+ All Categories
Home > Documents > Flow design development of a dual stream Diesel Oxidation · Flow design development of a dual...

Flow design development of a dual stream Diesel Oxidation · Flow design development of a dual...

Date post: 17-Apr-2018
Category:
Upload: buianh
View: 221 times
Download: 3 times
Share this document with a friend
24
the optimization company the optimization company Flow design development of a dual stream Diesel Oxidation Catalyst (DOC) using topology optimization Markus Stephan, Björn Butz (FE-DESIGN GmbH, Karlsruhe, Germany) Volker Schaika (Albonair GmbH, Dortmund, Germany)
Transcript

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

the optimization company the optimization company

Flow design development of a

dual stream Diesel Oxidation

Catalyst (DOC) using topology

optimization

Markus Stephan, Björn Butz

(FE-DESIGN GmbH, Karlsruhe, Germany)

Volker Schaika

(Albonair GmbH, Dortmund, Germany)

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Overview

1. Introduction: Topology Optimization for

Fluid Flow

2. Application Case: Diesel Oxidation

Catalyst

► Introduction

► Flow Analysis Actual Design

► Topology Optimization

► Flow Analysis Optimized Design

► Final Design

3. Summary

4/10/2013 Slide 2 |

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

FE-DESIGN

Business activities

► TOSCA Structure and TOSCA Fluid

► Customization and specific solutions on customer demand

► Excellent expertise and service in the CAE field for different industries

► Projects led with personal commitment and high reliability

► Worldwide consulting and support by FE-DESIGN and its resellers

► Support of the selection process of CAE tools to efficiently meet company needs

► Basic and advanced seminars on TOSCA Structure and TOSCA Fluid

► Onsite trainings

4/10/2013

ENGINEERING SERVICES

TRAINING, SUPPORT AND CONSULTING

SOFTWARE-DEVELOPMENT

Slide 3 |

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Distribution partners of FE-DESIGN

4/10/2013

Americas

FE-DESIGN Optimization Inc.

Germany/Austria/Switzerland

FE-DESIGN & Partner

Belgium, Netherlands, Luxemburg

4RealSim USA/Canada

SimuTech Group

Brazil

VirtualCAE

Russia

OOO MES

Czech/Slovakia

T.S.E.

India

Enphiniti

South-East Asia

Dazztech

Turkey

CAE Solutions, FIGES

Japan

CD-adapco, VINAS

Korea

SAMWON, CAE-CUBE, CD-adapco

Taiwan

Simutech

China

Kingswell, FEAonline,

FLYOND, PERA, Sili-Tech, Soyotec

UK

Wilde Analysis

Scandinavia

FE-DESIGN

Slide 4 |

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Existing

design

Topology optimization for CFD

Example: HVAC duct

4/10/2013

Optimization process

CAD redesign

and verification

Implementation

Design space

Existing

design

Optimization result

Slide 5 |

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Topology optimization with TOSCA Fluid: Step by step

► Define the design space (e.g. CAD)

► Meshing “as usual”

► Define boundary conditions

► Run the optimization

4/10/2013

Design space

Outflow 1

Outflow 2

Inflow

Slide 6 |

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Topology optimization with TOSCA Fluid: Step by step

4/10/2013

Outflow 2

Optimized channel

shape

Prevented flow

Free flow

Transition area

(defining new channel shape)

Inflow

Outflow 1

Design space

Slide 7 |

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Diesel oxidation catalyst (DOC)

Introduction (1)

► CO + ½ O2 → CO2

► {CnHm} + {O2} → CO2 + H2O

4/10/2013 Slide 8 |

Source: Tognum: MTU & MTU Onsite Energy

Source: Wikipedia

CO + ½ O2 → CO2

{CnHm} + {O2} → CO2 + H2O

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Diesel oxidation catalyst (DOC)

New design concept

4/10/2013 Slide 11 |

IN OUT

Monolith 1

Monolith 2

Flow Split

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Diesel oxidation catalyst (DOC)

Flow analysis results (actual design)

4/10/2013 Slide 13 |

Contours of total pressure Pathlines (coloured by velocity magnitude)

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Diesel oxidation catalyst (DOC)

Total pressure loss (actual design)

4/10/2013 Slide 14 |

A

B

A

B

To

tal p

ressu

re, P

a

Flow path length →

► Overall total pressure drop 7920 pa

► Ex. monolith total pressure drop: 3150 pa

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Diesel oxidation catalyst (DOC)

Flow uniformity and split ratio (actual design)

4/10/2013 Slide 15 |

A

B 1

2 IN OUT

g = 0,925 g = 0,996 ► Flow A: 47,5 %

► Flow B: 52,5 %

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Diesel oxidation catalyst (DOC)

Topology optimization : Objectives and constraints

Objective

► Find a modified design proposal with low total

pressure drop

Constraints

► The new design may not exceed the existing

design (maximum available design space)

► Inlet and outlet connecting ducts as well as the

monolithic blocks have to be kept unchanged

(“frozen zones”)

► Keep or enhance flow uniformity and flow split

ratio

4/10/2013 Slide 16 |

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Diesel oxidation catalyst (DOC)

Topology optimization setup (1)

4/10/2013 Slide 17 |

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Diesel oxidation catalyst (DOC)

Topology optimization setup (2)

4/10/2013 Slide 18 |

1

p

v

v

3 p v

2 v

4

v p

v

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Diesel oxidation catalyst (DOC)

Topology optimization run

► 4 individual optimization runs with TOSCA

Fluid Ver 2.1

► Convergence achieved after approx. 10.000

Iterations

► Wall clock run time approx. 12 h / 1 CPU

(serial) / run

4/10/2013 Slide 19 |

Sedimentation

“pseudo Pressure drop”

TOSCA Fluid optimization progress

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Diesel oxidation catalyst (DOC)

Derived designs

4/10/2013 Slide 22 |

1

2

3

4

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Diesel oxidation catalyst (DOC)

Comparison of designs

4/10/2013 Slide 23 |

Actual design Optimized design

A

B Monolith 1

Monolith 2

A

B Monolith 1

Monolith 2

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Diesel oxidation catalyst (DOC)

Flow analysis results (comparison of designs)

4/10/2013 Slide 26 |

Actual design Optimized design

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Diesel oxidation catalyst (DOC)

Design comparison (total pressure loss)

4/10/2013 Slide 27 |

A

B Total pressure

drop reduction

approx.

2000 Pa

To

tal p

ressu

re, P

a

Flow path length →

Actual design

Optimized design

- 60%

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Diesel oxidation catalyst (DOC)

Flow uniformity and split ratio (optimized design)

4/10/2013 Slide 28 |

A

B 1

2 IN OUT

Flow A: 49,2 %

Flow B: 50,8 %

g = 0,939 g = 0,982

(g = 0,925) (g = 0,996)

(47,5 %)

(52,5 %)

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Diesel oxidation catalyst (DOC)

Final design

4/10/2013 Slide 29 |

Redesign by consideration of manufacturing constraints

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Diesel oxidation catalyst (DOC)

Summary: Flow performance

4/10/2013 Slide 31 |

Actual design Optimized design

Total pressure drop, pa 7920 pa 6000 pa (- 24.2 %)

Total pressure drop (ex. Monolithes), pa 3150 pa 1238 pa (- 60.7 %)

Total pressure drop monolith A, pa 4140 pa 4650 pa

Total pressure drop monolith B, pa 5330 pa 4870 pa

Flow ratio A, % 47.5 % 49.2 %

Flow ratio B, % 52.5 % 50.8 %

Uniformity A 0.996 0.982

Uniformity B 0.925 0.939

© F

E-D

ESIG

N

Dr. Markus Stephan

STAR Global Conference 2013

Diesel oxidation catalyst (DOC)

Summary

► CFD analysis and optimization of a new, two-way DOC concept

► Topology optimization helped to find a significant improved design variant using a first,

rough design as the available design space

► The raw optimization results need to be reconstructed

► The achieved total pressure drop reduction compared to the actual design is 60%

(relative to the optimizable sections) resp. 25% (over all)

► Flow split ratio and the individual flow uniformities at the monolithic inlet section have

been improved resp. homogenized

► Based on the results of the topology optimization, a totally new, innovative,

manufacturable and highly efficient design proposal could be found

► Total process time was approx. 1 to 2 weeks

4/10/2013 Slide 32 |


Recommended