+ All Categories
Home > Documents > flow and transport in porous media · 2014. 2. 4. · Flow through gravelFlow through gravel, sand...

flow and transport in porous media · 2014. 2. 4. · Flow through gravelFlow through gravel, sand...

Date post: 04-Feb-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
50
FLOW AND TRANSPORT IN POROUS MEDIA FLOW AND TRANSPORT IN POROUS MEDIA WITH APPLICATIONS K. Muralidhar Department of Mechanical Engineering Indian Institute of Technology Kanpur Kanpur 208016 India TEQIP W kh A li dM h i TEQIP Workshop on AppliedMechanics 57 October 2013, IIT Kanpur
Transcript
  • FLOW AND TRANSPORT IN POROUS MEDIAFLOW AND TRANSPORT IN POROUS MEDIA WITH APPLICATIONS

    K. MuralidharDepartment of Mechanical EngineeringIndian Institute of Technology Kanpur

    Kanpur 208016 India

    TEQIP W k h A li d M h iTEQIP Workshop on Applied Mechanics 5‐7 October 2013, IIT Kanpur

  • Flow through gravel sand soilFlow through gravel, sand, soil

    Earliest forms of porousEarliest forms of porous media studied in the literature{Ground water flow; Water{Ground water flow; Water resources engineering}

  • ComplexityComplexity

    o Flow path tortuouspo Geometry is three dimensional and not clearly 

    definedo Original approaches seek to relate pressure drop 

    and flow rate, adopting a volume‐averaged perspective

    o It has led to local volume‐averaging (REV)o Averaging results in new model parameters

  • Representative elementary volume (REV)Representative elementary volume (REV)

    Solid phase rigid and fixedClosely packed arrangement REV is larger than the pore volumevolume

    Look for solutions at a scale much larger than the REVmuch larger than the REV

    Porous continuumPorous continuum

  • Pore scale REV laboratory scale field scalePore scale, REV, laboratory scale, field scale

    Pore scale and particle diameter 1 10 micronsdiameter 1‐10 microns

    REV 0.1‐1 mmLaboratory scale 50‐200 mmyField scale 1 m – 1 km – 1000 

    km

  • What constitutes a porous medium?pSystems of interest could be naturally porous

    reservoirengineers.com

  • Alternatively

    they could be modeledmodeled as one under certain conditions.

    rack of a HPC systemrack of a HPC system

    Miniature pulse 

    Metal foam used as a heat sinktube cryocooler

  • TerminologyTerminology

    V l d l it t tVolume averaged velocity, temperatureFluid pressureSaturationMass fractions

    Improved models: Phase velocity and temperatureImproved models: Phase velocity and temperature

    Parameters arising from averagingP itPorosityPermeabilityRelative permeabilityp y

    (i) Transported variables and (ii) model parameters

  • Transport phenomenaTransport phenomena

    Fluid flow (migration percolation)Fluid flow (migration, percolation)Heat transferMass transferPhase changeUnsaturated and multi‐phase flow

    Solid‐fluid interactionSolid‐fluid interactionNon‐equilibrium phenomenaCh i l d l t h i l tiChemical and electro‐chemical reactions

  • First principles approachFirst principles approach

    o Flow of water in the pores of a matrix will satisfy Navier‐Stokes equations.

    o When Red is small (

  • Historical perspectiveHistorical perspective

    D ’ l (h i t iDarcy’s law (homogeneous, isotropic porous region, small Reynolds number)

    1 Re

    pudpKu

    Fewer variables complex geometry is now

    Fewer variables, complex geometry is now mapped to several variables in a simple geometrygeometry

    Porous continuum

  • Mathematical modelingMathematical modeling

    1Re pudpKu

    Darcy’s lawwith gravity

    1 Re

    pu

    )( gzpKu

    Incompressible medium0 u

    02 p

    steady and unsteady

    Compressible medium 

    0 u

    p

    ut

    2

    0

    Compressible fluid 

    ptpS 2

    0 ( ) linearu p (gas/liquid)

    22 2 2

    0 ( ) linear

    p

    u ptp pp p

    2 2 0 (steady)

    pp pt tp

  • Material propertiesMaterial properties

    and are fluid properties – density and viscosity.

    The solid phase defines the pore space.

    Pore space does not change during flow; if at all, it changes in a prescribed manner.

  • Model parametersModel parameters

    3 2d 22 scales with (pore diameter)180(1 )

    [ ] [ ] 0 (extended Darcy's law)

    pdK

    Ku p K p

    2

    [ ] 0 (extended Darcy s law)

    power consumed ( )

    u p K p

    K p

    or power dissipated

    Permeability, in general is a second order tensor.Darcy’s law can be derived from Stokes equations (low Reynolds number).Factor 180 in the expression for K is uncertain; a range 150‐180 is preferred.Experiments are carried out with random close packing random close packing arrangement.Fluid saturates the pore space.Particle diameter is constant over the region of interest.Wall effects secondary.

  • Boundary conditionsBoundary conditions

    No mass flux through the solid wallsNo‐slip condition cannot be appliedBeavers‐Joseph condition at fluid‐porous region interfaceinterface

    ( )f B J f P Mu

    u uy K

  • AnalysisAnalysis

    Note similarity between heat conduction and porous medium equations. Hencepressure – temperaturevelocity (flow) – heat flux (heat transfer)permeability thermal conductivitypermeability – thermal conductivity Both processes are irreversible and 

    are entropy generation rates2 2( ) ( )k T K p py g

    Text books on flow through porous media look remarkably like

    ( ) ( )k p

    Text books on flow through porous media look remarkably like books on diffusive heat and mass transfer.

  • Sample solutionsp

  • Extended Darcy’s lawExtended Darcy s law

    ' 2Brinkman 0 ( ' ; low Reynolds number)

    Bulk acceleration

    p u uK

    2'( )

    Body force field (all Reynolds numbers)

    du u u u p u udt t K

    Body force field (all Reynolds numbers)

    (viscous + foru u fu uK K

    m drag)

    5 0.51.8 1Forschheimer constant

    (180 )Brinkman Forschheimer corrected momentum equation

    fK

    2

    Brinkman-Forschheimer corrected momentum equation'( )du u u u p u fu u u

    dt t K

  • Non Darcy flow in a Porous MediumNon‐Darcy flow in a Porous Medium

    mass 0

    momentum ( )

    udu u u u

    2

    momentum ( )

    '

    u udt t

    p u fu u uK

    K

    Resembles Navier‐Stokes equations;Approximate and numerical tools can be used;

    Transition points can be located;T b l t fl i di b t di dTurbulent flow in porous media can be studied;

    Compressible flow equations can be set‐up.

  • Energy equationEnergy equation

    Teff

    eff medium

    ( ) ( ) ( )

    (medium) constant ( ) (dispersion)

    f

    p

    TC u T k Tt

    k k ud C

    Thermal equilibrium

    Thermal non‐equilibrium

    eff,f

    Fluid

    1 Nu( ) ( ) ( )fT ku T T A T T

    Water‐clay have similar ,( ) ( ) ( )Pe Pe

    Solid/ N

    ff f f f sT T A T Tt k

    kT

    Water clay have similarthermophysical properties;Air‐bronze are completelydifferent.

    eff,s/ Nu(1 ) ( ) ( )Pe Pe

    ss f f s

    kT T A T Tt k

    u is REV‐averaged velocity; Effective conductivities are second order tensors.

  • Sample solutions of the energy equation

  • Unsaturated porous mediumUnsaturated porous medium

    2( )c w w ap S p p

    ( )c w w ap

    w

    p p pd

    Sut

    0 ( ) 1

    w r

    r r w

    Ku p K

    K K S

    0 ( ) 1r r wK K S

    Air is the stagnant phase whilewater is the mobile phase.

    Time required to drain water fully from a porous medium is large.

    Flow is to be seen as moisture migration.

  • Parameter estimationParameter estimation

    Governing equations can be solved by FVM, FEM, or related numerical techniques.

    In the context of porous media, determining parameters is more important that solving the mass‐momentum‐energy equations.PorosityPermeability (absolute, relative)Capillary pressureDispersionDispersionInhomogeneities and anisotropy

  • APPLICATIONSAPPLICATIONS

    TRADITIONAL AREASTRADITIONAL AREASWater resourcesEnvironmental engineering

    i. Oil‐water flow

    ii. RegeneratorsNEWER APPLICATIONS

    iii. Coil embolization Fuel cell membranes with electrochemistryWater purification systems (RO)

    iv. Gas hydrates Nuclear waste disposal

  • Enhanced oil recoveryEnhanced oil recovery

    water + oil

    oil‐bearing rock

    Unsaturated medium

    water

    Unsaturated mediumViscosity ratioCapillary forcesSurfactantsSurfactants

  • Experimental results on the laboratory scaleExperimental results on the laboratory scale

    Sorbie et al. (1997)

    Viscous fingeringMiscible versus immiscible

  • Water saturation contoursWater saturation contours

    Isothermal injection; 1.3‐1.8 MPa Non‐isothermal Injection; 50‐100oC

  • Biomedicalapplications

    o Oscillatory pressure loading and low wall shear can weaken the walls of the artery.

    o Points of bifurcation are most vulnerable.

    o Artery tends to balloon into a bulge.bulge.

    o Pressure loading increases and wall shear decreases with deformation, creating a cascading effectcascading effect.

    mayfieldclinic.commayfieldclinic.com

  • Coil EmbolizationCoil Embolization

    Diameter 5‐10mmFrequency 1‐2 HzVelocity 0.5 – 1 m/sy /

    Oscillatory flowyWall loading (pressure, shear)Wall deformation

  • Stream traces

    Variable porosityVariable porosity model for porous and non‐porous regionsregionsCarreau‐Yashuda model for viscosity 

  • Wall shear stress and pressureWall shear stress and pressure

    Coil leaves pressure unchanged but decreases wall shear stress.

  • Regenerator modeling in a Stirling cryocooler

  • Coarse mesh is seen to be  unsuitable

    Gas temperature profile along the axis of the regenerator: Re = 10000 L=5Gas temperature profile along the axis of the regenerator: Re = 10000, L=5, Mesh of Sozen‐Kuzay (1999)

  • Thermal nonThermal non‐‐equilibrium equilibrium d ld lmodelmodel

    Dense meshes are suitable but increasing mesh length increases sensitivity to frequency

    Gas temperature profiles along the axis of the regenerator: (a) Re=10000, L=5  (b) Re=10000, L=10; Mesh of Chen‐Chang‐Huang (2001)

  • Methane Recovery from Hydrate Reservoirs by Si l D i i d COSimultaneous Depressurization and CO2

    Sequestration

    IncludesIncludes

    o Multiphase – multi species transport

    o Unsaturated porous mediao Non-isothermalo Dissociation and formation of hydrates (CH4, CO2)

    o Secondary hydrates

  • Description of methane releaseDescription of methane release

    o The reservoir has a porous structure filled with gas hydrates, free methane, and liquid waterD i ti t d l d t th l itho Depressurization at one end leads to methane release with the formation of a moving phase front

    o CO2 (gas liquid) is injected from the other side and willo CO2 (gas-liquid) is injected from the other side and will displace methane towards the production well.

    o Flow heat and mass transfer prevail in the reservoiro Flow, heat and mass transfer prevail in the reservoiro Conditions can be favorable for the formation solid CO2

    hydrate that will stay in the reservoirhydrate that will stay in the reservoir

  • Phase equilibrium diagramPhase equilibrium diagram

    stablestab e

    Gas: CH4

    unstable

    Liquid: waterHydrate: water + CH4 as a solid  unstablecrystal

  • Goals of the mathematical modelGoals of the mathematical model

    • Methane release per unit time• Rate of formation of CO2 hydratesy• Effect of depressurization and injection

    parameters – pressure and temperatureparameters pressure and temperature• Pressure, temperature, mass fraction

    distribution within the reservoirdistribution within the reservoir

  • Equilibrium curvesEquilibrium curves

    3 2280.6 280.6 ( 280.6)0.1588 0.6901 2.473 5.5134.447 4.447 4.447

    meq

    T T TP

    methane

    3 2( 278.9) ( 278.9) ( 278.9)0.06539 0.2738 0.9697 2.4793 057 3 057 3 057

    ceq

    T T TP

    CO2 3.057 3.057 3.057

  • Equations of stateEquations of state

    0.86 15 2

    0.86 15 2

    5.51721( ) 10 m , 0.11

    4.84653( ) 10 m , 0.11abs lg lg

    abs lg lg

    K

    K

    .8 653( ) 0 , 0.abs lg lg

    1ln

    lrl lr lr gr

    sk s s ss s

    l gs s

    1gn

    gl

    sk s s s

    1rg gr lr gr

    l g

    k s s ss s

    1cn

    ll l

    sP P s s s

    1c ec lr lr gr

    l g

    P P s s ss s

    m m c cg g g g

    g m c cm c m mcg g g g g g

  • Equations of state (continued)Equations of state (continued)

  • Energy release during reactionsEnergy release during reactions

    methane

    9 8 7

    ( )

    296.0 296.0 296.030100.0 - 12940.0 - 160100.014 42 14 42 14 42

    fmhH T

    T T T

    methane

    6 5

    14.42 14.42 14.42

    296.0 296.0 296.+ 69120.0 + 285800.0 - 119200.014.42 14.42

    T T T

    4

    3 2

    014.42

    3 2296.0 296.0 296.0- 193900.0 + 68220.0 37070.0 +420100.014.42 14.42 14.42

    T T T Jkg

    ( )fchH T CO28 7 6

    5 4

    278.15 278.15 278.152528.0 75.36 9727.02.739 2.739 2.739

    278.15 278.15 278.15+ 1125 0 4000 0 - 4154 0

    T T T

    T T T

    3

    + 1125.0 4000.0 - 4154.02.739 2.739 2.7

    2

    39

    278.15 278.15+ 14430.0 6668.0 +389900.02.739 2.739

    T T Jkg

  • Choice of formation parametersp

    Uddin M, Coombe DA, Law D, Gunter WD. ASME J Energy Resources Technology, 2008;130(3):10.

  • Choice of process parametersp p

  • Validation (pressure and temperature distribution)Validation (pressure and temperature distribution)

    Sun X, Nanchary N, Mohanty KK. Transport Porous Med. 2005;58:315‐38.S X M h KK Ch E S 2006 61(11) 3476 95

    No injection of CO2

    Sun X, Mohanty KK. Chem Eng Sc. 2006;61(11):3476‐95. 

  • CH4 recovery and quantity of CO2 injectedy q y j

    1 1

    tions 0.8 0.8

    60 d

    30 days 15 days

    Mol

    eFr

    act

    0.6 0.6CH4

    CO

    60 days

    Gas

    Phas

    eM

    0 2

    0.4

    0 2

    0.4CO2

    60 days

    Distance from Production Well (m)

    G

    0 20 40 60 80 1000

    0.2

    0

    0.2

    15 days30 days

    Distance from Production Well (m)

  • ClosureClosure

    Porous media applications are quite a few.Transport equations can be set upTransport equations can be set up. Simulation tools of CFD and related areas 

    b dcan be used.Number of parameters is large.Parameter estimation plays a central role in modeling and points towards need for g pcareful experiments.

  • Future directionsFuture directions 

    (a) Improved experiments (b) Fi ld l i l i(b) Field scale simulations(c) Radiation and combustion(d) d b d d b(d) Dependence on parameters can be reduced by 

    carrying out multi‐scale simulations.

  • AcknowledgementsAcknowledgements

    D t t f S i d T h lDepartment of Science and TechnologyBoard of Research in Nuclear SciencesOil Industry Development BoardNational Gas Hydrates Program

    Tanuja Sheorey M K DasTanuja Sheorey M.K. Das K.M. PillaiJyoti SwarupD b hi Mi hDebashis MishraP.P. MukherjeeAbhishek KhetanRahul SinghChandan Paul

  • THANK YOUTHANK YOU


Recommended