+ All Categories
Home > Documents > FLOW%PROPERTIES%OFSHORT%ROTATION%EUCALYPTUS%BIOMASSFLOW%PROPERTIES%OFSHORT%ROTATION%EUCALYPTUS%BIOMASS...

FLOW%PROPERTIES%OFSHORT%ROTATION%EUCALYPTUS%BIOMASSFLOW%PROPERTIES%OFSHORT%ROTATION%EUCALYPTUS%BIOMASS...

Date post: 05-Jun-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
1
ABSTRACT INTRODUCTION METHODOLOGY RESULTS DISCUSSION CONCLUSIONS OBJECTIVES Short rota(on Eucalyptus trees are a prime candidate for biomass. They have a rapid growth rate, are very adaptable, and have high energy content. In the effort to produce biofuels on a larger scale, the problems associated with the storage, preprocessing, and handling, of woody biomass have become visible. Reliable and consistent flow of biomass out of storage equipment is crucial in the downstream conversion into biofuels. To ensure this, flow proper(es of the material must be known in order to design storage bins, silos, hoppers, and feeders correctly. Physical proper(es are also needed for design of storage and handling equipment. Moisture content is one of the proper(es that affect the flowability and physical proper(es of biological materials. The objec(ves of this research are to (1) inves(gate the effect of harves(ng condi(ons (with or without bark), age (2 yr. and 7 yr.), and moisture content on the flowability and physical proper(es of ground Eucalyptus trees and; (2) to compare this to 7 yr. old loblolly pine clean chips. Experimental samples (2 yr. old and 7 yr. old) were ground through a 1/8” screen hammer mill. Flow proper(es (cohesion, flow func(on, angle of wall fric(on, angle of internal fric(on, hopper half angle, compressibility, and flow index) and physical proper(es (par(cle density and bulk density) of the ground Eucalyptus samples and ground 7 yr. old loblolly pine clean chips were measured at 10%, 20%, and 30% moisture contents (wet basis). All experiments were performed in duplicate. Texture Analyzer Cohesive strength slightly decreased with increase in age and with bark (Fig 1). As moisture content increased, cohesion slightly increased. Age, bark, and moisture content had significant effects (p<0.05) on compressibility (decreasing, increasing, and increasing, respec(vely) (Fig 2). Even though not significant, angle of internal fric(on increased with age, bark, and moisture content (Fig 3). Age, bark, and moisture content significantly increased the angle of wall fric(on (Fig 4). Hopper half angle was lowered as moisture content increased and with the presence of bark (Fig 5). Par(cle density was significantly affected by moisture content, age, and bark, while bulk density was not affected by these factors (Table 1). Flow index indicated all samples were cohesive (Table 1). Moisture content, age, and bark reduced the cohesiveness (or flowability) of the samples. Age, bark, and moisture content have significant effects on the flow proper(es and flowability of ground Eucalyptus biomass. 2 yr. old samples had slightly be]er fric(onal proper(es than 7 yr. old, but not significantly. Bark and increasing moisture content caused a greater decrease in flowability. Results show that discharge aids will be needed for this material because it cannot be handled using gravity alone. Understanding flow proper(es of ground biomass is important in correctly designing storage equipment such as silos, bins, and hoppers. Since biomass is a bulk material, it will have the typical flow problems associated with bulk materials. The objec(ves of this research is to quan(fy the effect of age (2 yr. old vs. 7 yr. old), whether it has bark or not, and moisture content on flow proper(es (cohesion, angle of internal fric(on, angle of wall fric(on, hopper half angle, and compressibility) and physical proper(es (bulk density and par(cle density) of ground Eucalyptus biomass. Age, bark, and moisture content had a significant effect on the fric(onal proper(es that were measured. TERMINOLOGY 2E8NB 2 yr. old Eucalyptus without bark 2E8WB 2 yr. old Eucalyptus with bark 7E8NB 7 yr. old Eucalyptus without bark PCC8 7 yr. old loblolly pine clean chips Samples used in this experiment Fig. 1: Sample type and moisture effect on cohesion 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2E8NB 2E8WB 7E8NB PCC8 Cohesion, kPa 10% 20% 30% Fig 3: Sample type and moisture effect on angle of internal fricRon 0 10 20 30 40 50 60 2E8NB 2E8WB 7E8NB PCC8 Angle of Internal FricRon 10% 20% 30% Fig. 5: Sample type and moisture effect on hopper half angle 0 5 10 15 20 25 30 35 40 45 2E8NB 2E8WB 7E8NB PCC8 Hopper Half Angle 10% 20% 30% Fig. 2: Sample type and moisture effect on compressibility at applied pressure of 6 kPa 0 5 10 15 20 25 30 35 40 45 2E8NB 2E8WB 7E8NB PCC8 Compressibility, % 10% 20% 30% Fig. 4: Sample type and moisture effect on angle of wall fricRon (mild steel) 0 5 10 15 20 25 30 2E8NB 2E8WB 7E8NB PCC8 Angle of Wall FricRon 10% 20% 30% Moisture Content (w.b.) Sample Name ParRcle Density (kg/m 3 ) Bulk Density (kg/m 3 ) Flow Index 10% 2E8NB 1315.25 178.31 3.22 2E8WB 1303.53 139.80 3.03 7E8NB 1263.67 204.49 3.33 PCC8 1421.72 221.67 2.63 20% 2E8NB 1335.70 165.52 2.94 2E8WB 1334.15 131.75 2.63 7E8NB 1285.94 187.91 2.94 PCC8 1429.34 211.48 2.50 30% 2E8NB 1180.29 154.69 2.78 2E8WB 1180.04 126.97 2.33 7E8NB 1166.85 184.24 2.70 PCC8 1402.35 204.95 2.63 Table 1: Physical properRes of samples at 10%, 20%, and 30% M.C. (wet basis) ACKNOWLEDGEMENT Support of the REU fellow by the Na(onal Science Founda(on Compe((ve Grant no. 1149940 is gratefully acknowledged. Powder Flow Tester
Transcript
Page 1: FLOW%PROPERTIES%OFSHORT%ROTATION%EUCALYPTUS%BIOMASSFLOW%PROPERTIES%OFSHORT%ROTATION%EUCALYPTUS%BIOMASS Dustin Till & Oladiran Fasina Biosystems Engineering, Auburn University ABSTRACT%

FLOW  PROPERTIES  OF  SHORT  ROTATION  EUCALYPTUS  BIOMASS Dustin Till & Oladiran Fasina

Biosystems Engineering, Auburn University

ABSTRACT  

INTRODUCTION  

METHODOLOGY  

RESULTS  

DISCUSSION  

CONCLUSIONS  

OBJECTIVES  

v  Short  rota(on  Eucalyptus  trees  are  a  prime  candidate  for   biomass.   They  have   a   rapid   growth   rate,   are   very  adaptable,  and  have  high  energy  content.  

 v  In  the  effort  to  produce  biofuels  on  a  larger  scale,  the  

problems  associated  with  the  storage,  pre-­‐processing,  and  handling,  of  woody  biomass  have  become  visible.  

 v  Reliable  and  consistent  flow  of  biomass  out  of  storage  

equipment   is   crucial   in   the   downstream   conversion  into  biofuels.  

v  To  ensure  this,  flow  proper(es  of  the  material  must  be  known   in  order  to  design  storage  bins,  silos,  hoppers,  and  feeders  correctly.  

 v  Physical   proper(es   are   also   needed   for   design   of  

storage  and  handling  equipment.    v  Moisture   content   is   one   of   the   proper(es   that   affect  

the   flowability   and   physical   proper(es   of   biological  materials.  

 

   The  objec(ves  of  this  research  are  to  (1)  inves(gate  the  effect   of   harves(ng   condi(ons   (with   or   without   bark),  age   (2   yr.   and   7   yr.),   and   moisture   content   on   the  flowability  and  physical  proper(es  of  ground  Eucalyptus  trees   and;   (2)   to   compare   this   to   7   yr.   old   loblolly   pine  clean  chips.    

v  Experimental  samples  (2  yr.  old  and  7  yr.  old)  were  ground  through  a  1/8”  screen  hammer  mill.  v  Flow  proper(es  (cohesion,  flow  func(on,  angle  of  wall  fric(on,  angle  of  internal  fric(on,  hopper  half  

angle,  compressibility,  and  flow  index)  and  physical  proper(es  (par(cle  density  and  bulk  density)  of  the  ground  Eucalyptus  samples  and  ground  7  yr.  old  loblolly  pine  clean  chips  were  measured  at  10%,  20%,  and  30%  moisture  contents  (wet  basis).  

v  All  experiments  were  performed  in  duplicate.    

Texture  Analyzer  

v  Cohesive   strength   slightly   decreased  with   increase  in   age   and   with   bark   (Fig   1).   As   moisture   content  increased,  cohesion  slightly  increased.  

v  Age,   bark,   and   moisture   content   had   significant  effects   (p<0.05)   on   compressibility   (decreasing,  increasing,  and  increasing,  respec(vely)  (Fig  2).    

v  Even   though   not   significant,   angle   of   internal  fric(on   increased   with   age,   bark,   and   moisture  content  (Fig  3).  

v  Age,   bark,   and   moisture   content   significantly  increased  the  angle  of  wall  fric(on  (Fig  4).  

 v  Hopper  half  angle  was  lowered  as  moisture      

content    increased    and  with    the    presence                                      of    bark    (Fig  5).    

v  Par(cle   density   was   significantly   affected   by  moisture  content,  age,  and  bark,  while  bulk  density  was  not  affected  by  these  factors  (Table  1).  

 v  Flow   index   indicated   all   samples   were   cohesive  

(Table  1).  Moisture  content,  age,  and  bark  reduced  the  cohesiveness  (or  flowability)  of    the  samples.  

v  Age,   bark,   and   moisture   content   have   significant  effects   on   the   flow   proper(es   and   flowability   of  ground  Eucalyptus  biomass.  

 v  2   yr.   old   samples   had   slightly   be]er   fric(onal  

proper(es  than  7  yr.  old,  but  not  significantly.  Bark  and   increasing   moisture   content   caused   a   greater  decrease  in  flowability.    

v  Results  show  that  discharge  aids  will  be  needed  for  this   material   because   it   cannot   be   handled   using  gravity  alone.  

 

Understanding   flow   proper(es   of   ground   biomass   is  important   in   correctly   designing   storage   equipment  such  as  silos,  bins,  and  hoppers.  Since  biomass  is  a  bulk  material,   it   will   have   the   typical   flow   problems  associated  with   bulk  materials.   The   objec(ves   of   this  research  is  to  quan(fy  the  effect  of  age  (2  yr.  old  vs.  7  yr.   old),   whether   it   has   bark   or   not,   and   moisture  content  on  flow  proper(es  (cohesion,  angle  of  internal  fric(on,   angle   of  wall   fric(on,   hopper   half   angle,   and  compressibility)   and   physical   proper(es   (bulk   density  and   par(cle   density)   of   ground   Eucalyptus   biomass.  Age,   bark,   and   moisture   content   had   a   significant  effect  on  the  fric(onal  proper(es  that  were  measured.    

TERMINOLOGY  2E8NB   2  yr.  old  Eucalyptus  without  bark  

2E8WB            2  yr.  old  Eucalyptus  with  bark  

7E8NB   7  yr.  old  Eucalyptus  without  bark  

PCC8   7  yr.  old  loblolly  pine  clean  chips  

Samples  used  in  this  experiment  

Fig.  1:  Sample  type  and  moisture  effect  on  cohesion  

0.0  

0.2  

0.4  

0.6  

0.8  

1.0  

1.2  

1.4  

1.6  

1.8  

2E8NB   2E8WB   7E8NB   PCC8  

Cohe

sion

,  kPa

 

10%   20%   30%  

Fig  3:  Sample  type  and  moisture  effect  on  angle  of  internal  fricRon  

0  

10  

20  

30  

40  

50  

60  

2E8NB   2E8WB   7E8NB   PCC8  

Angle  of  In

ternal  Fric

Ron  

10%   20%   30%  

Fig.  5:  Sample  type  and  moisture  effect  on  hopper  half  angle  

0  

5  

10  

15  

20  

25  

30  

35  

40  

45  

2E8NB   2E8WB   7E8NB   PCC8  

Hopp

er  Half  A

ngle  

10%   20%   30%  

Fig.  2:  Sample  type  and  moisture  effect  on  compressibility  at  applied  pressure  of  6  kPa  

0  

5  

10  

15  

20  

25  

30  

35  

40  

45  

2E8NB   2E8WB   7E8NB   PCC8  

Compressibility,  %  

10%   20%   30%  

Fig.  4:  Sample  type  and  moisture  effect  on  angle  of  wall  fricRon  (mild  steel)  

0  

5  

10  

15  

20  

25  

30  

2E8NB   2E8WB   7E8NB   PCC8  

Angle  of  W

all  Fric

Ron  

10%   20%   30%  

Moisture  Content  (w.b.)   Sample  Name   ParRcle  Density  

(kg/m3)  Bulk  Density  (kg/m3)   Flow  Index  

10%  

2E8NB   1315.25   178.31   3.22  2E8WB   1303.53   139.80   3.03  7E8NB   1263.67   204.49   3.33  PCC8   1421.72   221.67   2.63  

20%  

2E8NB   1335.70   165.52   2.94  2E8WB   1334.15   131.75   2.63  7E8NB   1285.94   187.91   2.94  PCC8   1429.34   211.48   2.50  

30%  

2E8NB   1180.29   154.69   2.78  2E8WB   1180.04   126.97   2.33  7E8NB   1166.85   184.24   2.70  PCC8   1402.35   204.95   2.63  

Table  1:  Physical  properRes  of  samples  at  10%,  20%,  and  30%  M.C.  (wet  basis)  

ACKNOWLEDGEMENT  Support   of   the   REU   fellow   by   the   Na(onal   Science  Founda(on   Compe((ve   Grant   no.   1149940   is  gratefully    acknowledged.  

Powder  Flow  Tester  

Recommended