.50 0.48 0.34 -

Systems 1 and 228: P 4 -

System 1: Kieselguhr G plate: Dichloroethane/methylacetate/water 2:l:l: Spray reagent: Alkaline 2,5-diphenyl-3(4-styrylphenyl) tetrazolium solu-

tion; "Running distances" values related to cortisone acetate = 1.00;

System 2: Same plates; methylene chloride/dioxane/water 2:l:l: "Running distance" values related to cortisone = 1.00

Systems A-E 29. . Kieselguhr GF 254 plates: Spray reagent: Tetrazolium blue: "Running distance" values: A,B,C,E related to hydrocortisone acetate =

1.00 D related to hydrocortisone = 1.00

Page 415: Florey Vol 1

TABLE V Cont' d.

Systems A-E2' Cont'd.

Solvent systems: A - 1,2-Dichloroethane:methanol:water 95:5:0.2 B - 1,2-Dichloroethane:2-methoxyethyl acetate:water

C - Cyclohexane: ethy1acetate:water 25: 75: 1 D - Stationary phase: 20% v/v formamide in acetone

Mobile phase: Ch1oroform:etherewater 80:20:0.5 E - Stationary phase: 25% v/v formamide in acetone

80: 20: 1

?i n r 0

rn <

.!A Mobile phase : Cyclohexane : tetrachloroethane : water

50:50:0.1 9

L

W

Systems a-d3':

Kieselguhr G plates; Spray reagent: Tetrazolium blue Values given are Rf values Solvent systems: a - methylene ch1oride:toluene 60:40

b - methylene ch1oride:toluene 50:50 c - Ch1oroform:toluene 25:75 d - Chloroform

Page 416: Florey Vol 1

TRIAMCINOLONE ACETONIDE

References

1. B . Keeler, Squibb I n s t i t u t e , pe r sona l communi-

2 . R. J . Mesley, Spectrochimica A c t a 22, 889

3. J . Fr ied , A. Borman, W . B . Kessler, P .

c a t i o n ,

(1966) .

Grabowich, and E. F. Sabo, J. Am. Chem. SOC. - 80, 2338 (1958) .

4 . S. Bernstein, R. H. Lenhard, W . S . Al len, M . H e l l e r , R . L i t t e l l , S . M . S t o l a r , L . Feldman and R . H. Blank, J. Am. Chem. SOC. 8l, 1689 (1959) .

5. H. Cords, Squibb I n s t i t u t e , pe r sona l communi- c a t ion .

6. M . H e l l e r , S. S t o l a r and S . Berns te in , J. Org. Chem. 26, 5044 (1961) .

7. A. E . Hydorn, U . S . P a t e n t 3,035,050 (1962) . 8. W. E . Hamlin, T . Chulski , R. H. Johnson and

J. G . Wagner, J. Am. Pharm. Assoc. S c i . Ed. - 49, 253 (1960) and D. H . R . Barton and W . C . Taylor , J. Am. Chem. SOC. - 80, 244 (1958); J. Chem. SOC. 1958, 2500.

9. J. Fr ied , U. S. P a t e n t 3 ,177 ,231 (1965) . 10.L. L . Smith, M. Marx, J. J . Garbar in i , T .

Foe l l , V . E . Origoni and J. J. Goodman, J. Am. Chem. SOC. 82, 4616 (1960) .

l l . J . R. F l o r i n i , L . L. Smith and D. A. Buyske, J. B i o l . Chem. 236, 1038 (1961) .

1 2 . H. Jacobson, Squibb I n s t i t u t e , personal communication.

13.L. L. Smith, T. F o e l l , R . deMaio and M . H a l w e r , J. Am. Pharm. Assoc. S c i . Ed. 48, 528 (1959) , and L . L . Smith and T . Foe l l , J. Chromatog. - 3, 381 (1960) .

t ion . 14. N. Coy, Squibb I n s t i t u t e , personal communica-

15.A. I . Cohen, A n a l . Chem. - 35, 1 2 8 (1963) .

419

Page 417: Florey Vol 1

K. FLOREY

16.

1 7 .

18.

19. 20.

21. 2 2 . 23.

24. 25.

26.

2 7 .

2 8 .

29.

30.

31.

32.

33. 34.

35.

36.

W . J . Mader and R. R . Buck, Anal. Chem. -9 24 666 (1952) . P . Ascione and C . Fogel in , J. Pharm. S c i . -’ 52 709 (1963) . M. Umeda, S . Tsubota and A. K a j i i t a , Takamine Kenkyasho Nempo l4, 8 7 (1963; C. A . 58, 4379f (1963) . See a l s o N . F. and U . S . P. L . L . Smith and T . F o e l l , A n a l . Chem. - 31, 102 (1959) . E. Ivashkiv, J. Pharm. S c i . 5 l , 698 (1962) . J. A . B i l e s , J. Pharm. S c i . 50, 464 (1961) . N. Coy and Q. ochs, Squibb I n s t i t u t e , personal communication. S . C . Pan, J. Chromatog. - 9, 81 (1962) . H. R . Roberts, Squibb I n s t i t u t e , pe r sona l communication. E . von A r x and R. Weber, H e l v . Chim. A c t a 39, 1664 (1956) . H. R. Roberts and K . Florey, J. Pharm. S c i . - 51, 794 (1962) . A . Hal l , J. Pharm. Pharmacol. l6, Suppl. 9T (1964) .

C . J. C l i f f o r d , J. V. Wilkinson and J. S . Wragg, J. Pharm. Pharmacol. 16, Suppl. 1 1 T (1964) .

D;, Sonanini , R. H o f s t e t t e r , L . Anker and H. Muhlemann, Pharm. Acta Helv. - 40, 302 (1965) . R. Poet, Squibb I n s t i t u t e , pe r sona l communi- cat ion . A. I. Cohen, Squibb I n s t i t u t e , pe r sona l communication. A . I . Cohen and T . Gilmore, t o be publ i shed . H. W . Avdovich, P . Hanbury and B. A. Lodge, J . Pharm. S c i . 59, 1164 (1970) . R. E b e r l and H . A l t m a n , J. Rheumaforsch. -9 29 94 (1970) . L . z icha , Arzneim.-Forsch. l9, 340 (1969) .

420

Page 418: Florey Vol 1

TRIAMCINOLONE ACETONIDE

The author wishes t o thank M r s . Agnes LaBadie f o r her inva luable s e c r e t a r i a l he lp i n developing t h e format of t h i s P r o f i l e which served as a proto- type . This acknowledgement a l s o pays t r i b u t e t o a l l secretaries who s o p a t i e n t l y typed t h e s e P r o f i l e s .

42 1

Page 419: Florey Vol 1

TRIAMCINOLONE DIACETATE

K. Florey

Reviewed by N. E. Rigler

423

Page 420: Florey Vol 1

K. FLOREY

CONTENTS

1. Descr ip t ion 1.1 Name, Formula, Molecular Weight 1 . 2 Appearance, Color, Odor

2 . 1 I n f r a r e d Spec t r a 2 . 2 Nuclear Magnetic Resonance Spectrum 2 .3 U l t r a v i o l e t Spectrum 2 .4 Mass Spectrum 2 .5 Opt ica l Rotat ion 2 .6 Melting Range 2 . 7 D i f f e r e n t i a l Thermal Analysis 2 . 8 Thermogravimetric Analysis 2 .9 S o l u b i l i t y 2.10 C r y s t a l P rope r t i e s

2 , Phys ica l P r o p e r t i e s

3 . Synthesis 4 . S t a b i l i t y , Degradation 5. Drug Metabolic Products 6. Methods of Analysis

6 . 1 Elemental 6 .2 Di rec t Spectrophotometr ic 6 . 3 Co lo r ime t r i c 6 .4 Polarographic 6 . 5 Chromatographic

6 .51 Paper 6.52 Thin Layer

7 . References

424

Page 421: Florey Vol 1

TRIAMCINOLONE DIACETATE

1, Description

1.1 Name, Formula, Molecular Weiqht Triamcinolone diacetate is 16a,21-diacet-

oxy-9a-fluoro-llf3,l7a-dihydroxyl-l,4-pregnadiene- 3,20-dione; also 9a-fluoro-llf3,16a,l7a,21-tetra- hydroxy-1,4-pregnadiene-3,2O-dione-l6a,2l-diace- tate; 9a-fluoro-16a-prednisolone-l6a,2l-diacetate. SQ 9465.

I 2 oc=o

C25H31F08 Molecular Weight : 478.52

1.2 Appearance, Color , Odor White to off white, odorless crystalline

powder.

2. Physical Properties

2.1 Infrared Spectra Triamcinolone diacetate exhibits polymor-

phism (see also 2.10). Smith et all presented infrared spectra for two polymorphic forms. Fig- ures 1 and 2 present infrared curves of Squibb Batch #30636-001 taken in mineral oil mull and KBr pellet from MeOH solution respectively . While the latter esentially resembles the spec-

2

trum of polymorphI1 of Smith 1 , the former has ad;-

425

Page 422: Florey Vol 1

Fig . 1 Triamcinolone d i a c e t a t e , ba t ch #30636-001(4.5% mois ture) 1 .F . cu rve #28604 taken i n mineral o i l ; Instrument: Perkin E l m e r 621

Page 423: Florey Vol 1

Fig. 2 Triamcinolone diacetate, batch #30636-001 (4.5% moisture) 1.R.curve '#28604A taken in KBr pellet from methanol solution.

Page 424: Florey Vol 1

K. FLOREY

d i t i o n a l bands o r shoulders which probably can be a t t r i b u t e d t o t h e presence of 4.5% moisture i n t h e sample . The s i g n i f i c a n t bands (2.90; 3.40; 5.74; 6.00; 6.15 p) agree wi th t h o s e p rev ious ly reported1 9 y4. The i n f r a r e d spectrum i n chloro- form has a l s o been recorded5.

2

2.2 Nuclear Maqnetic Resonance Spectrum

ments of chemical s h i f t s are p resen ted i n F igure 3 and Table 123.

A r e p r e s e n t a t i v e spectrum and ass ign-

TABLE I

NMR S p e c t r a l Assignments of Triamcinolone Diacetate

Chemical S h8.i f t

Protons a t T

c-1 c-2

c -4 c-11 C-16 C-16 C-17 C-18 c-19 c-21 c-21

2.73 3.81

3.99 5.84 4.56

( ace toxy l ) 8 . 0 3 (OH) 4. 38

9.12 8.52

(methylene) 5.13 ( ace toxy l ) 7.92

m m d S

S

S

S

m S

s = s i n g l e t ; d = double t ; m = m u l t i p l e t ; q = q u a r t e t ; J = coupl ing cons t an t i n H z .

428

Page 425: Florey Vol 1

P N 0

2 3 4 5 6 7 8 8

L.

Y

Fig . 3 NMR Spectrum of Triamcinolone Diacetate. House Standard #30636-001 i n DMSO con ta in ing t e t r a m e t h y l s i l a n e as i n t e r n a l r e fe rence . Instrument: Varian A-60

Page 426: Florey Vol 1

K. FLOREY

2 .3 u l t r a v i o l e t Spectrum Squibb b a t c h #30630-001 when scanned be-

tween 340 and 210 mk on a Cary 15 Spectrophoto- meter exh ib i t ed a s i n g l e maximum a t 2 3 8 mp (EF&.,= 320; E 15,300 c o r r e c t e d f o r 4.5% mois ture) '. This i s i n good agreement wi th va lues r e v i o u s l y re- por ted : X max 239 mp ( E 15,200) 3,' and 239 mp ( E 15,270)'.

A max

2 .4 Mass Spectrum I n t h e low r e s o l u t i o n m a s s spectrum7 sum-

marized i n Figure 4 , t h e M+ a t m / e 478 and t h e M+ -18 ion corresponding t o a loss of w a t e r are very weak. However, t h e M+ -20 ion, r e s u l t i n g from t h e dehydrof luor ina t ion of t h e molecule, is a prominent high m a s s i on whi le t h e ion a t m / e 377, M+ -101, a r i s i n g from t h e loss of t h e s i d e cha in (COCH20COCH3) is t h e most prominent high m a s s i on . C h a r a c t e r i s t i c of t h e mass s p e c t r a of f l u o r i n a t e d c o r t i c o s t e r o i d s , t h e ma jo r i ty of fragment ions con ta in one oxygen, a l though t h e r e a r e s e v e r a l ions con ta in ing e i t h e r 2 , 4 o r 5 oxygens. These fragments con ta in ing one oxygen extend from com- p o s i t i o n s of C19H190 t o C7H7O, and when s t e r o i d s are acetates t h e m a s s spectrum inc ludes t h e ace- t y l i on (C2H3O) a t m / e 43. Of p a r t i c u l a r s i g n i f - i cance are t h e ions a t m/e 1 2 2 , 121 , which are d i a g n o s t i c f o r t h e presence of t h e A-ring dienone.

2 .5 O p t i c a l Rota t ion The fol lowing s p e c i f i c r o t a t i o n s have

been repor ted :

[aIg5 + 22' ( c 0.788 i n C H C 1 3 ) 3 , 4

a + 2 8 O (c 0 .38 i n CHC13)

[a ]g2 + 22' ( c 0 . 5 i n CHC13) 1

[a ]g2 + 63O (c 0 . 5 i n MeOH) 1

430

Page 427: Florey Vol 1

I00 -I * z 80 d 70 5 60 m

- 50

- > 40

2 30

t8 10

0

W

J 2 20

40 60 80 100 120 140 160 180200 220 240 260280300 320340 360

MASWCHARGE

f 444 80 400 420440 8

x

M+

L 480 500

-I D z 0 z 0 r 0 2 rn

I2

rn -I D -I rn

$

Fig. 4 Low resolut ion Mass Spectrum of Triamcinolone Diacetate . Instrument: AEI MS-9

Page 428: Florey Vol 1

K. FLOREY

2.6 M e l t i n q Range Like many s t e r o i d s t r iamcinolone diace-

t a t e does not m e l t s ha rp ly . The mel t ing tempera- t u r e range i s wide and depends on s o l v a t i o n 3 , t h e r a t e of h e a t i n g and a l s o t h e polymorphic form.

The fol lowing mel t ing p o i n t temperatures ( O C ) have been repor ted :

1 5 8 - 2 3 5 ~ ' ~ 186- 1884 185-2254 170-180 (wi th gas evo lu t ion )

1 185-232 ( type I polymorph) 1 145-236 ( type I1 polymorph)

8

2 . 7 D i f f e r e n t i a l Thermal Analysis (DTA) The e r r a t i c and wide mel t ing range (see

s e c t i o n 2 .6 ) of t r iamcinolone d i a c e t a t e i s a l s o r e f l e c t e d i n t h e thermal a n a l y s i s . Brancone and F e r r a r i 9 , using a DuPont 900 ana lyze r a t a hea t - ing ra te of 20°/min, d e s c r i b e an endotherm a t 143O, r ep resen t ing t h e hydra te , and an endotherm a t 184', r ep resen t ing t h e mel t ing p o i n t . Using t h e same instrument and a h e a t i n g r a t e of 15O/min f o r House Standard 30636-001 Jacobson" observed an endotherm a t 145O (hydra t e ) and an exotherm a t 284O ( o x i d a t i v e change) . I n vacuo (35 mm Hg) t h e endotherm a t 145O w a s r e so lved i n t o t h r e e endo- therms occurr ing a t 80°, 123O and 152'. With t h e c a l o r i m e t r i c c e l l a t tachment , i n which t h e sample was conta ined i n a f l a t , uncovered pan, endo- t h e r m s w e r e observed a t 7 3 O , 11l0 and 151O. The f i r s t two endotherms a r e a sc r ibed t o v o l a t i l e components, w h i l e t h e l a s t endotherm is t h e m e l t - ing p o i n t , which w a s confirmed on a Fisher-Johns block. Differences between Brancone's and Jacobson ' s f i nd ings can most probably be asc r ibed t o d i f f e r i n g c r y s t a l forms o f t r iamcinolone d i - a c e t a t e and r e c r y s t a l l i z a t i o n s o l v e n t s f o r t h e samples used.

432

Page 429: Florey Vol 1

TRIAMCINOLONE DIACETATE

2 . 8 Thermoqravimetric Analysis (TGA) A t a h e a t i n g ra te of 15O/min u n d e r n i t r o -

gen sweep, House Standard #30636-001 gave a w e i g h t l o s s o f 5.2%, complete by 110'. Exposure t o t h e atmosphere of a sample d r i e d a t 120° recovered t h i s weight l o s s i n 20 minutes. Therefore , t r iam- c inolone d i a c e t a t e under average cond i t ions can be expected t o con ta in 5-6% t o t a l v o l a t i l e s ( w a t e r ) . 10

2 . 9 S o l u b i l i t y S o l u b i l i t y de te rmina t ions w e r e c a r r i e d

out on Squibb House Standard #30636-001 (Poly- morph 11) a t 25010:

Water 0.048 mg/ml Ethanol 95% 2 7 mg/ml

According t o Smith e t . a l . t r iamcinolone d i a c e t a t e e x h i b i t s polymorphism (see a l s o s e c t i o n 2 . 1 ) . The powder x-ray d i f f r a c t i o n p a t t e r n of Squibb House Standard 30636-001 ( r e c r y s t a l l i z e d from methanol) wi th 4.5% t o t a l v o l a t i l e ( w a t e r , see s e c t i o n 2 . 8 ) p resented i n Table I1 resembles polymorph I1 of Smith . According t o Smith poly- morph t y p e I has been obta ined from chloroform, methylene c h l o r i d e , ace tone , acetone/petroleum e t h e r and benzene/petroleum e t h e r . Type I1 has been obta ined from ace tone and from acetone/pe- t roleum e t h e r .

of t r iamcinolone d i a c e t a t e have been repor ted12 a s follows wi thout s t a t i n g which polymorph w a s u s ed : System: Orthorhombic; C r y s t a l Habit; columnar O p t i c a l Sign -; Axial Angle 69: Optic o r i e n t a t i o n ( a s s igned a c c . t o c r y s t a l h a b i t ) XX c : W a ; Z Z b. Dispersion: None observed; Re f rac t ive Indexes: a ( w ) = 1 . 5 1 7 ; @ ( E ) = 1.567; y = 1.592; Densi ty 1 .379; Ref rac t ion : Experimental = 111.90: Calcu la ted = 113.99.

2.10 C r y s t a l P rope r t i e s

1 1

The o p t i c a l c r y s t a l l o g r a p h i c p r o p e r t i e s

433

Page 430: Florey Vol 1

K. FLOREY

TABLE I1 Powder x-ray d i f f r a c t i o n p a t t e r n of t r i amc ino lone d i a c s t a t e L o t 30636-001

d ( A ) * R e l a t i v e I n t e n s i t y * * 1 4 . 1

9 . 8 1 9.07 6.30 5.80 5.65 5 . 2 1 5.10 4.80 4 . 6 1 3 .98 3.84 3.76 3.64 3.40 3.34 3.23 3 .13 3.05 2.96 2 . 9 1 2 .54

0 .04 0.07 0 .04 0.07 0 .13 1 .00 0 .14 0 .16 0 .05 0 .03 0 .04 0 .06 0 .05 0 . 1 0 0 . 0 2 0.04 0 . 0 2 0 . 0 2 0.02 0 . 0 2 0 .02 0.02

* d = ( i n t e r p l a n a r d i s t a n c e ) n 1 2 s i n €3

0 h = 1.539 A

Xadiat ion: K a l and K a 2 Copper **Based on h i g h e s t i n t e n s i t y of 1 . 0 0

3. Syn thes i s Triamcinolone ( I ) d i a c e t a t e has been prepared

by m i c r o b i ~ l o g i c a l ~ ~ ~ o r se len ium dioxide4 dehy- drogenat ion a t C - 1 , 2 of 16a-hydroxy-9a-fluoro-

434

Page 431: Florey Vol 1

TR I AMCl NOLONE DIACETATE

hydrocor t i sone 16a, 21-diace ta te (11, Fig . 5 ) as we l l a s by h y d r o f l ~ o r i n a t i o n ~ of t h e correspond- ing 9,11-epoxide (111) and by a c e t y l a t i o n of tri- amcinolone (v ) 3 9 4.

4 . S t a b i l i t y , Degradation Triamcinolone d i a c e t a t e i s very s tab le as a

s o l i d . In mi ld ly a l k a l i n e s o l u t i o n t h e 21-ace- t a t e group i s e a s i l y s p l i t o f f w i t h subsequent o x i d a t i v e rearrangement and degrada t ion of t h e s ide cha in . S a p o n i f i c a t i o n of t r iamcinolone d i - acetate ( I ) t o t r iamcinolone ( V ) has t o be car- r i e d ou t under exc lus ion of oxygen. The D-homo- analog14 (VI) o f t r iamcinolone forms a s a saponi- f i c a t i o n byproduct. I t has been repor ted13 t h a t hydrocor t i sone and predniso lone when exposed t o u l t r a v i o l e t l i g h t o r o rd ina ry f luo rescen t labora- t o r y l i g h t i n g i n a l c o h o l i c s o l u t i o n undergoes p h o t o l y t i c degrada t ion of t h e A-ring. S ince t r i - amcinolone diacetate has t h e s a m e A-ring as pred- n iso lone it probably a l s o i s l a b i l e under t h e s e cond i t ions . When t r iamcinolone diacetate is f e r - mented a n a e r o b i c a l l y wi th a number o f microorga- nisms which normally dehydrogenate a t C - l , 2 under ae rob ic cond i t ions , t h e 20-Ketone i s reduced t o t h e 208 alcohol15, and/or t h e 1 , 2 double bond is hydrogenated. The r educ t ion a t carbon 20 c a n a l s o be achieved wi th sodium borohydride and subse- quent migra t ion of t h e 21-ace ta te group t o y i e l d t h e 16a, 20fbdiacetate ( I V ) 15.

5. DrUq Metabolic Products While i n an experiment w i th tritium labeled

t r iamcinolone i n t h e dog F l o r i n i e t . a l . i den t i- f i e d 6~-hydroxyt r iamcinolone as t h e major meta- b o l i c product i n u r i n e no metabol ic products of t r iamcinolone diacetate have been r epor t ed s o far .

435

Page 432: Florey Vol 1

Figure 5

I1 111

IV V

Page 433: Florey Vol 1

TRIAMCINOLONE DIACETATE

6. Methods of Analysis

6 . 1 Elemental Analysis Element Theory Reported

Ref. 3 ~ 4 Ref.' C 62.75 63.45 62.34 H 6 .53 7.44 6.74 F 3.97 4.39 -

6.2 D i r e c t Spectrophotometr ic Analysis The u l t r a v i o l e t abso rp t ion band a t 239 mp

(see 2 .3) is due t o t h e A1j4-3-keto system o f t h e A-ring (see a l s o s e c t i o n 4 ) .

p u r i t y from extraneous materials and can s e r v e as a formula t ion ba tch ing a s say . I t can be used f o r chromatographic d e t e c t ion and q u a n t i t a t i 0 1 - 1 ~ ~ .

The absorbance is u s e f u l as a measure o f

6 . 3 Co lo r ime t r i c Analysis A v a r i e t y of c o l o r i m e t r i c methods have

been used t o d e t e c t and determine t r i amc ino lone d i a c e t a t e .

6 .31 Reaction wi th t e t r a z o l i u m b l u e i n a l k a l i n e medium measures t h e reducing power of t h e a -ke to l s i d e cha in by producing a b l u e c o l o r (520 mp) which can be quant i ta ted ' . i t y of t h e medium liberates t h e 21-hydroxy group p r i o r t o r e a c t i o n w i t h t e t r a z o l i u m b l u e . c o l o r product ion can be s t a b i l i z e d by a d d i t i o n of chloroform1*. The response is about 70% g r e a t e r than t h a t f o r non 16a-hydroxylated analogs1. method is ,u se fu l f o r gene ra l formulat ion a s says . I t a l s o is used as a sp ray reagent i n paper and t h i n l a y e r chromatograms. (Sec t ion 6 .5) .

with i s o n i c o t i n i c a c i d hydraz ide ( i s o n i a z i d ) pro- duces a yel low hydrazone wi th an abso rp t ion maxi- mum a t 404 ,119. This r e a c t i o n can be adapted t o t r iamcinolone d i a c e t a t e f o r formulat ion a s says .

The a l k a l i n -

The

6.32 Reaction o f A174-3-keto s t e r o i d s

437

Page 434: Florey Vol 1

K. FLOREY

It a l s o has been used as a sp ray reagent and f o r q u a n t i t a t i o n i n paper and t h i n l a y e r chromato- g r a hy (Sec t ion “6.5) . It should be noted t h a t A1yB-3-keto s t e r o i d s react much less r e a d i l y w i t h i s o n i c o t i n i c acid hydrazide t h a n do A4-3-keto s t e r o i d s 1 9 . also been descr ibed4.

olone d i a c e t a t e i n concent ra ted s u l f u r i c acid wi th maxima a t 260, 308, 375, 475-480 mp(20 h r s . r e a c t i o n t i m e ) and 100% phosphoric acid wi th max- i m a a t 260, 290, 310 375 mp(20 h r s . r e a c t i o n t i m e )

The 2 , 4-dinitrophenylhydrazone has

6 .33 The abso rp t ion s p e c t r a of t r iamcin-

have been r epor t ed 1,10

6 .4 Polaroqraphic Analysis The polarographic h a l f wave p o t e n t i a l w a s

r epor t ed as -1.01 v o l t s , t h e d i f f u s i o n c u r r e n t a t 1.30 v o l t s w a s 3.55 microamperes/mg/mll.

6 . 5 Chromatographic Analysis Q u a l i t a t i v e chromatographic methods can

be used f o r i d e n t i f i c a t i o n , q u a n t i t a t i v e methods f o r assessment of p u r i t y and s t a b i l i t y of t r i a m - c inolone d i a c e t a t e .

6 .51 Paper Chromatoqraphic A n a l y s i s Paper chromatographic Rf va lues of

t r iamcinolone diacetate and related s t e r o i d s are r epor t ed i n Table 111.

6.52 Thin Layer Chromatoqraphic Analysis Separa t ion of t r iamcinolone diace-

t a t e from 1,2-dihydrotriamcinolone d i a c e t a t e has been accomplished by t h i s method22. S i l i c a G e l F254 (Brinkman) w a s used wi th w a t e r - s a t u r a t e d e t h e r as s o l v e n t . Development t i m e w a s 60 minutes. t r iamcinolone d i a c e t a t e and 0 . 9 f o r 1,2-dihydro- t r iamcinolone d i a c e t a t e .

Precoated

The approximate Rf values are 0 . 7 fox

43 8

Page 435: Florey Vol 1

TABLE I11

Paper Chromatoqraphic Rf Values

Solvent System* A (IV) l7 Compounds :

Triamcinolone diacetate 0.89 Triamcinolone 0.13 Triamcinolone acetonide 0.88

1,2-Dihydrotriamcinolone diacetate 0.92 $ Triamcinolone isomer** 0.06

0.76 Triamcinolone isomer diacetate

1,2-Dihydrotriamcinolone isomer 0.85

1,2-Dihydrotriamcinolone 0.19

a

1,2-Dihydrotriamcinolone isomer 0.10

B(V) l7 C(VI)I7 D2’

0.27 0.12 - - - -

-I - 0 . 3 6 0.13 4 $

0.40 0.22 - 0

0.08 0.02

0.18

- - - z

E - - - z - rn

!2 - - - h 0.06 - 1 1 1

-4 diacetat e > 2 * The Roman numerals refer to the solvent systems of ref.l’

**9a-Fluoro-ll~,l6a,l7a~-trihydro~-l7a~-hydrox~ethyl-l,4-D-homoandrosta- diene14.

Page 436: Florey Vol 1

The solvent systems used in Table I11 are the following:

Developinq Time

A (IV) l7 benzene/ethanol/water 2 : 1 : 2 5 hrs , B(V)I7 toluene/petroleum ether/methanol/water 12:8:13:7 2-1/2 hrs. C(VI)17 benzene/petroleum ether/methanol/water 5:5:7:3 3-1/2 hrs . D 2 1 toluene saturated with propylene glycol 16 hours

The following detection systems were used:

1. The modified Haines-Drake ultraviolet ~ c a n n e r l ~ , ~ ~ . ?r 2. Isonicotinic acid hydrazide17. n

rn <

P 6 0 3. Alkaline tetrazolium blue spray17. JJ

Triamcinolone diacetate can be quantitatively determined by paper chroma- tography using solvent system D21. Whatman #1 paper was impregnated with propylene glycol fn chloroform after spotting samples and standards at the 30-60 microgram level. After development of 16 hours the spots were lo- cated with a U.V. scanner, cut out and eluted with 95% ethanol. Then the absorbance of the samples was read at 239 millimicrons against a standard.

Page 437: Florey Vol 1

TRIAMCINOLONE DIACETATE

REFERENCES

( 4 )

(5 )

( 7 )

L. L. Smith and M. H a l w e r , J. Am. Pharm. ASSOC., S c i . Ed. 48, 348 (1959) . B. Keeler, Squibb I n s t i t u t e , personal communication. S . Berns te in , R . H. Lenhard, W. S . Al len, M. H e l l e r , R . L i t t e l l , S . M . S t o l a r , Louis I. Feldman, R . H. Blank, J. Am. Chem. SOC. - 78, 5693 (1956) . S . Be rns t e in , R . H. Lenhard, W. S . A l l e n , M . H e l l e r , R . L i t t e l l , S. M. S t o l a r , L . I . Feldman and R. H. Blank, J. Am. Chem. Soc, 8-1, 1689 (1959) . G . Roberts, B. S . Gal lagher and R. N . Jones, " I n f r a r e d Absorption Spec t r a of S t e r o i d s An A t l a s " V o l . I1 Interscience Publ i shers , I n c . New York 1958, P l a t e 625. J . Dunham. Squibb I n s t i t u t e , personal communication. A. I . Cohan, Squibb I n s t i t u t e , personal communication. R . W. Thoma, J. F r i ed , S . Bonanno, P. Grabowich, J. Am. Chem. SOC. 79, 4818 (1957) . L . M . Brancone and H . J. F e r r a r i , Microchem. J. l0, 380 (1966) . H. Jacobson, Squibb I n s t i t u t e , personal communication. N . Coy and Q . Ochs, Squibb I n s t i t u t e , personal communication, J. A . B i l e s , J. Pharm. S c i . 50, 464 (1961) . W. E . H a m l i n , T . Chulski, R. H. Johnson and J. G . Wagner, J. Am. Pharm. Assoc. 49, 253 (1963) and D. R . Barton and W . C . Taylor , J.

Am. Chem. SOC. 80, 244 (1958); J. Chem. SOC. 1958, 2500. L. L. Smith, M Marx, J. J. J. Garbar in i , T . F o e l l , V . E . Origoni and J. J. Goodman, J.

44 1

Page 438: Florey Vol 1

K. FLOREY

References Cont d. Am. Chem. SOC. - 82, 4616 (1960). L. L. Smith, J. J. Garbarini , J. J . Goodman, M . Marx and H. Mendelsohn, J. Am. Chem. SOC. - 9 82 1437 (1960) and J. Schmidt-Thome, G . Nesemann, H . J . Huebner and I . A l e s t e r , Biochem. 2. - 336, 322 (1962). J. R. F l o r i n i , L. L . Smith and D . A . Buyske, J. B i o l . Chem. 236, 1038 (1961). L. L. Smith, Th. Foe l l , R . de Maio and M . Halwer, J. Am. Pharm. Assoc. S c i . Ed. 48, 528 (1959) and L. L. Smith and Th. Foe l l , J. Chromatog. 2, 381 (1960). P . Ascione and C . Fogel in , J. Pharm. S c i . -9 52 709 (1963). L. L. Smith and Th. Foell, A n a l . Chem. 3l, 102 (1959). L. L. Smith and W. H. Muller, J . Org. Chem. - 23, 960 (1958). H. R. Roberts, Squibb I n s t i t u t e , personal c o r n p i c a t i o n . F. Dursch, Squibb I n s t i t u t e , personal communication. M . Puar, Squibb I n s t i t u t e , personal communication.

442

Page 439: Florey Vol 1

VINBLASTINE SULFATE

J. H. Burns

Reviewed by N. Neuss

443

Page 440: Florey Vol 1

J. H. BURNS

CONTENTS

1. D e s c r i p t i o n 1.1 N a m e , Formula, Molecu la r Weight 1 . 2 Appearance, Co lo r , Odor

2. P h y s i c a l P r o p e r t i e s 2 . 1 M e l t i n g Range 2 .2 O p t i c a l R o t a t i o n 2 . 3 S o l u b i l i t y 2 . 4 C r y s t a l P r o p e r t i e s 2.5 U l t r a v i o l e t Spectrum 2 . 6 I n f r a r e d Spectrum 2 . 7 Nuc lea r w a g n e t i c Resonance Spectrum 2 . 8 Mass Spectrum 2 . 9 pK Values 2.10 Thermograv ime t r i c A n a l y s i s 2 . 1 1 D i f f e r e n t i a l Thermal A n a l y s i s

3. Methods o f P r e p a r a t i o n 4. Methods o f A n a l y s i s

4 . 1 C o l o r i m e t r i c A n a l y s i s 4.2 D i r e c t S p e c t r o p h o t o m e t r i c A n a l y s i s 4 .3 S t a b i l i t y Assay 4 .4 Thin Layer Chromatographic A n a l y s i s 4 . 5 B i o a s s a y

5 . 1 Dry Thermal D e g r a d a t i o n 7 .2 H y d r o l y s i s 5 .3 S t a b i l i t y i n Organic S o l v e n t s

5. S t a b i l i t y - D e g r a d a t i o n

6 . Metabol ism 7. R e f e r e n c e s

444

Page 441: Florey Vol 1

VI N BLAST1 NE SULFATE

1. D e s c r i p t i o n

1.1 Name, Formula, M o l e c u l a r Weight V i n b l a s t i n e s u l f a t e i s t h e n o n p r o p r i e t a r y

name a s s i g n e d by t h e U n i t e d S t a t e s Adopted Names C o u n c i l t o t h e compound o r i g i n a l l y named v i n c a - l e u k o b l a s t i n e s u l f a t e 1 j 2 J 3 . It i s t h e 1:l s u l f a t e s a l t of a n a l k a l o i d o b t a i n e d from t h e p l a n t Vinca r o s e a Linn. ( C a t h a r a n t h u s r o s e u s G. Don) o f t h e f a m i l y Apocynaceae, b e t t e r known as Madagascar p e r i w i n k l e . F r e q u e n t l y t h e name i s a b b r e v i a t e d t o VLB s u l f a t e . It i s a l s o i d e n t i f i e d by t h e c o d e numbers NSC-49842 and 29060-LE4. The e l u c i d a t i o n o f t h e m o l e c u l a r s t r u c t u r e , s t e r e o c h e m i s t r y , and a b s o l u t e c o n f i g u r a t i o n o f t h i s i n t e r e s t i n g com- pound i s f u l l y documented i n t h e l i t e r a - t u r e s , 6 9 7 , '3.

OH

Mol. W t . : 909.07

445

Page 442: Florey Vol 1

J. H. BURNS

1 . 2 Appearance, Co lo r , Odor V i n b l a s t i n e s u l f a t e i s a w h i t e t o s l i g h t l y

y e l l o w c r y s t a l l i n e o r amorphous, o d o r l e s s powder. It i s v e r y h y g r o s c o p i c , r e l a t i v e l y u n s t a b l e , and q u i t e t o x i c .

2. P h y s i c a l P r o p e r t i e s

2 . 1 M e l t i n g Range V i n b l a s t i n e s u l f a t e m e l t s a t 284-285°C.

w i t h decomposi t ion23 '. on t h e m o n ~ h y d r a t e ~ , ~ .

T h i s m e l t w a s d e t e r m i n e d

2 . 2 O p t i c a l R o t a t i o n The f o l l o w i n g s p e c i f i c r o t a t i o n s have been

r e p o r t e d :

[a]:" = - 28" ( c = 1 . 0 1 i n m e t h a n ~ l ) ~ ,

[cy];" = - 28" ( m e t h a n o l I 2 ,

[a]:" = - 36.9" ( c = 1 . 0 1 i n me thano l ) ' .

The l a s t v a l u e above was t h e f i r s t r e p o r t e d i n t h e l i t e r a t u r e . S i n c e r e f e r e n c e s 2 and 9 were c o - a u t h o r e d by one o f t h e a u t h o r s o f r e f e r e n c e 1, i t seems p r o b a b l e t h a t t h e l a s t v a l u e was ob- t a i n e d on impure ma te r i a l . The U.SiP. X V I I I 1 s s p e c i f i e s t h a t a c c e p t a b l e v i n b l a s t i n e s u l f a t e must have a s p e c i f i c r o t a t i o n i n t h e r a n g e -28" t o -35" ([cylfy, c = 2.00 i n m e t h a n o l ) .

2 . 3 S o l u b i l i t y V i n b l a s t i n e s u l f a t e i s s o l u b l e i n w a t e r

and i n me thano l , b u t o n l y s l i g h t l y s o l u b l e i n ethanol ' .

2 . 4 C r y s t a l P r o p e r t i e s The X-ray powder d i f f r a c t i o n p a t t e r n of

v i n b l a s t i n e s u l f a t e h a s been r e p o r t e d by Beer -- e t a1.' u s i n g v a n a d i u m - f i l t e r e d chromium r a d i a t i o n and a w a v e l e n g t h v a l u e o f 2 .2896 i n t h e c a l c u l a t i o n s :

1

446

Page 443: Florey Vol 1

VINBLASTINE SULFATE

1 2 . 9 1 .00 1 1 . 7 1 .00 10 .7 0.02

9.35B 0.40 8.45 0.08 7.82 0.08 7.10 0.80 6 .23 0.08 5 .43 0.08 5 .09 0 .30 4.83 0 .04 4.53 0. 40 4 .34 0.08

4.13 3 .95 3 .73 3 .57 3 . 4 1 3 . 2 8 3 . 2 1 3 .07 3 - 0 3 2.83 2.76

2 .62 2 .71

0.08 0.04 0.02 0.02 0 . 1 2 0 . 0 4 0 . 0 4 0 .04 0 .04 0 . 0 2 0 .04 0 . 0 4 0 .02

2 . 5 U l t r a v i o l e t Spectrum The UV ~ p e c t r u m 3 ~ o f v i n b l a s t i n e s u l f a t e

i n 95% e t h a n o l i s shown i n F i g u r e 1. The f o l - l owing c h a r a c t e r i s t i c p o i n t s o f i n f l e c t i o n a r e n o t e d :

maximum a t 214 nm, C = 53,800 minimum a t 246 nm, c = 11 ,900 maximum a t 262 nm, c = 16,000 shouMer a t 287 nm, e = 13,000 shouMer a t 296 nm, c = 11,500

Changes i n pH o f t h e s o l u t i o n r e s u l t i n s p e c t r a l change . In a c i d i f i e d 95% e t h a n o l t h e maximum n e a r 262 nm s h i f t s t o a s l i g h t l y l o n g e r wave leng th . I n s u f f i c i e n t l y a l k a l i n e 95% e t h a n o l s o l u t i o n s t h i s peak i s s h i f t e d t o a s l i g h t l y lower wave leng th and t h e r e m a i n d e r o f t h e s p e c t r u m i s a l t e r e d t o g i v e t h a t o f v i n b l a s t i n e f r e e b a s e .

2 . 6 I n f r a r e d Spectrum The I R spec t rum28 o f v i n b l a s t i n e s u l f a t e

i s p r e s e n t e d i n F i g u r e 2. It i s i n good a g r e e - ment w i t h a p r e v i o u s l y p u b l i s h e d spectrum1. I n t e r p r e t a t i o n o f i n f r a r e d s p e c t r a mus t o f t e n b e supplemented by o t h e r known c h e m i c a l p r o p e r t i e s o f t h e compound i n q u e s t i o n . V i n b l a s t i n e i s no

447

Page 444: Florey Vol 1

J. H. BURNS

"1

WAVELENGTH, nm

Fig. 1 . W spectrum of v inblast ine s u l f a t e i n 95% ethanol ; instrument: Cary model 15

448

Page 445: Florey Vol 1

VIN

BL

AS

TIN

E S

UL

FA

TE

0.

2 0

0

0.

- - z *

o

u

0.

EZ

$! a

a

-0

0

.

9 0

0.

2 0

0.

m

0

0.

0

N

- 0

0.

VI

N

0

0.

0

n

0

0

0-

P

0

0-

5: 0

0

0'

N

P

9

mo

2

:

0

0

0

0-

449

Page 446: Florey Vol 1

J. H. BURNS

e x c e p t i o n . I t s I R spec t rum i s v e r y s imi l a r t o t h a t o f s e v e r a l o t h e r a l k a l o i d s o b t a i n e d from t h e same p l a n t . S e v e r a l a r t i c l e s 2 9 , 30, 31,32 d i s c u s s t h e smal l d i f f e r e n c e s i n t h e s p e c t r a o f t h e s e compounds.

2 . 7 N u c l e a r Magnet ic Resonance Spectrum A low r e s o l u t i o n NMR spec t rum22 o f v i n -

b l a s t i n e s u l f a t e i s r e p r o d u c e d i n F i g u r e 3 . ‘NMR h a s p l a y e d an i m p o r t a n t p a r t i n t h e s t r u c t u r e d e t e r m i n a t i o n s o f t h e Vinca a l k a l o i d s . S e v e r a l r e v i e w article^^^,^^,^^ summarize t h e u s e o f NMR i n t h e s t r u c t u r e e l u c i d a t i o n o f VLB.

2 . 8 Mass Spectrum Bommer, McMurray, and Biemann6 have pub-

l i s h e d some of t h e c h a r a c t e r i s t i c peaks o f t h e h i g h r e s o l u t i o n s p e c t r u m of v i n b l a s t i n e f r e e b a s e . T h e i r a r t i c l e d i s c u s s e s t h e p r e s e n c e o f peaks a t m/e = 824 and m / e = 838 shown t o r e s u l t from t r a n s m e t h y l a t i o n o f t h e p a r e n t compound. (See a l s o r e f . 3 5 ) . It has r e c e n t l y been ob- se rved36 t h a t r u n n i n g t h e s p e c t r u m on t h e s u l f a t e s a l t n e a r l y e l i m i n a t e s t h e t r a n s m e t h y l a t i o n r e a c t i o y s and g i v e s a c h a r a c t e r i s t i c peak a t m/e = M - 18, a l t h o u g h t h e m o l e c u l a r peak (m/e = 8 1 0 ) i s n e g l i g i b l e . Occo lowi t z s u g g e s t s t h a t o b t a i n i n g s p e c t r a of b o t h t h e f r e e b a s e and t h e s u l f a t e s a l t may t h e r e f o r e b e u s e f u l i n i n t e r p r e t i n g mass s p e c t r a l d e t a o f t h e d i m e r i c Vinca a l k a l o i d s .

2 . 9 pK Values V i n b l a s t i n e h a s two t i t r a t a b l e g r o u p s .

The f o l l o w i n g pKa v a l u e s have been r e p o r t e d :

5 . 0 and 7 .0 by e l e c t r o m e t r i c

5 . 4 and 7 . 4 by e l e c t r o m e t r i c t i t r a t i o n i n DMF-H20(2: l)’, and

t i t r a t i o n i n H 2 0 2 .

450

Page 447: Florey Vol 1

VINBLASTINE SULFATE

8 .O 7 .O 6.0 5 .O 4 .O 3 .O 2 .o 1 .o 0

PPM 161

Fig . 3 . NMR spectrum o f v inb las t ine s u l f a t e i n deuterated dimethyl su l fox ide ; instrument: Varian HA-60

45 1

Page 448: Florey Vol 1

J. H. BURNS

2.10 Thermograv ime t r i c A n a l y s i s VLB s u l f a t e i s d i f f i c u l t t o o b t a i n f r e e

from w a t e r o f h y d r a t i o n a n d / o r s o l v e n t s o f c r y s t a l l i z a t i o n . A t h e r m o g r a v i m e t r i c a n a l y s i s 2 8 o f r e f e r e n c e s t a n d a r d m a t e r i a l ( L i l l y l o t number P-89481) showed r a p i d l o s s of w e i g h t f rom room t e m p e r a t u r e t h r o u g h 1 3 1 ° C . The a n a l y s i s w a s p e r - formed u s i n g t h e Du Pont 950 Thermograv ime t r i c Ana lyze r a t a h e a t i n g r a t e o f 5"C. /minute u n d e r n i t r o g e n f l o w i n g a t 44 c c . / m i n u t e . F i v e p e r c e n t we igh t l o s s was o b s e r v e d by 96"C., 10% by 122OC., and 12% by 131°C. The we igh t r ema ined c o n s t a n t from 131°C. t o 177°C.

2 . l l D i f f e r e n t i a l Thermal A n a l y s i s A d i f f e r e n t i a l t h e r m a l a n a l y s i s 2 8 o f VLB

. s u l f a t e ( L i l l y r e f e r e n c e s t a n d a r d l o t P-89481) was pe r fo rmed on a DuPont 900 D i f f e r e n t i a l Thermal Ana lyze r a t a h e a t i n g r a t e o f 20°C./min- Ute. A b r o a d endo the rmic p h a s e t r a n s i t i o n p e a k i n g a t 1.81"~. was obse rved .

3. Methods o f b e p a r a t i o n

A t o t a l s y n t h e s i s of v i n b l a s t i n e has n o t as y e t been a c h i e v e d . Methods of p r e p a r a t i o n i n v o l v e making i n i t i a l c r u d e e x t r a c t s from t h e p e r i w i n k l e p l a n t , f o l l o w e d b y e x t r a c t i o n a t s e l e c t e d pH i n t o o r g a n i c s o l v e n t s , and f i n a l s e p a r a t i o n o f t h e complex m i x t u r e of a l k a l o i d s by column chromatography. S e v e r a l methods have been d e v i s e d s i n c e Noble, Beer , and C u t t s l f i r s t r e p o r t e d t h e i s o l a t i o n o f v i n b l a s t i n e as t h e s u l f a t e s a l t . A few a r e b r i e f l y d e s c r i b e d h e r e .

a q u e o u s - a l c o h o l i c a c e t i c a c i d s o l u t i o n . Af t e r e v a p o r a t i o n t h e r e s i d u e w a s e x t r a c t e d w i t h 2$ h y d r o c h l o r i c a c i d . The H C 1 e x t r a c t was a d j u s t e d t o pH 4 w i t h N a O H and e x t r a c t e d w i t h benzene , t h e pH r a i s e d t o 7, and f u r t h e r e x t r a c t e d w i t h benzene . The pH 7 benzene e x t r a c t s were evapo- r a t e d t o d r y n e s s , d i s s o l v e d i n benzene -me thy lene c h l o r i d e ( 6 5 : 3 5 ) , and p a s s e d o v e r a n e u t r a l , p a r t i a l l y d e a c t i v a t e d aluminum o x i d e column. The

Beer e t a1.' e x t r a c t e d t h e p l a n t leaves w i t h

452

Page 449: Florey Vol 1

VINBLASTINE SULFATE

column w a s e l u t e d w i t h benzene -me thy lene c h l o r i d e u s i n g a g r a d i e n t e l u t i o n t e c h n i q u e whereby t h e c o n c e n t r a t i o n o f m e t h y l e n e c h l o r i d e w a s l i n e a r l y v a r i e d from 3576 a t t h e s t a r t t o 97.576 a t t h e com- p l e t i o n o f e l u t i o n . V i n b l a s t i n e r i c h f r a c t i o n s were e v a p o r a t e d t o d r y n e s s , t h e r e s i d u e suspended i n water , t h e pH a d j u s t e d t o 3.8 w i t h s u l f u r i c a c i d , and e v a p o r a t e d t o d r y n e s s . The r e s u l t i n g v i n b l a s t i n e s u l f a t e w a s c r y s t a l l i z e d from e t h a n o l .

SvobodalO s e p a r a t e d v i n b l a s t i n e from t h e o t h e r a l k a l o i d s o f Vinca r o s e a by u t i l i z i n g t h e v a r i o u s s o l u b i l i t i e s o f t h e i r t a r t r a t e s i n o r g a n i c s o l - v e n t s . S l u r r i e s of t h e p l a n t o r p l a n t p a r t s i n 2 $ t a r t a r i c a c i d (pH 2 ) were e x t r a c t e d w i t h l a r g e q u a n t i t i e s of benzene , t h e benzene e x t r a c t w a s c o n c e n t r a t e d , and e x t r a c t e d w i t h 2% t a r t a r i c ac id . Th i s l e f t t h e n e u t r a l a l k a l o i d s i n t h e benzene w h i l e t h e weakly b a s i c a l k a l o i d s p a s s e d i n t o t h e aqueous phase . The aqueous p h a s e w a s a d j u s t e d t o p H 8.5 - 9.5 w i t h N H 4 0 H , e x t r a c t e d w i t h benzene o r e t h y l e n e d i c h l o r i d e , t h e e x t r a c t s e v a p o r a t e d , t h e r e s i d u e d i s s o l v e d i n benzene , and chromato- g raphed o v e r an a lumina column p r e v i o u s l y d e a c t i v a t e d by 10% a c e t i c a c i d . The column w a s e l u t e d f i r s t w i t h benzene , t h e n w i t h benzene- c h l o r o f o r m m i x t u r e s , and f i n a l l y w i t h c h l o r o f o r m . F r a c t i o n s c o n t a i n i n g v i n b l a s t i n e were e v a p o r a t e d , t h e r e s i d u e d i s s o l v e d i n e t h a n o l , and e t h a n o l i c s u l f u r i c a c i d added t o pH 4. Upon c h i l l i n g , v i n - b l a s t i n e s u l f a t e p r e c i p i t a t e d . It w a s f u r t h e r p u r i f i e d by r e c r y s t a l l i z a t i o n from a h s o l u t e e t h a n o l .

O the r s i m i l a r p r o c e d u r e s a r e r e p o r t e d . One r e p o r t e d m e t h o d l l c o n s i s t e d of t h e i n i t i a l e x t r a c - t i o n from a s u s p e n s i o n of a e r i a l p l a n t p a r t s i n 12% aqueous N H 4 0 H i n t o t o l u e n e and u s e o f benzene- p e t r o l e u m e t h e r (9:l) s a t u r a t e d w i t h formamide t o e l u t e t h e a lumina column. J o v a n o v i c s , Szasz -- e t a1.12, i n a p r o c e d u r e similar t o Svoboda ' s lo , e x t r a c t e d t h e p l a n t p a r t s f i r s t w i t h 60% aqueous me thano l c o n t a i n i n g 2% t a r t a r i c a c i d , and t h e n i n t o e t h y l e n e d i c h l o r i d e .

453

Page 450: Florey Vol 1

J. H. BURNS

4. Methods of A n a l y s i s

4 . 1 C o l o r i m e t r i c A n a l y s i s Format ion o f a d e e p r o s e c o l o r when v i n -

b l a s t i n e s u l f a t e i s h e a t e d i n a s o l u t i o n con- s i s t i n g o f 35 m l . o f p y r i d i n e , 1 m l . o f c o n c e n t r a t e d s u l f u r i c a c i d , and 35 m l . o f a c e t i c a n h y d r i d e c o n t a i n i n g 0.05% a c e t y l c h l o r i d e , i s t h e b a s i s o f a n a s s a y method r e p o r t e d 1 3 f o r r e l a t i v e l y p u r e v i n b l a s t i n e s u l f a t e . The r e - a c t i o n i s c a r r i e d o u t a t 80°C. f o r 20 m i n u t e s . The a b s o r b a n c e s o f t h e c o l o r produced , and o f a r e f e r e n c e s t a n d a r d s i m i l a r l y t r e a t e d , a r e measured i n 1 cm. c e l l s a t 574 nm and 538 nm a g a i n s t w a t e r a s a r e f e r e n c e . The r a t i o o f A574nm/A53enm must be i n t h e r a n g e of 1 .20-1 .25 f o r t h e a s s a y t o b e c o n s i d e r e d v a l i d . The ab- s o r b a n c e v a l u e s a r e s t a b l e f o r a b o u t 20 m i n u t e s , b u t t h e n b e g i n t o i n c r e a s e s lowly . The a b s o r b - a n c e a t 574 nm i s used f o r q u a n t i t a t i v e d e t e r - m i n a t i o n s i n c e i t s v a l u e changes l e s s w i t h t i m e t h a n t h e peak a t 538 nm. The r e a c t i o n i s r e - p o r t e d t o obey B e e r ' s l a w from 5-70 mcg. v i n b l a s t i n e s u l f a t e p e r m i l l i l i t e r . V i n c r i s t i n e s u l f a t e g i v e s t h e same c o l o r c u r v e L 4 and must be a b s e n t when t h i s method i s employed.

4 .2 D i r e c t S p e c t r o p h o t o m e t r i c A n a l y s i s P u r i f i e d v i n b l a s t i n e s u l f a t e may b e

d e t e r m i n e d by measurement o f i t s UV a b s o r b a n c e i n methanol15 . Sample and r e f e r e n c e s t a n d a r d a r e d i l u t e d t o a p p r o x i m a t e l y 20 micrograms p e r m i l l i - l i t e r i n anhydrous methanol . The a b s o r b a n c e s o f t h e s o l u t i o n s a r e measured and compared i n 1 cm. c e l l s a t t h e maximum a t a b o u t 267 nm a g a i n s t anhydrous me thano l i n a r e f e r e n c e c e l l .

l e a f f o r v i n b l a s t i n e c o n t e n t by UV measurement f o l l o w i n g e x t r a c t i o n o f t h e l e a f , i s o l a t i o n of t h e a l k a l o i d by TLC, removal o f t h e TLC s p o t , and e x t r a c t i o n i n t o me thano l . Measurement w a s made a t 214 nm ( f r e e b a s e ) and compared t o a s t a n d a r d c u r v e r e p o r t e d t o b e l i n e a r o v e r t h e r a n g e 0 . 8 - 8 . 0 mcg. v i n b l a s t i n e b a s e p e r m i l l i l i t e r .

Masoud e t a l . l s have a s s a y e d Vinca r o s e a

454

Page 451: Florey Vol 1

VI NBLASTI NE SULFATE

4.3

o f t h e i n t a c t a c i d i c

S t a b i l i t y Assay The f o l l o w i n g method17 p e r m i t s measurement amount of v i n b l a s t i n e s u l f a t e r e m a i n i n g a f t e r "d ry" t h e r m a l d e g r a d a t i o n o r m i l d h y d r o l y s i s (pH 2, 50°C. ) . F i v e t o t e n mg.

o f sample d i s s o l v e d i n 25 m l . o f p H 3 . 2 sodium c i t r a t e b u f f e r a r e e x t r a c t e d w i t h t h r e e 25-ml. p o r t i o n s o f c h l o r o f o r m and t h e c h l o r o f o r m evapo- r a t e d t o d r y n e s s . The r e s i d u e , d i s s o l v e d i n 5 mL of S. D. N o . 3 A a b s o l u t e e t h a n o l - c h l o r o f o r m ( 1 : 2 5 ) , i s q u a n t i t a t i v e l y t r a n s f e r r e d t o a c h r o m a t o g r a p h i c column p r e p a r e d w i t h 3 Gm. o f a lumina (Woelm, n e u t r a l , a c t i v i t y g r a d e N o . 1) i n t h e same s o l v e n t . The column i s e l u t e d w i t h t h e above s o l v e n t i n t o a 50-ml. v o l u m e t r i c f l a s k u n t i l a b o u t 40 m l . o f e l u a t e a r e c o l l e c t e d , and t h e f l a s k b r o u g h t t o volume w i t h e l u t i n g s o l v e n t . An a l i q u o t e q u i v a l e n t t o 0 .5 - 0 . 6 mg. o f v i n - b l a s t i n e s u l f a t e i s t r a n s f e r r e d t o a 25-ml. v o l u m e t r i c f l a s k , e v a p o r a t e d , t h e r e s i d u e d i s - s o l v e d i n S.D. No. 3 A a b s o l u t e e t h a n o l , one d r o p of h y d r o c h l o r i c a c i d added, and t h e f l a s k b r o u g h t t o volume w i t h S.D. No. 3 A a b s o l u t e e t h a n o l . The a b s o r b a n c e i s measured i n 1-cm. c e l l s a t t h e maximum a t a b o u t 267 nm. The sample a b s o r b a n c e i s compared t o t h a t o f a known v i n b l a s t i n e s u l - f a t e r e f e r e n c e s t a n d a r d s i m u l t a n e o u s l y c a r r i e d t h r o u g h t h e same p r o c e d u r e .

4 . 4 Thin Layer Chromatographic A n a l y s i s Thin l a y e r chromatography h a s . b e e n used

e x t e n s i v e l y i n i d e n t i f y i n g - a n d m o n i t o r i n g t h e s e p a r a t i o n of t h e Vinca a l k a l o i d s . V i n b l a s t i n e s u l f a t e , v i n c r i s t i n e s u l f a t e , l e u r o s i n e s u l f a t e , a n d l e u r o s i d i n e s u l f a t e can b e a d e q u a t e l y s e p a r a t e d by t h e u s e of s i l i c a g e l GF p l a t e s a n d development w i t h b e n z e n e - c h l o r o f o r m - d i e t h y l a m i n e ( 5 0 : 5 0 : 5 ) 1 7 . Ten m i c r o l i t e r s o f a s o l u t i o n of 1 mg. o f a m i x t u r e o f t h e a l k a l o i d a l s a l t s i n 0 . 1 m l . o f 25% w a t e r i n me thano l i s s p o t t e d on t h e p l a t e . The s e p a r a t i o n i s g r e a t l y improved by d r y i n g t h e p l a t e a t 105°C. j u s t p r i o r t o s p o t t i n g . Thorough d r y i n g of t h e a p p l i e d s p o t s b e f o r e ch romatograph ing i s e s s e n t i a l . A l l o f t h e

455

Page 452: Florey Vol 1

J. H. BURNS

s e p a r a t e d compounds can be d e t e c t e d by s p r a y i n g t h e warmed p l a t e w i t h a 1$ s o l u t i o n o f c e r i c ammonium s u l f a t e - i n 8546 p h o s p h o r i c ac id (CAS). Cone e t a l . Z O have r e p o r t e d s e p a r a t i o n o f v i n - b l a s t i n e s u l f a t e , v i n c r i s t i n e s u l f a t e , and l e u r o s i d i n e s u l f a t e on s i l i c a g e l p l a t e s p r e p a r e d u s i n g 0.5 N K O H ( r a t h e r t h a n w a t e r ) and d e v e l o p - ment w i t h e t h y l a c e t a t e - a b s o l u t e e t h a n o l (1:l).

v i n b l a s t i n e b a s e i n s e v e r a l TLC sys t ems . I n gen- e r a l t h e sys t ems i n T a b l e I a r e r e p o r t e d as g i v i n g s a t i s f a c t o r y s e p a r a t i o n s of VLB from a few s p e c i f i c a l k a l o i d s i n e a c h c a s e .

c r u d e a l k a l o i d a l m i x t u r e s i s o f t e n accompl i shed by two d i m e n s i o n a l TLC. Thus, Masoud e t a1.16 were a b l e t o s e p a r a t e and i d e n t i f y VLB i n a com- p l e x m i x t u r e by TLC on s i l i c a g e l G c o n t a i n i n g R a d e l i n phosphor by e l u t i n g t w i c e i n t h e f i r s t d i r e c t i o n w i t h ch lo ro fo rm-methano l ( 9 5 : 5 ) and twice i n t h e second d i r e c t i o n w i t h e t h y l a c e t a t e - a b s o l u t e e t h a n o l ( 3 : l ) . D e t e c t i o n was a c h i e v e d by a combina t ion o f U V quench ing o r f l u o r e s c e n c e and CAS r e a g e n t . VLB was t h e o n l y compound n e a r t h a t p o s i t i o n t h a t c a u s e d quench ing unde r s h o r t wave leng th UV l i g h t . Fa rnswor th and Hi l insk i ’ ’ who were a b l e t o s e p a r a t e t h e v e r y s i m i l a r a l k a - l o i d s VLB, v i n c r i s t i n e , l e u r o s i n e , and l e u r o s i - d i n e by t h e i r sys t em i n Tab le I, found it n e c e s s a r y t o d e v e l o p i n a second d i r e c t i o n w i t h me thano l i n o r d e r t o i s o l a t e t h e same compounds from somewhat l e s s p u r e m i x t u r e s . Cone e t a1.20 a l s o d e m o n s t r a t e d t h e u s e f u l n e s s o f two dimen- s i o n a l TLC f o r s e p a r a t i o n o f Vinca a l k a l o i d s . Svoboda21 r e p o r t s good s e p a r a t i o n of VLB, l e u r o s i d i n e , and v i n c r i s t i n e ( R f ’ s 0 .73, 0.37, 0 . 5 4 , r e s p e c t i v e l y ) on a lumina p l a t e s by f i r s t d e v e l o p i n g t h e p l a t e i n e t h y l a c e t a t e f o l l o w e d by development i n t h e same d i r e c t i o n w i t h e t h y l a c e t a t e - a b s o l u t e e t h a n o l (3 : 1).

Tab le I g i v e s t h e r e p o r t e d R f v a l u e s o f

The s e p a r a t i o n and i d e n t i t y o f VLB i n

4.5 B i o a s s a y The e f f e c t i v e n e s s of c e r t a i n Vinca r o s e a

e x t r a c t s i n p r o l o n g i n g t h e l i f e o f D m m i c e

456

Page 453: Florey Vol 1

T a b l e I*

- Ref. E l u e n t

18 18

10 19 1 4

20 20

20 20 20 20 20 20

2 2 0

s i l i c a gel G s i l i c a g e l G

s i l i c a g e l G s i l i c a g e l G 0 .5 N L i O H /

a lumina s i l i c a g e l s i l i c a g e l s i l i c a g e l s i l i c a g e l a lumina alum i n a a lumina alum i n a a lumina

e t h y l a c e t a t e - a b s o l u t e e t h a n o l ( 3 : l ) n - b u t a n o l - g l a c i a l a c e t i c a c i d - 8 2 0

m e t h a n o l c h l o r o f o r m - m e t h a n o l ( 9 5 : 5 ) a c e t o n i t r i l e - b e n z e n e ( 3 0 : 70)

( 4 : 1:l)

e t h y l a c e t a t e - a b s o l u t e e t h a n o l ( 3 : l ) c h l o r o f o r m e t h y l a c e t a t e - a b s o l u t e e t h a n o l (1:l) e t h y l a c e t a t e c h l o r o f o r m - e t h y l a c e t a t e (1:l) e t h y l a c e t a t e - a b s o l u t e e t h a n o l ( 3 : l ) benzene c h l o r o f o r m b e n z e n e - c h l o r o f o r m ( 3 : l )

0.21 0 .19

0.46

0.36 0 .24

5 z 0 .24 m r

II z 0.04 rn

E; 0.00 0 .33

cn 0.25 C 0 . 6 6

14 0 .00 0.17 0 . 0 0

r n B

* D e t e c t i o n by 1% c e r i c ammonium s u l f a t e i n 8576 p h o s p h o r i c a c i d .

Page 454: Florey Vol 1

J. H. BURNS

i m p l a n t e d w i t h P-1534. l e u k e m i a p r o m p t e d a n e x t e n s i v e i n v e s t i g a t i o n f o r t h e p u r p o s e o f i s o l a t i n g t h e a c t i v e c o m p o n e n t ( s ) o f t h e p l a n t . 38,3’.

5 . S t a b i l i t y - D e g r a d a t i o n

5 . 1 Dry T h e r m a l D e g r a d a t i o n 1 7 V i n b l a s t i n e s u l f a t e s e a l e d f r o m t h e

a t m o s p h e r e i s r e l a t i v e l y s t a b l e t o h e a t . When l y o p h i l i z e d VLB s u l f a t e c o n t a i n e d i n s e a l e d g l a s s ampoules i s s u b j e c t e d t o a t e m p e r a t u r e o f 100°C. f o r 1 6 h o u r s , s u b s e q u e n t a s s a y b y t h e method o f S e c t i o n 4.3 i n d i c a t e s o n l y a b o u t 2% d e g r a d a t i 3 n . However, when t h e m a t e r i a l i s e x p o s e d t o n o r m a l a t m o s p h e r e and h e a t e d f o r 1 6 h o u r s a t 100°C., t h e a s s a y shows t h a t a p p r o x i m a t e l y 50% h a s d e g r a d e d . Upon TLC e x a m i n a t i o n [ s i l i c a g e l GF, CeH6-CHC13 - ( C z H s ) z N H , 5 0 : 5 0 : 5 ] o f t h e d e g r a d e d m i x t u r e t h e m a j o r d e g r a d a t i o n p r o d u c t i s o b s e r v e d as a n immobi le s p o t ( u n i d e n t i f i e d ) a t t h e p o i n t o f a p - p l i c a t i o n . A s e c o n d s p o t h a v i n g a s l i g h t l y l o w e r R f t h a n VLB, a p p r o x i m a t i n g 2% o f t h e o r i g i n a l m a t e r i a l , i s i d e n t i f i e d as d e s a c e t y l v i n b l a s t i n e . The I R a n d UV s p e c t r a o f t h e i m m o b i l e m a t e r i a l a r e v e r y s i m i l a r t o t h o s e o f p u r e v i n b l a s t i n e .

5 . 2 H y d r o l y s i s 1 7 Aqueous s o l u t i o n s o f v i n b l a s t i n e s u l f a t e

a t a b o u t pH 4.5 a r e s t a b l e f o r u p t o 3 h o u r s a t 90°C. H e a t i n g a t 50°C. f o r 16 h o u r s a t pH 2 r e - s u l t s i n d e g r a d a t i o n o f 80 - 90% o f t h e m a t e r i a l . The p r i m a r y p r o d u c t of h y d r o l y s i s u n d e r t h e s e c o n - d i t i o n s i s d e s a c e t y l v i n b l a s t i n e .

5.3 S t a b i l i t y i n O r g a n i c S o l v e n t s V i n b l a s t i n e as t h e f r e e b a s e i s r a t h e r

u n s t a b l e . It i s r e p o r t e d l 9 t h a t v i n b l a s t i n e f r e e b a s e i n b e n z e n e i s s t a b l e f o r s e v e r a l weeks i f k e p t f r o z e n . J a k o v l j e v i c e t a l . 1 4 r e p o r t t h a t 1% s o l u t i o n s o f v i n b l a s t i n e b a s e i n c h l o r o f o r m a r e s t a b l e f o r 24 h o u r s u n d e r r e f r i g e r a t i o n w i t h r e - s p e c t t o TLC d e t e c t i o n . G r e e n i u s , e t a 1 . 2 3 r e p o r t

45 8

Page 455: Florey Vol 1

VINBLASTINE SULFATE

t h a t v i n b l a s t i n e f r e e b a s e i n c e r t a i n o r g a n i c s o l v e n t s i s p h o t o s e n s i t i v e , b u t do n o t s p e c i f y t h e s o l v e n t s .

6 . Metabol ism The h i g h and r a t h e r complex -

s t r u c t u r e of v i n b l a s t i n e have l i m i t e d t h e s t u d y o f i t s me tabo l i sm. No m e t a b o l i c s t u d i e s i n humans have been r e p o r t e d . A l l i n v e s t i g a t i o n s t o d a t e have been made i n r a t s u s i n g t r i t i a t e d v i n - b l a s t i n e . Except f o r t r a c e amounts o f d e s a c e t y l - v i n b l a s t i n e found27 i n t h e b l o o d o f r a t s two h o u r s a f t e r i n t r a p e r i t o n e a l i n j e c t i o n , no m e t a b o l i t e s have been i d e n t i f i e d . However, o t h e r u n i d e n t i f i e d m e t a b o l i t e s have been i s o l a t e d i n smal l amounts26. No p h a r m a c o k i n e t i c c o n s t a n t s have been o b s e r v e d i n t h e l i t e r a t u r e .

r a d i o a c t i v i t y i n t h e 26 hour u r i n e c o l l e c t i o n a f t e r i n t r a v e n o u s i n j e c t i o n o f t r i t i a t e d v i n - b l a s t i n e ( p r e p a r e d by Wilzbach method) i n r a t s . Most of t h i s amount was e x c r e t e d d u r i n g t h e f i r s t 1 2 hour s and c o n s i s t e d p r ima- r i ly o f m e t a b o l i t e s . F u r t h e r i n v e s t i g a t i o n i n r a t s r e v e a l e d t h a t 24 h o u r s a f t e r i . v . i n j e c t i o n a b o u t 25% o f t h e d o s e r a d i o a c t i v i t y was p r e s e n t i n t h e i n t e s t i n a l con- t e n t ~ ~ ~ . T h i s was a t t r i b u t e d m a i n l y t o t h e f a c t t h a t 20 - 2 5 1 o f t h e d o s e r a d i o a c t i v i t y was e x c r e t e d i n t h e b i l e d u r i n g t h e same p e r i o d . Less t h a n 2% o f t h e d o s e was found as unchanged v i n - b l a s t i n e i n t h i s 24 hour b i l e c o l l e c t i o n . It i s r e p o r t e d 2 8 t h a t a t l e a s t s i x r a d i o a c t i v e compounds were p r e s e n t i n t h e e a r l y p o r t i o n o f t h e b i l e c o l - l e c t i o n . Twenty- four h o u r s a f t e r i . v . i n j e c t i o n r a d i o a c t i v i t y w a s found r a t h e r e v e n l y d i s t r i b u t e d a t r e l a t i v e l y low l e v e l s among s e v e r a l o r g a n s w i t h somewhat h i g h e r l e v e l s i n t h e l i v e r 2 ' . Two h o u r s a f t e r e i t h e r i . v . o r i . p . i n j e c t i o n t h e r a d i o a c t i v i t y w a s much l e s s e v e n l y d i s t r i b u t e d among t h e v a r i o u s t i s s u e s w i t h up t a k e f o l l o w i n g t h e i . p . i n j e c t i o n b e i n g o n l y o n e - h a l f t o two- t h i r d s a s h i g h as t h a t f o l l o w i n g i . v . i n j e c t i o n * = . R e l a t i v e a b s o r p t i o n by t h e v a r i o u s t i s s u e s , how- e v e r , w a s found t o b e n e a r l y i n d e p e n d e n t o f

Beer e t a1.24 found o n l y a b o u t 5 % o f t h e d o s e

459

Page 456: Florey Vol 1

J. H. BURNS

a d m i n i s t r a t i v e r o u t e . The same a u t h o r s 2 6 r e p o r t t h a t r a d i o a c t i v i t y was b a r e l y d e t e c t a b l e i n t h e b r a i n s o f r a t s two h o u r s a f t e r i n j e c t i o n and sug- g e s t t h a t p o s s i b l y t h i s e x p l a i n s t h e i n e f f e c t i v e - n e s s o f t h i s d r u g i n t r e a t i n g m a l i g n a n c i e s o f t h e b r a i n .

Grenius e t a1.23 u s i n g v i n b l a s t i n e - 4 - a c e t y l - t ( p r e p a r e d by a c e t y l a t i o n o f d e s a c e t y l v i n b l a s t i n e w i t h t r i t i u m l a b e l e d a c e t i c a n h y d r i d e ) i n r a t s found t h a t a t t h e t ime o f h i g h e s t b l o o d l e v e l s 706 o f t h e t o t a l b l o o d r a d i o a c t i v i t y was p r e s e n t i n t h e components of t h e b u f f y c o a t , i . e . , t h e i n t e r f a c e r e g i o n between t h e p lasma l a y e r and t h e packed r e d c e l l s o c c u r r i n g when b l o o d i s cen- t r i f u g e d . Hebden e t a1.27 c o n t i n u e d t h i s i n v e s - t i g a t i o n o f t h e d i s t r i b u t i o n o f VLB among b l o o d components i n t h e r a t u s i n g v i n b l a s t i n e t r i t i a t e d i n t h e a r o m a t i c r i n g s ( p r e p a r e d by p r o t o n ex- change w i t h t r i t i o t r i f l u o r o a c e t i c a c i d ) . They r e p o r t e d t h a t a f t e r i . p . d o s e s o f a b o u t 0.25 mg. kg. maximum b l o o d r a d i o a c t i v i t y was a t t a i n e d i n 1 . 5 h o u r s a t which t i m e a p p r o x i m a t e l y 2% o f t h e dose r a d i o a c t i v i t y was p r e s e n t i n t h e b lood . Two hour s a f t e r i n j e c t i o n t h e y found t h e b l o o d r a d i o - a c t i v i t y t o be d i s t r i b u t e d 60$ i n t h e p l a t e l e t s , 1 5 $ i n t h e l e u k o c y t e s , 151 i n t h e plasma, and lo$ i n t h e r e d c e l l s . They r e p o r t e d t h a t n e a r l y a l l o f t h e p l a t e l e t r a d i o a c t i v i t y was due t o un- changed v i n b l a s t i n e w h i l e o n l y a b o u t 50% of t h e plasma a c t i v i t y was from unchanged v i n b l a s t i n e . It w a s a l s o obse rved t h a t t h e d e c r e a s e i n t o t a l b lood r a d i o a c t i v i t y w i t h t i m e i s p r i m a r i l y due t o l o s s of r a d i o a c t i v i t y f rom t h e b u f f y c o a t r e g i o n .

460

Page 457: Florey Vol 1

VI N BLAST1 NE SULFATE

Refe rences

R. L. Noble, C. T. Beer, and J. H. C u t t s , Ann. N . Y . Acad. S c i . 76, 882-894 (1958) . N . Neuss, M. Gorman, G. H. Svoboda, G. Maciak, and C. T. Beer, J. Am. Chem. SOC. 81, 4754-4755 (1959) G. H. Svoboda, N . Neuss, M. Gorman, J. h e r . Pharm. A S S O C . , Sc i . Ed. 48, 659-666 ( 1 9 5 9 ) . Uni ted S t a t e s Adopted Names ( U S A N ) No. 5 , p. 91 (1967). Uni ted S t a t e s Pharmacopeia l Convent ion, I n c . , 4630 Montgomery Ave., Bethesda , Maryland 20014. N. Neuss, M. Gorman, W. Hargrove, N. J. Cone, K. Biemann, G. Bicl i i , and R. E. Manning, J. Am. Chem. SOC. 86, 1440-1442 (1964) . P. Bommer, W. McMurray, K. Biemann, i b i d . 86, 1439-1440 (1964) . J. W. Moncrief and W. N . Lipscomb, i b i d . 87, 4963-4964 (1965 ); Acta C r y s t a l l o g r . 21, 3 2 2 -

N. Neuss, M. Gorman, H. E. Boaz, and N. J. Cone, J. Am. Chem. SOC. 84, 1509-1510 ( 1 9 6 2 ) . C. T . Beer, J. H. C u t t s , and R . L. Noble, U. S. P a t e n t 3 ,097,137, J u l y 9, 1963. G. H. Svoboda, U. S. P a t e n t 3 ,225,030, Dec. 21, 1965. K. Jovankov ics and K. Szasz, Hungarian P a t e n t 153,200, Oct. 22, 1966. C. A. 66: 1 1 8 8 5 4 ~ . K. Jovanov ics , K. Szasz , C. L o r x c z , L. Horompo, and J. Farkas , Hung. P a t e n t 154 ,715 , A p r i l 30, 1968. C. A. 9: 3 8 7 3 2 ~ . I. M. J a k o v l j e v i c , J. Pharm. S c i . 2, 187-188 (1962 1. I. M. J a k o v l j e v i c , L. D. Seay, and R. W. S h a f f e r , i b i d . B, 553-557 (1964) . Uni ted S t a t e s Pharmacopeia X V I I I , p. 772, Mack P u b l i s h i n g Company, Eas ton , Pa . , 1970. A. N. Masoud, N . R. Farnswor th , L. A. S c i u c h e t t i , R. N. B lomster , and W. A. Meer, L loydia 2, 202-207 (1968). R. L. Hussey, E l i L i l l y and Company, p e r s o n a l communication.

331 (1966) .

1.

2.

3.

4.

5 .

6.

7.

8.

9.

10.

11.

12.

13 9

14.

15

16.

46 1

Page 458: Florey Vol 1

J. H. BURNS

18.

20.

21. 22.

23

24.

25. 26.

27 *

28.

29.

30.

=: 1.

32.

33

34. 35 36-

37.

38*

3 9.

N. R. Farnsworth, R. N. Blomster, D. Damratoski, W. A. Meer, and L. V. Cammarato, Lloydia 27, 302-314 (1964). N. R. Farnsworth and I. M. Hilinski, J. Chromatog. l8, 184-188 (1965). N. J. Cone, R. Miller, and N. Neuss, J. Pharm. Sci. 52, 688-692 (1963). G. H. Svoboda, Lloydia 24, 173-178 (1961). R. Laughlin, Eli Lilly and Company, personal communication. H. F. Greenius, R. W. McIntyre, and C. T. Beer, J. Med. Chem. ll, 254-257 (1968). C. T. Beer, M. L. Wilson, and J. Bell, Can. J. Physiol. Pharmacol. 42, 1-11 (1964). Ibid. 42, 368-373 (1964). C. T. Beer and J. F, Richards, Lloydia 27,

H. F. Hebden, J. R. Hadfield, and C. T. Beer, Cancer Res. 30, 1417-1424 (1970). A. I). Kossoyand C. D. Underbrink, Eli Lilly and Company, personal communication. G. H. Svoboda, I. S. Johnson, M. Gorman, and N. Neuss, J. Pharm. Sci. 51, 707-720 (1962). I. S. Johnson, J. G. Armstrong, M. Gorman, and J. P. Burnett, Jr., Cancer Res. 23, 1390- 1427 (1963). N. Neuss, I. S. Johnson, J. G. Armstrong, and C. J. Jansen, Advances in Chemotherapy 1,

G. H. Svoboda, M. Gorman, A. J. Barnes, Jr.,

352-360 (1964).

133-174 (1964).

and A. T. Oliver, J. Pharm. Sci. - 51, 518-523 (1962 ) . J. H. Cutts, C. T. Beer, and R. L. Noble, Cancer Res. 20, 1023-1031 (1960). E. Frei, 111, Lloydia 27, 364-367 (1964). K. Biemann, Lloydia 27y397-405 (1964). J. L. Occolowitz, Eli Lilly and Company, personal communication. R. C. Tiemeier, Eli Lilly and Company, per- sonal communication. I. S. Johnson, H. F. Wright, and G. H. Svoboda, J. Lab. Clin. Med. 54, 830 (1959). I. S. Johnson, H. F. Wright, G. H. Svoboda, and J. Vlantis, Cancer Res.20,1016-1022( 1960).

462

Page 459: Florey Vol 1

VINCRISTINE SULFATE

J. H. Burns

Reviewed by N. News

463

Page 460: Florey Vol 1

J. H. BURNS

CONTENTS

1. D e s c r i p t i o n 1.1 Name, F o r m u l a , M o l e c u l a r W e i g h t 1 . 2 A p p e a r a n c e , C o l o r , Odor

2 . 1 M e l t i n g Range 2 . 2 O p t i c a l R o t a t i o n 2.3 S o l u b i l i t y 2 . 4 C r y s t a l P r o p e r t i e s 2.5 U l t r a v i o l e t S p e c t r u m 2 . 6 I n f r a r e d S p e c t r u m 2 . 7 N u c l e a r M a g n e t i c R e s o n a n c e S p e c t r u m 2 . 8 Mass S p e c t r u m 2 . 9 pK V a l u e s 2 . 1 0 T h e r m o g r a v i m e t r i c A n a l y s i s 2 . 1 1 D i f f e r e n t i a l T h e r m a l A n a l y s i s

2 . P h y s i c a l P r o p e r t i e s

3. M e t h o d s o f P r e p a r a t i o n 4 . N e t h o d s o f A n a l y s i s

4 . 1 D i r e c t S p e c t r o p h o t o m e t r i c A n a l y s i s 4.2, C o l o r i m e t r i c A n a l y s i s 4.3: B i o a s s a y Methods 4 . 4 C o l o r i m e t r i c I d e n t i f i c a t i o n 4.5 T h i n L a y e r C h r o m a t o g r a p h i c A n a l y s i s

5 .1 Dry T h e r m a l D e g r a d a t i o n 5 . 2 H y d r o l y s i s 5.3 A s F r e e Base

5. S t a b i l i t y - D e g r a d a t i o n

6 . M e t a b o l i s m 7 . R e f e r e n c e s

464

Page 461: Florey Vol 1

VlNCRlSTl NE SULFATE

1. D e s c r i p t i o n

1.1 N a m e , F o r m u l a , M o l e c u l a r W e i g h t V i n c r i s t i n e i s t h e n o n p r o p r i e t a r y name

f o r t h e a l k a l o i d o r i g i n a l l y c a l l e d l e u r o c r i s - t i n e . I t i s o b t a i n e d from t h e p l a n t V i n c a r o s e a L i n n . ( C a t h a r a n t h u s r o s e u s G . D G f t h e f a m i l y A p o c y n a c e a e ( M a d a g a s c a r p e r i w i n k l e ) . V i n c r i s t i n e s u l f a t e i s t h e 1:l s u l f a t e s a l t o f v i n c r i s t i n e . The s t r u c t u r e o f v i n c r i s t i n e d i f f e r s f r o m t h a t o f v i n b l a s t i n e . o n l y b y t h e s u b s t i t u e n t a t t h e a n i l i n o - n i t r o g e n i n t h e v i n d o l i n e p o r t i o n o f t h e m o l e c u l e . T h u s i t i s des -N , -me thy l -N , - fo rmyl v i n b l a s t i n e . I t i s a l s o t n o w n b y t h e c o d e n u m b e r s NSC-67574 a n d 37231 a n d i s a b b r e v i a t e d t o V C R a n d V C R s u l f a t e . E l u c i d a t i o n o f t h e m o l e c u l a r s t r u c t u r e , s t e r e o - c h e m i s t r y , a n d a b s o l u t e c o n f i g u r a t i o n o f t h i s compound i s f o u n d i n t h e l i t e r a t u r e ” 9 4 9 6 ‘6.

1

2

,

465

Page 462: Florey Vol 1

J. H. BURNS

1 . 2 A p p e a r a n c e , Color, Odor V i n c r i s t i n e s u l f a t e i s a w h i t e t o

s l i g h t l y y e l l o w , o d o r l e s s , a m o r p h o u s o r c r y s - t a l l i n e powder . I t i s h y g r o s c o p i c a n d v e r y t o x i c . 7

2 . P h y s i c a l P r o p e r t i e s

2 . 1 N e l t i n g Range V i n c r i s t i n e s u l f a t e a f t e r r e c r y s t a l l i -

z a t i o n f r o m a b s o l u t e e t h a n o l i s r e p o r t e d t o h a v e a m e l t i n g r a n g e o f 2 7 3 - 281O C. w i t h loss o f s o l v e n t o c c u r r i n g f r o m 2 1 0 - 232O C. 1 3

2 . 2 O p t i c a l R o t a t i o n The s p e c i f i c r o t a t i o n o f v i n c r i s t i n e

s u l f a t e i n m e t h a n o l h a s b e e n d e t e r m i n e d 2 ' : [ ~ ~ " 0 6 = +8 .5 ( C = 0 . 8 ) .

2 . 3 S o l u b i l i t y V C R s u l f a t e i s s o l u b l e i n m e t h a n o l ,

f r e e l y s o l u b l e i n w a t e r , b u t o n l y s l i g h t l y s o l u b l e .in 95% e t h a n o l 7 .

2 . 4 C r y s t a l P r o p e r t i e s A d e f i n i t i v e X-ray d i f f r a c t i o n p a t t e r n

s u i t a b l e f o r t h e i d e n t i f i c a t i o n o f v i n c r i s t i n e s u l f a t e c r y s t a l s h a s n o t become a v a i l a b l e t o t h e a u t h o r . V i n c r i s t i n e may b e r e a d i l y i s o l a t e d as t h e f r e e b a s e by m a k i n g a n a q u e o u s s o l u t i o n o f t h e s u l f a t e a l k a l i n e w i t h N H + O H a n d e x t r a c t - i n g i n t o a n o r g a n i c s o l v e n t s u c h a s e t h y l e n e d i c h l o r i d e , c h l o r o f o r m , o r b e n z e n e . T h e r e f o r e , t h e X- ray d i f f r a c t i o n p a t t e r n o f v i n c r i s t i n e f r e e b a s e r e c r y s t a l l i z e d f r o m m e t h a n o l i s p r e - . The p a t t e r n w a s d e t e r m i n e d s e n t e d h e r e 1 3 ' a t a w a v e l e n g t h o f 2 . 2 8 9 6 A". u s i n g chromium r a d i a t i o n a n d a v a n a d i u m f i l t e r :

31

466

Page 463: Florey Vol 1

VlNCRlSTlNE SULFATE

d - 10.86 10.27 9.73 9.26 8.82 8.59 7.44 7.10 5.89 5.66B 5.45 5.17 5-09 4.76B 4.55 4.41 4.28

1/11 - 0.12 0.04 1.00 0.30 0.30 0.60 0.60 0.30 0.20 0.30 0.80 0.08 0.08 0.16 0.16

0.08 0.04

d

4.19 3.97B 3.83 3.77 3.62 3.57 3.42 3.35 3.24 3.20

-

3.08 2.96

2.78 2.85

2.63 2.47 2.43

1/11 - 0.04 0.20 0.02 0.02 0.08 0.08 0.12 0.04 0.04 0.04 0.08 0.08 0.04 0.04 0.04 0.04 0.04

2.5 U l t r a v i o l e t S p e c t r u m The U V s D e c t r u m L 4 o f v i n c r i s t i n e

s u l f a t e i s r e p r o d u c e d i n F i g u r e 1. The s p e c t r u m h a s t h e f o l l o w i n g c h a r a c t e r i s t i c s :

maximum a t 221 nm, € = 47,100 maximum a t 255 nm, C = 15,400 minimum a t 275 nm, c = 1 1 , 4 0 0 i n f l e c t i o n a t 290 nm, C = 14,000 maximum a t 296 nm, C = 15,600

S l i g h t p o i n t s o f i n f l e c t i o n a l s o o c c u r a t a b o u t 260 nm a n d a t a b o u t 305 nm.

2.6 I n f r a r e d S p e c t r u m The I R s u e c t r u m ~ ~ o f v i n c r i s t i n e

s u l f a t e r u n i n a K B r p e l l e t i s p r e s e n t e d i n F i g u r e 2. The i n f r a r e d s p e c t r a o f s e v e r a l o f t h e V i n c a r o s e a a l k a l o i d s - a r e q u i t e s i m i l a r . F o r e x a m p l e . t h e I R s p e c t r a o f n e o l e u r o c r i s - t i n e , n e o l e u r o s i d i n e , l e u r o s i d i n e , v i n b l a s - t i n e , l e u r o s i n e a n d i s o l e u r o s i n e ( a s f r e e b a s e s i n c h l o r o f o r m ) e x h i b i t o n l y sma l l d i f f e r - e n c e s f r o m t h a t o f v i n c r i s t i n e ( i n c h l o r o f o r m ) .

467

Page 464: Florey Vol 1

J. H. BURNS

2 . 0 -

1 . 5 -

F i g . 1. W spectrum of vincristine sulfate in 95% ethanol; instrument: Cary model 15

468

Page 465: Florey Vol 1

0

v,

9

0 0

h

0

v,

h

0

0

W

0

Ln

OD

0

0

0.

0

v,

0.

0

0

z 0

0

N - 0 0

f 0

0

2 %

0 0

0 0

0

N

0 0

v,

N

0 0 0

n

0

0 0

9

0

0

0

Ln

0

0 0 0

VlN

CR

lST

lNE

SU

LF

AT

E

469

Page 466: Florey Vol 1

J. H. BURNS

The s i m i l a r i t i e s a n d d i f f e r e n c e s i n t h e I R s p e c t r a o f c o m p o u n d s r e l a t e d t o v i n c r i s t i n e a r e d i s c u s s e d i n s e v e r a l p a p e r s 26-29

2 . 7 N u c l e a r M a g n e t i c R e s o n a n c e S p e c t r u m

o f v i n c r i s t i n e s u l f a t e i s s h o w n i n F i g u r e 3. NMR w a s v e r y u s e f u l i n e l u c i d a t i o n o f t h e s t r u c - t u r e o f v i n c r i s t i n e " . The a p p l i c a t i o n o f n u c l e a r m a g n e t i c r e s o n a n c e s p e c t r o s c o p y t o h e l p d e t e r m i n e t h e s t r u c t u r e s o f v i n b l a s t i n e , v i n - c r i s t i n e , a n d o t h e r V i n c a r o s e a a l k a l o i d s i s r e v i e w e d i n s e v e r a l p a p e r s 2 7 , *', a s .

The l o w r e s o l u t i o n NMR s p e c t r u m 1 "

2 . 8 Mass S p e c t r u m Mass s p e c t r a l d a t a f o r v i n c r i s t i n e w e r e

n o t f o u n d i n t h e l i t e r a t u r e . H o w e v e r , t h e t y p e o f t r a n s m e t h y l a t i o n r e a c t i o n s o b s e r v e d b y Bommer e t a l . i n r e c o r d i n g t h e mass s p e c t r u m o f v i n - b l a s t i n e f r e e b a s e ( s e e V i n b l a s t i n e S u l f a t e p r o f i l e , t h i s p u b l i c a t i o n ) a l s o o c c u r w i t h v i n c r i s t i n e . O c c o l o w i t z h a s r e c e n t l y o b - s e r v e d t h a t t h e mass s p e c t r u m o f v i n c r i s t i n e s u l f a t e i s e s s e n t i a l l y f r e e o f p e a k s d u e t o t r a n s m e t h y l a t i o n a n d t h a t t h e i n t e n s i t y o f t h e m o l e c u l a r i o n p e a k ( 8 2 4 ) i s n e g l i g i b l e , w h i l e a c h a r a c t e r i s t i c p e a k a t m / e = M+ - 18 o c c u r s . H e s u g g e s t s t h a t i f t h i s i s a g e n e r a l p h e n o - menon o f t h e d i m e r i c V i n c a a l k a l o i d s , t h e n p o s s i b l y c o m p a r i s o n o f t h e mass s p e c t r a o f t h e c o m p o u n d s a s t h e f r e e b a s e a n d a s t h e s u l f a t e s a l t may a i d i n i n t e r p r e t a t i o n o f t h e mass s p e c t r a l d a t a .

6 -- 3 0 3 0

2 . 9 PK V a l u e s V C R f r e e b a s e h a s two t i t r a t a b l e b a s i c

g r o u p s h a v i n g pK, v a l u e s o f 5.0 a n d 7 . 4 as d e t e r m i n e d b y e l e c t r o m e t r i c t i t r a t i o n i n 33% d ime t h y l f o rmami de ' .

2 . 1 0 T h e r m o g r a v i m e t r i c A n a l y s i s

V C R s u l f a t e ( L i l l y r e f e r e n c e s t a n d a r d l o t P - 8 9 4 5 3 ) was r u n u s i n g t h e Du P o n t 950 Thermo- g r a v i m e t r i c A n a l y z e r a t a h e a t i n g r a t e o f 5" C .

A t h e r m o g r a v i m e t r i c a n a l y s i s 1 6 o f

470

Page 467: Florey Vol 1

VlNCRlSTlNE SULFATE

I

8 .O 7 .O 6.0 5 .O 4.0 3 .O 2 .o 1 .o 0 PPM (6)

Fig . 3 . NMR spectrum of v incr i s t ine su l fa te i n deuterated dimethyl sulfoxide ; instrument: Varian HA-60

47 1

Page 468: Florey Vol 1

J. H. BURNS

p e r m i n u t e u n d e r n i t r o g e n f l o w i n g a t 40 c c . p e r m i n u t e . M o d e r a t e l y r a p i d w e i g h t l o s s w a s o b s e r v e d f r o m t h e s t a r t o f t h e r u n a t 33" C . t h r o u g h 110" C . , 7 .6% w e i g h t loss o c c u r r i n g o v e r t h i s t e m p e r a t u r e r a n g e . W e i g h t l o s s f r o m 110" C . t o 177O C . was v e r y s l o w a m o u n t i n g t o a t o t a l l o s s o f 7 .9% a t 1 7 7 " C. Above 177" C . t h e r a t e o f w e i g h t l o s s g r a d u a l l y i n c r e a s e d a t f i r s t a n d t h e n b e c a m e q u i t e r a p i d . A t 207O C . 8.8% loss h a d o c c u r r e d , a t 217O C . 10% loss, a t 2 3 7 " C . 15% Loss, a n d a t 2 7 6 " C . a t o t a l l o s s o f 25% w a s o b s e r v e d .

2 . 1 1 D i f f e r e n t i a l T h e r m a l A n a l y s i s A d i f f e r e n t i a l t h e r m a l a n a l y s i s o f

v i n c r i s t i n e s u l f a t e ( L i l l g r e f e r e n c e s t a n d a r d l o t P - 8 9 4 5 3 ) h a s b e e n r u n ' u s i n g t h e Du P o n t 900 D i f f e r e n t i a l T h e r m a l A n a l y z e r a t a h e a t i n g r a t e o f 20" C . p e r m i n u t e . An e x t r e m e l y b r o a d e n d o t h e r m p e a k i n g a t 1 2 7 ' C . w a s o b s e r v e d . T h i s a p p e a r s t o c o r r e l a t e w e l l w i t h t h e l o s s o f w a t e r o f h y d r a t i o n a n d / o r s o l v e n t o f c r y s t a l - l i z a t i o n o b s e r v e d i n t h e T G A a n a l y s i s ( S e c t i o n 2 . 1 0 ) .

3. M e t h o d s o f P r e p a r a t i o n V i n c r i s t i n e s u l f a t e h a s b e e n o b t a i n e d by

a d d i t i o n o f a q u e o u s o r e t h a n o l i c H a s 0 4 t o s o l u - t i o n s o f v i n c r i s t i n e b a s e i n m e t h a n o l , e t h a n o l , o r a c e t o n e . The a c i d i f i e d m i x t u r e w a s e v a p o r a t e d i n v a c u o , a n d t h e v i n c r i s t i n e s u l f a t e was r e c r y s t a l l i z e d f r o m a b s o l u t e e t h a n o l . I t h a s a l s o b e e n o b t a i n e d d i r e c t l y as a p r e c i p i t a t e f r o m c e r t a i n m i x t u r e s o f a l k a l o i d s i n e t h a n o l s o l u t i o n a c i d i f i e d w i t h H2S04 a f t e r r e m o v a l o f a p r e l i m i n a r y p r e c i i t a t e w h i c h f o r m e d u p o n c h i l l - i n g f o r 2 4 h o u r s . V i n c r i s t i n e s u l f a t e s e p a r a t e d f r o m t h e s e m o t h e r l i q u o u r s a f t e r a b o u t f i v e d a y s o f s t a n d i n g a t room t e m p e r a t u r e .

m a t o g r a p h y o f t h e p o s t - v i n b l a s t i n e e l u a t e s c o l l e c t e d d u r i n g - $ h e i s o l a t i o n o f v i n b l a s t i n e

1 3

1 8

S v o b o d a f i r s t o b t a i n e d v i n c r i s t i n e b y r e c h r o -

f r o m V i n c a r o s e a " ( a l s o s e e V i n b l a s t i n e S u l f a t e p r o f i l e , t h i s p u b l i c a t i o n ) a n d s u b s e - --

472

Page 469: Florey Vol 1

VlNCRlSTlNE SULFATE

q u e n t l y s u b j e c t i n g c e r t a i n f r a c t i o n s o f t h e s e new e l u a t e s t o a g r a d i e n t pH e x t r a c t i o n p r o - c e s s . V i n c r i s t i n e w a s e x t r a c t e d f r o m t h e s e f r a c t i o n s a t pH l e v e l s 4 . 9 0 , 5 .40 , a n d 5.90 a n d c r y s t a l l i z e d f r o m m e t h a n o l . By a somewha t s h o r t e n e d m e t h o d 1 3 h e c o m b i n e d t h e p o s t - v i n b l a s t i n e e l u a t e s a n d m o t h e r l i q u o u r s f r o m t h e i s o l a t i o n o f v i n b l a s t i n e , a n d e x t r a c t e d t h e s e i n t o c i t r i c a c i d s o l u t i o n , a d j u s t e d t h e pH t o a b o u t 4 . 4 w i t h N H 4 0 H a n d e x t r a c t e d w i t h b e n z e n e , a n d t h e n r a i s e d t h e pH t o a b o u t 7 .0 a n d a g a i n e x t r a c t e d w i t h b e n z e n e . The l a t t e r e x t r a c t w a s c h r o n i a t o g r a p h e d a n d v i n c r i s t i n e o b t a i n e d f r o m a p p r o p r i a t e f r a c t i o n s a s d e s c r i b e d a b o v e .

1 , 1.3

4 . M e t h o d s o f A n a l y s i s

4 . 1 D i r e c t S p e c t r o p h o t o m e t r i c A n a l y s i s P u r i f i e d V C R s u l f a t e may b e a s s a y e d by

c o m p a r i s o n o f i t s U V a b s o r b a n c e t o t h a t o f r e f e r e n c e m a t e r i a l , S a m p l e a n d r e f e r e n c e s t a n d a r d a r e d i l u t e d i n m e t h a n o l t o g i v e a c o n - c e n t r a t i o n o f a b o u t 20 mcg. V C R s u l f a t e p e r m i l l i l i t e r . The a b s o r b a n c e s a r e m e a s u r e d a n d c o m p a r e d i n 1. cm. c e l l s a t t h e maximum a t a b o u t 2 9 7 nm u s i n g m e t h a n o l i n a r e f e r e n c e c e l l .

7

4 . 2 C o l o r i m e t r i c A n a l y s i s The c o l o r i m e t r i c m e t h o d o f J a k o v l j e v i c

w h i c h w a s f i r s t u s e d t o a s s a y v i n b l a s t i n e s u l - f a t e ’ may a l s o be e m p l o y e d t o a s s a y v i n c r i s t i n e s u l f a t e . The m e t h o d i s s u m m a r i z e d i n t h e V i n b l a s t i n e S u l f a t e p r o f i l e i n t h i s p u b l i c a t i o n . The a b s o r p t i v i t y o f v i n c r i s t i n e s u l f a t e a t t h e maximum a b s o r p t i o n p e a k i s o n l y 75% o f t h a t e x - h i b i t e d b y v i n b l a s t i n e s u l f a t e a t t h e same peak’. The m e t h o d i s known t o be u s e f u l i n mea- s u r i n g t h e s t a b i l i t y o f v i n b l a s t i n e s u l f a t e a n d may p o s s i b l y b e u s e f u l i n t h e m e a s u r e m e n t o f v i n c r i s t i n e s u l f a t e s t a b i l i t y ” .

9

473

Page 470: Florey Vol 1

J. H. BURNS

4 . 3 B i o a s s a y M e t h o d s A b i o a s s a y u s i n g t h e a c u t e l y m p h o c y t i c

P-1534 l e u k e m i a t r a n s p l a n t e d i n DBA/2 m i c e w a s v e r y u s e f u l i n s c r e e n i n g a l k a l o i d a l f r a c t i o n s o f V i n c a r o s e a f o r a n t i - t u m o r a c t i v i t y . A c t i v i t y w a s m e a s u r e d i n t e r m s o f t h e p e r c e n t i n c r e a s e i n a v e r a g e s u r v i v a l t i m e o f m i c e t r e a t e d w i t h t h e s e f r a c t i o n s o v e r t h a t o f u n t r e a t e d c o n t r o l m i c e . The o b s e r v a t i o n o f " i n d e f i n i t e 1 ' s u r v i v o r s among D B A / 2 m i c e i m p l a n t e d w i t h t h e P -1534 l e u k e m i a a n d t r e a t e d w i t h c e r t a i n c r u d e f r a c t i o n s w h i c h w e r e c h e m i c a l l y f r e e o f l e u r o s i n e a n d v i n b l a s -

1 , a 8 t i n e 3 3 l e d t o t h e i s o l a t i o n o f v i n c r i s t i n e Dixon e t a l . h a v e u t i l i z e d a K B

c e l l c u l t u r e s y s t e m f o r t h e q u a n t i t a t i v e d e t e r - m i n a t i o n o f VCR. ( o r a c y t o t o x i c p r o d u c t t h e r e o f ) i n s e r a f r o m m i c e , r a t s , d o g s , a n d monkeys . S t a n d a r d i n h i b i t i o n c u r v e s w e r e c o n s t r u c t e d by a d d i n g known a m o u n t s o f v i n c r i s t i n e t o n o r m a l c o n t r o l s e r u m , s e r i a l l y d i l u t i n g , a n d a d d i n g t o K B c e l l c u l t u r e s . A c t i v i t y l e ' v e l s were m e a s u r e d by d e t e r m i n i n g t h e p r o t e i n c o n t e n t o f t h e c u l t u r e s 72 h o u r s a f t e r a d d i t i o n o f s e r u m f rom d r u g t r e a t e d a n i m a l s o r c o n t r o l a n i m a l s . The l i m i t o f d e t e c t i o n w a s 0 . 1 mcg. o f V C R p e r m i l l i l i t e r . They h a v e p r o p o s e d t h a t i f b l o o d l e v e l s i n humans a r e s i m i l a r t o t h a t o f m o n k e y s , r a t s , o r d o g s t h i s m e t h o d may. p o s s i b l y b e a p p l i c a b l e t o t h e s t u d y o f t h e p h y s i o l o g i c a l d i s p o s i t i o n o f v i n c r i s t i n e i n man.

l o n g - t e r m human l e u k o c y t e c u l t u r e s f o r t h e b i o - a s s a y o f v i n c r i s t i n e i n t h e s e r u m o f p a t i e n t s w i t h a c u t e l e u k e m i a . S t a n d a r d d o s e - r e s p o n s e c u r v e s were c o n s t r u c t e d u s i n g known a m o u n t s o f v i n c r i s t i n e a n d t h e p a t i e n t ' s s e r u m p r i o r t o d r u g a d m i n i s t r a t i o n . C e l l c o u n t s w e r e made on day 0 a n d d a y 7 . C i r c u l a t i n g b l o o d l e v e l s w e r e e s t i m a t e d b y c o m p a r i n g c e l l k i l l s o b t a i n e d a f t e r d r u g a d m i n i s t r a t i o n t o c e l l k i l l s o b t a i n e d p r i o r t o d r u g a d m i n i s t r a t i o n u s i n g t h e s t a n d a r d c u r v e p r e p a r e d w i t h t h e same p a t i e n t ' s s e r u m .

32 --

1 7

1 8 H i r s h a u t et &. h a v e r e p o r t e d u s i n g

474

Page 471: Florey Vol 1

VI NCRlSTl NE SULFATE

4 . 4 C o l o r i m e t r i c I d e n t i f i c a t i o n J a k o v l j e v i c e t a l . " h a v e n o t e d d i s -

t i n c t i v e c o l o r r e a c t i o n s o f v a r i o u s V i n c a r o s e a a l k a l o i d s . T h r e e r e a a e r i t s w e r e e m p l o y e d : (a> a 174 s o l u t i o n o f c e r i c ammonium s u l f a t e i n 85$/. p h o s p h o r i c a c i d , ( b ) a 1% s o l u t i o n o f f e r r i c ammonium s u l f a t e i n 85% p h o s p h o r i c a c i d , a n d ( c ) a 1% s o l u t i o n o f f e r r i c ammonium s u l f a t e i n 75% s u l f u r i c a c i d . The t e s t i s r u n u s i n g 200- 300 mcg. o f t h e f r e e b a s e i n o n e nl. o f t e s t r e a g e n t . R e a g e n t s ( a ) a n d ( c ) g i v e a c o l o r a t room t e m p e r a t u r e w h i l e r e a g e n t ( b ) m u s t b e h e a t e d 10 m i n u t e s i n a w a t e r b a t h . T h u s , v i n - c r i s t i n e g i v e s w i t h r e a g e n t ( a ) a b l u e v i o l e t c o l o r , w i t h r e a g e n t ( b ) a f t e r 10 m i n u t e s h e a t - i n g a p i n k c o l o r , a n d w i t h r e a g e n t ( c ) a b l u e c o l o r w h i c h c h a n g e s t o g r a y - b l u e . T h i s a r t i c l e g i v e s t h e c o l o r s f o r m e d b y t h e t h r e e r e a g e n t s w i t h t h i r t e e n d i f f e r e n t V i n c a r o s e a a l k a l o i d s i n c l u d i n g t h e f o u r o n c o l y t i c a l k a l o i d s v i n -

-- c r i s t i n e , v i n b l a s t i n e , l e u r o s i n e , a c d l e u r o s i d i n e .

4 . 5 T h i n L a y e r C h r o m a t o g r a p h i c A n a l y s i s T h i n l a y e r c h r o m a t o g r a p h y h.as p r o v e n t o

b e a u s e f u l a n d e f f i c i e n t m e a n s o f i d e n t i f i c a - t i o n , s e p a r a t i o n , a n d p u r i t y e x a m i n a t i o n o f v i n c r i s t i n e s u l f a t e or t h e f r e e b a s e . The r e a d e r i s r e f e r r e d t o S e c t i o n 4.4 o f t h e V i n - b l a s t i n e S u l f a t e p r o f i l e i n t h i s p u b l i c a t i o n w h i c h c o n t a i n s s e v e r a l T L C m e t h o d s a n d r e f e r - e n c e s a p p l i c a b l e t o v i n c r i s t i n e s u l f a t e or t h e f r e e b a s e . Cone e t a1.l ' h a v e r e p o r t e d t h e s e p a r a t i o n o f v i n c r i s t i n e , l e u r o s i d i n e , a n d e i t h e r v i n b l a s t i n e or l e u r o s i n e a s f r e e b a s e s o n a l u m i n a b y d e v e l o p i n g f i r s t i n 100% e t h y l a c e t a t e f o l l o w e d b y a s e c o n d d e v e l o p m e n t i n e t h y l a c e t a t e - a b s o l u t e e t h a n o l ( 3 : l ) . S v o b o d a a l s o u s e d t h i s s y s t e m ' a n d r e p o r t e d R f v a l u e s a s f o l l o w s : 0.54 f o r v i n c r i s t i n e , 0 . 3 7 for l e u r o s i d i n e , a n d 0 . 7 3 f o r v i n b l a s t i n e . D e t e c - t i o n w a s b y m e a n s o f D r a g e n d o r f f ' s r e a g e n t . Two d i m e n s i o n a l TLC may b e u s e f u l i n s e p a r a t i o n o f m o r e c o m p l e x m i x t u r e s as was n o t e d b y

Page 472: Florey Vol 1

J. H. BURNS

F a r n s w o r t h a n d H i l i n s k i ” .

i n a f e w TLC s y s t e m s a r e g i v e n i n T a b l e I. D e t e c t i o n i n e a c h c a s e w a s by s p r a y i n g w i t h 1% c e r i c ammonium s u l f a t e i n 85% p h o s p h o r i c a c i d .

The R f v a l u e s o f v i n c r i s t i n e f r e e b a s e

T a b l e I

R e f e r e n c e A d s o r b e n t E l u e n t

9 0.5 N L i O H / a b s o l u t e e t h - 0 .51 a l u m i n a a n o l - a c e t o n i -

t r i l e ( 5 : 9 5 )

m e t h a n o l (95:5)

a b s o l u t e a l - c o h o l (3:l)

11 s i l i c a g e l G c h l o r o f o r m - 0 .16

1 2 s i l i k a g e l G e t h y l a c e t a t e - 0.18

1 2 s i l i c a g e l G n - b u t a n o l - 0 .16 g l a c i a l a c e t i c a c i d - H 2 O ( 4 : l : l )

1 2 s i l i c a g e l G m e t h a n o l 0.39

5 , S t a b i l i t y - D e g r a d a t i o n

5 .1 Dry T h e r m a l D e g r a d a t i o n a a V i n c r i s t i n e s u l f a t e i s q u i t e s i m i l a r t o

v i n b l a s t i n e s u l f a t e i n r e g a r d t o i t s s t a b i l i t y when e x p o s e d t o “ d r y “ h e a t . Very s l i g h t d e g r a - d a t i o n i s o b s e r v e d when t h e d r i e d m a t e r i a l i s h e a t e d i n s e a l e d c o n t a i n e r s f o r u p t o 16 h b u r s a t l o o o C . , b u t when e x p o s e d t o n o r m a l a t m o s - p h e r e a t looo C . a b o u t 50% i s d e g r a d e d i n 1 6 h o u r s . The m a j o r d e g r a d a t i o n p r o d u c t may b e i s o l a t e d f r o m t h e d e g r a d e d m i x t u r e by t h i n l a y e r c h r o m a t o g r a p h y [ s i l i c a g e l GF, C 6 H 6 - C H C 1 3 - ( C 2 H s ) a N H , 5 0 : 5 0 : 5 1 o f t h e d e g r a d e d m i x t u r e . I t a p p e a r s as a n u n i d e n t i f i e d i m m o b i l e s p o t a t t h e p o i n t o f a p p l i c a t i o n . I n c o n t r a s t t o t h e d e - g r a d a t i o n o f v i n b l a s t i n e s u l f a t e t h e d e s a c e t y l d e r i v a t i v e o f v i n c r i s t i n e d o e s n o t f o r m u n d e r t h e s e c o n d i t i o n s ( s e e V i n b l a s t i n s S u l f a t e p r o -

476

Page 473: Florey Vol 1

VlNCRlSTlNE SULFATE

f i l e , t h i s p u b l i c a t i o n ) .

5 . 2 H y d r o l y s i s 2 " A q u e o u s s o l u t i o n s o f v i n c r i s t i n e s u l -

f a t e a t a b o u t pH 4 . 5 a r e e s s e n t i a l l y s t a b l e f o r u p t o t h r e e h o u r s a t 9 0 " C . L o w e r i n g t h e pH o f t h e s o l u t i o n s u b s t a n t i a l l y d e c r e a s e s t h e s t a b i l i t y o f t h e compound . A q u e o u s s o l u t i o n s o f t h e compound a t pH 2 m a i n t a i n e d a t 50" C. f o r 1 6 h o u r s were f o u n d t o c o n t a i n o n l y 10-20% o f u n c h a n g e d v i n c r i s t i n e s u l f a t e . T h i n l a y e r c h r o m a t o g r a p h y [ s i l i c a g e l GF, C 6 H 6 ' - - H C 1 3 - ( C z H s ) z N H , 50:50:5! o f a n a l k a l i n e e x t r a c t o f t h e h y d r o l y z e d m i x t u r e i n d i c a t e s t h a t t h e d e g r a d a t i o n p r o d u c t i s p r i m a r i l y 'one s u b s t a n c e ( u n i d e n t i f i e d ) e x h i b i t i n g a h i g h e r R f t h a n v i n c r i s t i n e .

5 .3 A s F r e e Base G r e e n i u s et &. 2 3 h a v e s t a t e d t h a t

t h e V i n c a a l k a l o i d s , e s p e c i a l l y a s t h e f r e e b a s e s , a y e r a t h e r u n s t a b l e . F a r n s w o r t h a n d H i l i n s k i " h a v e r e p o r t e d t h a t v i n c r i s t i n e a s t h e f r e e b a s e d e c o m p o s e s u n d e r o r d i n a r y s t o r a g e c o n d i t i o n s . H o w e v e r , t h e y f o u n d t h a t b e n z e n e s o l u t i o n s o f v i n c r i s t i n e b a s e w e r e s t a b l e f o r s e v e r a l w e e k s i f k e p t f r o z e n . S im- i l a r l y , J a k o v l j e v i c e t a l . 9 h a v e r e p o r t e d t h a t 1% s o l u t i o n s o f v i n c r i s t i n e i n c h l o r o f o r m a r e s t a b l e u n d e r r e f r i g e r a t i o n f o r a t l e a s t 2 4 h o u r s

--

6 . M e t a b o l i s m

The e x t r e m e l y h i g h t o x i c i t y o f v i n c r i s t i n e , a n d t h e r e f o r e u s e o f v e r y l o w d o s a g e s z 4 , h a s u n d o u b t e d l y l i m i t e d i n v e s t i g a t i o n o f t h e m e t a b o l i c d i s p o s i t i o n o f v i n c r i s t i n e i n a n i m a l s a n d i n h u m a n s . N e i t h e r t i s s u e d i s t r i - b u t i o n s t u d i e s n o r i s o l a t e d d r u g m e t a b o l i c p r o d u c t s w e r e o b s e r v e d i n t h e l i t e r a t u r e . D i x o n c. 2. h a v e c h a r t e d c o n c e n t r a t i o n s o f c i r c u l a t i n g b l o o d l e v e l s o v e r a p e r i o d o f t i m e f o l l o w i n g s i n g l e i n j e c t i o n s o f v i n c r i s t i n e s u l f a t e i n m i c e , r a t s , d o g s , a n d m o n k e y s .

1 7

477

Page 474: Florey Vol 1

J. H. BURNS

U s i n g t h e K9 c e l l c u l t u r e a s s a y s y s t e m men- t i o n e d i n S e c t i o n 4 . 3 t o m e a s u r e t h e c o n c e n t r a - t i o n o f d r u g i n t h e s e r a o f t h e s e a n i m a l s , t h e y f o u n d t h a t c o n c e n t r a t i o n - f e l l r a p i d l y f r o m p e a k l e v e l s a t t a i n e d s h o r t l y a f t e r i n j e c t i o n t o v e r y l o w l e v e l s . H i r s h a u t -- e t a1 . l ' e s t i m a t e d c i r c u l a t i n g blood l e v e l s f o l l o w i n g i n j e c t i o n o f t h e d r u g b y u s i n g l o n g - t e r m human l e u k o c y t e c u l - t u r e s f o r b i o a s s a y o f t h e s e r u m o f t h r e e p a t ' i e n t s w i t h a c u t e l e u k e m i a . A f t e r 2 mg. d o s e s ( i . v . ) t h e y r e p o r t e d t h e v i n c r i s t i n e h a l f - l i f e was 75 m i n u t e s w i t h a p e a k l e v e l o f 0 . 4 mcg. p e r m i l l i t e r o c c u r r i n g f i v e m i n u t e s a f t e r i n j e c t i o n .

478

Page 475: Florey Vol 1

VlNCRlSTlNE SULFATE

1. 2 .

3 *

4 .

5.

6 .

7.

8.

9.

10.

11.

1 2 .

13

1 4 .

1 5

1 6 .

REFERENCES G . H . S v o b o d a , L l o y d i a 2 4 N. X e u s s . M. Gorman. H . E .

-' 173-178 ( 1 9 6 1 ). Boaz a n d N. J.

C o n e , J . A m . Chem. S O C . 84, 1 5 0 9 - 1 5 1 0 ( 1 9 6 2 ) . U n i t e d S t a t e s A d o p t e d Names (USAN) N o . 5 , p . 9 1 ( 1 9 6 7 ) . U n i t e d S t a t e s P h a r m a c o p e i a l C o n v e n t i o n , I n c . , 4530 M o n t g o m e r y A v e n u e , B e t h e s d a ,

J . ' i i . P I o n c r i e f a n d W. N . L i p s c o m b , J . Am. Chem. S O C . 5, 4963-4964 ( 1 9 6 5 ) ; A c t a C r y s t . 21, 3 2 2 - 3 3 1 ( 1 9 6 6 ) . ?J. N e u s s , I4. G o r m a n , 'K. H a r g r o v e , 11. J. C o n e , I(. B i e m a n n . G . BGchi a n d R . E .

FId. 20014.

M a n n i n g , J . A m . Chem. S O C . 86, 1 4 4 0 - 1 4 4 2 ( 1 9 6 4 ) . P. Rommer, !'t. M c N u r r a y a n d K . B i e m a n n , i b i d . , 56, 1439-1440 ( 1 9 6 4 ) . U n i t e d S t a t e s P h a r m o c o p e i a XVIII, p . 7 7 3 , I lack P u b l i s h i n g Company, E a s t o n , P a . 1 8 0 4 2 ( 1 9 7 0 ) . I . 14. J a k o v l j e v i c , ,J . P h a r m . S ' : i . 51,

I . 11. J a k o v l j e v i c , L . D . S e a y a n d R . V i .

S h a f f e r , i b i d . , 53, 553-557 ( 1 9 6 4 ) . I. TT. J a k o v l j e v i c , E l i L i l l y a n d Company, n e r s o n a l c o m m u n i c a t i o n . N . 2. F a r n s w o r t h a n d I . N. H i l i n s k i , J. C h r o m a t o g . 18, 184-188 ( 1 9 6 5 ) . N . R. F a r n s w o r t h , R . N. B l o m s t e r , D . D a m - r a t o s k i , :/. A . Meer a n d L . V. C a m m a r a t o , L l o y d i a 2 7 , 3 0 2 - 3 1 4 ( 1 9 6 4 ) . G . 5 . S v o b o d a , A . J. B a r n e s , Jr., a n d R . J . A r m s t r o n g , U . S . P a t e n t 3 , 2 0 5 , 2 2 0 , S e p t e m b e r 7 , 1965. R . C . T i e m e i e r , E l i L i l l y a n d Company, p e r s o n a l c o m m u n i c a t i o n . A . D . K o s s o y a n d C . D . U n d e r b r i n k , E l i L i l l y a n d Company, p e r s o n a l c o m m u n i c a t i o n . R . L a u g h l i n , E l i L i l l y a n d Company, p e r s o n a l c o m m u n i c a t i o n .

1 8 7 - 1 8 2 ( 1 9 6 2 1.

479

Page 476: Florey Vol 1

J. H. BURNS

17.

18 .

19

2 0 .

21.

2 2 .

2 3

2 4 . 25.

2 6 .

2 7 .

28.

2 9 .

3 0 .

31 *

3 2

33 0

G . J . D i x o n , E. A . D u l m a d g e , L . T . M u l l i g a n a n d L. B. M e l l e t , C a n c e r R e s . 3, 1810-

Y . H i r s h a u t , G . Vie iss a n d E . B l a c k h a m , C l in R e s . g, 360 ( 1 9 6 8 ) . N . J . C o n e , R . M i l l e r a n d If. N e u s s , J . Pha rm. S c i . 52, 6 8 8 - 6 9 2 ( 1 9 6 3 ) . R . E. M e n s e l , E l i L i l l y a n d Company, p e r s o n a l c o m m u n i c a t i o n . G . H. S v o b o d a , N . N e u s s a n d M. Gorman , J . A m . Pha rm. A S S O C . , S c i . Ed . 48, 649-666 ( 1 9 5 9 ) . R. L. H u s s e y , E l i L i l l y a n d Company, p e r s o n a l c o m m u n i c a t i o n . 11. F. G r e e n i u s , R. Cb’. M c I n t y r e a n d C . T . B e e r , J. Med. Chem. 11, 2 5 4 - 2 5 7 (1.968). E. F r e i , 111, L l o y d i a 2 7 , 364-367 ( 1 9 6 4 ) . G . H. S v o b o d a , M . G o r m K , N. N e u s s a n d A . J . B a r n e s , J r . , J . P h a r m . S c i . 50, 409-413 ( 1 9 6 1 ) . G . H. S v o b o d a , M. Gorman , A . J . B a r n e s , Jr., a n d A . T. O l i v e r , i b i d . , s, 5 1 8 - 5 2 3 ( 1 9 6 2 ) . G . H. S v o b o d a , I . 2 . J o h n s o n , M. Gorman a n d N . N e u s s , i b i d . , 51, 7 0 7 - 7 2 0 ( 1 9 6 2 ) . I . s. J o h n s o n , J . G . A r m s t r o n g , X. Gorman a n d J . P. B u r n e t t , J r . , C a n c e r Res . 3,

N . N e u s s , I . S . J o h n s o n , J . G . A r m s t r o n g a n d C . J . J a n s e n , A d v a n c e s i n C h e m o t h e r a p y

J . L . O c c o l o w i t z , E l i L i l l y a n d Company, p e r s o n a l c o m m u n i c a t i o n . I f . N e u s s , L i l l y C o l l e c t i o n o f P h y s i c a l Data o f I n d o l e a n d D i h y d r o i n d o l e A l k a l o i d s , Vol. 2 , P a r t 1, L i l l y R e s e a r c h L a b o r a t o r i e s , E l i L i l l y a n d Company, I n d i a n a p o l i s , I n d i a n a ( 1 9 6 4 ) . I . S. J o h n s o n , H. F. K r i g h t , G . H. S v o b o d a a n d J . V l a n t i s , C a n c e r R e s . 20, 1016- 1 0 2 2 ( 1 9 6 0 ) . I . S. J o h n s o n , G . H. S v o b o d a a n d H. F.

1813 ( 1 9 6 9 ) .

1 3 9 0 - 1 4 2 7 ( 1 9 6 3 ) .

-’ 1 133-174 ( 1 9 6 4 ) .

V i r i g h t , P r o c . A m . A s s o c . C a n c e r R e s . 3 , - 331 ( 1 9 6 2 ) .

480


Recommended