+ All Categories
Home > Documents > Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment...

Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment...

Date post: 04-Aug-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
29
1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding award DE-FE0031592 2018 NETL CO 2 Capture Technology Meeting Devin Bostick, Linde LLC August 16, 2018 Pittsburgh, PA
Transcript
Page 1: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

1

Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO2 Capture (PCC) Solvent Losses

DOE funding award DE-FE0031592

2018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

2

Acknowledgement and Disclaimer

Acknowledgement This presentation is based on work supported by the Department of Energy under Award Number DE-FE0031592

Disclaimer ldquoThis presentation was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof nor any of their employees makes any warranty express or implied or assumes any legal liability or responsibility for the accuracy completeness or usefulness of any information apparatus product or process disclosed or represents that its use would not infringe privately owned rights Reference herein to any specific commercial product process or service by trade name trademark manufacturer or otherwise does not necessarily constitute or imply its endorsement recommendation or favoring by the United States Government or any agency thereof The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereofrdquo

Objectives Scope Timeline Participants amp Funding

3

ProjectOverview

4

Overview of The Linde Group

1

Linde EngineeringTechnology-focused Air Separation

Global 1

Air Separation

Global 1

Hydrogen Syn Gas

Global 2

Hydrogen Syn Gas

Global 2

Olefins

Global 2

Olefins

Global 2

Natural Gas

Global 3

Natural Gas

Global 3

HyCO Tonnage Plants

gt70 plants

HyCO Tonnage Plants

gt70 plants

HyCO Tonnage Plants

gt70 plants

ASU Tonnage Plants

gt300 plants

ASU Tonnage Plants

gt300 plants

ECOVAR Std Plants

gt1000 plants

ECOVAR Std Plants

gt1000 plants

Linde Gas - TonnageWorld-class operations

CO2 Plants

gt100 plants

Founded

Sales (2017)

Employees

Countries

US Linde Gas HQ

US Linde Engineering Facilities

Leveraging

Synergies

1879

$20 billion

64000

gt100

Bridgewater NJ

Tulsa OK

Holly Springs GA

Houston TX

Linde has extensive experience in CO2 capture amp handling

5

Experience in design amp erection of different wash processes for CO2

removalbull Linde-Rectisol reg

bull BASF Oase technreg

bull Benfield

Long experience in operation of CO2 plants transport amp distribution

bull OCAP pipeline (Netherlands)

bull Onsite business

bull Bulk supply

CO2 Capture and Injection

LNG plant for Statoil in SnoslashhvitNorway with CO2

capture from natural gas and CO2 re-injection off-shore

CO2 Wash Units

Removal of impurities like Hydrocarbons Heavy metals O2 amp H2O for food grade CO2

CO2 Food Grade Plants CO2 Transport and Distribution

6

Overall ObjectiveDemonstrate and evaluate two innovative flue gas aerosol pretreatment technologies identified to significantly reduce high aerosol particle concentrations (gt107 particlescm3) in the 70-200 nm particle size range

(1) A high velocity water spray-based system with unique design features(2) A novel electrostatic precipitator (ESP) device with an optimized design and operating conditions

Specific Objectivesmdash Complete an aerosol mechanism literature review and develop a mechanistic model

characterizing aerosol formation and interaction with amine solvent in the absorber of a PCC plantmdash Design build install commission and operate the two technologies for flue gas aerosol

pretreatment at a coal-fired power plant host site providing the flue gas as a slipstream at a flow rate of 500-1000 scfm

mdash Complete parametric testing and analysis of each technology to demonstrate achievement of target performance

mdash Complete a benchmarking study to identify the optimal aerosol pretreatment system for commercial deployment and integration with solvent-based PCC technology

Project Objectives

Start Finish

Q3 2018 Q4 2018 Q1 2019 Q2 2019 Q3 2019 Q4 2019 Q1 2020 Q2 2020 Q3 2020 Q4 2020

Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

Budget Period 1 612018 11302018

10 Project management 612018 11302018

21 Mechanism review 612018 6292018

22 Mechanism modeling 722018 11282018

31 Design basis dev 612018 6292018

32 Basic engineering 722018 1052018

33 Detailed engineering 1082018 11282018

34 Test planning 10292018 11282018

Budget Period 2 1232018 11292019

10 Project management 1232018 11292019

41 ESP system fabrication 1232018 8302019

42 Spray system fabrication 1232018 8302019

43 Procurement for install 1232018 8302019

51 Site installation 922019 10182019

52 Commission amp start-up 10212019 11292019

Budget Period 3 1222019 11302020

10 Project management 1222019 11302020

61 ESP system tests 1222019 2242020

62 Spray system tests 2172020 4302020

63 Test analysis 542020 8282020

70 Benchmarking analysis 8312020 11272020

80 Removal of equipment 8312020 11272020

Project Scope Timeline amp Milestones

7

BP1 Design amp Engineering

A

B

C

D

E

F

G

HIJ

BP2 Fabrication amp Installation

BP3 Testing amp Analysis

Task ID Milestone Completion Date1 A Updated PMP 629181 B Kick-Off Meeting 727182 C Mechanisms review amp modeling complete 1130183 D Design amp engineering complete 1130183 E Test plan complete 1130184 F Fabrication amp procurement complete 830195 G Installation amp commissioning complete 1129196 H Parametric testing complete 51207 I Benchmarking analysis complete 1130208 J Removal of equipment complete 113020

8

Project Participants

Partner

Organization

Lead contact(s) Key Role(s)

DOE-NETL Andy Aurelio Project Manager

-Funding amp sponsorship

Linde LLC Devin BostickPrincipal InvestigatorKrish Krishnamurthy Technology Director

-Prime contract-Overall program management-High velocity water spray-based aerosol pretreatment technology owner

University of Illinois Urbana-Champaign (UIUC)

Kevin OrsquoBrien Project Lead

-Aerosol mechanisms review-Host site liaison-Flue gas and liquid effluent composition measurement amp analysis

Washington University in St Louis (WUSTL)

Pratim BiswasProject Lead

-Aerosol mechanisms modeling lead-ESP-based aerosol pretreatment technology owner-Characterization of aerosols in flue gas

Affiliated Construction Services (ACS)

Greg LarsonProject Lead

-Procurement management for high velocity water spray-based system-Construction management for site modifications amp module installation

9

Project Budget DOE Funding and Cost Share

SourceBudget Period 1

Jun 2018 ndash Nov 2018

Budget Period 2

Dec 2018 ndash Nov 2019

Budget Period 3

Dec 2019 ndash Nov 2020Total

DOE Funding $457822 $1290725 $1078826 $2827834

Cost Share $176612 $260949 $269860 $707421

Total Project $634435 $1551674 $1348686 $3534795

Cost share commitments

Linde $234869

University of Illinois (UIUC) $231339

Washington University in St Louis (WUSTL) $191213

Affiliated Construction Services (ACS) $50000

Technology Development

Rationale Background amp Previous Research

10

Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment

11

Amine losses

Flue gas cooler

Flue gas blower

Flue gas inlet

Condensate

Major factor aerosol particles in flue gas from coal-fired power plants

Aerosol particle formation during coal combustion

S N

N

S

Inorganic oxides and metals (eg SiO2 Fe P)

Sulfur

Nitrogen

Organic volatiles

Inorganic volatiles (eg Hg)

Coal particle1st stage

devolatilization

Burning of tar

Tar

Oxidation

CO2

Partial oxidation

Metal or its Suboxide vapor (eg SiO Ca)

Absorption

Re-oxidation amp particle formation

Nano-sized inorganic aerosol particle

(eg SiO2 particle)

Inorganic aerosols shielding organics

Aerosols sent in flue gas to PCC absorber

(1) Nucleation(2) Condensation

04 nmParticle Size 04 ndash 2 nm 2 - 100 nm 0001-1000 mm

(3) Coagulation

3 main stages of aerosol formation1

Burning of char

Bottom Ash

2nd stage devolatilization

Ash formation

1 Wang Xinlei amp Williams Brent amp Tang Y amp Huang Yuhsuan amp Kong L amp Yang Xin amp Biswas Pratim (2013) Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace Atmospheric Chemistry and Physics 13 105194acp-13-10919-2013

12

Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1

13

Phase IAerosol growth and nucleation from water in absorber

Phase IIAerosol growth from amine in absorber

Phase IIIBuildup of captured CO2and amine bound to CO2in aerosols

Phase IVSalt accumulation inside particles causing further amine and CO2 diffusion into aerosols

02 microm particle

1 G Lombardo B Fostas M Shah A Morken O Hvidsten J Mertens E Hamborg Results from Aerosol Measurement in Amine Plant Treating Gas Turbine and Residue Fluidized Catalytic Cracker Flue Gases at the CO2 Technology Centre Mongstad GHGT-13 Energy Procedia 2017 114 Pages 1210-1230

Water condensation

Nucleation from water supersaturation

1 microm particle

Amine absorption until complete saturation

2 microm particle

CO2 and CO2+amine absorption

2-5 microm particleSalt accumulationCO2 and amine diffusion

Amine contained in aerosol particles are then emitted from PCC absorber in treated gas stream

The Kelvin equation gives the minimum particle diameter d of a liquid1 supersaturation leads to nucleation of smaller particles

14

Benefits of aerosol particle reduction

Benefits

Manageable solvent supply and transport logistics

Optimum power plant efficiency

when integrated with PCC

Reduction of particulate that can unfavorably react with amine

solvent

Improved PCC plant specific

energy performance

Environmental sustainability and

performance

Improved PCC plant business

caselower cost

Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1

For power plants integrated with solvent-based PCC without an existing baghouse optimized flue gas aerosol pretreatment is the only viable option to reduce aerosol concentrations from gt109 particlescm3 to manageable levels near 104-106

particlescm3 for particles with diameters in the range of 70-200 nm

Pretreatment has traditionally been performed using simple ESPs and Brownian filters

Few systematic studies have been conducted to evaluate performance of different technologies over a full range of conditions

15

BH = baghouse

1 Based on single point experience some options eg dry bed conf may handle higher particle concentrations than others

Chart1

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment
10000000
1000000
10000000
1000000000

Literature data

Literature data

Abbott (no RH no dryer)
Abbott (RH w dryer)
SR (Wilsonville before BH)
SR (Wilsonville after BH)
Linde (Wilsonville after BH)
UT Austin (Wilsonville before BH)
TCM (no BH no BF)
Particle Diameter (nm)
Particle Number Concentration (cm3)

Methods

10E7 particlescm3 reported literature maximum
Abbott aerosol data showing gt10E7 particlescm3 compared to other flue gases
Abbott (reheater off no dryer)
Abbott (42 reheater w dryer)
NCCC after baghouse (WUSL measurements)
NCCC before baghouse (Southern Research measurements)
NCCC after baghouse (Southern Research measurements)
NCCC before baghouse (University of Texas at Austin measurements)
Residual fluidized catalytic cracker (Technology Centre Mongstad measurements)

Methods

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) at which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pre-treatment

TEA

Technology proposed in this work
Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Base case Case 1 Case 2 Case 3 Case 4 Case 5
DOE Case B12B Reference w baghouse wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system wo baghouse (breakeven)
Cost Basis Year 2011$ 2011$ 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4416576 4530755 4497804 4432245 4516307 45154043379888
Thermal input (kWt) (HHV) 1694366 1694366 1736605 1723975 1698847 1732627
Coal flowrate (kghr) 224791 224791 230395 228719 225385 229867 11478458479996
Total steam turbine power (kWe) 642000 642000 643332 654224 644359 656869
Gross Power (MWe) 6420 6420 6433 6542 6444 6569 96690 9669 3
Auxiliary Power (MWe) 913 913 934 1038 941 1072 9969
Net Power (MWe) 551 551 550 550 550 550
PCC Reboiler Duty (MW) 3311 3311 4106 3372 3323 3386
Specific Duty (MJkg CO2) 248 248 300 248 248 248 4405686
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal 450395408921933 982680892193308 445482004460967
Fuel Unit Cost ($ton) 6854 6854 6854 6854 6854 6854 440778425101536 440864946116186
Power Plant Efficiency () (HHV) 32500 32500 31668 31930 32387 31725
Boiler Efficiency () (HHV) 89100 89100 89100 89100 89100 89100
CO2 Produced (MThr) 480 480 492 489 482 491
CO2 Produced (lbhr) 1058945 1058945 1085344 1077450 1061745 1082857 4415000
CO2 Produced (MTyear) 4207729 4207729 4312625 4281259 4218856 4302745 443224546416968
CO2 Captured () 90 90 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085 085 085
Variable Cost $60366961 $82839499 $61871865 $61421865 $60526594 $60429346
Fixed Cost $63094548 $62118858 $62746820 $62624815 $62372778 $62753124
Fuel Cost $126458921 $126458921 $12961144817 $12866877277 $12679332619 $12931450746
Total Overnight Cost $2384351816 $2331909536 $2364444218 $2356810371 $2341063213 $2364453241 $2364444218
Total Plant Cost $1939142000 $1890358000 $1921756120 $1915655869 $1903054023 $1922071279
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $38782850 $37807160 $38435122 $38313117 $38061080 $38441426
Maintenance Material Cost $18097725 $18097725 $1854888787 $1841398019 $1814558223 $18145582
Consumables Cost $36775427 $59247965 $3769221114 $3741807239 $3687267513 $36775427
Waste Disposal Cost $5493809 $5493809 $563076559 $558981254 $550833671 $5508337
By-Products Cost $0 $0 $0 $0 $0 $0
Preproduction Costs (x1000) $59957 $60854 $59820 $59635 $59257 $59691
Inventory Capital (x1000) $41125 452270951087832 418250410605904 $4155922 410280350765301 $4159189
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0 $0 $0
Land (x1000) $900 $877 $892 $889 $883 $892
Other Owners Costs (x1000) $290871 $283554 $288263 $287348 $285458 $288311
Financing Costs (x1000) $52357 $51040 $51887 $51723 $51382 $51896
Total Overnight Costs (TOC) $2384351816 $2331909536 $2364444218 $235681037146 $2341063213 $236445324106
Coal and sorbent handling ($x1000) $52286 $52286 $53154 $52896 $52378 $53073
Coal and sorbent prep amp feed ($x1000) $24983 $24983 $25398 $25274 $25027 $25359
Feedwater amp misc BOP systems ($x1000) $112150 $112150 $114013 $113457 $112348 $113838
PC boiler ($x1000) $400793 $400793 $407450 $405465 $401502 $406825
Flue gas cleanup ($x1000) $197475 $148691 $151161 $150424 $148954 $150929
CO2 removal ($x1000) $533757 $533757 $542622 $543241 $544054 $545052 935327377984728
CO2 compression amp drying ($x1000) $98381 $98381 $100015 $99528 $98555 $99862
Heat and power integration ($x1000) $0 $0 $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45027 $45775 $45552 $45107 $45705
Steam turbine generaor ($x1000) $178176 $178176 $181135 $180253 $178491 $180858
Cooling water system ($x1000) $62254 $62254 $63288 $62980 $62364 $63191
Ashspent sorbent handling system ($x1000) $19028 $19028 $19344 $19250 $19062 $19314
Accessory electric plant ($x1000) $93584 $93584 $95138 $94675 $93749 $94993
Instrumentation amp control ($x1000) $31654 $31654 $32180 $32023 $31710 $32130
Improvements to site ($x1000) $18063 $18063 $18363 $18274 $18095 $18335
Buildings amp structures ($x1000) $71531 $71531 $72719 $72365 $71657 $72608
TPC without PCC ($x1000) $1307004 $1258220 $1279119 $1272887 $1260445 $1277157
PCC cost ($x1000) $632138 $632138 $642638 $642769 $642609 $644914
COE ($MWh wo TampS) $13320 $13686 $13368 $13305 $13185 $13279
COE ($MWh w TampS) $14280 $14646 $14353 $14282 $14149 $14262
Fuel Costs ($MWh) $3090 $3084 $3165 $3139 $3095 $3139
Variable Costs ($MWh) $1470 $2023 $1511 $1500 $1478 $1474
Fixed Costs ($MWh) $1540 $1517 $1532 $1529 $1523 $1529
Capital Costs ($MWh) $7220 $7062 $7160 $7137 $7089 $7136
Cost of CO2 Captured ($ton wo TampS) $5262 $7069 $6497 $6472 $6414 $6440
Cost of CO2 Captured ($MT wo TampS) $5800 $6413 $5894 $5872 $5818 $5842
Cost of CO2 Captured ($MT w TampS) $6901 $7514 $6995 $6972 $6919 $6943
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $46312929 $47467476 $47122241 $46435398 $47358727
CO2 TSM Cost ($MWh) $960 $960 $985 $977 $963 $984
Coal handling amp conveying (kWe) 480 480 492 488 481 491
Pulverizers 3370 3370 3454 3429 3379 3446
Sorbent handling amp reagent preparation (kWe) 1070 1070 1097 1089 1073 1094
Ash handling (kWe) 780 780 799 794 782 798
Primary air fans (kWe) 1670 1670 1712 1699 1674 1708
Forced draft fans (kWe) 2130 2130 2183 2167 2136 2178
Induced draft fans (kWe) 8350 8350 8558 8496 8372 8539
SCR (kWe) 60 60 61 61 60 61
Activated carbon injection (kWe) 27 27 28 27 27 28
Dry sorbent injection (kWe) 108 108 111 110 108 110
Baghouse (kWe) 110 110 113 112 110 112
Wet FGD (kWe) 3550 3550 3638 3612 3559 3630
PCC plant auxiliaries (kWe) 16000 16000 16399 27280 18682 30361 14000 2640
CO2 compression (kWe) 35690 35690 36580 36314 35784 36496
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400 400 400
Condensate pumps (kWe) 640 640 656 651 642 654
Circulating water pumps (kWe) 7750 7750 7943 7885 7770 7925
Ground water pumps (kWe) 710 710 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010 4010 4010
Transformer losses (kWe) 2380 2380 2439 2422 2386 2434
Total auxiliaries (kWe) 91285 91285 93383 103756 94148 107186
Net plant heat rate (BTUkWh) 10498 10498 10775 10686 10535 10755
Condenser cooling duty (GJhr) 1867 1867 1914 1900 1872 1909
Limestone sorbent flowrate (kghr) 22213 22213 22767 22601 22272 22715
Raw water withdrawal (m3min) 30 30 30 30 30 30
Raw water consumption (m3min) 23 23 24 24 23 24
NOx (MTyear) 1517 1517 1555 1544 1521 1551
Particulates (MTyear) 195 195 200 198 196 199
Hg (kgyear) 6 6 6 6 6 6
SO2 (MTyear) 0 0 0 0 0 0
COE Reduction (w TampS) 256 051 002 -092 -012
COE Reduction (wo TampS) 275 036 -011 -101 -031
Cost of CO2 Reduction (wo TampS) 1057 162 123 032 073
Cost of CO2 Reduction (w TampS) 888 136 104 027 061
PCC Plant Cost Reduction 000 -166 -168 -166 -202
Method Amine emissions (kg aminetonne CO2 Aerosol particle concentration range where adequate (particlescm3)
Baghouse 0009 0 to 1E+7 0 10000000
Dry bed operation (no BH) lt03 0 to 1E+6 0 1000000
Absorber operating conditions (no BH) lt03 0 to 1E+7 0 10000000
Pre-treatment solutions (no BH) lt03 0 to 1E+9 0 1000000000
Abbott Power Plant (42 reheat burner w dryer) Abbott Power Plant (0 reheat burner wo dryer) Wilsonville (after baghouse) (WashU) Wilsonville (before baghouse) (SR) UT Austin (NCCC) (before baghouse) TCM (no BH no BF) Wilsonville (after baghouse) (SR) Wilsonville Parametric Tests (Linde) Wilsonville Long-term Tests (Linde)
Anal Ins Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) kg amineMT CO2 04080107622 00095091096
SMPS 682819795644892 982 427900576923077 157 14468166666667 982 1000000 10 4000000 2400 100000 35 650000 10
SMPS 735415966499163 102 532616923076924 163 160013 102 200000 20 3000000 2800 1150000 60 600000 20
SMPS 667026341708543 106 642390384615385 168 14813666666667 106 200000 40 2000000 2800 10000000 100 530000 40
SMPS 566092556113903 109 764663461538462 175 91535 109 1000000 70 1000000 3000 10000000 160 400000 70
SMPS 60451071356784 113 993782692307693 181 21280833333333 113 6300000 110 900000 3200 1400000 280 350000 120
SMPS 640447634840872 118 103840961538462 188 277361 118 8000000 200 800000 3200 120000 480 50000 200
SMPS 63931935678392 122 119893653846154 195 30501933333333 122 5000000 400 600000 3800 1400 640 20000 400
SMPS 67781860636516 126 155467692307692 202 35493966666667 126 800000 700 500000 3800 1000 960 10000 600
SMPS 678467648241207 131 173807500 209 25912033333333 131 1 800 400000 3800 1000 1920 5000 800
SMPS 736663748743719 136 198103846153846 217 20493533333333 136 1 1000 318900 3800 900 2560 100 1000
APS 791600921273033 141 245189807692308 225 34751733333333 141 300000 3800 750 5120
APS 776599182579565 146 27240826923077 233 43427866666667 146 200000 3800
APS 748095604690118 151 301905384615385 241 592247 151 100000 4000
APS 852265149078728 157 348734615384616 25 614018 157 90000 4100
APS 99985068676717 163 375607115384616 259 87004466666667 163 80000 4200
11043162479062 168 442790384615385 269 137845333333333 168 70000 4200
119948670016751 175 523365384615385 279 183715 175
112247051926298 181 445000384615385 289 241348 181
126325376884422 188 591696153846154 30 299061666666667 188
130470221105528 195 660759615384616 311 380613666666667 195
140578994974874 202 706025000000001 322 419054666666667 202
158666502512563 209 794851923076924 334 64940 209
15709983919598 217 860896153846155 346 883372 217
146305745393635 225 847675000000001 359 130709333333333 225
175050465661642 233 943019230769232 372 182267 233
20586516917923 241 949319230769232 385 263912666666667 241
21836616080402 25 96023076923077 40 355521333333333 25
221599480737019 259 956119230769232 414 484109 259
231432663316583 269 1025750000 429 647791 269
228343541038526 279 964151923076924 445 830633 279
238293788944724 289 982432692307693 461 1054740 289
24027170519263 30 103288461538462 478 125545333333333 30
254431427135679 311 981471153846155 514 1435950 311
281640274706868 322 100416538461539 533 161942333333333 322
279502308207705 334 995501923076924 552 169811666666667 334
273149989949749 346 969944230769232 573 182475666666667 346
301086837520938 359 89473076923077 594 187437333333333 359
337571587939699 372 791292307692308 615 1885320 372
335709822445561 385 719676923076924 638 184891666666667 385
303290958123953 40 67950576923077 661 177122333333333 40
296100891122278 414 554032692307693 685 167757333333333 414
305137175879397 429 441263461538462 71 1563790 429
298671450586265 445 39593576923077 737 143831333333333 445
267825041876047 461 294517500 764 1276340 461
268898750418761 478 235586538461539 791 111617666666667 478
246584087102178 496 219594615384616 82 956378666666667 496
22753597319933 514 183537307692308 851 786719333333333 514
20805557118928 533 132950384615385 882 654658 533
193145899497488 552 991526923076924 914 524162333333333 552
180397058626466 573 723884615384616 947 398477 573
159287497487437 594 49395000 982 294095333333333 594
140093966499163 615 329623653846154 1018 216415 615
125712003350084 638 232231346153846 1055 155941333333333 638
11582181239531 661 170568076923077 1094 109822 661
933554824120604 685 114283076923077 1134 811729333333333 685
766995862646567 71 851232692307693 1176 533704666666667 71
625145611390285 737 558684615384616 1219 398905 737
531419574539364 764 425857115384616 1263 272716 764
401304512562814 791 320039230769231 131 224988666666667 791
302290415410386 82 224643461538462 1358 175139333333333 82
234256559463987 851 204812115384616 1407 137377666666667 851
174277956448911 882 133968461538462 1459 1185743 882
119620948073702 914 120355384615385 1512 901657 914
860247541038527 947 1114950 1568 95869666666667 947
588795608040202 982 892715384615385 1625 866524 982
453500100502513 1018 75693076923077 1685 79995933333333 1018
306104184254607 1055 734100000000001 1747 855652 1055
214392951423786 1094 732648076923078 1811 82140833333333 1094
171584234505863 1134 530092307692308 1877 81683533333333 1134
129452606365159 1176 609534615384616 1946 71270166666667 1176
109800234170854 1219 491257692307693 2017 67286033333333 1219
875061487437187 1263 391936346153846 2091 75311933333333 1263
755701192629817 131 427556153846154 2167 71270066666667 131
76907041876047 1358 528136538461539 2247 670295 1358
816854716917924 1407 538875 2329 612828 1407
682292696817421 1459 484882692307693 2414 60685066666667 1459
484327912897823 1512 523173076923077 2503 64353 1512
601245688442212 1568 532400 2595 575052 1568
608947306532664 1625 391983653846154 269 53995533333333 1625
57423530318258 1685 39818576923077 2788 56581733333333 1685
665198110552765 1747 390621538461539 289 50526966666667 1747
641284469011726 1811 282454038461539 2996 52087233333333 1811
551386834170855 1877 301689807692308 3106 390656 1877
515487715242882 1946 392116538461539 322 40069366666667 1946
557056576214406 2017 262214807692308 3338 42029366666667 2017
585014763819096 2091 300040192307693 346
563217748743719 2167 327144807692308 3587
516019996649917 2247 291944038461539 3718
635039155778895 2329 410772307692308 3854
678386860971525 2414 438539038461539 3995
540607373534339 2503 810536808 542
534717524288108 2595 882899298 583
624962696817421 269 884130018 626
507626351758795 2788 848442984 673
482487487437186 289 79158372 723
462233661641542 2996 628394094 777
614290241206031 3106 484154992 835
549685423785595 322 3250266138 898
485615936348409 3338 1930962502 965
446652388609716 346 97717245 1037
733651755443887 3587 451665266 1114
73515500837521 3718 1710666186 1197
491714613065327 3854 750723816 1286
453128479061977 3995 3692090772 1382
22625785 542 08614861802 1486
23149945 583 11076250522 1596 89545 542
2547951466667 626 1 1715 10021 583
26411294 673 1 1843 11057 626
2478060433333 723 1 1981 12158 673
2428556433333 777 1 2129 12433 723
1953912566667 835 1 2288 113975 777
1421029306667 898 01230695642 2458 9234 835
797872833333 965 1 2642 70035 898
430967506667 1037 1 2839 49195 965
21839545 1114 1 3051 3452 1037
84446483333 1197 01230695642 3278 23495 1114
320313357 1286 1 3523 1597 1197
34943302333 1382 1 3786 1089 1286
17471639033 1486 1 4068 781 1382
116477634 1596 1 4371 5965 1486
08735821033 1715 1 4698 4325 1596
05823884733 1843 1 5048 3995 1715
05823884733 1981 1 5425 3185 1843
02911942367 2129 1 5829 2325 1981
1 2288 1 6264 2185 2129
02911942367 2458 1 6732 194 2288
02911942367 2642 1 7234 1705 2458
08735821033 2839 1 7774 1395 2642
02911942367 3051 1 8354 124 2839
08735821033 3278 1 8977 97 3051
05823884733 3523 1 9647 92 3278
08735818 3786 1 10370 71 3523
23295514667 4068 1 11140 56 3786
05823884733 4371 1 11970 51 4068
05823884733 4698 1 12860 35 4371
1 5048 1 13820 31 4698
1 5425 1 14860 21 5048
1 5829 1 15960 16 5425
1 6264 1 17150 1 5829
1 6732 1 18430 055 6264
1 7234 1 19810 05 6732
1 7774 055 7234
1 8354 02 7774
1 8977 005 8354
1 9647 0 8977
1 10370 01 9647
1 11140 005 10370
1 11970 005 11140
1 12860 01 11970
1 13820 0 12860
1 14860 0 13820
1 15960 0 14860
1 17150 0 15960
1 18430 0 17150
1 19810 0 18430
0 19810
0009
lt03
lt03
lt03
Page 2: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

2

Acknowledgement and Disclaimer

Acknowledgement This presentation is based on work supported by the Department of Energy under Award Number DE-FE0031592

Disclaimer ldquoThis presentation was prepared as an account of work sponsored by an agency of the United States Government Neither the United States Government nor any agency thereof nor any of their employees makes any warranty express or implied or assumes any legal liability or responsibility for the accuracy completeness or usefulness of any information apparatus product or process disclosed or represents that its use would not infringe privately owned rights Reference herein to any specific commercial product process or service by trade name trademark manufacturer or otherwise does not necessarily constitute or imply its endorsement recommendation or favoring by the United States Government or any agency thereof The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereofrdquo

Objectives Scope Timeline Participants amp Funding

3

ProjectOverview

4

Overview of The Linde Group

1

Linde EngineeringTechnology-focused Air Separation

Global 1

Air Separation

Global 1

Hydrogen Syn Gas

Global 2

Hydrogen Syn Gas

Global 2

Olefins

Global 2

Olefins

Global 2

Natural Gas

Global 3

Natural Gas

Global 3

HyCO Tonnage Plants

gt70 plants

HyCO Tonnage Plants

gt70 plants

HyCO Tonnage Plants

gt70 plants

ASU Tonnage Plants

gt300 plants

ASU Tonnage Plants

gt300 plants

ECOVAR Std Plants

gt1000 plants

ECOVAR Std Plants

gt1000 plants

Linde Gas - TonnageWorld-class operations

CO2 Plants

gt100 plants

Founded

Sales (2017)

Employees

Countries

US Linde Gas HQ

US Linde Engineering Facilities

Leveraging

Synergies

1879

$20 billion

64000

gt100

Bridgewater NJ

Tulsa OK

Holly Springs GA

Houston TX

Linde has extensive experience in CO2 capture amp handling

5

Experience in design amp erection of different wash processes for CO2

removalbull Linde-Rectisol reg

bull BASF Oase technreg

bull Benfield

Long experience in operation of CO2 plants transport amp distribution

bull OCAP pipeline (Netherlands)

bull Onsite business

bull Bulk supply

CO2 Capture and Injection

LNG plant for Statoil in SnoslashhvitNorway with CO2

capture from natural gas and CO2 re-injection off-shore

CO2 Wash Units

Removal of impurities like Hydrocarbons Heavy metals O2 amp H2O for food grade CO2

CO2 Food Grade Plants CO2 Transport and Distribution

6

Overall ObjectiveDemonstrate and evaluate two innovative flue gas aerosol pretreatment technologies identified to significantly reduce high aerosol particle concentrations (gt107 particlescm3) in the 70-200 nm particle size range

(1) A high velocity water spray-based system with unique design features(2) A novel electrostatic precipitator (ESP) device with an optimized design and operating conditions

Specific Objectivesmdash Complete an aerosol mechanism literature review and develop a mechanistic model

characterizing aerosol formation and interaction with amine solvent in the absorber of a PCC plantmdash Design build install commission and operate the two technologies for flue gas aerosol

pretreatment at a coal-fired power plant host site providing the flue gas as a slipstream at a flow rate of 500-1000 scfm

mdash Complete parametric testing and analysis of each technology to demonstrate achievement of target performance

mdash Complete a benchmarking study to identify the optimal aerosol pretreatment system for commercial deployment and integration with solvent-based PCC technology

Project Objectives

Start Finish

Q3 2018 Q4 2018 Q1 2019 Q2 2019 Q3 2019 Q4 2019 Q1 2020 Q2 2020 Q3 2020 Q4 2020

Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

Budget Period 1 612018 11302018

10 Project management 612018 11302018

21 Mechanism review 612018 6292018

22 Mechanism modeling 722018 11282018

31 Design basis dev 612018 6292018

32 Basic engineering 722018 1052018

33 Detailed engineering 1082018 11282018

34 Test planning 10292018 11282018

Budget Period 2 1232018 11292019

10 Project management 1232018 11292019

41 ESP system fabrication 1232018 8302019

42 Spray system fabrication 1232018 8302019

43 Procurement for install 1232018 8302019

51 Site installation 922019 10182019

52 Commission amp start-up 10212019 11292019

Budget Period 3 1222019 11302020

10 Project management 1222019 11302020

61 ESP system tests 1222019 2242020

62 Spray system tests 2172020 4302020

63 Test analysis 542020 8282020

70 Benchmarking analysis 8312020 11272020

80 Removal of equipment 8312020 11272020

Project Scope Timeline amp Milestones

7

BP1 Design amp Engineering

A

B

C

D

E

F

G

HIJ

BP2 Fabrication amp Installation

BP3 Testing amp Analysis

Task ID Milestone Completion Date1 A Updated PMP 629181 B Kick-Off Meeting 727182 C Mechanisms review amp modeling complete 1130183 D Design amp engineering complete 1130183 E Test plan complete 1130184 F Fabrication amp procurement complete 830195 G Installation amp commissioning complete 1129196 H Parametric testing complete 51207 I Benchmarking analysis complete 1130208 J Removal of equipment complete 113020

8

Project Participants

Partner

Organization

Lead contact(s) Key Role(s)

DOE-NETL Andy Aurelio Project Manager

-Funding amp sponsorship

Linde LLC Devin BostickPrincipal InvestigatorKrish Krishnamurthy Technology Director

-Prime contract-Overall program management-High velocity water spray-based aerosol pretreatment technology owner

University of Illinois Urbana-Champaign (UIUC)

Kevin OrsquoBrien Project Lead

-Aerosol mechanisms review-Host site liaison-Flue gas and liquid effluent composition measurement amp analysis

Washington University in St Louis (WUSTL)

Pratim BiswasProject Lead

-Aerosol mechanisms modeling lead-ESP-based aerosol pretreatment technology owner-Characterization of aerosols in flue gas

Affiliated Construction Services (ACS)

Greg LarsonProject Lead

-Procurement management for high velocity water spray-based system-Construction management for site modifications amp module installation

9

Project Budget DOE Funding and Cost Share

SourceBudget Period 1

Jun 2018 ndash Nov 2018

Budget Period 2

Dec 2018 ndash Nov 2019

Budget Period 3

Dec 2019 ndash Nov 2020Total

DOE Funding $457822 $1290725 $1078826 $2827834

Cost Share $176612 $260949 $269860 $707421

Total Project $634435 $1551674 $1348686 $3534795

Cost share commitments

Linde $234869

University of Illinois (UIUC) $231339

Washington University in St Louis (WUSTL) $191213

Affiliated Construction Services (ACS) $50000

Technology Development

Rationale Background amp Previous Research

10

Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment

11

Amine losses

Flue gas cooler

Flue gas blower

Flue gas inlet

Condensate

Major factor aerosol particles in flue gas from coal-fired power plants

Aerosol particle formation during coal combustion

S N

N

S

Inorganic oxides and metals (eg SiO2 Fe P)

Sulfur

Nitrogen

Organic volatiles

Inorganic volatiles (eg Hg)

Coal particle1st stage

devolatilization

Burning of tar

Tar

Oxidation

CO2

Partial oxidation

Metal or its Suboxide vapor (eg SiO Ca)

Absorption

Re-oxidation amp particle formation

Nano-sized inorganic aerosol particle

(eg SiO2 particle)

Inorganic aerosols shielding organics

Aerosols sent in flue gas to PCC absorber

(1) Nucleation(2) Condensation

04 nmParticle Size 04 ndash 2 nm 2 - 100 nm 0001-1000 mm

(3) Coagulation

3 main stages of aerosol formation1

Burning of char

Bottom Ash

2nd stage devolatilization

Ash formation

1 Wang Xinlei amp Williams Brent amp Tang Y amp Huang Yuhsuan amp Kong L amp Yang Xin amp Biswas Pratim (2013) Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace Atmospheric Chemistry and Physics 13 105194acp-13-10919-2013

12

Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1

13

Phase IAerosol growth and nucleation from water in absorber

Phase IIAerosol growth from amine in absorber

Phase IIIBuildup of captured CO2and amine bound to CO2in aerosols

Phase IVSalt accumulation inside particles causing further amine and CO2 diffusion into aerosols

02 microm particle

1 G Lombardo B Fostas M Shah A Morken O Hvidsten J Mertens E Hamborg Results from Aerosol Measurement in Amine Plant Treating Gas Turbine and Residue Fluidized Catalytic Cracker Flue Gases at the CO2 Technology Centre Mongstad GHGT-13 Energy Procedia 2017 114 Pages 1210-1230

Water condensation

Nucleation from water supersaturation

1 microm particle

Amine absorption until complete saturation

2 microm particle

CO2 and CO2+amine absorption

2-5 microm particleSalt accumulationCO2 and amine diffusion

Amine contained in aerosol particles are then emitted from PCC absorber in treated gas stream

The Kelvin equation gives the minimum particle diameter d of a liquid1 supersaturation leads to nucleation of smaller particles

14

Benefits of aerosol particle reduction

Benefits

Manageable solvent supply and transport logistics

Optimum power plant efficiency

when integrated with PCC

Reduction of particulate that can unfavorably react with amine

solvent

Improved PCC plant specific

energy performance

Environmental sustainability and

performance

Improved PCC plant business

caselower cost

Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1

For power plants integrated with solvent-based PCC without an existing baghouse optimized flue gas aerosol pretreatment is the only viable option to reduce aerosol concentrations from gt109 particlescm3 to manageable levels near 104-106

particlescm3 for particles with diameters in the range of 70-200 nm

Pretreatment has traditionally been performed using simple ESPs and Brownian filters

Few systematic studies have been conducted to evaluate performance of different technologies over a full range of conditions

15

BH = baghouse

1 Based on single point experience some options eg dry bed conf may handle higher particle concentrations than others

Chart1

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment
10000000
1000000
10000000
1000000000

Literature data

Literature data

Abbott (no RH no dryer)
Abbott (RH w dryer)
SR (Wilsonville before BH)
SR (Wilsonville after BH)
Linde (Wilsonville after BH)
UT Austin (Wilsonville before BH)
TCM (no BH no BF)
Particle Diameter (nm)
Particle Number Concentration (cm3)

Methods

10E7 particlescm3 reported literature maximum
Abbott aerosol data showing gt10E7 particlescm3 compared to other flue gases
Abbott (reheater off no dryer)
Abbott (42 reheater w dryer)
NCCC after baghouse (WUSL measurements)
NCCC before baghouse (Southern Research measurements)
NCCC after baghouse (Southern Research measurements)
NCCC before baghouse (University of Texas at Austin measurements)
Residual fluidized catalytic cracker (Technology Centre Mongstad measurements)

Methods

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) at which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pre-treatment

TEA

Technology proposed in this work
Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Base case Case 1 Case 2 Case 3 Case 4 Case 5
DOE Case B12B Reference w baghouse wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system wo baghouse (breakeven)
Cost Basis Year 2011$ 2011$ 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4416576 4530755 4497804 4432245 4516307 45154043379888
Thermal input (kWt) (HHV) 1694366 1694366 1736605 1723975 1698847 1732627
Coal flowrate (kghr) 224791 224791 230395 228719 225385 229867 11478458479996
Total steam turbine power (kWe) 642000 642000 643332 654224 644359 656869
Gross Power (MWe) 6420 6420 6433 6542 6444 6569 96690 9669 3
Auxiliary Power (MWe) 913 913 934 1038 941 1072 9969
Net Power (MWe) 551 551 550 550 550 550
PCC Reboiler Duty (MW) 3311 3311 4106 3372 3323 3386
Specific Duty (MJkg CO2) 248 248 300 248 248 248 4405686
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal 450395408921933 982680892193308 445482004460967
Fuel Unit Cost ($ton) 6854 6854 6854 6854 6854 6854 440778425101536 440864946116186
Power Plant Efficiency () (HHV) 32500 32500 31668 31930 32387 31725
Boiler Efficiency () (HHV) 89100 89100 89100 89100 89100 89100
CO2 Produced (MThr) 480 480 492 489 482 491
CO2 Produced (lbhr) 1058945 1058945 1085344 1077450 1061745 1082857 4415000
CO2 Produced (MTyear) 4207729 4207729 4312625 4281259 4218856 4302745 443224546416968
CO2 Captured () 90 90 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085 085 085
Variable Cost $60366961 $82839499 $61871865 $61421865 $60526594 $60429346
Fixed Cost $63094548 $62118858 $62746820 $62624815 $62372778 $62753124
Fuel Cost $126458921 $126458921 $12961144817 $12866877277 $12679332619 $12931450746
Total Overnight Cost $2384351816 $2331909536 $2364444218 $2356810371 $2341063213 $2364453241 $2364444218
Total Plant Cost $1939142000 $1890358000 $1921756120 $1915655869 $1903054023 $1922071279
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $38782850 $37807160 $38435122 $38313117 $38061080 $38441426
Maintenance Material Cost $18097725 $18097725 $1854888787 $1841398019 $1814558223 $18145582
Consumables Cost $36775427 $59247965 $3769221114 $3741807239 $3687267513 $36775427
Waste Disposal Cost $5493809 $5493809 $563076559 $558981254 $550833671 $5508337
By-Products Cost $0 $0 $0 $0 $0 $0
Preproduction Costs (x1000) $59957 $60854 $59820 $59635 $59257 $59691
Inventory Capital (x1000) $41125 452270951087832 418250410605904 $4155922 410280350765301 $4159189
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0 $0 $0
Land (x1000) $900 $877 $892 $889 $883 $892
Other Owners Costs (x1000) $290871 $283554 $288263 $287348 $285458 $288311
Financing Costs (x1000) $52357 $51040 $51887 $51723 $51382 $51896
Total Overnight Costs (TOC) $2384351816 $2331909536 $2364444218 $235681037146 $2341063213 $236445324106
Coal and sorbent handling ($x1000) $52286 $52286 $53154 $52896 $52378 $53073
Coal and sorbent prep amp feed ($x1000) $24983 $24983 $25398 $25274 $25027 $25359
Feedwater amp misc BOP systems ($x1000) $112150 $112150 $114013 $113457 $112348 $113838
PC boiler ($x1000) $400793 $400793 $407450 $405465 $401502 $406825
Flue gas cleanup ($x1000) $197475 $148691 $151161 $150424 $148954 $150929
CO2 removal ($x1000) $533757 $533757 $542622 $543241 $544054 $545052 935327377984728
CO2 compression amp drying ($x1000) $98381 $98381 $100015 $99528 $98555 $99862
Heat and power integration ($x1000) $0 $0 $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45027 $45775 $45552 $45107 $45705
Steam turbine generaor ($x1000) $178176 $178176 $181135 $180253 $178491 $180858
Cooling water system ($x1000) $62254 $62254 $63288 $62980 $62364 $63191
Ashspent sorbent handling system ($x1000) $19028 $19028 $19344 $19250 $19062 $19314
Accessory electric plant ($x1000) $93584 $93584 $95138 $94675 $93749 $94993
Instrumentation amp control ($x1000) $31654 $31654 $32180 $32023 $31710 $32130
Improvements to site ($x1000) $18063 $18063 $18363 $18274 $18095 $18335
Buildings amp structures ($x1000) $71531 $71531 $72719 $72365 $71657 $72608
TPC without PCC ($x1000) $1307004 $1258220 $1279119 $1272887 $1260445 $1277157
PCC cost ($x1000) $632138 $632138 $642638 $642769 $642609 $644914
COE ($MWh wo TampS) $13320 $13686 $13368 $13305 $13185 $13279
COE ($MWh w TampS) $14280 $14646 $14353 $14282 $14149 $14262
Fuel Costs ($MWh) $3090 $3084 $3165 $3139 $3095 $3139
Variable Costs ($MWh) $1470 $2023 $1511 $1500 $1478 $1474
Fixed Costs ($MWh) $1540 $1517 $1532 $1529 $1523 $1529
Capital Costs ($MWh) $7220 $7062 $7160 $7137 $7089 $7136
Cost of CO2 Captured ($ton wo TampS) $5262 $7069 $6497 $6472 $6414 $6440
Cost of CO2 Captured ($MT wo TampS) $5800 $6413 $5894 $5872 $5818 $5842
Cost of CO2 Captured ($MT w TampS) $6901 $7514 $6995 $6972 $6919 $6943
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $46312929 $47467476 $47122241 $46435398 $47358727
CO2 TSM Cost ($MWh) $960 $960 $985 $977 $963 $984
Coal handling amp conveying (kWe) 480 480 492 488 481 491
Pulverizers 3370 3370 3454 3429 3379 3446
Sorbent handling amp reagent preparation (kWe) 1070 1070 1097 1089 1073 1094
Ash handling (kWe) 780 780 799 794 782 798
Primary air fans (kWe) 1670 1670 1712 1699 1674 1708
Forced draft fans (kWe) 2130 2130 2183 2167 2136 2178
Induced draft fans (kWe) 8350 8350 8558 8496 8372 8539
SCR (kWe) 60 60 61 61 60 61
Activated carbon injection (kWe) 27 27 28 27 27 28
Dry sorbent injection (kWe) 108 108 111 110 108 110
Baghouse (kWe) 110 110 113 112 110 112
Wet FGD (kWe) 3550 3550 3638 3612 3559 3630
PCC plant auxiliaries (kWe) 16000 16000 16399 27280 18682 30361 14000 2640
CO2 compression (kWe) 35690 35690 36580 36314 35784 36496
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400 400 400
Condensate pumps (kWe) 640 640 656 651 642 654
Circulating water pumps (kWe) 7750 7750 7943 7885 7770 7925
Ground water pumps (kWe) 710 710 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010 4010 4010
Transformer losses (kWe) 2380 2380 2439 2422 2386 2434
Total auxiliaries (kWe) 91285 91285 93383 103756 94148 107186
Net plant heat rate (BTUkWh) 10498 10498 10775 10686 10535 10755
Condenser cooling duty (GJhr) 1867 1867 1914 1900 1872 1909
Limestone sorbent flowrate (kghr) 22213 22213 22767 22601 22272 22715
Raw water withdrawal (m3min) 30 30 30 30 30 30
Raw water consumption (m3min) 23 23 24 24 23 24
NOx (MTyear) 1517 1517 1555 1544 1521 1551
Particulates (MTyear) 195 195 200 198 196 199
Hg (kgyear) 6 6 6 6 6 6
SO2 (MTyear) 0 0 0 0 0 0
COE Reduction (w TampS) 256 051 002 -092 -012
COE Reduction (wo TampS) 275 036 -011 -101 -031
Cost of CO2 Reduction (wo TampS) 1057 162 123 032 073
Cost of CO2 Reduction (w TampS) 888 136 104 027 061
PCC Plant Cost Reduction 000 -166 -168 -166 -202
Method Amine emissions (kg aminetonne CO2 Aerosol particle concentration range where adequate (particlescm3)
Baghouse 0009 0 to 1E+7 0 10000000
Dry bed operation (no BH) lt03 0 to 1E+6 0 1000000
Absorber operating conditions (no BH) lt03 0 to 1E+7 0 10000000
Pre-treatment solutions (no BH) lt03 0 to 1E+9 0 1000000000
Abbott Power Plant (42 reheat burner w dryer) Abbott Power Plant (0 reheat burner wo dryer) Wilsonville (after baghouse) (WashU) Wilsonville (before baghouse) (SR) UT Austin (NCCC) (before baghouse) TCM (no BH no BF) Wilsonville (after baghouse) (SR) Wilsonville Parametric Tests (Linde) Wilsonville Long-term Tests (Linde)
Anal Ins Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) kg amineMT CO2 04080107622 00095091096
SMPS 682819795644892 982 427900576923077 157 14468166666667 982 1000000 10 4000000 2400 100000 35 650000 10
SMPS 735415966499163 102 532616923076924 163 160013 102 200000 20 3000000 2800 1150000 60 600000 20
SMPS 667026341708543 106 642390384615385 168 14813666666667 106 200000 40 2000000 2800 10000000 100 530000 40
SMPS 566092556113903 109 764663461538462 175 91535 109 1000000 70 1000000 3000 10000000 160 400000 70
SMPS 60451071356784 113 993782692307693 181 21280833333333 113 6300000 110 900000 3200 1400000 280 350000 120
SMPS 640447634840872 118 103840961538462 188 277361 118 8000000 200 800000 3200 120000 480 50000 200
SMPS 63931935678392 122 119893653846154 195 30501933333333 122 5000000 400 600000 3800 1400 640 20000 400
SMPS 67781860636516 126 155467692307692 202 35493966666667 126 800000 700 500000 3800 1000 960 10000 600
SMPS 678467648241207 131 173807500 209 25912033333333 131 1 800 400000 3800 1000 1920 5000 800
SMPS 736663748743719 136 198103846153846 217 20493533333333 136 1 1000 318900 3800 900 2560 100 1000
APS 791600921273033 141 245189807692308 225 34751733333333 141 300000 3800 750 5120
APS 776599182579565 146 27240826923077 233 43427866666667 146 200000 3800
APS 748095604690118 151 301905384615385 241 592247 151 100000 4000
APS 852265149078728 157 348734615384616 25 614018 157 90000 4100
APS 99985068676717 163 375607115384616 259 87004466666667 163 80000 4200
11043162479062 168 442790384615385 269 137845333333333 168 70000 4200
119948670016751 175 523365384615385 279 183715 175
112247051926298 181 445000384615385 289 241348 181
126325376884422 188 591696153846154 30 299061666666667 188
130470221105528 195 660759615384616 311 380613666666667 195
140578994974874 202 706025000000001 322 419054666666667 202
158666502512563 209 794851923076924 334 64940 209
15709983919598 217 860896153846155 346 883372 217
146305745393635 225 847675000000001 359 130709333333333 225
175050465661642 233 943019230769232 372 182267 233
20586516917923 241 949319230769232 385 263912666666667 241
21836616080402 25 96023076923077 40 355521333333333 25
221599480737019 259 956119230769232 414 484109 259
231432663316583 269 1025750000 429 647791 269
228343541038526 279 964151923076924 445 830633 279
238293788944724 289 982432692307693 461 1054740 289
24027170519263 30 103288461538462 478 125545333333333 30
254431427135679 311 981471153846155 514 1435950 311
281640274706868 322 100416538461539 533 161942333333333 322
279502308207705 334 995501923076924 552 169811666666667 334
273149989949749 346 969944230769232 573 182475666666667 346
301086837520938 359 89473076923077 594 187437333333333 359
337571587939699 372 791292307692308 615 1885320 372
335709822445561 385 719676923076924 638 184891666666667 385
303290958123953 40 67950576923077 661 177122333333333 40
296100891122278 414 554032692307693 685 167757333333333 414
305137175879397 429 441263461538462 71 1563790 429
298671450586265 445 39593576923077 737 143831333333333 445
267825041876047 461 294517500 764 1276340 461
268898750418761 478 235586538461539 791 111617666666667 478
246584087102178 496 219594615384616 82 956378666666667 496
22753597319933 514 183537307692308 851 786719333333333 514
20805557118928 533 132950384615385 882 654658 533
193145899497488 552 991526923076924 914 524162333333333 552
180397058626466 573 723884615384616 947 398477 573
159287497487437 594 49395000 982 294095333333333 594
140093966499163 615 329623653846154 1018 216415 615
125712003350084 638 232231346153846 1055 155941333333333 638
11582181239531 661 170568076923077 1094 109822 661
933554824120604 685 114283076923077 1134 811729333333333 685
766995862646567 71 851232692307693 1176 533704666666667 71
625145611390285 737 558684615384616 1219 398905 737
531419574539364 764 425857115384616 1263 272716 764
401304512562814 791 320039230769231 131 224988666666667 791
302290415410386 82 224643461538462 1358 175139333333333 82
234256559463987 851 204812115384616 1407 137377666666667 851
174277956448911 882 133968461538462 1459 1185743 882
119620948073702 914 120355384615385 1512 901657 914
860247541038527 947 1114950 1568 95869666666667 947
588795608040202 982 892715384615385 1625 866524 982
453500100502513 1018 75693076923077 1685 79995933333333 1018
306104184254607 1055 734100000000001 1747 855652 1055
214392951423786 1094 732648076923078 1811 82140833333333 1094
171584234505863 1134 530092307692308 1877 81683533333333 1134
129452606365159 1176 609534615384616 1946 71270166666667 1176
109800234170854 1219 491257692307693 2017 67286033333333 1219
875061487437187 1263 391936346153846 2091 75311933333333 1263
755701192629817 131 427556153846154 2167 71270066666667 131
76907041876047 1358 528136538461539 2247 670295 1358
816854716917924 1407 538875 2329 612828 1407
682292696817421 1459 484882692307693 2414 60685066666667 1459
484327912897823 1512 523173076923077 2503 64353 1512
601245688442212 1568 532400 2595 575052 1568
608947306532664 1625 391983653846154 269 53995533333333 1625
57423530318258 1685 39818576923077 2788 56581733333333 1685
665198110552765 1747 390621538461539 289 50526966666667 1747
641284469011726 1811 282454038461539 2996 52087233333333 1811
551386834170855 1877 301689807692308 3106 390656 1877
515487715242882 1946 392116538461539 322 40069366666667 1946
557056576214406 2017 262214807692308 3338 42029366666667 2017
585014763819096 2091 300040192307693 346
563217748743719 2167 327144807692308 3587
516019996649917 2247 291944038461539 3718
635039155778895 2329 410772307692308 3854
678386860971525 2414 438539038461539 3995
540607373534339 2503 810536808 542
534717524288108 2595 882899298 583
624962696817421 269 884130018 626
507626351758795 2788 848442984 673
482487487437186 289 79158372 723
462233661641542 2996 628394094 777
614290241206031 3106 484154992 835
549685423785595 322 3250266138 898
485615936348409 3338 1930962502 965
446652388609716 346 97717245 1037
733651755443887 3587 451665266 1114
73515500837521 3718 1710666186 1197
491714613065327 3854 750723816 1286
453128479061977 3995 3692090772 1382
22625785 542 08614861802 1486
23149945 583 11076250522 1596 89545 542
2547951466667 626 1 1715 10021 583
26411294 673 1 1843 11057 626
2478060433333 723 1 1981 12158 673
2428556433333 777 1 2129 12433 723
1953912566667 835 1 2288 113975 777
1421029306667 898 01230695642 2458 9234 835
797872833333 965 1 2642 70035 898
430967506667 1037 1 2839 49195 965
21839545 1114 1 3051 3452 1037
84446483333 1197 01230695642 3278 23495 1114
320313357 1286 1 3523 1597 1197
34943302333 1382 1 3786 1089 1286
17471639033 1486 1 4068 781 1382
116477634 1596 1 4371 5965 1486
08735821033 1715 1 4698 4325 1596
05823884733 1843 1 5048 3995 1715
05823884733 1981 1 5425 3185 1843
02911942367 2129 1 5829 2325 1981
1 2288 1 6264 2185 2129
02911942367 2458 1 6732 194 2288
02911942367 2642 1 7234 1705 2458
08735821033 2839 1 7774 1395 2642
02911942367 3051 1 8354 124 2839
08735821033 3278 1 8977 97 3051
05823884733 3523 1 9647 92 3278
08735818 3786 1 10370 71 3523
23295514667 4068 1 11140 56 3786
05823884733 4371 1 11970 51 4068
05823884733 4698 1 12860 35 4371
1 5048 1 13820 31 4698
1 5425 1 14860 21 5048
1 5829 1 15960 16 5425
1 6264 1 17150 1 5829
1 6732 1 18430 055 6264
1 7234 1 19810 05 6732
1 7774 055 7234
1 8354 02 7774
1 8977 005 8354
1 9647 0 8977
1 10370 01 9647
1 11140 005 10370
1 11970 005 11140
1 12860 01 11970
1 13820 0 12860
1 14860 0 13820
1 15960 0 14860
1 17150 0 15960
1 18430 0 17150
1 19810 0 18430
0 19810
0009
lt03
lt03
lt03
Page 3: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Objectives Scope Timeline Participants amp Funding

3

ProjectOverview

4

Overview of The Linde Group

1

Linde EngineeringTechnology-focused Air Separation

Global 1

Air Separation

Global 1

Hydrogen Syn Gas

Global 2

Hydrogen Syn Gas

Global 2

Olefins

Global 2

Olefins

Global 2

Natural Gas

Global 3

Natural Gas

Global 3

HyCO Tonnage Plants

gt70 plants

HyCO Tonnage Plants

gt70 plants

HyCO Tonnage Plants

gt70 plants

ASU Tonnage Plants

gt300 plants

ASU Tonnage Plants

gt300 plants

ECOVAR Std Plants

gt1000 plants

ECOVAR Std Plants

gt1000 plants

Linde Gas - TonnageWorld-class operations

CO2 Plants

gt100 plants

Founded

Sales (2017)

Employees

Countries

US Linde Gas HQ

US Linde Engineering Facilities

Leveraging

Synergies

1879

$20 billion

64000

gt100

Bridgewater NJ

Tulsa OK

Holly Springs GA

Houston TX

Linde has extensive experience in CO2 capture amp handling

5

Experience in design amp erection of different wash processes for CO2

removalbull Linde-Rectisol reg

bull BASF Oase technreg

bull Benfield

Long experience in operation of CO2 plants transport amp distribution

bull OCAP pipeline (Netherlands)

bull Onsite business

bull Bulk supply

CO2 Capture and Injection

LNG plant for Statoil in SnoslashhvitNorway with CO2

capture from natural gas and CO2 re-injection off-shore

CO2 Wash Units

Removal of impurities like Hydrocarbons Heavy metals O2 amp H2O for food grade CO2

CO2 Food Grade Plants CO2 Transport and Distribution

6

Overall ObjectiveDemonstrate and evaluate two innovative flue gas aerosol pretreatment technologies identified to significantly reduce high aerosol particle concentrations (gt107 particlescm3) in the 70-200 nm particle size range

(1) A high velocity water spray-based system with unique design features(2) A novel electrostatic precipitator (ESP) device with an optimized design and operating conditions

Specific Objectivesmdash Complete an aerosol mechanism literature review and develop a mechanistic model

characterizing aerosol formation and interaction with amine solvent in the absorber of a PCC plantmdash Design build install commission and operate the two technologies for flue gas aerosol

pretreatment at a coal-fired power plant host site providing the flue gas as a slipstream at a flow rate of 500-1000 scfm

mdash Complete parametric testing and analysis of each technology to demonstrate achievement of target performance

mdash Complete a benchmarking study to identify the optimal aerosol pretreatment system for commercial deployment and integration with solvent-based PCC technology

Project Objectives

Start Finish

Q3 2018 Q4 2018 Q1 2019 Q2 2019 Q3 2019 Q4 2019 Q1 2020 Q2 2020 Q3 2020 Q4 2020

Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

Budget Period 1 612018 11302018

10 Project management 612018 11302018

21 Mechanism review 612018 6292018

22 Mechanism modeling 722018 11282018

31 Design basis dev 612018 6292018

32 Basic engineering 722018 1052018

33 Detailed engineering 1082018 11282018

34 Test planning 10292018 11282018

Budget Period 2 1232018 11292019

10 Project management 1232018 11292019

41 ESP system fabrication 1232018 8302019

42 Spray system fabrication 1232018 8302019

43 Procurement for install 1232018 8302019

51 Site installation 922019 10182019

52 Commission amp start-up 10212019 11292019

Budget Period 3 1222019 11302020

10 Project management 1222019 11302020

61 ESP system tests 1222019 2242020

62 Spray system tests 2172020 4302020

63 Test analysis 542020 8282020

70 Benchmarking analysis 8312020 11272020

80 Removal of equipment 8312020 11272020

Project Scope Timeline amp Milestones

7

BP1 Design amp Engineering

A

B

C

D

E

F

G

HIJ

BP2 Fabrication amp Installation

BP3 Testing amp Analysis

Task ID Milestone Completion Date1 A Updated PMP 629181 B Kick-Off Meeting 727182 C Mechanisms review amp modeling complete 1130183 D Design amp engineering complete 1130183 E Test plan complete 1130184 F Fabrication amp procurement complete 830195 G Installation amp commissioning complete 1129196 H Parametric testing complete 51207 I Benchmarking analysis complete 1130208 J Removal of equipment complete 113020

8

Project Participants

Partner

Organization

Lead contact(s) Key Role(s)

DOE-NETL Andy Aurelio Project Manager

-Funding amp sponsorship

Linde LLC Devin BostickPrincipal InvestigatorKrish Krishnamurthy Technology Director

-Prime contract-Overall program management-High velocity water spray-based aerosol pretreatment technology owner

University of Illinois Urbana-Champaign (UIUC)

Kevin OrsquoBrien Project Lead

-Aerosol mechanisms review-Host site liaison-Flue gas and liquid effluent composition measurement amp analysis

Washington University in St Louis (WUSTL)

Pratim BiswasProject Lead

-Aerosol mechanisms modeling lead-ESP-based aerosol pretreatment technology owner-Characterization of aerosols in flue gas

Affiliated Construction Services (ACS)

Greg LarsonProject Lead

-Procurement management for high velocity water spray-based system-Construction management for site modifications amp module installation

9

Project Budget DOE Funding and Cost Share

SourceBudget Period 1

Jun 2018 ndash Nov 2018

Budget Period 2

Dec 2018 ndash Nov 2019

Budget Period 3

Dec 2019 ndash Nov 2020Total

DOE Funding $457822 $1290725 $1078826 $2827834

Cost Share $176612 $260949 $269860 $707421

Total Project $634435 $1551674 $1348686 $3534795

Cost share commitments

Linde $234869

University of Illinois (UIUC) $231339

Washington University in St Louis (WUSTL) $191213

Affiliated Construction Services (ACS) $50000

Technology Development

Rationale Background amp Previous Research

10

Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment

11

Amine losses

Flue gas cooler

Flue gas blower

Flue gas inlet

Condensate

Major factor aerosol particles in flue gas from coal-fired power plants

Aerosol particle formation during coal combustion

S N

N

S

Inorganic oxides and metals (eg SiO2 Fe P)

Sulfur

Nitrogen

Organic volatiles

Inorganic volatiles (eg Hg)

Coal particle1st stage

devolatilization

Burning of tar

Tar

Oxidation

CO2

Partial oxidation

Metal or its Suboxide vapor (eg SiO Ca)

Absorption

Re-oxidation amp particle formation

Nano-sized inorganic aerosol particle

(eg SiO2 particle)

Inorganic aerosols shielding organics

Aerosols sent in flue gas to PCC absorber

(1) Nucleation(2) Condensation

04 nmParticle Size 04 ndash 2 nm 2 - 100 nm 0001-1000 mm

(3) Coagulation

3 main stages of aerosol formation1

Burning of char

Bottom Ash

2nd stage devolatilization

Ash formation

1 Wang Xinlei amp Williams Brent amp Tang Y amp Huang Yuhsuan amp Kong L amp Yang Xin amp Biswas Pratim (2013) Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace Atmospheric Chemistry and Physics 13 105194acp-13-10919-2013

12

Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1

13

Phase IAerosol growth and nucleation from water in absorber

Phase IIAerosol growth from amine in absorber

Phase IIIBuildup of captured CO2and amine bound to CO2in aerosols

Phase IVSalt accumulation inside particles causing further amine and CO2 diffusion into aerosols

02 microm particle

1 G Lombardo B Fostas M Shah A Morken O Hvidsten J Mertens E Hamborg Results from Aerosol Measurement in Amine Plant Treating Gas Turbine and Residue Fluidized Catalytic Cracker Flue Gases at the CO2 Technology Centre Mongstad GHGT-13 Energy Procedia 2017 114 Pages 1210-1230

Water condensation

Nucleation from water supersaturation

1 microm particle

Amine absorption until complete saturation

2 microm particle

CO2 and CO2+amine absorption

2-5 microm particleSalt accumulationCO2 and amine diffusion

Amine contained in aerosol particles are then emitted from PCC absorber in treated gas stream

The Kelvin equation gives the minimum particle diameter d of a liquid1 supersaturation leads to nucleation of smaller particles

14

Benefits of aerosol particle reduction

Benefits

Manageable solvent supply and transport logistics

Optimum power plant efficiency

when integrated with PCC

Reduction of particulate that can unfavorably react with amine

solvent

Improved PCC plant specific

energy performance

Environmental sustainability and

performance

Improved PCC plant business

caselower cost

Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1

For power plants integrated with solvent-based PCC without an existing baghouse optimized flue gas aerosol pretreatment is the only viable option to reduce aerosol concentrations from gt109 particlescm3 to manageable levels near 104-106

particlescm3 for particles with diameters in the range of 70-200 nm

Pretreatment has traditionally been performed using simple ESPs and Brownian filters

Few systematic studies have been conducted to evaluate performance of different technologies over a full range of conditions

15

BH = baghouse

1 Based on single point experience some options eg dry bed conf may handle higher particle concentrations than others

Chart1

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment
10000000
1000000
10000000
1000000000

Literature data

Literature data

Abbott (no RH no dryer)
Abbott (RH w dryer)
SR (Wilsonville before BH)
SR (Wilsonville after BH)
Linde (Wilsonville after BH)
UT Austin (Wilsonville before BH)
TCM (no BH no BF)
Particle Diameter (nm)
Particle Number Concentration (cm3)

Methods

10E7 particlescm3 reported literature maximum
Abbott aerosol data showing gt10E7 particlescm3 compared to other flue gases
Abbott (reheater off no dryer)
Abbott (42 reheater w dryer)
NCCC after baghouse (WUSL measurements)
NCCC before baghouse (Southern Research measurements)
NCCC after baghouse (Southern Research measurements)
NCCC before baghouse (University of Texas at Austin measurements)
Residual fluidized catalytic cracker (Technology Centre Mongstad measurements)

Methods

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) at which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pre-treatment

TEA

Technology proposed in this work
Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Base case Case 1 Case 2 Case 3 Case 4 Case 5
DOE Case B12B Reference w baghouse wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system wo baghouse (breakeven)
Cost Basis Year 2011$ 2011$ 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4416576 4530755 4497804 4432245 4516307 45154043379888
Thermal input (kWt) (HHV) 1694366 1694366 1736605 1723975 1698847 1732627
Coal flowrate (kghr) 224791 224791 230395 228719 225385 229867 11478458479996
Total steam turbine power (kWe) 642000 642000 643332 654224 644359 656869
Gross Power (MWe) 6420 6420 6433 6542 6444 6569 96690 9669 3
Auxiliary Power (MWe) 913 913 934 1038 941 1072 9969
Net Power (MWe) 551 551 550 550 550 550
PCC Reboiler Duty (MW) 3311 3311 4106 3372 3323 3386
Specific Duty (MJkg CO2) 248 248 300 248 248 248 4405686
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal 450395408921933 982680892193308 445482004460967
Fuel Unit Cost ($ton) 6854 6854 6854 6854 6854 6854 440778425101536 440864946116186
Power Plant Efficiency () (HHV) 32500 32500 31668 31930 32387 31725
Boiler Efficiency () (HHV) 89100 89100 89100 89100 89100 89100
CO2 Produced (MThr) 480 480 492 489 482 491
CO2 Produced (lbhr) 1058945 1058945 1085344 1077450 1061745 1082857 4415000
CO2 Produced (MTyear) 4207729 4207729 4312625 4281259 4218856 4302745 443224546416968
CO2 Captured () 90 90 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085 085 085
Variable Cost $60366961 $82839499 $61871865 $61421865 $60526594 $60429346
Fixed Cost $63094548 $62118858 $62746820 $62624815 $62372778 $62753124
Fuel Cost $126458921 $126458921 $12961144817 $12866877277 $12679332619 $12931450746
Total Overnight Cost $2384351816 $2331909536 $2364444218 $2356810371 $2341063213 $2364453241 $2364444218
Total Plant Cost $1939142000 $1890358000 $1921756120 $1915655869 $1903054023 $1922071279
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $38782850 $37807160 $38435122 $38313117 $38061080 $38441426
Maintenance Material Cost $18097725 $18097725 $1854888787 $1841398019 $1814558223 $18145582
Consumables Cost $36775427 $59247965 $3769221114 $3741807239 $3687267513 $36775427
Waste Disposal Cost $5493809 $5493809 $563076559 $558981254 $550833671 $5508337
By-Products Cost $0 $0 $0 $0 $0 $0
Preproduction Costs (x1000) $59957 $60854 $59820 $59635 $59257 $59691
Inventory Capital (x1000) $41125 452270951087832 418250410605904 $4155922 410280350765301 $4159189
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0 $0 $0
Land (x1000) $900 $877 $892 $889 $883 $892
Other Owners Costs (x1000) $290871 $283554 $288263 $287348 $285458 $288311
Financing Costs (x1000) $52357 $51040 $51887 $51723 $51382 $51896
Total Overnight Costs (TOC) $2384351816 $2331909536 $2364444218 $235681037146 $2341063213 $236445324106
Coal and sorbent handling ($x1000) $52286 $52286 $53154 $52896 $52378 $53073
Coal and sorbent prep amp feed ($x1000) $24983 $24983 $25398 $25274 $25027 $25359
Feedwater amp misc BOP systems ($x1000) $112150 $112150 $114013 $113457 $112348 $113838
PC boiler ($x1000) $400793 $400793 $407450 $405465 $401502 $406825
Flue gas cleanup ($x1000) $197475 $148691 $151161 $150424 $148954 $150929
CO2 removal ($x1000) $533757 $533757 $542622 $543241 $544054 $545052 935327377984728
CO2 compression amp drying ($x1000) $98381 $98381 $100015 $99528 $98555 $99862
Heat and power integration ($x1000) $0 $0 $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45027 $45775 $45552 $45107 $45705
Steam turbine generaor ($x1000) $178176 $178176 $181135 $180253 $178491 $180858
Cooling water system ($x1000) $62254 $62254 $63288 $62980 $62364 $63191
Ashspent sorbent handling system ($x1000) $19028 $19028 $19344 $19250 $19062 $19314
Accessory electric plant ($x1000) $93584 $93584 $95138 $94675 $93749 $94993
Instrumentation amp control ($x1000) $31654 $31654 $32180 $32023 $31710 $32130
Improvements to site ($x1000) $18063 $18063 $18363 $18274 $18095 $18335
Buildings amp structures ($x1000) $71531 $71531 $72719 $72365 $71657 $72608
TPC without PCC ($x1000) $1307004 $1258220 $1279119 $1272887 $1260445 $1277157
PCC cost ($x1000) $632138 $632138 $642638 $642769 $642609 $644914
COE ($MWh wo TampS) $13320 $13686 $13368 $13305 $13185 $13279
COE ($MWh w TampS) $14280 $14646 $14353 $14282 $14149 $14262
Fuel Costs ($MWh) $3090 $3084 $3165 $3139 $3095 $3139
Variable Costs ($MWh) $1470 $2023 $1511 $1500 $1478 $1474
Fixed Costs ($MWh) $1540 $1517 $1532 $1529 $1523 $1529
Capital Costs ($MWh) $7220 $7062 $7160 $7137 $7089 $7136
Cost of CO2 Captured ($ton wo TampS) $5262 $7069 $6497 $6472 $6414 $6440
Cost of CO2 Captured ($MT wo TampS) $5800 $6413 $5894 $5872 $5818 $5842
Cost of CO2 Captured ($MT w TampS) $6901 $7514 $6995 $6972 $6919 $6943
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $46312929 $47467476 $47122241 $46435398 $47358727
CO2 TSM Cost ($MWh) $960 $960 $985 $977 $963 $984
Coal handling amp conveying (kWe) 480 480 492 488 481 491
Pulverizers 3370 3370 3454 3429 3379 3446
Sorbent handling amp reagent preparation (kWe) 1070 1070 1097 1089 1073 1094
Ash handling (kWe) 780 780 799 794 782 798
Primary air fans (kWe) 1670 1670 1712 1699 1674 1708
Forced draft fans (kWe) 2130 2130 2183 2167 2136 2178
Induced draft fans (kWe) 8350 8350 8558 8496 8372 8539
SCR (kWe) 60 60 61 61 60 61
Activated carbon injection (kWe) 27 27 28 27 27 28
Dry sorbent injection (kWe) 108 108 111 110 108 110
Baghouse (kWe) 110 110 113 112 110 112
Wet FGD (kWe) 3550 3550 3638 3612 3559 3630
PCC plant auxiliaries (kWe) 16000 16000 16399 27280 18682 30361 14000 2640
CO2 compression (kWe) 35690 35690 36580 36314 35784 36496
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400 400 400
Condensate pumps (kWe) 640 640 656 651 642 654
Circulating water pumps (kWe) 7750 7750 7943 7885 7770 7925
Ground water pumps (kWe) 710 710 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010 4010 4010
Transformer losses (kWe) 2380 2380 2439 2422 2386 2434
Total auxiliaries (kWe) 91285 91285 93383 103756 94148 107186
Net plant heat rate (BTUkWh) 10498 10498 10775 10686 10535 10755
Condenser cooling duty (GJhr) 1867 1867 1914 1900 1872 1909
Limestone sorbent flowrate (kghr) 22213 22213 22767 22601 22272 22715
Raw water withdrawal (m3min) 30 30 30 30 30 30
Raw water consumption (m3min) 23 23 24 24 23 24
NOx (MTyear) 1517 1517 1555 1544 1521 1551
Particulates (MTyear) 195 195 200 198 196 199
Hg (kgyear) 6 6 6 6 6 6
SO2 (MTyear) 0 0 0 0 0 0
COE Reduction (w TampS) 256 051 002 -092 -012
COE Reduction (wo TampS) 275 036 -011 -101 -031
Cost of CO2 Reduction (wo TampS) 1057 162 123 032 073
Cost of CO2 Reduction (w TampS) 888 136 104 027 061
PCC Plant Cost Reduction 000 -166 -168 -166 -202
Method Amine emissions (kg aminetonne CO2 Aerosol particle concentration range where adequate (particlescm3)
Baghouse 0009 0 to 1E+7 0 10000000
Dry bed operation (no BH) lt03 0 to 1E+6 0 1000000
Absorber operating conditions (no BH) lt03 0 to 1E+7 0 10000000
Pre-treatment solutions (no BH) lt03 0 to 1E+9 0 1000000000
Abbott Power Plant (42 reheat burner w dryer) Abbott Power Plant (0 reheat burner wo dryer) Wilsonville (after baghouse) (WashU) Wilsonville (before baghouse) (SR) UT Austin (NCCC) (before baghouse) TCM (no BH no BF) Wilsonville (after baghouse) (SR) Wilsonville Parametric Tests (Linde) Wilsonville Long-term Tests (Linde)
Anal Ins Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) kg amineMT CO2 04080107622 00095091096
SMPS 682819795644892 982 427900576923077 157 14468166666667 982 1000000 10 4000000 2400 100000 35 650000 10
SMPS 735415966499163 102 532616923076924 163 160013 102 200000 20 3000000 2800 1150000 60 600000 20
SMPS 667026341708543 106 642390384615385 168 14813666666667 106 200000 40 2000000 2800 10000000 100 530000 40
SMPS 566092556113903 109 764663461538462 175 91535 109 1000000 70 1000000 3000 10000000 160 400000 70
SMPS 60451071356784 113 993782692307693 181 21280833333333 113 6300000 110 900000 3200 1400000 280 350000 120
SMPS 640447634840872 118 103840961538462 188 277361 118 8000000 200 800000 3200 120000 480 50000 200
SMPS 63931935678392 122 119893653846154 195 30501933333333 122 5000000 400 600000 3800 1400 640 20000 400
SMPS 67781860636516 126 155467692307692 202 35493966666667 126 800000 700 500000 3800 1000 960 10000 600
SMPS 678467648241207 131 173807500 209 25912033333333 131 1 800 400000 3800 1000 1920 5000 800
SMPS 736663748743719 136 198103846153846 217 20493533333333 136 1 1000 318900 3800 900 2560 100 1000
APS 791600921273033 141 245189807692308 225 34751733333333 141 300000 3800 750 5120
APS 776599182579565 146 27240826923077 233 43427866666667 146 200000 3800
APS 748095604690118 151 301905384615385 241 592247 151 100000 4000
APS 852265149078728 157 348734615384616 25 614018 157 90000 4100
APS 99985068676717 163 375607115384616 259 87004466666667 163 80000 4200
11043162479062 168 442790384615385 269 137845333333333 168 70000 4200
119948670016751 175 523365384615385 279 183715 175
112247051926298 181 445000384615385 289 241348 181
126325376884422 188 591696153846154 30 299061666666667 188
130470221105528 195 660759615384616 311 380613666666667 195
140578994974874 202 706025000000001 322 419054666666667 202
158666502512563 209 794851923076924 334 64940 209
15709983919598 217 860896153846155 346 883372 217
146305745393635 225 847675000000001 359 130709333333333 225
175050465661642 233 943019230769232 372 182267 233
20586516917923 241 949319230769232 385 263912666666667 241
21836616080402 25 96023076923077 40 355521333333333 25
221599480737019 259 956119230769232 414 484109 259
231432663316583 269 1025750000 429 647791 269
228343541038526 279 964151923076924 445 830633 279
238293788944724 289 982432692307693 461 1054740 289
24027170519263 30 103288461538462 478 125545333333333 30
254431427135679 311 981471153846155 514 1435950 311
281640274706868 322 100416538461539 533 161942333333333 322
279502308207705 334 995501923076924 552 169811666666667 334
273149989949749 346 969944230769232 573 182475666666667 346
301086837520938 359 89473076923077 594 187437333333333 359
337571587939699 372 791292307692308 615 1885320 372
335709822445561 385 719676923076924 638 184891666666667 385
303290958123953 40 67950576923077 661 177122333333333 40
296100891122278 414 554032692307693 685 167757333333333 414
305137175879397 429 441263461538462 71 1563790 429
298671450586265 445 39593576923077 737 143831333333333 445
267825041876047 461 294517500 764 1276340 461
268898750418761 478 235586538461539 791 111617666666667 478
246584087102178 496 219594615384616 82 956378666666667 496
22753597319933 514 183537307692308 851 786719333333333 514
20805557118928 533 132950384615385 882 654658 533
193145899497488 552 991526923076924 914 524162333333333 552
180397058626466 573 723884615384616 947 398477 573
159287497487437 594 49395000 982 294095333333333 594
140093966499163 615 329623653846154 1018 216415 615
125712003350084 638 232231346153846 1055 155941333333333 638
11582181239531 661 170568076923077 1094 109822 661
933554824120604 685 114283076923077 1134 811729333333333 685
766995862646567 71 851232692307693 1176 533704666666667 71
625145611390285 737 558684615384616 1219 398905 737
531419574539364 764 425857115384616 1263 272716 764
401304512562814 791 320039230769231 131 224988666666667 791
302290415410386 82 224643461538462 1358 175139333333333 82
234256559463987 851 204812115384616 1407 137377666666667 851
174277956448911 882 133968461538462 1459 1185743 882
119620948073702 914 120355384615385 1512 901657 914
860247541038527 947 1114950 1568 95869666666667 947
588795608040202 982 892715384615385 1625 866524 982
453500100502513 1018 75693076923077 1685 79995933333333 1018
306104184254607 1055 734100000000001 1747 855652 1055
214392951423786 1094 732648076923078 1811 82140833333333 1094
171584234505863 1134 530092307692308 1877 81683533333333 1134
129452606365159 1176 609534615384616 1946 71270166666667 1176
109800234170854 1219 491257692307693 2017 67286033333333 1219
875061487437187 1263 391936346153846 2091 75311933333333 1263
755701192629817 131 427556153846154 2167 71270066666667 131
76907041876047 1358 528136538461539 2247 670295 1358
816854716917924 1407 538875 2329 612828 1407
682292696817421 1459 484882692307693 2414 60685066666667 1459
484327912897823 1512 523173076923077 2503 64353 1512
601245688442212 1568 532400 2595 575052 1568
608947306532664 1625 391983653846154 269 53995533333333 1625
57423530318258 1685 39818576923077 2788 56581733333333 1685
665198110552765 1747 390621538461539 289 50526966666667 1747
641284469011726 1811 282454038461539 2996 52087233333333 1811
551386834170855 1877 301689807692308 3106 390656 1877
515487715242882 1946 392116538461539 322 40069366666667 1946
557056576214406 2017 262214807692308 3338 42029366666667 2017
585014763819096 2091 300040192307693 346
563217748743719 2167 327144807692308 3587
516019996649917 2247 291944038461539 3718
635039155778895 2329 410772307692308 3854
678386860971525 2414 438539038461539 3995
540607373534339 2503 810536808 542
534717524288108 2595 882899298 583
624962696817421 269 884130018 626
507626351758795 2788 848442984 673
482487487437186 289 79158372 723
462233661641542 2996 628394094 777
614290241206031 3106 484154992 835
549685423785595 322 3250266138 898
485615936348409 3338 1930962502 965
446652388609716 346 97717245 1037
733651755443887 3587 451665266 1114
73515500837521 3718 1710666186 1197
491714613065327 3854 750723816 1286
453128479061977 3995 3692090772 1382
22625785 542 08614861802 1486
23149945 583 11076250522 1596 89545 542
2547951466667 626 1 1715 10021 583
26411294 673 1 1843 11057 626
2478060433333 723 1 1981 12158 673
2428556433333 777 1 2129 12433 723
1953912566667 835 1 2288 113975 777
1421029306667 898 01230695642 2458 9234 835
797872833333 965 1 2642 70035 898
430967506667 1037 1 2839 49195 965
21839545 1114 1 3051 3452 1037
84446483333 1197 01230695642 3278 23495 1114
320313357 1286 1 3523 1597 1197
34943302333 1382 1 3786 1089 1286
17471639033 1486 1 4068 781 1382
116477634 1596 1 4371 5965 1486
08735821033 1715 1 4698 4325 1596
05823884733 1843 1 5048 3995 1715
05823884733 1981 1 5425 3185 1843
02911942367 2129 1 5829 2325 1981
1 2288 1 6264 2185 2129
02911942367 2458 1 6732 194 2288
02911942367 2642 1 7234 1705 2458
08735821033 2839 1 7774 1395 2642
02911942367 3051 1 8354 124 2839
08735821033 3278 1 8977 97 3051
05823884733 3523 1 9647 92 3278
08735818 3786 1 10370 71 3523
23295514667 4068 1 11140 56 3786
05823884733 4371 1 11970 51 4068
05823884733 4698 1 12860 35 4371
1 5048 1 13820 31 4698
1 5425 1 14860 21 5048
1 5829 1 15960 16 5425
1 6264 1 17150 1 5829
1 6732 1 18430 055 6264
1 7234 1 19810 05 6732
1 7774 055 7234
1 8354 02 7774
1 8977 005 8354
1 9647 0 8977
1 10370 01 9647
1 11140 005 10370
1 11970 005 11140
1 12860 01 11970
1 13820 0 12860
1 14860 0 13820
1 15960 0 14860
1 17150 0 15960
1 18430 0 17150
1 19810 0 18430
0 19810
0009
lt03
lt03
lt03
Page 4: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

4

Overview of The Linde Group

1

Linde EngineeringTechnology-focused Air Separation

Global 1

Air Separation

Global 1

Hydrogen Syn Gas

Global 2

Hydrogen Syn Gas

Global 2

Olefins

Global 2

Olefins

Global 2

Natural Gas

Global 3

Natural Gas

Global 3

HyCO Tonnage Plants

gt70 plants

HyCO Tonnage Plants

gt70 plants

HyCO Tonnage Plants

gt70 plants

ASU Tonnage Plants

gt300 plants

ASU Tonnage Plants

gt300 plants

ECOVAR Std Plants

gt1000 plants

ECOVAR Std Plants

gt1000 plants

Linde Gas - TonnageWorld-class operations

CO2 Plants

gt100 plants

Founded

Sales (2017)

Employees

Countries

US Linde Gas HQ

US Linde Engineering Facilities

Leveraging

Synergies

1879

$20 billion

64000

gt100

Bridgewater NJ

Tulsa OK

Holly Springs GA

Houston TX

Linde has extensive experience in CO2 capture amp handling

5

Experience in design amp erection of different wash processes for CO2

removalbull Linde-Rectisol reg

bull BASF Oase technreg

bull Benfield

Long experience in operation of CO2 plants transport amp distribution

bull OCAP pipeline (Netherlands)

bull Onsite business

bull Bulk supply

CO2 Capture and Injection

LNG plant for Statoil in SnoslashhvitNorway with CO2

capture from natural gas and CO2 re-injection off-shore

CO2 Wash Units

Removal of impurities like Hydrocarbons Heavy metals O2 amp H2O for food grade CO2

CO2 Food Grade Plants CO2 Transport and Distribution

6

Overall ObjectiveDemonstrate and evaluate two innovative flue gas aerosol pretreatment technologies identified to significantly reduce high aerosol particle concentrations (gt107 particlescm3) in the 70-200 nm particle size range

(1) A high velocity water spray-based system with unique design features(2) A novel electrostatic precipitator (ESP) device with an optimized design and operating conditions

Specific Objectivesmdash Complete an aerosol mechanism literature review and develop a mechanistic model

characterizing aerosol formation and interaction with amine solvent in the absorber of a PCC plantmdash Design build install commission and operate the two technologies for flue gas aerosol

pretreatment at a coal-fired power plant host site providing the flue gas as a slipstream at a flow rate of 500-1000 scfm

mdash Complete parametric testing and analysis of each technology to demonstrate achievement of target performance

mdash Complete a benchmarking study to identify the optimal aerosol pretreatment system for commercial deployment and integration with solvent-based PCC technology

Project Objectives

Start Finish

Q3 2018 Q4 2018 Q1 2019 Q2 2019 Q3 2019 Q4 2019 Q1 2020 Q2 2020 Q3 2020 Q4 2020

Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

Budget Period 1 612018 11302018

10 Project management 612018 11302018

21 Mechanism review 612018 6292018

22 Mechanism modeling 722018 11282018

31 Design basis dev 612018 6292018

32 Basic engineering 722018 1052018

33 Detailed engineering 1082018 11282018

34 Test planning 10292018 11282018

Budget Period 2 1232018 11292019

10 Project management 1232018 11292019

41 ESP system fabrication 1232018 8302019

42 Spray system fabrication 1232018 8302019

43 Procurement for install 1232018 8302019

51 Site installation 922019 10182019

52 Commission amp start-up 10212019 11292019

Budget Period 3 1222019 11302020

10 Project management 1222019 11302020

61 ESP system tests 1222019 2242020

62 Spray system tests 2172020 4302020

63 Test analysis 542020 8282020

70 Benchmarking analysis 8312020 11272020

80 Removal of equipment 8312020 11272020

Project Scope Timeline amp Milestones

7

BP1 Design amp Engineering

A

B

C

D

E

F

G

HIJ

BP2 Fabrication amp Installation

BP3 Testing amp Analysis

Task ID Milestone Completion Date1 A Updated PMP 629181 B Kick-Off Meeting 727182 C Mechanisms review amp modeling complete 1130183 D Design amp engineering complete 1130183 E Test plan complete 1130184 F Fabrication amp procurement complete 830195 G Installation amp commissioning complete 1129196 H Parametric testing complete 51207 I Benchmarking analysis complete 1130208 J Removal of equipment complete 113020

8

Project Participants

Partner

Organization

Lead contact(s) Key Role(s)

DOE-NETL Andy Aurelio Project Manager

-Funding amp sponsorship

Linde LLC Devin BostickPrincipal InvestigatorKrish Krishnamurthy Technology Director

-Prime contract-Overall program management-High velocity water spray-based aerosol pretreatment technology owner

University of Illinois Urbana-Champaign (UIUC)

Kevin OrsquoBrien Project Lead

-Aerosol mechanisms review-Host site liaison-Flue gas and liquid effluent composition measurement amp analysis

Washington University in St Louis (WUSTL)

Pratim BiswasProject Lead

-Aerosol mechanisms modeling lead-ESP-based aerosol pretreatment technology owner-Characterization of aerosols in flue gas

Affiliated Construction Services (ACS)

Greg LarsonProject Lead

-Procurement management for high velocity water spray-based system-Construction management for site modifications amp module installation

9

Project Budget DOE Funding and Cost Share

SourceBudget Period 1

Jun 2018 ndash Nov 2018

Budget Period 2

Dec 2018 ndash Nov 2019

Budget Period 3

Dec 2019 ndash Nov 2020Total

DOE Funding $457822 $1290725 $1078826 $2827834

Cost Share $176612 $260949 $269860 $707421

Total Project $634435 $1551674 $1348686 $3534795

Cost share commitments

Linde $234869

University of Illinois (UIUC) $231339

Washington University in St Louis (WUSTL) $191213

Affiliated Construction Services (ACS) $50000

Technology Development

Rationale Background amp Previous Research

10

Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment

11

Amine losses

Flue gas cooler

Flue gas blower

Flue gas inlet

Condensate

Major factor aerosol particles in flue gas from coal-fired power plants

Aerosol particle formation during coal combustion

S N

N

S

Inorganic oxides and metals (eg SiO2 Fe P)

Sulfur

Nitrogen

Organic volatiles

Inorganic volatiles (eg Hg)

Coal particle1st stage

devolatilization

Burning of tar

Tar

Oxidation

CO2

Partial oxidation

Metal or its Suboxide vapor (eg SiO Ca)

Absorption

Re-oxidation amp particle formation

Nano-sized inorganic aerosol particle

(eg SiO2 particle)

Inorganic aerosols shielding organics

Aerosols sent in flue gas to PCC absorber

(1) Nucleation(2) Condensation

04 nmParticle Size 04 ndash 2 nm 2 - 100 nm 0001-1000 mm

(3) Coagulation

3 main stages of aerosol formation1

Burning of char

Bottom Ash

2nd stage devolatilization

Ash formation

1 Wang Xinlei amp Williams Brent amp Tang Y amp Huang Yuhsuan amp Kong L amp Yang Xin amp Biswas Pratim (2013) Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace Atmospheric Chemistry and Physics 13 105194acp-13-10919-2013

12

Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1

13

Phase IAerosol growth and nucleation from water in absorber

Phase IIAerosol growth from amine in absorber

Phase IIIBuildup of captured CO2and amine bound to CO2in aerosols

Phase IVSalt accumulation inside particles causing further amine and CO2 diffusion into aerosols

02 microm particle

1 G Lombardo B Fostas M Shah A Morken O Hvidsten J Mertens E Hamborg Results from Aerosol Measurement in Amine Plant Treating Gas Turbine and Residue Fluidized Catalytic Cracker Flue Gases at the CO2 Technology Centre Mongstad GHGT-13 Energy Procedia 2017 114 Pages 1210-1230

Water condensation

Nucleation from water supersaturation

1 microm particle

Amine absorption until complete saturation

2 microm particle

CO2 and CO2+amine absorption

2-5 microm particleSalt accumulationCO2 and amine diffusion

Amine contained in aerosol particles are then emitted from PCC absorber in treated gas stream

The Kelvin equation gives the minimum particle diameter d of a liquid1 supersaturation leads to nucleation of smaller particles

14

Benefits of aerosol particle reduction

Benefits

Manageable solvent supply and transport logistics

Optimum power plant efficiency

when integrated with PCC

Reduction of particulate that can unfavorably react with amine

solvent

Improved PCC plant specific

energy performance

Environmental sustainability and

performance

Improved PCC plant business

caselower cost

Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1

For power plants integrated with solvent-based PCC without an existing baghouse optimized flue gas aerosol pretreatment is the only viable option to reduce aerosol concentrations from gt109 particlescm3 to manageable levels near 104-106

particlescm3 for particles with diameters in the range of 70-200 nm

Pretreatment has traditionally been performed using simple ESPs and Brownian filters

Few systematic studies have been conducted to evaluate performance of different technologies over a full range of conditions

15

BH = baghouse

1 Based on single point experience some options eg dry bed conf may handle higher particle concentrations than others

Chart1

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment
10000000
1000000
10000000
1000000000

Literature data

Literature data

Abbott (no RH no dryer)
Abbott (RH w dryer)
SR (Wilsonville before BH)
SR (Wilsonville after BH)
Linde (Wilsonville after BH)
UT Austin (Wilsonville before BH)
TCM (no BH no BF)
Particle Diameter (nm)
Particle Number Concentration (cm3)

Methods

10E7 particlescm3 reported literature maximum
Abbott aerosol data showing gt10E7 particlescm3 compared to other flue gases
Abbott (reheater off no dryer)
Abbott (42 reheater w dryer)
NCCC after baghouse (WUSL measurements)
NCCC before baghouse (Southern Research measurements)
NCCC after baghouse (Southern Research measurements)
NCCC before baghouse (University of Texas at Austin measurements)
Residual fluidized catalytic cracker (Technology Centre Mongstad measurements)

Methods

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) at which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pre-treatment

TEA

Technology proposed in this work
Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Base case Case 1 Case 2 Case 3 Case 4 Case 5
DOE Case B12B Reference w baghouse wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system wo baghouse (breakeven)
Cost Basis Year 2011$ 2011$ 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4416576 4530755 4497804 4432245 4516307 45154043379888
Thermal input (kWt) (HHV) 1694366 1694366 1736605 1723975 1698847 1732627
Coal flowrate (kghr) 224791 224791 230395 228719 225385 229867 11478458479996
Total steam turbine power (kWe) 642000 642000 643332 654224 644359 656869
Gross Power (MWe) 6420 6420 6433 6542 6444 6569 96690 9669 3
Auxiliary Power (MWe) 913 913 934 1038 941 1072 9969
Net Power (MWe) 551 551 550 550 550 550
PCC Reboiler Duty (MW) 3311 3311 4106 3372 3323 3386
Specific Duty (MJkg CO2) 248 248 300 248 248 248 4405686
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal 450395408921933 982680892193308 445482004460967
Fuel Unit Cost ($ton) 6854 6854 6854 6854 6854 6854 440778425101536 440864946116186
Power Plant Efficiency () (HHV) 32500 32500 31668 31930 32387 31725
Boiler Efficiency () (HHV) 89100 89100 89100 89100 89100 89100
CO2 Produced (MThr) 480 480 492 489 482 491
CO2 Produced (lbhr) 1058945 1058945 1085344 1077450 1061745 1082857 4415000
CO2 Produced (MTyear) 4207729 4207729 4312625 4281259 4218856 4302745 443224546416968
CO2 Captured () 90 90 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085 085 085
Variable Cost $60366961 $82839499 $61871865 $61421865 $60526594 $60429346
Fixed Cost $63094548 $62118858 $62746820 $62624815 $62372778 $62753124
Fuel Cost $126458921 $126458921 $12961144817 $12866877277 $12679332619 $12931450746
Total Overnight Cost $2384351816 $2331909536 $2364444218 $2356810371 $2341063213 $2364453241 $2364444218
Total Plant Cost $1939142000 $1890358000 $1921756120 $1915655869 $1903054023 $1922071279
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $38782850 $37807160 $38435122 $38313117 $38061080 $38441426
Maintenance Material Cost $18097725 $18097725 $1854888787 $1841398019 $1814558223 $18145582
Consumables Cost $36775427 $59247965 $3769221114 $3741807239 $3687267513 $36775427
Waste Disposal Cost $5493809 $5493809 $563076559 $558981254 $550833671 $5508337
By-Products Cost $0 $0 $0 $0 $0 $0
Preproduction Costs (x1000) $59957 $60854 $59820 $59635 $59257 $59691
Inventory Capital (x1000) $41125 452270951087832 418250410605904 $4155922 410280350765301 $4159189
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0 $0 $0
Land (x1000) $900 $877 $892 $889 $883 $892
Other Owners Costs (x1000) $290871 $283554 $288263 $287348 $285458 $288311
Financing Costs (x1000) $52357 $51040 $51887 $51723 $51382 $51896
Total Overnight Costs (TOC) $2384351816 $2331909536 $2364444218 $235681037146 $2341063213 $236445324106
Coal and sorbent handling ($x1000) $52286 $52286 $53154 $52896 $52378 $53073
Coal and sorbent prep amp feed ($x1000) $24983 $24983 $25398 $25274 $25027 $25359
Feedwater amp misc BOP systems ($x1000) $112150 $112150 $114013 $113457 $112348 $113838
PC boiler ($x1000) $400793 $400793 $407450 $405465 $401502 $406825
Flue gas cleanup ($x1000) $197475 $148691 $151161 $150424 $148954 $150929
CO2 removal ($x1000) $533757 $533757 $542622 $543241 $544054 $545052 935327377984728
CO2 compression amp drying ($x1000) $98381 $98381 $100015 $99528 $98555 $99862
Heat and power integration ($x1000) $0 $0 $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45027 $45775 $45552 $45107 $45705
Steam turbine generaor ($x1000) $178176 $178176 $181135 $180253 $178491 $180858
Cooling water system ($x1000) $62254 $62254 $63288 $62980 $62364 $63191
Ashspent sorbent handling system ($x1000) $19028 $19028 $19344 $19250 $19062 $19314
Accessory electric plant ($x1000) $93584 $93584 $95138 $94675 $93749 $94993
Instrumentation amp control ($x1000) $31654 $31654 $32180 $32023 $31710 $32130
Improvements to site ($x1000) $18063 $18063 $18363 $18274 $18095 $18335
Buildings amp structures ($x1000) $71531 $71531 $72719 $72365 $71657 $72608
TPC without PCC ($x1000) $1307004 $1258220 $1279119 $1272887 $1260445 $1277157
PCC cost ($x1000) $632138 $632138 $642638 $642769 $642609 $644914
COE ($MWh wo TampS) $13320 $13686 $13368 $13305 $13185 $13279
COE ($MWh w TampS) $14280 $14646 $14353 $14282 $14149 $14262
Fuel Costs ($MWh) $3090 $3084 $3165 $3139 $3095 $3139
Variable Costs ($MWh) $1470 $2023 $1511 $1500 $1478 $1474
Fixed Costs ($MWh) $1540 $1517 $1532 $1529 $1523 $1529
Capital Costs ($MWh) $7220 $7062 $7160 $7137 $7089 $7136
Cost of CO2 Captured ($ton wo TampS) $5262 $7069 $6497 $6472 $6414 $6440
Cost of CO2 Captured ($MT wo TampS) $5800 $6413 $5894 $5872 $5818 $5842
Cost of CO2 Captured ($MT w TampS) $6901 $7514 $6995 $6972 $6919 $6943
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $46312929 $47467476 $47122241 $46435398 $47358727
CO2 TSM Cost ($MWh) $960 $960 $985 $977 $963 $984
Coal handling amp conveying (kWe) 480 480 492 488 481 491
Pulverizers 3370 3370 3454 3429 3379 3446
Sorbent handling amp reagent preparation (kWe) 1070 1070 1097 1089 1073 1094
Ash handling (kWe) 780 780 799 794 782 798
Primary air fans (kWe) 1670 1670 1712 1699 1674 1708
Forced draft fans (kWe) 2130 2130 2183 2167 2136 2178
Induced draft fans (kWe) 8350 8350 8558 8496 8372 8539
SCR (kWe) 60 60 61 61 60 61
Activated carbon injection (kWe) 27 27 28 27 27 28
Dry sorbent injection (kWe) 108 108 111 110 108 110
Baghouse (kWe) 110 110 113 112 110 112
Wet FGD (kWe) 3550 3550 3638 3612 3559 3630
PCC plant auxiliaries (kWe) 16000 16000 16399 27280 18682 30361 14000 2640
CO2 compression (kWe) 35690 35690 36580 36314 35784 36496
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400 400 400
Condensate pumps (kWe) 640 640 656 651 642 654
Circulating water pumps (kWe) 7750 7750 7943 7885 7770 7925
Ground water pumps (kWe) 710 710 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010 4010 4010
Transformer losses (kWe) 2380 2380 2439 2422 2386 2434
Total auxiliaries (kWe) 91285 91285 93383 103756 94148 107186
Net plant heat rate (BTUkWh) 10498 10498 10775 10686 10535 10755
Condenser cooling duty (GJhr) 1867 1867 1914 1900 1872 1909
Limestone sorbent flowrate (kghr) 22213 22213 22767 22601 22272 22715
Raw water withdrawal (m3min) 30 30 30 30 30 30
Raw water consumption (m3min) 23 23 24 24 23 24
NOx (MTyear) 1517 1517 1555 1544 1521 1551
Particulates (MTyear) 195 195 200 198 196 199
Hg (kgyear) 6 6 6 6 6 6
SO2 (MTyear) 0 0 0 0 0 0
COE Reduction (w TampS) 256 051 002 -092 -012
COE Reduction (wo TampS) 275 036 -011 -101 -031
Cost of CO2 Reduction (wo TampS) 1057 162 123 032 073
Cost of CO2 Reduction (w TampS) 888 136 104 027 061
PCC Plant Cost Reduction 000 -166 -168 -166 -202
Method Amine emissions (kg aminetonne CO2 Aerosol particle concentration range where adequate (particlescm3)
Baghouse 0009 0 to 1E+7 0 10000000
Dry bed operation (no BH) lt03 0 to 1E+6 0 1000000
Absorber operating conditions (no BH) lt03 0 to 1E+7 0 10000000
Pre-treatment solutions (no BH) lt03 0 to 1E+9 0 1000000000
Abbott Power Plant (42 reheat burner w dryer) Abbott Power Plant (0 reheat burner wo dryer) Wilsonville (after baghouse) (WashU) Wilsonville (before baghouse) (SR) UT Austin (NCCC) (before baghouse) TCM (no BH no BF) Wilsonville (after baghouse) (SR) Wilsonville Parametric Tests (Linde) Wilsonville Long-term Tests (Linde)
Anal Ins Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) kg amineMT CO2 04080107622 00095091096
SMPS 682819795644892 982 427900576923077 157 14468166666667 982 1000000 10 4000000 2400 100000 35 650000 10
SMPS 735415966499163 102 532616923076924 163 160013 102 200000 20 3000000 2800 1150000 60 600000 20
SMPS 667026341708543 106 642390384615385 168 14813666666667 106 200000 40 2000000 2800 10000000 100 530000 40
SMPS 566092556113903 109 764663461538462 175 91535 109 1000000 70 1000000 3000 10000000 160 400000 70
SMPS 60451071356784 113 993782692307693 181 21280833333333 113 6300000 110 900000 3200 1400000 280 350000 120
SMPS 640447634840872 118 103840961538462 188 277361 118 8000000 200 800000 3200 120000 480 50000 200
SMPS 63931935678392 122 119893653846154 195 30501933333333 122 5000000 400 600000 3800 1400 640 20000 400
SMPS 67781860636516 126 155467692307692 202 35493966666667 126 800000 700 500000 3800 1000 960 10000 600
SMPS 678467648241207 131 173807500 209 25912033333333 131 1 800 400000 3800 1000 1920 5000 800
SMPS 736663748743719 136 198103846153846 217 20493533333333 136 1 1000 318900 3800 900 2560 100 1000
APS 791600921273033 141 245189807692308 225 34751733333333 141 300000 3800 750 5120
APS 776599182579565 146 27240826923077 233 43427866666667 146 200000 3800
APS 748095604690118 151 301905384615385 241 592247 151 100000 4000
APS 852265149078728 157 348734615384616 25 614018 157 90000 4100
APS 99985068676717 163 375607115384616 259 87004466666667 163 80000 4200
11043162479062 168 442790384615385 269 137845333333333 168 70000 4200
119948670016751 175 523365384615385 279 183715 175
112247051926298 181 445000384615385 289 241348 181
126325376884422 188 591696153846154 30 299061666666667 188
130470221105528 195 660759615384616 311 380613666666667 195
140578994974874 202 706025000000001 322 419054666666667 202
158666502512563 209 794851923076924 334 64940 209
15709983919598 217 860896153846155 346 883372 217
146305745393635 225 847675000000001 359 130709333333333 225
175050465661642 233 943019230769232 372 182267 233
20586516917923 241 949319230769232 385 263912666666667 241
21836616080402 25 96023076923077 40 355521333333333 25
221599480737019 259 956119230769232 414 484109 259
231432663316583 269 1025750000 429 647791 269
228343541038526 279 964151923076924 445 830633 279
238293788944724 289 982432692307693 461 1054740 289
24027170519263 30 103288461538462 478 125545333333333 30
254431427135679 311 981471153846155 514 1435950 311
281640274706868 322 100416538461539 533 161942333333333 322
279502308207705 334 995501923076924 552 169811666666667 334
273149989949749 346 969944230769232 573 182475666666667 346
301086837520938 359 89473076923077 594 187437333333333 359
337571587939699 372 791292307692308 615 1885320 372
335709822445561 385 719676923076924 638 184891666666667 385
303290958123953 40 67950576923077 661 177122333333333 40
296100891122278 414 554032692307693 685 167757333333333 414
305137175879397 429 441263461538462 71 1563790 429
298671450586265 445 39593576923077 737 143831333333333 445
267825041876047 461 294517500 764 1276340 461
268898750418761 478 235586538461539 791 111617666666667 478
246584087102178 496 219594615384616 82 956378666666667 496
22753597319933 514 183537307692308 851 786719333333333 514
20805557118928 533 132950384615385 882 654658 533
193145899497488 552 991526923076924 914 524162333333333 552
180397058626466 573 723884615384616 947 398477 573
159287497487437 594 49395000 982 294095333333333 594
140093966499163 615 329623653846154 1018 216415 615
125712003350084 638 232231346153846 1055 155941333333333 638
11582181239531 661 170568076923077 1094 109822 661
933554824120604 685 114283076923077 1134 811729333333333 685
766995862646567 71 851232692307693 1176 533704666666667 71
625145611390285 737 558684615384616 1219 398905 737
531419574539364 764 425857115384616 1263 272716 764
401304512562814 791 320039230769231 131 224988666666667 791
302290415410386 82 224643461538462 1358 175139333333333 82
234256559463987 851 204812115384616 1407 137377666666667 851
174277956448911 882 133968461538462 1459 1185743 882
119620948073702 914 120355384615385 1512 901657 914
860247541038527 947 1114950 1568 95869666666667 947
588795608040202 982 892715384615385 1625 866524 982
453500100502513 1018 75693076923077 1685 79995933333333 1018
306104184254607 1055 734100000000001 1747 855652 1055
214392951423786 1094 732648076923078 1811 82140833333333 1094
171584234505863 1134 530092307692308 1877 81683533333333 1134
129452606365159 1176 609534615384616 1946 71270166666667 1176
109800234170854 1219 491257692307693 2017 67286033333333 1219
875061487437187 1263 391936346153846 2091 75311933333333 1263
755701192629817 131 427556153846154 2167 71270066666667 131
76907041876047 1358 528136538461539 2247 670295 1358
816854716917924 1407 538875 2329 612828 1407
682292696817421 1459 484882692307693 2414 60685066666667 1459
484327912897823 1512 523173076923077 2503 64353 1512
601245688442212 1568 532400 2595 575052 1568
608947306532664 1625 391983653846154 269 53995533333333 1625
57423530318258 1685 39818576923077 2788 56581733333333 1685
665198110552765 1747 390621538461539 289 50526966666667 1747
641284469011726 1811 282454038461539 2996 52087233333333 1811
551386834170855 1877 301689807692308 3106 390656 1877
515487715242882 1946 392116538461539 322 40069366666667 1946
557056576214406 2017 262214807692308 3338 42029366666667 2017
585014763819096 2091 300040192307693 346
563217748743719 2167 327144807692308 3587
516019996649917 2247 291944038461539 3718
635039155778895 2329 410772307692308 3854
678386860971525 2414 438539038461539 3995
540607373534339 2503 810536808 542
534717524288108 2595 882899298 583
624962696817421 269 884130018 626
507626351758795 2788 848442984 673
482487487437186 289 79158372 723
462233661641542 2996 628394094 777
614290241206031 3106 484154992 835
549685423785595 322 3250266138 898
485615936348409 3338 1930962502 965
446652388609716 346 97717245 1037
733651755443887 3587 451665266 1114
73515500837521 3718 1710666186 1197
491714613065327 3854 750723816 1286
453128479061977 3995 3692090772 1382
22625785 542 08614861802 1486
23149945 583 11076250522 1596 89545 542
2547951466667 626 1 1715 10021 583
26411294 673 1 1843 11057 626
2478060433333 723 1 1981 12158 673
2428556433333 777 1 2129 12433 723
1953912566667 835 1 2288 113975 777
1421029306667 898 01230695642 2458 9234 835
797872833333 965 1 2642 70035 898
430967506667 1037 1 2839 49195 965
21839545 1114 1 3051 3452 1037
84446483333 1197 01230695642 3278 23495 1114
320313357 1286 1 3523 1597 1197
34943302333 1382 1 3786 1089 1286
17471639033 1486 1 4068 781 1382
116477634 1596 1 4371 5965 1486
08735821033 1715 1 4698 4325 1596
05823884733 1843 1 5048 3995 1715
05823884733 1981 1 5425 3185 1843
02911942367 2129 1 5829 2325 1981
1 2288 1 6264 2185 2129
02911942367 2458 1 6732 194 2288
02911942367 2642 1 7234 1705 2458
08735821033 2839 1 7774 1395 2642
02911942367 3051 1 8354 124 2839
08735821033 3278 1 8977 97 3051
05823884733 3523 1 9647 92 3278
08735818 3786 1 10370 71 3523
23295514667 4068 1 11140 56 3786
05823884733 4371 1 11970 51 4068
05823884733 4698 1 12860 35 4371
1 5048 1 13820 31 4698
1 5425 1 14860 21 5048
1 5829 1 15960 16 5425
1 6264 1 17150 1 5829
1 6732 1 18430 055 6264
1 7234 1 19810 05 6732
1 7774 055 7234
1 8354 02 7774
1 8977 005 8354
1 9647 0 8977
1 10370 01 9647
1 11140 005 10370
1 11970 005 11140
1 12860 01 11970
1 13820 0 12860
1 14860 0 13820
1 15960 0 14860
1 17150 0 15960
1 18430 0 17150
1 19810 0 18430
0 19810
0009
lt03
lt03
lt03
Page 5: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Linde has extensive experience in CO2 capture amp handling

5

Experience in design amp erection of different wash processes for CO2

removalbull Linde-Rectisol reg

bull BASF Oase technreg

bull Benfield

Long experience in operation of CO2 plants transport amp distribution

bull OCAP pipeline (Netherlands)

bull Onsite business

bull Bulk supply

CO2 Capture and Injection

LNG plant for Statoil in SnoslashhvitNorway with CO2

capture from natural gas and CO2 re-injection off-shore

CO2 Wash Units

Removal of impurities like Hydrocarbons Heavy metals O2 amp H2O for food grade CO2

CO2 Food Grade Plants CO2 Transport and Distribution

6

Overall ObjectiveDemonstrate and evaluate two innovative flue gas aerosol pretreatment technologies identified to significantly reduce high aerosol particle concentrations (gt107 particlescm3) in the 70-200 nm particle size range

(1) A high velocity water spray-based system with unique design features(2) A novel electrostatic precipitator (ESP) device with an optimized design and operating conditions

Specific Objectivesmdash Complete an aerosol mechanism literature review and develop a mechanistic model

characterizing aerosol formation and interaction with amine solvent in the absorber of a PCC plantmdash Design build install commission and operate the two technologies for flue gas aerosol

pretreatment at a coal-fired power plant host site providing the flue gas as a slipstream at a flow rate of 500-1000 scfm

mdash Complete parametric testing and analysis of each technology to demonstrate achievement of target performance

mdash Complete a benchmarking study to identify the optimal aerosol pretreatment system for commercial deployment and integration with solvent-based PCC technology

Project Objectives

Start Finish

Q3 2018 Q4 2018 Q1 2019 Q2 2019 Q3 2019 Q4 2019 Q1 2020 Q2 2020 Q3 2020 Q4 2020

Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

Budget Period 1 612018 11302018

10 Project management 612018 11302018

21 Mechanism review 612018 6292018

22 Mechanism modeling 722018 11282018

31 Design basis dev 612018 6292018

32 Basic engineering 722018 1052018

33 Detailed engineering 1082018 11282018

34 Test planning 10292018 11282018

Budget Period 2 1232018 11292019

10 Project management 1232018 11292019

41 ESP system fabrication 1232018 8302019

42 Spray system fabrication 1232018 8302019

43 Procurement for install 1232018 8302019

51 Site installation 922019 10182019

52 Commission amp start-up 10212019 11292019

Budget Period 3 1222019 11302020

10 Project management 1222019 11302020

61 ESP system tests 1222019 2242020

62 Spray system tests 2172020 4302020

63 Test analysis 542020 8282020

70 Benchmarking analysis 8312020 11272020

80 Removal of equipment 8312020 11272020

Project Scope Timeline amp Milestones

7

BP1 Design amp Engineering

A

B

C

D

E

F

G

HIJ

BP2 Fabrication amp Installation

BP3 Testing amp Analysis

Task ID Milestone Completion Date1 A Updated PMP 629181 B Kick-Off Meeting 727182 C Mechanisms review amp modeling complete 1130183 D Design amp engineering complete 1130183 E Test plan complete 1130184 F Fabrication amp procurement complete 830195 G Installation amp commissioning complete 1129196 H Parametric testing complete 51207 I Benchmarking analysis complete 1130208 J Removal of equipment complete 113020

8

Project Participants

Partner

Organization

Lead contact(s) Key Role(s)

DOE-NETL Andy Aurelio Project Manager

-Funding amp sponsorship

Linde LLC Devin BostickPrincipal InvestigatorKrish Krishnamurthy Technology Director

-Prime contract-Overall program management-High velocity water spray-based aerosol pretreatment technology owner

University of Illinois Urbana-Champaign (UIUC)

Kevin OrsquoBrien Project Lead

-Aerosol mechanisms review-Host site liaison-Flue gas and liquid effluent composition measurement amp analysis

Washington University in St Louis (WUSTL)

Pratim BiswasProject Lead

-Aerosol mechanisms modeling lead-ESP-based aerosol pretreatment technology owner-Characterization of aerosols in flue gas

Affiliated Construction Services (ACS)

Greg LarsonProject Lead

-Procurement management for high velocity water spray-based system-Construction management for site modifications amp module installation

9

Project Budget DOE Funding and Cost Share

SourceBudget Period 1

Jun 2018 ndash Nov 2018

Budget Period 2

Dec 2018 ndash Nov 2019

Budget Period 3

Dec 2019 ndash Nov 2020Total

DOE Funding $457822 $1290725 $1078826 $2827834

Cost Share $176612 $260949 $269860 $707421

Total Project $634435 $1551674 $1348686 $3534795

Cost share commitments

Linde $234869

University of Illinois (UIUC) $231339

Washington University in St Louis (WUSTL) $191213

Affiliated Construction Services (ACS) $50000

Technology Development

Rationale Background amp Previous Research

10

Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment

11

Amine losses

Flue gas cooler

Flue gas blower

Flue gas inlet

Condensate

Major factor aerosol particles in flue gas from coal-fired power plants

Aerosol particle formation during coal combustion

S N

N

S

Inorganic oxides and metals (eg SiO2 Fe P)

Sulfur

Nitrogen

Organic volatiles

Inorganic volatiles (eg Hg)

Coal particle1st stage

devolatilization

Burning of tar

Tar

Oxidation

CO2

Partial oxidation

Metal or its Suboxide vapor (eg SiO Ca)

Absorption

Re-oxidation amp particle formation

Nano-sized inorganic aerosol particle

(eg SiO2 particle)

Inorganic aerosols shielding organics

Aerosols sent in flue gas to PCC absorber

(1) Nucleation(2) Condensation

04 nmParticle Size 04 ndash 2 nm 2 - 100 nm 0001-1000 mm

(3) Coagulation

3 main stages of aerosol formation1

Burning of char

Bottom Ash

2nd stage devolatilization

Ash formation

1 Wang Xinlei amp Williams Brent amp Tang Y amp Huang Yuhsuan amp Kong L amp Yang Xin amp Biswas Pratim (2013) Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace Atmospheric Chemistry and Physics 13 105194acp-13-10919-2013

12

Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1

13

Phase IAerosol growth and nucleation from water in absorber

Phase IIAerosol growth from amine in absorber

Phase IIIBuildup of captured CO2and amine bound to CO2in aerosols

Phase IVSalt accumulation inside particles causing further amine and CO2 diffusion into aerosols

02 microm particle

1 G Lombardo B Fostas M Shah A Morken O Hvidsten J Mertens E Hamborg Results from Aerosol Measurement in Amine Plant Treating Gas Turbine and Residue Fluidized Catalytic Cracker Flue Gases at the CO2 Technology Centre Mongstad GHGT-13 Energy Procedia 2017 114 Pages 1210-1230

Water condensation

Nucleation from water supersaturation

1 microm particle

Amine absorption until complete saturation

2 microm particle

CO2 and CO2+amine absorption

2-5 microm particleSalt accumulationCO2 and amine diffusion

Amine contained in aerosol particles are then emitted from PCC absorber in treated gas stream

The Kelvin equation gives the minimum particle diameter d of a liquid1 supersaturation leads to nucleation of smaller particles

14

Benefits of aerosol particle reduction

Benefits

Manageable solvent supply and transport logistics

Optimum power plant efficiency

when integrated with PCC

Reduction of particulate that can unfavorably react with amine

solvent

Improved PCC plant specific

energy performance

Environmental sustainability and

performance

Improved PCC plant business

caselower cost

Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1

For power plants integrated with solvent-based PCC without an existing baghouse optimized flue gas aerosol pretreatment is the only viable option to reduce aerosol concentrations from gt109 particlescm3 to manageable levels near 104-106

particlescm3 for particles with diameters in the range of 70-200 nm

Pretreatment has traditionally been performed using simple ESPs and Brownian filters

Few systematic studies have been conducted to evaluate performance of different technologies over a full range of conditions

15

BH = baghouse

1 Based on single point experience some options eg dry bed conf may handle higher particle concentrations than others

Chart1

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment
10000000
1000000
10000000
1000000000

Literature data

Literature data

Abbott (no RH no dryer)
Abbott (RH w dryer)
SR (Wilsonville before BH)
SR (Wilsonville after BH)
Linde (Wilsonville after BH)
UT Austin (Wilsonville before BH)
TCM (no BH no BF)
Particle Diameter (nm)
Particle Number Concentration (cm3)

Methods

10E7 particlescm3 reported literature maximum
Abbott aerosol data showing gt10E7 particlescm3 compared to other flue gases
Abbott (reheater off no dryer)
Abbott (42 reheater w dryer)
NCCC after baghouse (WUSL measurements)
NCCC before baghouse (Southern Research measurements)
NCCC after baghouse (Southern Research measurements)
NCCC before baghouse (University of Texas at Austin measurements)
Residual fluidized catalytic cracker (Technology Centre Mongstad measurements)

Methods

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) at which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pre-treatment

TEA

Technology proposed in this work
Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Base case Case 1 Case 2 Case 3 Case 4 Case 5
DOE Case B12B Reference w baghouse wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system wo baghouse (breakeven)
Cost Basis Year 2011$ 2011$ 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4416576 4530755 4497804 4432245 4516307 45154043379888
Thermal input (kWt) (HHV) 1694366 1694366 1736605 1723975 1698847 1732627
Coal flowrate (kghr) 224791 224791 230395 228719 225385 229867 11478458479996
Total steam turbine power (kWe) 642000 642000 643332 654224 644359 656869
Gross Power (MWe) 6420 6420 6433 6542 6444 6569 96690 9669 3
Auxiliary Power (MWe) 913 913 934 1038 941 1072 9969
Net Power (MWe) 551 551 550 550 550 550
PCC Reboiler Duty (MW) 3311 3311 4106 3372 3323 3386
Specific Duty (MJkg CO2) 248 248 300 248 248 248 4405686
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal 450395408921933 982680892193308 445482004460967
Fuel Unit Cost ($ton) 6854 6854 6854 6854 6854 6854 440778425101536 440864946116186
Power Plant Efficiency () (HHV) 32500 32500 31668 31930 32387 31725
Boiler Efficiency () (HHV) 89100 89100 89100 89100 89100 89100
CO2 Produced (MThr) 480 480 492 489 482 491
CO2 Produced (lbhr) 1058945 1058945 1085344 1077450 1061745 1082857 4415000
CO2 Produced (MTyear) 4207729 4207729 4312625 4281259 4218856 4302745 443224546416968
CO2 Captured () 90 90 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085 085 085
Variable Cost $60366961 $82839499 $61871865 $61421865 $60526594 $60429346
Fixed Cost $63094548 $62118858 $62746820 $62624815 $62372778 $62753124
Fuel Cost $126458921 $126458921 $12961144817 $12866877277 $12679332619 $12931450746
Total Overnight Cost $2384351816 $2331909536 $2364444218 $2356810371 $2341063213 $2364453241 $2364444218
Total Plant Cost $1939142000 $1890358000 $1921756120 $1915655869 $1903054023 $1922071279
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $38782850 $37807160 $38435122 $38313117 $38061080 $38441426
Maintenance Material Cost $18097725 $18097725 $1854888787 $1841398019 $1814558223 $18145582
Consumables Cost $36775427 $59247965 $3769221114 $3741807239 $3687267513 $36775427
Waste Disposal Cost $5493809 $5493809 $563076559 $558981254 $550833671 $5508337
By-Products Cost $0 $0 $0 $0 $0 $0
Preproduction Costs (x1000) $59957 $60854 $59820 $59635 $59257 $59691
Inventory Capital (x1000) $41125 452270951087832 418250410605904 $4155922 410280350765301 $4159189
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0 $0 $0
Land (x1000) $900 $877 $892 $889 $883 $892
Other Owners Costs (x1000) $290871 $283554 $288263 $287348 $285458 $288311
Financing Costs (x1000) $52357 $51040 $51887 $51723 $51382 $51896
Total Overnight Costs (TOC) $2384351816 $2331909536 $2364444218 $235681037146 $2341063213 $236445324106
Coal and sorbent handling ($x1000) $52286 $52286 $53154 $52896 $52378 $53073
Coal and sorbent prep amp feed ($x1000) $24983 $24983 $25398 $25274 $25027 $25359
Feedwater amp misc BOP systems ($x1000) $112150 $112150 $114013 $113457 $112348 $113838
PC boiler ($x1000) $400793 $400793 $407450 $405465 $401502 $406825
Flue gas cleanup ($x1000) $197475 $148691 $151161 $150424 $148954 $150929
CO2 removal ($x1000) $533757 $533757 $542622 $543241 $544054 $545052 935327377984728
CO2 compression amp drying ($x1000) $98381 $98381 $100015 $99528 $98555 $99862
Heat and power integration ($x1000) $0 $0 $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45027 $45775 $45552 $45107 $45705
Steam turbine generaor ($x1000) $178176 $178176 $181135 $180253 $178491 $180858
Cooling water system ($x1000) $62254 $62254 $63288 $62980 $62364 $63191
Ashspent sorbent handling system ($x1000) $19028 $19028 $19344 $19250 $19062 $19314
Accessory electric plant ($x1000) $93584 $93584 $95138 $94675 $93749 $94993
Instrumentation amp control ($x1000) $31654 $31654 $32180 $32023 $31710 $32130
Improvements to site ($x1000) $18063 $18063 $18363 $18274 $18095 $18335
Buildings amp structures ($x1000) $71531 $71531 $72719 $72365 $71657 $72608
TPC without PCC ($x1000) $1307004 $1258220 $1279119 $1272887 $1260445 $1277157
PCC cost ($x1000) $632138 $632138 $642638 $642769 $642609 $644914
COE ($MWh wo TampS) $13320 $13686 $13368 $13305 $13185 $13279
COE ($MWh w TampS) $14280 $14646 $14353 $14282 $14149 $14262
Fuel Costs ($MWh) $3090 $3084 $3165 $3139 $3095 $3139
Variable Costs ($MWh) $1470 $2023 $1511 $1500 $1478 $1474
Fixed Costs ($MWh) $1540 $1517 $1532 $1529 $1523 $1529
Capital Costs ($MWh) $7220 $7062 $7160 $7137 $7089 $7136
Cost of CO2 Captured ($ton wo TampS) $5262 $7069 $6497 $6472 $6414 $6440
Cost of CO2 Captured ($MT wo TampS) $5800 $6413 $5894 $5872 $5818 $5842
Cost of CO2 Captured ($MT w TampS) $6901 $7514 $6995 $6972 $6919 $6943
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $46312929 $47467476 $47122241 $46435398 $47358727
CO2 TSM Cost ($MWh) $960 $960 $985 $977 $963 $984
Coal handling amp conveying (kWe) 480 480 492 488 481 491
Pulverizers 3370 3370 3454 3429 3379 3446
Sorbent handling amp reagent preparation (kWe) 1070 1070 1097 1089 1073 1094
Ash handling (kWe) 780 780 799 794 782 798
Primary air fans (kWe) 1670 1670 1712 1699 1674 1708
Forced draft fans (kWe) 2130 2130 2183 2167 2136 2178
Induced draft fans (kWe) 8350 8350 8558 8496 8372 8539
SCR (kWe) 60 60 61 61 60 61
Activated carbon injection (kWe) 27 27 28 27 27 28
Dry sorbent injection (kWe) 108 108 111 110 108 110
Baghouse (kWe) 110 110 113 112 110 112
Wet FGD (kWe) 3550 3550 3638 3612 3559 3630
PCC plant auxiliaries (kWe) 16000 16000 16399 27280 18682 30361 14000 2640
CO2 compression (kWe) 35690 35690 36580 36314 35784 36496
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400 400 400
Condensate pumps (kWe) 640 640 656 651 642 654
Circulating water pumps (kWe) 7750 7750 7943 7885 7770 7925
Ground water pumps (kWe) 710 710 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010 4010 4010
Transformer losses (kWe) 2380 2380 2439 2422 2386 2434
Total auxiliaries (kWe) 91285 91285 93383 103756 94148 107186
Net plant heat rate (BTUkWh) 10498 10498 10775 10686 10535 10755
Condenser cooling duty (GJhr) 1867 1867 1914 1900 1872 1909
Limestone sorbent flowrate (kghr) 22213 22213 22767 22601 22272 22715
Raw water withdrawal (m3min) 30 30 30 30 30 30
Raw water consumption (m3min) 23 23 24 24 23 24
NOx (MTyear) 1517 1517 1555 1544 1521 1551
Particulates (MTyear) 195 195 200 198 196 199
Hg (kgyear) 6 6 6 6 6 6
SO2 (MTyear) 0 0 0 0 0 0
COE Reduction (w TampS) 256 051 002 -092 -012
COE Reduction (wo TampS) 275 036 -011 -101 -031
Cost of CO2 Reduction (wo TampS) 1057 162 123 032 073
Cost of CO2 Reduction (w TampS) 888 136 104 027 061
PCC Plant Cost Reduction 000 -166 -168 -166 -202
Method Amine emissions (kg aminetonne CO2 Aerosol particle concentration range where adequate (particlescm3)
Baghouse 0009 0 to 1E+7 0 10000000
Dry bed operation (no BH) lt03 0 to 1E+6 0 1000000
Absorber operating conditions (no BH) lt03 0 to 1E+7 0 10000000
Pre-treatment solutions (no BH) lt03 0 to 1E+9 0 1000000000
Abbott Power Plant (42 reheat burner w dryer) Abbott Power Plant (0 reheat burner wo dryer) Wilsonville (after baghouse) (WashU) Wilsonville (before baghouse) (SR) UT Austin (NCCC) (before baghouse) TCM (no BH no BF) Wilsonville (after baghouse) (SR) Wilsonville Parametric Tests (Linde) Wilsonville Long-term Tests (Linde)
Anal Ins Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) kg amineMT CO2 04080107622 00095091096
SMPS 682819795644892 982 427900576923077 157 14468166666667 982 1000000 10 4000000 2400 100000 35 650000 10
SMPS 735415966499163 102 532616923076924 163 160013 102 200000 20 3000000 2800 1150000 60 600000 20
SMPS 667026341708543 106 642390384615385 168 14813666666667 106 200000 40 2000000 2800 10000000 100 530000 40
SMPS 566092556113903 109 764663461538462 175 91535 109 1000000 70 1000000 3000 10000000 160 400000 70
SMPS 60451071356784 113 993782692307693 181 21280833333333 113 6300000 110 900000 3200 1400000 280 350000 120
SMPS 640447634840872 118 103840961538462 188 277361 118 8000000 200 800000 3200 120000 480 50000 200
SMPS 63931935678392 122 119893653846154 195 30501933333333 122 5000000 400 600000 3800 1400 640 20000 400
SMPS 67781860636516 126 155467692307692 202 35493966666667 126 800000 700 500000 3800 1000 960 10000 600
SMPS 678467648241207 131 173807500 209 25912033333333 131 1 800 400000 3800 1000 1920 5000 800
SMPS 736663748743719 136 198103846153846 217 20493533333333 136 1 1000 318900 3800 900 2560 100 1000
APS 791600921273033 141 245189807692308 225 34751733333333 141 300000 3800 750 5120
APS 776599182579565 146 27240826923077 233 43427866666667 146 200000 3800
APS 748095604690118 151 301905384615385 241 592247 151 100000 4000
APS 852265149078728 157 348734615384616 25 614018 157 90000 4100
APS 99985068676717 163 375607115384616 259 87004466666667 163 80000 4200
11043162479062 168 442790384615385 269 137845333333333 168 70000 4200
119948670016751 175 523365384615385 279 183715 175
112247051926298 181 445000384615385 289 241348 181
126325376884422 188 591696153846154 30 299061666666667 188
130470221105528 195 660759615384616 311 380613666666667 195
140578994974874 202 706025000000001 322 419054666666667 202
158666502512563 209 794851923076924 334 64940 209
15709983919598 217 860896153846155 346 883372 217
146305745393635 225 847675000000001 359 130709333333333 225
175050465661642 233 943019230769232 372 182267 233
20586516917923 241 949319230769232 385 263912666666667 241
21836616080402 25 96023076923077 40 355521333333333 25
221599480737019 259 956119230769232 414 484109 259
231432663316583 269 1025750000 429 647791 269
228343541038526 279 964151923076924 445 830633 279
238293788944724 289 982432692307693 461 1054740 289
24027170519263 30 103288461538462 478 125545333333333 30
254431427135679 311 981471153846155 514 1435950 311
281640274706868 322 100416538461539 533 161942333333333 322
279502308207705 334 995501923076924 552 169811666666667 334
273149989949749 346 969944230769232 573 182475666666667 346
301086837520938 359 89473076923077 594 187437333333333 359
337571587939699 372 791292307692308 615 1885320 372
335709822445561 385 719676923076924 638 184891666666667 385
303290958123953 40 67950576923077 661 177122333333333 40
296100891122278 414 554032692307693 685 167757333333333 414
305137175879397 429 441263461538462 71 1563790 429
298671450586265 445 39593576923077 737 143831333333333 445
267825041876047 461 294517500 764 1276340 461
268898750418761 478 235586538461539 791 111617666666667 478
246584087102178 496 219594615384616 82 956378666666667 496
22753597319933 514 183537307692308 851 786719333333333 514
20805557118928 533 132950384615385 882 654658 533
193145899497488 552 991526923076924 914 524162333333333 552
180397058626466 573 723884615384616 947 398477 573
159287497487437 594 49395000 982 294095333333333 594
140093966499163 615 329623653846154 1018 216415 615
125712003350084 638 232231346153846 1055 155941333333333 638
11582181239531 661 170568076923077 1094 109822 661
933554824120604 685 114283076923077 1134 811729333333333 685
766995862646567 71 851232692307693 1176 533704666666667 71
625145611390285 737 558684615384616 1219 398905 737
531419574539364 764 425857115384616 1263 272716 764
401304512562814 791 320039230769231 131 224988666666667 791
302290415410386 82 224643461538462 1358 175139333333333 82
234256559463987 851 204812115384616 1407 137377666666667 851
174277956448911 882 133968461538462 1459 1185743 882
119620948073702 914 120355384615385 1512 901657 914
860247541038527 947 1114950 1568 95869666666667 947
588795608040202 982 892715384615385 1625 866524 982
453500100502513 1018 75693076923077 1685 79995933333333 1018
306104184254607 1055 734100000000001 1747 855652 1055
214392951423786 1094 732648076923078 1811 82140833333333 1094
171584234505863 1134 530092307692308 1877 81683533333333 1134
129452606365159 1176 609534615384616 1946 71270166666667 1176
109800234170854 1219 491257692307693 2017 67286033333333 1219
875061487437187 1263 391936346153846 2091 75311933333333 1263
755701192629817 131 427556153846154 2167 71270066666667 131
76907041876047 1358 528136538461539 2247 670295 1358
816854716917924 1407 538875 2329 612828 1407
682292696817421 1459 484882692307693 2414 60685066666667 1459
484327912897823 1512 523173076923077 2503 64353 1512
601245688442212 1568 532400 2595 575052 1568
608947306532664 1625 391983653846154 269 53995533333333 1625
57423530318258 1685 39818576923077 2788 56581733333333 1685
665198110552765 1747 390621538461539 289 50526966666667 1747
641284469011726 1811 282454038461539 2996 52087233333333 1811
551386834170855 1877 301689807692308 3106 390656 1877
515487715242882 1946 392116538461539 322 40069366666667 1946
557056576214406 2017 262214807692308 3338 42029366666667 2017
585014763819096 2091 300040192307693 346
563217748743719 2167 327144807692308 3587
516019996649917 2247 291944038461539 3718
635039155778895 2329 410772307692308 3854
678386860971525 2414 438539038461539 3995
540607373534339 2503 810536808 542
534717524288108 2595 882899298 583
624962696817421 269 884130018 626
507626351758795 2788 848442984 673
482487487437186 289 79158372 723
462233661641542 2996 628394094 777
614290241206031 3106 484154992 835
549685423785595 322 3250266138 898
485615936348409 3338 1930962502 965
446652388609716 346 97717245 1037
733651755443887 3587 451665266 1114
73515500837521 3718 1710666186 1197
491714613065327 3854 750723816 1286
453128479061977 3995 3692090772 1382
22625785 542 08614861802 1486
23149945 583 11076250522 1596 89545 542
2547951466667 626 1 1715 10021 583
26411294 673 1 1843 11057 626
2478060433333 723 1 1981 12158 673
2428556433333 777 1 2129 12433 723
1953912566667 835 1 2288 113975 777
1421029306667 898 01230695642 2458 9234 835
797872833333 965 1 2642 70035 898
430967506667 1037 1 2839 49195 965
21839545 1114 1 3051 3452 1037
84446483333 1197 01230695642 3278 23495 1114
320313357 1286 1 3523 1597 1197
34943302333 1382 1 3786 1089 1286
17471639033 1486 1 4068 781 1382
116477634 1596 1 4371 5965 1486
08735821033 1715 1 4698 4325 1596
05823884733 1843 1 5048 3995 1715
05823884733 1981 1 5425 3185 1843
02911942367 2129 1 5829 2325 1981
1 2288 1 6264 2185 2129
02911942367 2458 1 6732 194 2288
02911942367 2642 1 7234 1705 2458
08735821033 2839 1 7774 1395 2642
02911942367 3051 1 8354 124 2839
08735821033 3278 1 8977 97 3051
05823884733 3523 1 9647 92 3278
08735818 3786 1 10370 71 3523
23295514667 4068 1 11140 56 3786
05823884733 4371 1 11970 51 4068
05823884733 4698 1 12860 35 4371
1 5048 1 13820 31 4698
1 5425 1 14860 21 5048
1 5829 1 15960 16 5425
1 6264 1 17150 1 5829
1 6732 1 18430 055 6264
1 7234 1 19810 05 6732
1 7774 055 7234
1 8354 02 7774
1 8977 005 8354
1 9647 0 8977
1 10370 01 9647
1 11140 005 10370
1 11970 005 11140
1 12860 01 11970
1 13820 0 12860
1 14860 0 13820
1 15960 0 14860
1 17150 0 15960
1 18430 0 17150
1 19810 0 18430
0 19810
0009
lt03
lt03
lt03
Page 6: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

6

Overall ObjectiveDemonstrate and evaluate two innovative flue gas aerosol pretreatment technologies identified to significantly reduce high aerosol particle concentrations (gt107 particlescm3) in the 70-200 nm particle size range

(1) A high velocity water spray-based system with unique design features(2) A novel electrostatic precipitator (ESP) device with an optimized design and operating conditions

Specific Objectivesmdash Complete an aerosol mechanism literature review and develop a mechanistic model

characterizing aerosol formation and interaction with amine solvent in the absorber of a PCC plantmdash Design build install commission and operate the two technologies for flue gas aerosol

pretreatment at a coal-fired power plant host site providing the flue gas as a slipstream at a flow rate of 500-1000 scfm

mdash Complete parametric testing and analysis of each technology to demonstrate achievement of target performance

mdash Complete a benchmarking study to identify the optimal aerosol pretreatment system for commercial deployment and integration with solvent-based PCC technology

Project Objectives

Start Finish

Q3 2018 Q4 2018 Q1 2019 Q2 2019 Q3 2019 Q4 2019 Q1 2020 Q2 2020 Q3 2020 Q4 2020

Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

Budget Period 1 612018 11302018

10 Project management 612018 11302018

21 Mechanism review 612018 6292018

22 Mechanism modeling 722018 11282018

31 Design basis dev 612018 6292018

32 Basic engineering 722018 1052018

33 Detailed engineering 1082018 11282018

34 Test planning 10292018 11282018

Budget Period 2 1232018 11292019

10 Project management 1232018 11292019

41 ESP system fabrication 1232018 8302019

42 Spray system fabrication 1232018 8302019

43 Procurement for install 1232018 8302019

51 Site installation 922019 10182019

52 Commission amp start-up 10212019 11292019

Budget Period 3 1222019 11302020

10 Project management 1222019 11302020

61 ESP system tests 1222019 2242020

62 Spray system tests 2172020 4302020

63 Test analysis 542020 8282020

70 Benchmarking analysis 8312020 11272020

80 Removal of equipment 8312020 11272020

Project Scope Timeline amp Milestones

7

BP1 Design amp Engineering

A

B

C

D

E

F

G

HIJ

BP2 Fabrication amp Installation

BP3 Testing amp Analysis

Task ID Milestone Completion Date1 A Updated PMP 629181 B Kick-Off Meeting 727182 C Mechanisms review amp modeling complete 1130183 D Design amp engineering complete 1130183 E Test plan complete 1130184 F Fabrication amp procurement complete 830195 G Installation amp commissioning complete 1129196 H Parametric testing complete 51207 I Benchmarking analysis complete 1130208 J Removal of equipment complete 113020

8

Project Participants

Partner

Organization

Lead contact(s) Key Role(s)

DOE-NETL Andy Aurelio Project Manager

-Funding amp sponsorship

Linde LLC Devin BostickPrincipal InvestigatorKrish Krishnamurthy Technology Director

-Prime contract-Overall program management-High velocity water spray-based aerosol pretreatment technology owner

University of Illinois Urbana-Champaign (UIUC)

Kevin OrsquoBrien Project Lead

-Aerosol mechanisms review-Host site liaison-Flue gas and liquid effluent composition measurement amp analysis

Washington University in St Louis (WUSTL)

Pratim BiswasProject Lead

-Aerosol mechanisms modeling lead-ESP-based aerosol pretreatment technology owner-Characterization of aerosols in flue gas

Affiliated Construction Services (ACS)

Greg LarsonProject Lead

-Procurement management for high velocity water spray-based system-Construction management for site modifications amp module installation

9

Project Budget DOE Funding and Cost Share

SourceBudget Period 1

Jun 2018 ndash Nov 2018

Budget Period 2

Dec 2018 ndash Nov 2019

Budget Period 3

Dec 2019 ndash Nov 2020Total

DOE Funding $457822 $1290725 $1078826 $2827834

Cost Share $176612 $260949 $269860 $707421

Total Project $634435 $1551674 $1348686 $3534795

Cost share commitments

Linde $234869

University of Illinois (UIUC) $231339

Washington University in St Louis (WUSTL) $191213

Affiliated Construction Services (ACS) $50000

Technology Development

Rationale Background amp Previous Research

10

Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment

11

Amine losses

Flue gas cooler

Flue gas blower

Flue gas inlet

Condensate

Major factor aerosol particles in flue gas from coal-fired power plants

Aerosol particle formation during coal combustion

S N

N

S

Inorganic oxides and metals (eg SiO2 Fe P)

Sulfur

Nitrogen

Organic volatiles

Inorganic volatiles (eg Hg)

Coal particle1st stage

devolatilization

Burning of tar

Tar

Oxidation

CO2

Partial oxidation

Metal or its Suboxide vapor (eg SiO Ca)

Absorption

Re-oxidation amp particle formation

Nano-sized inorganic aerosol particle

(eg SiO2 particle)

Inorganic aerosols shielding organics

Aerosols sent in flue gas to PCC absorber

(1) Nucleation(2) Condensation

04 nmParticle Size 04 ndash 2 nm 2 - 100 nm 0001-1000 mm

(3) Coagulation

3 main stages of aerosol formation1

Burning of char

Bottom Ash

2nd stage devolatilization

Ash formation

1 Wang Xinlei amp Williams Brent amp Tang Y amp Huang Yuhsuan amp Kong L amp Yang Xin amp Biswas Pratim (2013) Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace Atmospheric Chemistry and Physics 13 105194acp-13-10919-2013

12

Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1

13

Phase IAerosol growth and nucleation from water in absorber

Phase IIAerosol growth from amine in absorber

Phase IIIBuildup of captured CO2and amine bound to CO2in aerosols

Phase IVSalt accumulation inside particles causing further amine and CO2 diffusion into aerosols

02 microm particle

1 G Lombardo B Fostas M Shah A Morken O Hvidsten J Mertens E Hamborg Results from Aerosol Measurement in Amine Plant Treating Gas Turbine and Residue Fluidized Catalytic Cracker Flue Gases at the CO2 Technology Centre Mongstad GHGT-13 Energy Procedia 2017 114 Pages 1210-1230

Water condensation

Nucleation from water supersaturation

1 microm particle

Amine absorption until complete saturation

2 microm particle

CO2 and CO2+amine absorption

2-5 microm particleSalt accumulationCO2 and amine diffusion

Amine contained in aerosol particles are then emitted from PCC absorber in treated gas stream

The Kelvin equation gives the minimum particle diameter d of a liquid1 supersaturation leads to nucleation of smaller particles

14

Benefits of aerosol particle reduction

Benefits

Manageable solvent supply and transport logistics

Optimum power plant efficiency

when integrated with PCC

Reduction of particulate that can unfavorably react with amine

solvent

Improved PCC plant specific

energy performance

Environmental sustainability and

performance

Improved PCC plant business

caselower cost

Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1

For power plants integrated with solvent-based PCC without an existing baghouse optimized flue gas aerosol pretreatment is the only viable option to reduce aerosol concentrations from gt109 particlescm3 to manageable levels near 104-106

particlescm3 for particles with diameters in the range of 70-200 nm

Pretreatment has traditionally been performed using simple ESPs and Brownian filters

Few systematic studies have been conducted to evaluate performance of different technologies over a full range of conditions

15

BH = baghouse

1 Based on single point experience some options eg dry bed conf may handle higher particle concentrations than others

Chart1

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment
10000000
1000000
10000000
1000000000

Literature data

Literature data

Abbott (no RH no dryer)
Abbott (RH w dryer)
SR (Wilsonville before BH)
SR (Wilsonville after BH)
Linde (Wilsonville after BH)
UT Austin (Wilsonville before BH)
TCM (no BH no BF)
Particle Diameter (nm)
Particle Number Concentration (cm3)

Methods

10E7 particlescm3 reported literature maximum
Abbott aerosol data showing gt10E7 particlescm3 compared to other flue gases
Abbott (reheater off no dryer)
Abbott (42 reheater w dryer)
NCCC after baghouse (WUSL measurements)
NCCC before baghouse (Southern Research measurements)
NCCC after baghouse (Southern Research measurements)
NCCC before baghouse (University of Texas at Austin measurements)
Residual fluidized catalytic cracker (Technology Centre Mongstad measurements)

Methods

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) at which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pre-treatment

TEA

Technology proposed in this work
Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Base case Case 1 Case 2 Case 3 Case 4 Case 5
DOE Case B12B Reference w baghouse wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system wo baghouse (breakeven)
Cost Basis Year 2011$ 2011$ 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4416576 4530755 4497804 4432245 4516307 45154043379888
Thermal input (kWt) (HHV) 1694366 1694366 1736605 1723975 1698847 1732627
Coal flowrate (kghr) 224791 224791 230395 228719 225385 229867 11478458479996
Total steam turbine power (kWe) 642000 642000 643332 654224 644359 656869
Gross Power (MWe) 6420 6420 6433 6542 6444 6569 96690 9669 3
Auxiliary Power (MWe) 913 913 934 1038 941 1072 9969
Net Power (MWe) 551 551 550 550 550 550
PCC Reboiler Duty (MW) 3311 3311 4106 3372 3323 3386
Specific Duty (MJkg CO2) 248 248 300 248 248 248 4405686
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal 450395408921933 982680892193308 445482004460967
Fuel Unit Cost ($ton) 6854 6854 6854 6854 6854 6854 440778425101536 440864946116186
Power Plant Efficiency () (HHV) 32500 32500 31668 31930 32387 31725
Boiler Efficiency () (HHV) 89100 89100 89100 89100 89100 89100
CO2 Produced (MThr) 480 480 492 489 482 491
CO2 Produced (lbhr) 1058945 1058945 1085344 1077450 1061745 1082857 4415000
CO2 Produced (MTyear) 4207729 4207729 4312625 4281259 4218856 4302745 443224546416968
CO2 Captured () 90 90 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085 085 085
Variable Cost $60366961 $82839499 $61871865 $61421865 $60526594 $60429346
Fixed Cost $63094548 $62118858 $62746820 $62624815 $62372778 $62753124
Fuel Cost $126458921 $126458921 $12961144817 $12866877277 $12679332619 $12931450746
Total Overnight Cost $2384351816 $2331909536 $2364444218 $2356810371 $2341063213 $2364453241 $2364444218
Total Plant Cost $1939142000 $1890358000 $1921756120 $1915655869 $1903054023 $1922071279
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $38782850 $37807160 $38435122 $38313117 $38061080 $38441426
Maintenance Material Cost $18097725 $18097725 $1854888787 $1841398019 $1814558223 $18145582
Consumables Cost $36775427 $59247965 $3769221114 $3741807239 $3687267513 $36775427
Waste Disposal Cost $5493809 $5493809 $563076559 $558981254 $550833671 $5508337
By-Products Cost $0 $0 $0 $0 $0 $0
Preproduction Costs (x1000) $59957 $60854 $59820 $59635 $59257 $59691
Inventory Capital (x1000) $41125 452270951087832 418250410605904 $4155922 410280350765301 $4159189
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0 $0 $0
Land (x1000) $900 $877 $892 $889 $883 $892
Other Owners Costs (x1000) $290871 $283554 $288263 $287348 $285458 $288311
Financing Costs (x1000) $52357 $51040 $51887 $51723 $51382 $51896
Total Overnight Costs (TOC) $2384351816 $2331909536 $2364444218 $235681037146 $2341063213 $236445324106
Coal and sorbent handling ($x1000) $52286 $52286 $53154 $52896 $52378 $53073
Coal and sorbent prep amp feed ($x1000) $24983 $24983 $25398 $25274 $25027 $25359
Feedwater amp misc BOP systems ($x1000) $112150 $112150 $114013 $113457 $112348 $113838
PC boiler ($x1000) $400793 $400793 $407450 $405465 $401502 $406825
Flue gas cleanup ($x1000) $197475 $148691 $151161 $150424 $148954 $150929
CO2 removal ($x1000) $533757 $533757 $542622 $543241 $544054 $545052 935327377984728
CO2 compression amp drying ($x1000) $98381 $98381 $100015 $99528 $98555 $99862
Heat and power integration ($x1000) $0 $0 $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45027 $45775 $45552 $45107 $45705
Steam turbine generaor ($x1000) $178176 $178176 $181135 $180253 $178491 $180858
Cooling water system ($x1000) $62254 $62254 $63288 $62980 $62364 $63191
Ashspent sorbent handling system ($x1000) $19028 $19028 $19344 $19250 $19062 $19314
Accessory electric plant ($x1000) $93584 $93584 $95138 $94675 $93749 $94993
Instrumentation amp control ($x1000) $31654 $31654 $32180 $32023 $31710 $32130
Improvements to site ($x1000) $18063 $18063 $18363 $18274 $18095 $18335
Buildings amp structures ($x1000) $71531 $71531 $72719 $72365 $71657 $72608
TPC without PCC ($x1000) $1307004 $1258220 $1279119 $1272887 $1260445 $1277157
PCC cost ($x1000) $632138 $632138 $642638 $642769 $642609 $644914
COE ($MWh wo TampS) $13320 $13686 $13368 $13305 $13185 $13279
COE ($MWh w TampS) $14280 $14646 $14353 $14282 $14149 $14262
Fuel Costs ($MWh) $3090 $3084 $3165 $3139 $3095 $3139
Variable Costs ($MWh) $1470 $2023 $1511 $1500 $1478 $1474
Fixed Costs ($MWh) $1540 $1517 $1532 $1529 $1523 $1529
Capital Costs ($MWh) $7220 $7062 $7160 $7137 $7089 $7136
Cost of CO2 Captured ($ton wo TampS) $5262 $7069 $6497 $6472 $6414 $6440
Cost of CO2 Captured ($MT wo TampS) $5800 $6413 $5894 $5872 $5818 $5842
Cost of CO2 Captured ($MT w TampS) $6901 $7514 $6995 $6972 $6919 $6943
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $46312929 $47467476 $47122241 $46435398 $47358727
CO2 TSM Cost ($MWh) $960 $960 $985 $977 $963 $984
Coal handling amp conveying (kWe) 480 480 492 488 481 491
Pulverizers 3370 3370 3454 3429 3379 3446
Sorbent handling amp reagent preparation (kWe) 1070 1070 1097 1089 1073 1094
Ash handling (kWe) 780 780 799 794 782 798
Primary air fans (kWe) 1670 1670 1712 1699 1674 1708
Forced draft fans (kWe) 2130 2130 2183 2167 2136 2178
Induced draft fans (kWe) 8350 8350 8558 8496 8372 8539
SCR (kWe) 60 60 61 61 60 61
Activated carbon injection (kWe) 27 27 28 27 27 28
Dry sorbent injection (kWe) 108 108 111 110 108 110
Baghouse (kWe) 110 110 113 112 110 112
Wet FGD (kWe) 3550 3550 3638 3612 3559 3630
PCC plant auxiliaries (kWe) 16000 16000 16399 27280 18682 30361 14000 2640
CO2 compression (kWe) 35690 35690 36580 36314 35784 36496
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400 400 400
Condensate pumps (kWe) 640 640 656 651 642 654
Circulating water pumps (kWe) 7750 7750 7943 7885 7770 7925
Ground water pumps (kWe) 710 710 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010 4010 4010
Transformer losses (kWe) 2380 2380 2439 2422 2386 2434
Total auxiliaries (kWe) 91285 91285 93383 103756 94148 107186
Net plant heat rate (BTUkWh) 10498 10498 10775 10686 10535 10755
Condenser cooling duty (GJhr) 1867 1867 1914 1900 1872 1909
Limestone sorbent flowrate (kghr) 22213 22213 22767 22601 22272 22715
Raw water withdrawal (m3min) 30 30 30 30 30 30
Raw water consumption (m3min) 23 23 24 24 23 24
NOx (MTyear) 1517 1517 1555 1544 1521 1551
Particulates (MTyear) 195 195 200 198 196 199
Hg (kgyear) 6 6 6 6 6 6
SO2 (MTyear) 0 0 0 0 0 0
COE Reduction (w TampS) 256 051 002 -092 -012
COE Reduction (wo TampS) 275 036 -011 -101 -031
Cost of CO2 Reduction (wo TampS) 1057 162 123 032 073
Cost of CO2 Reduction (w TampS) 888 136 104 027 061
PCC Plant Cost Reduction 000 -166 -168 -166 -202
Method Amine emissions (kg aminetonne CO2 Aerosol particle concentration range where adequate (particlescm3)
Baghouse 0009 0 to 1E+7 0 10000000
Dry bed operation (no BH) lt03 0 to 1E+6 0 1000000
Absorber operating conditions (no BH) lt03 0 to 1E+7 0 10000000
Pre-treatment solutions (no BH) lt03 0 to 1E+9 0 1000000000
Abbott Power Plant (42 reheat burner w dryer) Abbott Power Plant (0 reheat burner wo dryer) Wilsonville (after baghouse) (WashU) Wilsonville (before baghouse) (SR) UT Austin (NCCC) (before baghouse) TCM (no BH no BF) Wilsonville (after baghouse) (SR) Wilsonville Parametric Tests (Linde) Wilsonville Long-term Tests (Linde)
Anal Ins Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) kg amineMT CO2 04080107622 00095091096
SMPS 682819795644892 982 427900576923077 157 14468166666667 982 1000000 10 4000000 2400 100000 35 650000 10
SMPS 735415966499163 102 532616923076924 163 160013 102 200000 20 3000000 2800 1150000 60 600000 20
SMPS 667026341708543 106 642390384615385 168 14813666666667 106 200000 40 2000000 2800 10000000 100 530000 40
SMPS 566092556113903 109 764663461538462 175 91535 109 1000000 70 1000000 3000 10000000 160 400000 70
SMPS 60451071356784 113 993782692307693 181 21280833333333 113 6300000 110 900000 3200 1400000 280 350000 120
SMPS 640447634840872 118 103840961538462 188 277361 118 8000000 200 800000 3200 120000 480 50000 200
SMPS 63931935678392 122 119893653846154 195 30501933333333 122 5000000 400 600000 3800 1400 640 20000 400
SMPS 67781860636516 126 155467692307692 202 35493966666667 126 800000 700 500000 3800 1000 960 10000 600
SMPS 678467648241207 131 173807500 209 25912033333333 131 1 800 400000 3800 1000 1920 5000 800
SMPS 736663748743719 136 198103846153846 217 20493533333333 136 1 1000 318900 3800 900 2560 100 1000
APS 791600921273033 141 245189807692308 225 34751733333333 141 300000 3800 750 5120
APS 776599182579565 146 27240826923077 233 43427866666667 146 200000 3800
APS 748095604690118 151 301905384615385 241 592247 151 100000 4000
APS 852265149078728 157 348734615384616 25 614018 157 90000 4100
APS 99985068676717 163 375607115384616 259 87004466666667 163 80000 4200
11043162479062 168 442790384615385 269 137845333333333 168 70000 4200
119948670016751 175 523365384615385 279 183715 175
112247051926298 181 445000384615385 289 241348 181
126325376884422 188 591696153846154 30 299061666666667 188
130470221105528 195 660759615384616 311 380613666666667 195
140578994974874 202 706025000000001 322 419054666666667 202
158666502512563 209 794851923076924 334 64940 209
15709983919598 217 860896153846155 346 883372 217
146305745393635 225 847675000000001 359 130709333333333 225
175050465661642 233 943019230769232 372 182267 233
20586516917923 241 949319230769232 385 263912666666667 241
21836616080402 25 96023076923077 40 355521333333333 25
221599480737019 259 956119230769232 414 484109 259
231432663316583 269 1025750000 429 647791 269
228343541038526 279 964151923076924 445 830633 279
238293788944724 289 982432692307693 461 1054740 289
24027170519263 30 103288461538462 478 125545333333333 30
254431427135679 311 981471153846155 514 1435950 311
281640274706868 322 100416538461539 533 161942333333333 322
279502308207705 334 995501923076924 552 169811666666667 334
273149989949749 346 969944230769232 573 182475666666667 346
301086837520938 359 89473076923077 594 187437333333333 359
337571587939699 372 791292307692308 615 1885320 372
335709822445561 385 719676923076924 638 184891666666667 385
303290958123953 40 67950576923077 661 177122333333333 40
296100891122278 414 554032692307693 685 167757333333333 414
305137175879397 429 441263461538462 71 1563790 429
298671450586265 445 39593576923077 737 143831333333333 445
267825041876047 461 294517500 764 1276340 461
268898750418761 478 235586538461539 791 111617666666667 478
246584087102178 496 219594615384616 82 956378666666667 496
22753597319933 514 183537307692308 851 786719333333333 514
20805557118928 533 132950384615385 882 654658 533
193145899497488 552 991526923076924 914 524162333333333 552
180397058626466 573 723884615384616 947 398477 573
159287497487437 594 49395000 982 294095333333333 594
140093966499163 615 329623653846154 1018 216415 615
125712003350084 638 232231346153846 1055 155941333333333 638
11582181239531 661 170568076923077 1094 109822 661
933554824120604 685 114283076923077 1134 811729333333333 685
766995862646567 71 851232692307693 1176 533704666666667 71
625145611390285 737 558684615384616 1219 398905 737
531419574539364 764 425857115384616 1263 272716 764
401304512562814 791 320039230769231 131 224988666666667 791
302290415410386 82 224643461538462 1358 175139333333333 82
234256559463987 851 204812115384616 1407 137377666666667 851
174277956448911 882 133968461538462 1459 1185743 882
119620948073702 914 120355384615385 1512 901657 914
860247541038527 947 1114950 1568 95869666666667 947
588795608040202 982 892715384615385 1625 866524 982
453500100502513 1018 75693076923077 1685 79995933333333 1018
306104184254607 1055 734100000000001 1747 855652 1055
214392951423786 1094 732648076923078 1811 82140833333333 1094
171584234505863 1134 530092307692308 1877 81683533333333 1134
129452606365159 1176 609534615384616 1946 71270166666667 1176
109800234170854 1219 491257692307693 2017 67286033333333 1219
875061487437187 1263 391936346153846 2091 75311933333333 1263
755701192629817 131 427556153846154 2167 71270066666667 131
76907041876047 1358 528136538461539 2247 670295 1358
816854716917924 1407 538875 2329 612828 1407
682292696817421 1459 484882692307693 2414 60685066666667 1459
484327912897823 1512 523173076923077 2503 64353 1512
601245688442212 1568 532400 2595 575052 1568
608947306532664 1625 391983653846154 269 53995533333333 1625
57423530318258 1685 39818576923077 2788 56581733333333 1685
665198110552765 1747 390621538461539 289 50526966666667 1747
641284469011726 1811 282454038461539 2996 52087233333333 1811
551386834170855 1877 301689807692308 3106 390656 1877
515487715242882 1946 392116538461539 322 40069366666667 1946
557056576214406 2017 262214807692308 3338 42029366666667 2017
585014763819096 2091 300040192307693 346
563217748743719 2167 327144807692308 3587
516019996649917 2247 291944038461539 3718
635039155778895 2329 410772307692308 3854
678386860971525 2414 438539038461539 3995
540607373534339 2503 810536808 542
534717524288108 2595 882899298 583
624962696817421 269 884130018 626
507626351758795 2788 848442984 673
482487487437186 289 79158372 723
462233661641542 2996 628394094 777
614290241206031 3106 484154992 835
549685423785595 322 3250266138 898
485615936348409 3338 1930962502 965
446652388609716 346 97717245 1037
733651755443887 3587 451665266 1114
73515500837521 3718 1710666186 1197
491714613065327 3854 750723816 1286
453128479061977 3995 3692090772 1382
22625785 542 08614861802 1486
23149945 583 11076250522 1596 89545 542
2547951466667 626 1 1715 10021 583
26411294 673 1 1843 11057 626
2478060433333 723 1 1981 12158 673
2428556433333 777 1 2129 12433 723
1953912566667 835 1 2288 113975 777
1421029306667 898 01230695642 2458 9234 835
797872833333 965 1 2642 70035 898
430967506667 1037 1 2839 49195 965
21839545 1114 1 3051 3452 1037
84446483333 1197 01230695642 3278 23495 1114
320313357 1286 1 3523 1597 1197
34943302333 1382 1 3786 1089 1286
17471639033 1486 1 4068 781 1382
116477634 1596 1 4371 5965 1486
08735821033 1715 1 4698 4325 1596
05823884733 1843 1 5048 3995 1715
05823884733 1981 1 5425 3185 1843
02911942367 2129 1 5829 2325 1981
1 2288 1 6264 2185 2129
02911942367 2458 1 6732 194 2288
02911942367 2642 1 7234 1705 2458
08735821033 2839 1 7774 1395 2642
02911942367 3051 1 8354 124 2839
08735821033 3278 1 8977 97 3051
05823884733 3523 1 9647 92 3278
08735818 3786 1 10370 71 3523
23295514667 4068 1 11140 56 3786
05823884733 4371 1 11970 51 4068
05823884733 4698 1 12860 35 4371
1 5048 1 13820 31 4698
1 5425 1 14860 21 5048
1 5829 1 15960 16 5425
1 6264 1 17150 1 5829
1 6732 1 18430 055 6264
1 7234 1 19810 05 6732
1 7774 055 7234
1 8354 02 7774
1 8977 005 8354
1 9647 0 8977
1 10370 01 9647
1 11140 005 10370
1 11970 005 11140
1 12860 01 11970
1 13820 0 12860
1 14860 0 13820
1 15960 0 14860
1 17150 0 15960
1 18430 0 17150
1 19810 0 18430
0 19810
0009
lt03
lt03
lt03
Page 7: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Start Finish

Q3 2018 Q4 2018 Q1 2019 Q2 2019 Q3 2019 Q4 2019 Q1 2020 Q2 2020 Q3 2020 Q4 2020

Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov

Budget Period 1 612018 11302018

10 Project management 612018 11302018

21 Mechanism review 612018 6292018

22 Mechanism modeling 722018 11282018

31 Design basis dev 612018 6292018

32 Basic engineering 722018 1052018

33 Detailed engineering 1082018 11282018

34 Test planning 10292018 11282018

Budget Period 2 1232018 11292019

10 Project management 1232018 11292019

41 ESP system fabrication 1232018 8302019

42 Spray system fabrication 1232018 8302019

43 Procurement for install 1232018 8302019

51 Site installation 922019 10182019

52 Commission amp start-up 10212019 11292019

Budget Period 3 1222019 11302020

10 Project management 1222019 11302020

61 ESP system tests 1222019 2242020

62 Spray system tests 2172020 4302020

63 Test analysis 542020 8282020

70 Benchmarking analysis 8312020 11272020

80 Removal of equipment 8312020 11272020

Project Scope Timeline amp Milestones

7

BP1 Design amp Engineering

A

B

C

D

E

F

G

HIJ

BP2 Fabrication amp Installation

BP3 Testing amp Analysis

Task ID Milestone Completion Date1 A Updated PMP 629181 B Kick-Off Meeting 727182 C Mechanisms review amp modeling complete 1130183 D Design amp engineering complete 1130183 E Test plan complete 1130184 F Fabrication amp procurement complete 830195 G Installation amp commissioning complete 1129196 H Parametric testing complete 51207 I Benchmarking analysis complete 1130208 J Removal of equipment complete 113020

8

Project Participants

Partner

Organization

Lead contact(s) Key Role(s)

DOE-NETL Andy Aurelio Project Manager

-Funding amp sponsorship

Linde LLC Devin BostickPrincipal InvestigatorKrish Krishnamurthy Technology Director

-Prime contract-Overall program management-High velocity water spray-based aerosol pretreatment technology owner

University of Illinois Urbana-Champaign (UIUC)

Kevin OrsquoBrien Project Lead

-Aerosol mechanisms review-Host site liaison-Flue gas and liquid effluent composition measurement amp analysis

Washington University in St Louis (WUSTL)

Pratim BiswasProject Lead

-Aerosol mechanisms modeling lead-ESP-based aerosol pretreatment technology owner-Characterization of aerosols in flue gas

Affiliated Construction Services (ACS)

Greg LarsonProject Lead

-Procurement management for high velocity water spray-based system-Construction management for site modifications amp module installation

9

Project Budget DOE Funding and Cost Share

SourceBudget Period 1

Jun 2018 ndash Nov 2018

Budget Period 2

Dec 2018 ndash Nov 2019

Budget Period 3

Dec 2019 ndash Nov 2020Total

DOE Funding $457822 $1290725 $1078826 $2827834

Cost Share $176612 $260949 $269860 $707421

Total Project $634435 $1551674 $1348686 $3534795

Cost share commitments

Linde $234869

University of Illinois (UIUC) $231339

Washington University in St Louis (WUSTL) $191213

Affiliated Construction Services (ACS) $50000

Technology Development

Rationale Background amp Previous Research

10

Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment

11

Amine losses

Flue gas cooler

Flue gas blower

Flue gas inlet

Condensate

Major factor aerosol particles in flue gas from coal-fired power plants

Aerosol particle formation during coal combustion

S N

N

S

Inorganic oxides and metals (eg SiO2 Fe P)

Sulfur

Nitrogen

Organic volatiles

Inorganic volatiles (eg Hg)

Coal particle1st stage

devolatilization

Burning of tar

Tar

Oxidation

CO2

Partial oxidation

Metal or its Suboxide vapor (eg SiO Ca)

Absorption

Re-oxidation amp particle formation

Nano-sized inorganic aerosol particle

(eg SiO2 particle)

Inorganic aerosols shielding organics

Aerosols sent in flue gas to PCC absorber

(1) Nucleation(2) Condensation

04 nmParticle Size 04 ndash 2 nm 2 - 100 nm 0001-1000 mm

(3) Coagulation

3 main stages of aerosol formation1

Burning of char

Bottom Ash

2nd stage devolatilization

Ash formation

1 Wang Xinlei amp Williams Brent amp Tang Y amp Huang Yuhsuan amp Kong L amp Yang Xin amp Biswas Pratim (2013) Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace Atmospheric Chemistry and Physics 13 105194acp-13-10919-2013

12

Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1

13

Phase IAerosol growth and nucleation from water in absorber

Phase IIAerosol growth from amine in absorber

Phase IIIBuildup of captured CO2and amine bound to CO2in aerosols

Phase IVSalt accumulation inside particles causing further amine and CO2 diffusion into aerosols

02 microm particle

1 G Lombardo B Fostas M Shah A Morken O Hvidsten J Mertens E Hamborg Results from Aerosol Measurement in Amine Plant Treating Gas Turbine and Residue Fluidized Catalytic Cracker Flue Gases at the CO2 Technology Centre Mongstad GHGT-13 Energy Procedia 2017 114 Pages 1210-1230

Water condensation

Nucleation from water supersaturation

1 microm particle

Amine absorption until complete saturation

2 microm particle

CO2 and CO2+amine absorption

2-5 microm particleSalt accumulationCO2 and amine diffusion

Amine contained in aerosol particles are then emitted from PCC absorber in treated gas stream

The Kelvin equation gives the minimum particle diameter d of a liquid1 supersaturation leads to nucleation of smaller particles

14

Benefits of aerosol particle reduction

Benefits

Manageable solvent supply and transport logistics

Optimum power plant efficiency

when integrated with PCC

Reduction of particulate that can unfavorably react with amine

solvent

Improved PCC plant specific

energy performance

Environmental sustainability and

performance

Improved PCC plant business

caselower cost

Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1

For power plants integrated with solvent-based PCC without an existing baghouse optimized flue gas aerosol pretreatment is the only viable option to reduce aerosol concentrations from gt109 particlescm3 to manageable levels near 104-106

particlescm3 for particles with diameters in the range of 70-200 nm

Pretreatment has traditionally been performed using simple ESPs and Brownian filters

Few systematic studies have been conducted to evaluate performance of different technologies over a full range of conditions

15

BH = baghouse

1 Based on single point experience some options eg dry bed conf may handle higher particle concentrations than others

Chart1

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment
10000000
1000000
10000000
1000000000

Literature data

Literature data

Abbott (no RH no dryer)
Abbott (RH w dryer)
SR (Wilsonville before BH)
SR (Wilsonville after BH)
Linde (Wilsonville after BH)
UT Austin (Wilsonville before BH)
TCM (no BH no BF)
Particle Diameter (nm)
Particle Number Concentration (cm3)

Methods

10E7 particlescm3 reported literature maximum
Abbott aerosol data showing gt10E7 particlescm3 compared to other flue gases
Abbott (reheater off no dryer)
Abbott (42 reheater w dryer)
NCCC after baghouse (WUSL measurements)
NCCC before baghouse (Southern Research measurements)
NCCC after baghouse (Southern Research measurements)
NCCC before baghouse (University of Texas at Austin measurements)
Residual fluidized catalytic cracker (Technology Centre Mongstad measurements)

Methods

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) at which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pre-treatment

TEA

Technology proposed in this work
Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Base case Case 1 Case 2 Case 3 Case 4 Case 5
DOE Case B12B Reference w baghouse wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system wo baghouse (breakeven)
Cost Basis Year 2011$ 2011$ 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4416576 4530755 4497804 4432245 4516307 45154043379888
Thermal input (kWt) (HHV) 1694366 1694366 1736605 1723975 1698847 1732627
Coal flowrate (kghr) 224791 224791 230395 228719 225385 229867 11478458479996
Total steam turbine power (kWe) 642000 642000 643332 654224 644359 656869
Gross Power (MWe) 6420 6420 6433 6542 6444 6569 96690 9669 3
Auxiliary Power (MWe) 913 913 934 1038 941 1072 9969
Net Power (MWe) 551 551 550 550 550 550
PCC Reboiler Duty (MW) 3311 3311 4106 3372 3323 3386
Specific Duty (MJkg CO2) 248 248 300 248 248 248 4405686
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal 450395408921933 982680892193308 445482004460967
Fuel Unit Cost ($ton) 6854 6854 6854 6854 6854 6854 440778425101536 440864946116186
Power Plant Efficiency () (HHV) 32500 32500 31668 31930 32387 31725
Boiler Efficiency () (HHV) 89100 89100 89100 89100 89100 89100
CO2 Produced (MThr) 480 480 492 489 482 491
CO2 Produced (lbhr) 1058945 1058945 1085344 1077450 1061745 1082857 4415000
CO2 Produced (MTyear) 4207729 4207729 4312625 4281259 4218856 4302745 443224546416968
CO2 Captured () 90 90 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085 085 085
Variable Cost $60366961 $82839499 $61871865 $61421865 $60526594 $60429346
Fixed Cost $63094548 $62118858 $62746820 $62624815 $62372778 $62753124
Fuel Cost $126458921 $126458921 $12961144817 $12866877277 $12679332619 $12931450746
Total Overnight Cost $2384351816 $2331909536 $2364444218 $2356810371 $2341063213 $2364453241 $2364444218
Total Plant Cost $1939142000 $1890358000 $1921756120 $1915655869 $1903054023 $1922071279
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $38782850 $37807160 $38435122 $38313117 $38061080 $38441426
Maintenance Material Cost $18097725 $18097725 $1854888787 $1841398019 $1814558223 $18145582
Consumables Cost $36775427 $59247965 $3769221114 $3741807239 $3687267513 $36775427
Waste Disposal Cost $5493809 $5493809 $563076559 $558981254 $550833671 $5508337
By-Products Cost $0 $0 $0 $0 $0 $0
Preproduction Costs (x1000) $59957 $60854 $59820 $59635 $59257 $59691
Inventory Capital (x1000) $41125 452270951087832 418250410605904 $4155922 410280350765301 $4159189
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0 $0 $0
Land (x1000) $900 $877 $892 $889 $883 $892
Other Owners Costs (x1000) $290871 $283554 $288263 $287348 $285458 $288311
Financing Costs (x1000) $52357 $51040 $51887 $51723 $51382 $51896
Total Overnight Costs (TOC) $2384351816 $2331909536 $2364444218 $235681037146 $2341063213 $236445324106
Coal and sorbent handling ($x1000) $52286 $52286 $53154 $52896 $52378 $53073
Coal and sorbent prep amp feed ($x1000) $24983 $24983 $25398 $25274 $25027 $25359
Feedwater amp misc BOP systems ($x1000) $112150 $112150 $114013 $113457 $112348 $113838
PC boiler ($x1000) $400793 $400793 $407450 $405465 $401502 $406825
Flue gas cleanup ($x1000) $197475 $148691 $151161 $150424 $148954 $150929
CO2 removal ($x1000) $533757 $533757 $542622 $543241 $544054 $545052 935327377984728
CO2 compression amp drying ($x1000) $98381 $98381 $100015 $99528 $98555 $99862
Heat and power integration ($x1000) $0 $0 $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45027 $45775 $45552 $45107 $45705
Steam turbine generaor ($x1000) $178176 $178176 $181135 $180253 $178491 $180858
Cooling water system ($x1000) $62254 $62254 $63288 $62980 $62364 $63191
Ashspent sorbent handling system ($x1000) $19028 $19028 $19344 $19250 $19062 $19314
Accessory electric plant ($x1000) $93584 $93584 $95138 $94675 $93749 $94993
Instrumentation amp control ($x1000) $31654 $31654 $32180 $32023 $31710 $32130
Improvements to site ($x1000) $18063 $18063 $18363 $18274 $18095 $18335
Buildings amp structures ($x1000) $71531 $71531 $72719 $72365 $71657 $72608
TPC without PCC ($x1000) $1307004 $1258220 $1279119 $1272887 $1260445 $1277157
PCC cost ($x1000) $632138 $632138 $642638 $642769 $642609 $644914
COE ($MWh wo TampS) $13320 $13686 $13368 $13305 $13185 $13279
COE ($MWh w TampS) $14280 $14646 $14353 $14282 $14149 $14262
Fuel Costs ($MWh) $3090 $3084 $3165 $3139 $3095 $3139
Variable Costs ($MWh) $1470 $2023 $1511 $1500 $1478 $1474
Fixed Costs ($MWh) $1540 $1517 $1532 $1529 $1523 $1529
Capital Costs ($MWh) $7220 $7062 $7160 $7137 $7089 $7136
Cost of CO2 Captured ($ton wo TampS) $5262 $7069 $6497 $6472 $6414 $6440
Cost of CO2 Captured ($MT wo TampS) $5800 $6413 $5894 $5872 $5818 $5842
Cost of CO2 Captured ($MT w TampS) $6901 $7514 $6995 $6972 $6919 $6943
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $46312929 $47467476 $47122241 $46435398 $47358727
CO2 TSM Cost ($MWh) $960 $960 $985 $977 $963 $984
Coal handling amp conveying (kWe) 480 480 492 488 481 491
Pulverizers 3370 3370 3454 3429 3379 3446
Sorbent handling amp reagent preparation (kWe) 1070 1070 1097 1089 1073 1094
Ash handling (kWe) 780 780 799 794 782 798
Primary air fans (kWe) 1670 1670 1712 1699 1674 1708
Forced draft fans (kWe) 2130 2130 2183 2167 2136 2178
Induced draft fans (kWe) 8350 8350 8558 8496 8372 8539
SCR (kWe) 60 60 61 61 60 61
Activated carbon injection (kWe) 27 27 28 27 27 28
Dry sorbent injection (kWe) 108 108 111 110 108 110
Baghouse (kWe) 110 110 113 112 110 112
Wet FGD (kWe) 3550 3550 3638 3612 3559 3630
PCC plant auxiliaries (kWe) 16000 16000 16399 27280 18682 30361 14000 2640
CO2 compression (kWe) 35690 35690 36580 36314 35784 36496
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400 400 400
Condensate pumps (kWe) 640 640 656 651 642 654
Circulating water pumps (kWe) 7750 7750 7943 7885 7770 7925
Ground water pumps (kWe) 710 710 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010 4010 4010
Transformer losses (kWe) 2380 2380 2439 2422 2386 2434
Total auxiliaries (kWe) 91285 91285 93383 103756 94148 107186
Net plant heat rate (BTUkWh) 10498 10498 10775 10686 10535 10755
Condenser cooling duty (GJhr) 1867 1867 1914 1900 1872 1909
Limestone sorbent flowrate (kghr) 22213 22213 22767 22601 22272 22715
Raw water withdrawal (m3min) 30 30 30 30 30 30
Raw water consumption (m3min) 23 23 24 24 23 24
NOx (MTyear) 1517 1517 1555 1544 1521 1551
Particulates (MTyear) 195 195 200 198 196 199
Hg (kgyear) 6 6 6 6 6 6
SO2 (MTyear) 0 0 0 0 0 0
COE Reduction (w TampS) 256 051 002 -092 -012
COE Reduction (wo TampS) 275 036 -011 -101 -031
Cost of CO2 Reduction (wo TampS) 1057 162 123 032 073
Cost of CO2 Reduction (w TampS) 888 136 104 027 061
PCC Plant Cost Reduction 000 -166 -168 -166 -202
Method Amine emissions (kg aminetonne CO2 Aerosol particle concentration range where adequate (particlescm3)
Baghouse 0009 0 to 1E+7 0 10000000
Dry bed operation (no BH) lt03 0 to 1E+6 0 1000000
Absorber operating conditions (no BH) lt03 0 to 1E+7 0 10000000
Pre-treatment solutions (no BH) lt03 0 to 1E+9 0 1000000000
Abbott Power Plant (42 reheat burner w dryer) Abbott Power Plant (0 reheat burner wo dryer) Wilsonville (after baghouse) (WashU) Wilsonville (before baghouse) (SR) UT Austin (NCCC) (before baghouse) TCM (no BH no BF) Wilsonville (after baghouse) (SR) Wilsonville Parametric Tests (Linde) Wilsonville Long-term Tests (Linde)
Anal Ins Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) kg amineMT CO2 04080107622 00095091096
SMPS 682819795644892 982 427900576923077 157 14468166666667 982 1000000 10 4000000 2400 100000 35 650000 10
SMPS 735415966499163 102 532616923076924 163 160013 102 200000 20 3000000 2800 1150000 60 600000 20
SMPS 667026341708543 106 642390384615385 168 14813666666667 106 200000 40 2000000 2800 10000000 100 530000 40
SMPS 566092556113903 109 764663461538462 175 91535 109 1000000 70 1000000 3000 10000000 160 400000 70
SMPS 60451071356784 113 993782692307693 181 21280833333333 113 6300000 110 900000 3200 1400000 280 350000 120
SMPS 640447634840872 118 103840961538462 188 277361 118 8000000 200 800000 3200 120000 480 50000 200
SMPS 63931935678392 122 119893653846154 195 30501933333333 122 5000000 400 600000 3800 1400 640 20000 400
SMPS 67781860636516 126 155467692307692 202 35493966666667 126 800000 700 500000 3800 1000 960 10000 600
SMPS 678467648241207 131 173807500 209 25912033333333 131 1 800 400000 3800 1000 1920 5000 800
SMPS 736663748743719 136 198103846153846 217 20493533333333 136 1 1000 318900 3800 900 2560 100 1000
APS 791600921273033 141 245189807692308 225 34751733333333 141 300000 3800 750 5120
APS 776599182579565 146 27240826923077 233 43427866666667 146 200000 3800
APS 748095604690118 151 301905384615385 241 592247 151 100000 4000
APS 852265149078728 157 348734615384616 25 614018 157 90000 4100
APS 99985068676717 163 375607115384616 259 87004466666667 163 80000 4200
11043162479062 168 442790384615385 269 137845333333333 168 70000 4200
119948670016751 175 523365384615385 279 183715 175
112247051926298 181 445000384615385 289 241348 181
126325376884422 188 591696153846154 30 299061666666667 188
130470221105528 195 660759615384616 311 380613666666667 195
140578994974874 202 706025000000001 322 419054666666667 202
158666502512563 209 794851923076924 334 64940 209
15709983919598 217 860896153846155 346 883372 217
146305745393635 225 847675000000001 359 130709333333333 225
175050465661642 233 943019230769232 372 182267 233
20586516917923 241 949319230769232 385 263912666666667 241
21836616080402 25 96023076923077 40 355521333333333 25
221599480737019 259 956119230769232 414 484109 259
231432663316583 269 1025750000 429 647791 269
228343541038526 279 964151923076924 445 830633 279
238293788944724 289 982432692307693 461 1054740 289
24027170519263 30 103288461538462 478 125545333333333 30
254431427135679 311 981471153846155 514 1435950 311
281640274706868 322 100416538461539 533 161942333333333 322
279502308207705 334 995501923076924 552 169811666666667 334
273149989949749 346 969944230769232 573 182475666666667 346
301086837520938 359 89473076923077 594 187437333333333 359
337571587939699 372 791292307692308 615 1885320 372
335709822445561 385 719676923076924 638 184891666666667 385
303290958123953 40 67950576923077 661 177122333333333 40
296100891122278 414 554032692307693 685 167757333333333 414
305137175879397 429 441263461538462 71 1563790 429
298671450586265 445 39593576923077 737 143831333333333 445
267825041876047 461 294517500 764 1276340 461
268898750418761 478 235586538461539 791 111617666666667 478
246584087102178 496 219594615384616 82 956378666666667 496
22753597319933 514 183537307692308 851 786719333333333 514
20805557118928 533 132950384615385 882 654658 533
193145899497488 552 991526923076924 914 524162333333333 552
180397058626466 573 723884615384616 947 398477 573
159287497487437 594 49395000 982 294095333333333 594
140093966499163 615 329623653846154 1018 216415 615
125712003350084 638 232231346153846 1055 155941333333333 638
11582181239531 661 170568076923077 1094 109822 661
933554824120604 685 114283076923077 1134 811729333333333 685
766995862646567 71 851232692307693 1176 533704666666667 71
625145611390285 737 558684615384616 1219 398905 737
531419574539364 764 425857115384616 1263 272716 764
401304512562814 791 320039230769231 131 224988666666667 791
302290415410386 82 224643461538462 1358 175139333333333 82
234256559463987 851 204812115384616 1407 137377666666667 851
174277956448911 882 133968461538462 1459 1185743 882
119620948073702 914 120355384615385 1512 901657 914
860247541038527 947 1114950 1568 95869666666667 947
588795608040202 982 892715384615385 1625 866524 982
453500100502513 1018 75693076923077 1685 79995933333333 1018
306104184254607 1055 734100000000001 1747 855652 1055
214392951423786 1094 732648076923078 1811 82140833333333 1094
171584234505863 1134 530092307692308 1877 81683533333333 1134
129452606365159 1176 609534615384616 1946 71270166666667 1176
109800234170854 1219 491257692307693 2017 67286033333333 1219
875061487437187 1263 391936346153846 2091 75311933333333 1263
755701192629817 131 427556153846154 2167 71270066666667 131
76907041876047 1358 528136538461539 2247 670295 1358
816854716917924 1407 538875 2329 612828 1407
682292696817421 1459 484882692307693 2414 60685066666667 1459
484327912897823 1512 523173076923077 2503 64353 1512
601245688442212 1568 532400 2595 575052 1568
608947306532664 1625 391983653846154 269 53995533333333 1625
57423530318258 1685 39818576923077 2788 56581733333333 1685
665198110552765 1747 390621538461539 289 50526966666667 1747
641284469011726 1811 282454038461539 2996 52087233333333 1811
551386834170855 1877 301689807692308 3106 390656 1877
515487715242882 1946 392116538461539 322 40069366666667 1946
557056576214406 2017 262214807692308 3338 42029366666667 2017
585014763819096 2091 300040192307693 346
563217748743719 2167 327144807692308 3587
516019996649917 2247 291944038461539 3718
635039155778895 2329 410772307692308 3854
678386860971525 2414 438539038461539 3995
540607373534339 2503 810536808 542
534717524288108 2595 882899298 583
624962696817421 269 884130018 626
507626351758795 2788 848442984 673
482487487437186 289 79158372 723
462233661641542 2996 628394094 777
614290241206031 3106 484154992 835
549685423785595 322 3250266138 898
485615936348409 3338 1930962502 965
446652388609716 346 97717245 1037
733651755443887 3587 451665266 1114
73515500837521 3718 1710666186 1197
491714613065327 3854 750723816 1286
453128479061977 3995 3692090772 1382
22625785 542 08614861802 1486
23149945 583 11076250522 1596 89545 542
2547951466667 626 1 1715 10021 583
26411294 673 1 1843 11057 626
2478060433333 723 1 1981 12158 673
2428556433333 777 1 2129 12433 723
1953912566667 835 1 2288 113975 777
1421029306667 898 01230695642 2458 9234 835
797872833333 965 1 2642 70035 898
430967506667 1037 1 2839 49195 965
21839545 1114 1 3051 3452 1037
84446483333 1197 01230695642 3278 23495 1114
320313357 1286 1 3523 1597 1197
34943302333 1382 1 3786 1089 1286
17471639033 1486 1 4068 781 1382
116477634 1596 1 4371 5965 1486
08735821033 1715 1 4698 4325 1596
05823884733 1843 1 5048 3995 1715
05823884733 1981 1 5425 3185 1843
02911942367 2129 1 5829 2325 1981
1 2288 1 6264 2185 2129
02911942367 2458 1 6732 194 2288
02911942367 2642 1 7234 1705 2458
08735821033 2839 1 7774 1395 2642
02911942367 3051 1 8354 124 2839
08735821033 3278 1 8977 97 3051
05823884733 3523 1 9647 92 3278
08735818 3786 1 10370 71 3523
23295514667 4068 1 11140 56 3786
05823884733 4371 1 11970 51 4068
05823884733 4698 1 12860 35 4371
1 5048 1 13820 31 4698
1 5425 1 14860 21 5048
1 5829 1 15960 16 5425
1 6264 1 17150 1 5829
1 6732 1 18430 055 6264
1 7234 1 19810 05 6732
1 7774 055 7234
1 8354 02 7774
1 8977 005 8354
1 9647 0 8977
1 10370 01 9647
1 11140 005 10370
1 11970 005 11140
1 12860 01 11970
1 13820 0 12860
1 14860 0 13820
1 15960 0 14860
1 17150 0 15960
1 18430 0 17150
1 19810 0 18430
0 19810
0009
lt03
lt03
lt03
Page 8: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

8

Project Participants

Partner

Organization

Lead contact(s) Key Role(s)

DOE-NETL Andy Aurelio Project Manager

-Funding amp sponsorship

Linde LLC Devin BostickPrincipal InvestigatorKrish Krishnamurthy Technology Director

-Prime contract-Overall program management-High velocity water spray-based aerosol pretreatment technology owner

University of Illinois Urbana-Champaign (UIUC)

Kevin OrsquoBrien Project Lead

-Aerosol mechanisms review-Host site liaison-Flue gas and liquid effluent composition measurement amp analysis

Washington University in St Louis (WUSTL)

Pratim BiswasProject Lead

-Aerosol mechanisms modeling lead-ESP-based aerosol pretreatment technology owner-Characterization of aerosols in flue gas

Affiliated Construction Services (ACS)

Greg LarsonProject Lead

-Procurement management for high velocity water spray-based system-Construction management for site modifications amp module installation

9

Project Budget DOE Funding and Cost Share

SourceBudget Period 1

Jun 2018 ndash Nov 2018

Budget Period 2

Dec 2018 ndash Nov 2019

Budget Period 3

Dec 2019 ndash Nov 2020Total

DOE Funding $457822 $1290725 $1078826 $2827834

Cost Share $176612 $260949 $269860 $707421

Total Project $634435 $1551674 $1348686 $3534795

Cost share commitments

Linde $234869

University of Illinois (UIUC) $231339

Washington University in St Louis (WUSTL) $191213

Affiliated Construction Services (ACS) $50000

Technology Development

Rationale Background amp Previous Research

10

Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment

11

Amine losses

Flue gas cooler

Flue gas blower

Flue gas inlet

Condensate

Major factor aerosol particles in flue gas from coal-fired power plants

Aerosol particle formation during coal combustion

S N

N

S

Inorganic oxides and metals (eg SiO2 Fe P)

Sulfur

Nitrogen

Organic volatiles

Inorganic volatiles (eg Hg)

Coal particle1st stage

devolatilization

Burning of tar

Tar

Oxidation

CO2

Partial oxidation

Metal or its Suboxide vapor (eg SiO Ca)

Absorption

Re-oxidation amp particle formation

Nano-sized inorganic aerosol particle

(eg SiO2 particle)

Inorganic aerosols shielding organics

Aerosols sent in flue gas to PCC absorber

(1) Nucleation(2) Condensation

04 nmParticle Size 04 ndash 2 nm 2 - 100 nm 0001-1000 mm

(3) Coagulation

3 main stages of aerosol formation1

Burning of char

Bottom Ash

2nd stage devolatilization

Ash formation

1 Wang Xinlei amp Williams Brent amp Tang Y amp Huang Yuhsuan amp Kong L amp Yang Xin amp Biswas Pratim (2013) Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace Atmospheric Chemistry and Physics 13 105194acp-13-10919-2013

12

Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1

13

Phase IAerosol growth and nucleation from water in absorber

Phase IIAerosol growth from amine in absorber

Phase IIIBuildup of captured CO2and amine bound to CO2in aerosols

Phase IVSalt accumulation inside particles causing further amine and CO2 diffusion into aerosols

02 microm particle

1 G Lombardo B Fostas M Shah A Morken O Hvidsten J Mertens E Hamborg Results from Aerosol Measurement in Amine Plant Treating Gas Turbine and Residue Fluidized Catalytic Cracker Flue Gases at the CO2 Technology Centre Mongstad GHGT-13 Energy Procedia 2017 114 Pages 1210-1230

Water condensation

Nucleation from water supersaturation

1 microm particle

Amine absorption until complete saturation

2 microm particle

CO2 and CO2+amine absorption

2-5 microm particleSalt accumulationCO2 and amine diffusion

Amine contained in aerosol particles are then emitted from PCC absorber in treated gas stream

The Kelvin equation gives the minimum particle diameter d of a liquid1 supersaturation leads to nucleation of smaller particles

14

Benefits of aerosol particle reduction

Benefits

Manageable solvent supply and transport logistics

Optimum power plant efficiency

when integrated with PCC

Reduction of particulate that can unfavorably react with amine

solvent

Improved PCC plant specific

energy performance

Environmental sustainability and

performance

Improved PCC plant business

caselower cost

Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1

For power plants integrated with solvent-based PCC without an existing baghouse optimized flue gas aerosol pretreatment is the only viable option to reduce aerosol concentrations from gt109 particlescm3 to manageable levels near 104-106

particlescm3 for particles with diameters in the range of 70-200 nm

Pretreatment has traditionally been performed using simple ESPs and Brownian filters

Few systematic studies have been conducted to evaluate performance of different technologies over a full range of conditions

15

BH = baghouse

1 Based on single point experience some options eg dry bed conf may handle higher particle concentrations than others

Chart1

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment
10000000
1000000
10000000
1000000000

Literature data

Literature data

Abbott (no RH no dryer)
Abbott (RH w dryer)
SR (Wilsonville before BH)
SR (Wilsonville after BH)
Linde (Wilsonville after BH)
UT Austin (Wilsonville before BH)
TCM (no BH no BF)
Particle Diameter (nm)
Particle Number Concentration (cm3)

Methods

10E7 particlescm3 reported literature maximum
Abbott aerosol data showing gt10E7 particlescm3 compared to other flue gases
Abbott (reheater off no dryer)
Abbott (42 reheater w dryer)
NCCC after baghouse (WUSL measurements)
NCCC before baghouse (Southern Research measurements)
NCCC after baghouse (Southern Research measurements)
NCCC before baghouse (University of Texas at Austin measurements)
Residual fluidized catalytic cracker (Technology Centre Mongstad measurements)

Methods

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) at which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pre-treatment

TEA

Technology proposed in this work
Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Base case Case 1 Case 2 Case 3 Case 4 Case 5
DOE Case B12B Reference w baghouse wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system wo baghouse (breakeven)
Cost Basis Year 2011$ 2011$ 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4416576 4530755 4497804 4432245 4516307 45154043379888
Thermal input (kWt) (HHV) 1694366 1694366 1736605 1723975 1698847 1732627
Coal flowrate (kghr) 224791 224791 230395 228719 225385 229867 11478458479996
Total steam turbine power (kWe) 642000 642000 643332 654224 644359 656869
Gross Power (MWe) 6420 6420 6433 6542 6444 6569 96690 9669 3
Auxiliary Power (MWe) 913 913 934 1038 941 1072 9969
Net Power (MWe) 551 551 550 550 550 550
PCC Reboiler Duty (MW) 3311 3311 4106 3372 3323 3386
Specific Duty (MJkg CO2) 248 248 300 248 248 248 4405686
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal 450395408921933 982680892193308 445482004460967
Fuel Unit Cost ($ton) 6854 6854 6854 6854 6854 6854 440778425101536 440864946116186
Power Plant Efficiency () (HHV) 32500 32500 31668 31930 32387 31725
Boiler Efficiency () (HHV) 89100 89100 89100 89100 89100 89100
CO2 Produced (MThr) 480 480 492 489 482 491
CO2 Produced (lbhr) 1058945 1058945 1085344 1077450 1061745 1082857 4415000
CO2 Produced (MTyear) 4207729 4207729 4312625 4281259 4218856 4302745 443224546416968
CO2 Captured () 90 90 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085 085 085
Variable Cost $60366961 $82839499 $61871865 $61421865 $60526594 $60429346
Fixed Cost $63094548 $62118858 $62746820 $62624815 $62372778 $62753124
Fuel Cost $126458921 $126458921 $12961144817 $12866877277 $12679332619 $12931450746
Total Overnight Cost $2384351816 $2331909536 $2364444218 $2356810371 $2341063213 $2364453241 $2364444218
Total Plant Cost $1939142000 $1890358000 $1921756120 $1915655869 $1903054023 $1922071279
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $38782850 $37807160 $38435122 $38313117 $38061080 $38441426
Maintenance Material Cost $18097725 $18097725 $1854888787 $1841398019 $1814558223 $18145582
Consumables Cost $36775427 $59247965 $3769221114 $3741807239 $3687267513 $36775427
Waste Disposal Cost $5493809 $5493809 $563076559 $558981254 $550833671 $5508337
By-Products Cost $0 $0 $0 $0 $0 $0
Preproduction Costs (x1000) $59957 $60854 $59820 $59635 $59257 $59691
Inventory Capital (x1000) $41125 452270951087832 418250410605904 $4155922 410280350765301 $4159189
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0 $0 $0
Land (x1000) $900 $877 $892 $889 $883 $892
Other Owners Costs (x1000) $290871 $283554 $288263 $287348 $285458 $288311
Financing Costs (x1000) $52357 $51040 $51887 $51723 $51382 $51896
Total Overnight Costs (TOC) $2384351816 $2331909536 $2364444218 $235681037146 $2341063213 $236445324106
Coal and sorbent handling ($x1000) $52286 $52286 $53154 $52896 $52378 $53073
Coal and sorbent prep amp feed ($x1000) $24983 $24983 $25398 $25274 $25027 $25359
Feedwater amp misc BOP systems ($x1000) $112150 $112150 $114013 $113457 $112348 $113838
PC boiler ($x1000) $400793 $400793 $407450 $405465 $401502 $406825
Flue gas cleanup ($x1000) $197475 $148691 $151161 $150424 $148954 $150929
CO2 removal ($x1000) $533757 $533757 $542622 $543241 $544054 $545052 935327377984728
CO2 compression amp drying ($x1000) $98381 $98381 $100015 $99528 $98555 $99862
Heat and power integration ($x1000) $0 $0 $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45027 $45775 $45552 $45107 $45705
Steam turbine generaor ($x1000) $178176 $178176 $181135 $180253 $178491 $180858
Cooling water system ($x1000) $62254 $62254 $63288 $62980 $62364 $63191
Ashspent sorbent handling system ($x1000) $19028 $19028 $19344 $19250 $19062 $19314
Accessory electric plant ($x1000) $93584 $93584 $95138 $94675 $93749 $94993
Instrumentation amp control ($x1000) $31654 $31654 $32180 $32023 $31710 $32130
Improvements to site ($x1000) $18063 $18063 $18363 $18274 $18095 $18335
Buildings amp structures ($x1000) $71531 $71531 $72719 $72365 $71657 $72608
TPC without PCC ($x1000) $1307004 $1258220 $1279119 $1272887 $1260445 $1277157
PCC cost ($x1000) $632138 $632138 $642638 $642769 $642609 $644914
COE ($MWh wo TampS) $13320 $13686 $13368 $13305 $13185 $13279
COE ($MWh w TampS) $14280 $14646 $14353 $14282 $14149 $14262
Fuel Costs ($MWh) $3090 $3084 $3165 $3139 $3095 $3139
Variable Costs ($MWh) $1470 $2023 $1511 $1500 $1478 $1474
Fixed Costs ($MWh) $1540 $1517 $1532 $1529 $1523 $1529
Capital Costs ($MWh) $7220 $7062 $7160 $7137 $7089 $7136
Cost of CO2 Captured ($ton wo TampS) $5262 $7069 $6497 $6472 $6414 $6440
Cost of CO2 Captured ($MT wo TampS) $5800 $6413 $5894 $5872 $5818 $5842
Cost of CO2 Captured ($MT w TampS) $6901 $7514 $6995 $6972 $6919 $6943
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $46312929 $47467476 $47122241 $46435398 $47358727
CO2 TSM Cost ($MWh) $960 $960 $985 $977 $963 $984
Coal handling amp conveying (kWe) 480 480 492 488 481 491
Pulverizers 3370 3370 3454 3429 3379 3446
Sorbent handling amp reagent preparation (kWe) 1070 1070 1097 1089 1073 1094
Ash handling (kWe) 780 780 799 794 782 798
Primary air fans (kWe) 1670 1670 1712 1699 1674 1708
Forced draft fans (kWe) 2130 2130 2183 2167 2136 2178
Induced draft fans (kWe) 8350 8350 8558 8496 8372 8539
SCR (kWe) 60 60 61 61 60 61
Activated carbon injection (kWe) 27 27 28 27 27 28
Dry sorbent injection (kWe) 108 108 111 110 108 110
Baghouse (kWe) 110 110 113 112 110 112
Wet FGD (kWe) 3550 3550 3638 3612 3559 3630
PCC plant auxiliaries (kWe) 16000 16000 16399 27280 18682 30361 14000 2640
CO2 compression (kWe) 35690 35690 36580 36314 35784 36496
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400 400 400
Condensate pumps (kWe) 640 640 656 651 642 654
Circulating water pumps (kWe) 7750 7750 7943 7885 7770 7925
Ground water pumps (kWe) 710 710 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010 4010 4010
Transformer losses (kWe) 2380 2380 2439 2422 2386 2434
Total auxiliaries (kWe) 91285 91285 93383 103756 94148 107186
Net plant heat rate (BTUkWh) 10498 10498 10775 10686 10535 10755
Condenser cooling duty (GJhr) 1867 1867 1914 1900 1872 1909
Limestone sorbent flowrate (kghr) 22213 22213 22767 22601 22272 22715
Raw water withdrawal (m3min) 30 30 30 30 30 30
Raw water consumption (m3min) 23 23 24 24 23 24
NOx (MTyear) 1517 1517 1555 1544 1521 1551
Particulates (MTyear) 195 195 200 198 196 199
Hg (kgyear) 6 6 6 6 6 6
SO2 (MTyear) 0 0 0 0 0 0
COE Reduction (w TampS) 256 051 002 -092 -012
COE Reduction (wo TampS) 275 036 -011 -101 -031
Cost of CO2 Reduction (wo TampS) 1057 162 123 032 073
Cost of CO2 Reduction (w TampS) 888 136 104 027 061
PCC Plant Cost Reduction 000 -166 -168 -166 -202
Method Amine emissions (kg aminetonne CO2 Aerosol particle concentration range where adequate (particlescm3)
Baghouse 0009 0 to 1E+7 0 10000000
Dry bed operation (no BH) lt03 0 to 1E+6 0 1000000
Absorber operating conditions (no BH) lt03 0 to 1E+7 0 10000000
Pre-treatment solutions (no BH) lt03 0 to 1E+9 0 1000000000
Abbott Power Plant (42 reheat burner w dryer) Abbott Power Plant (0 reheat burner wo dryer) Wilsonville (after baghouse) (WashU) Wilsonville (before baghouse) (SR) UT Austin (NCCC) (before baghouse) TCM (no BH no BF) Wilsonville (after baghouse) (SR) Wilsonville Parametric Tests (Linde) Wilsonville Long-term Tests (Linde)
Anal Ins Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) kg amineMT CO2 04080107622 00095091096
SMPS 682819795644892 982 427900576923077 157 14468166666667 982 1000000 10 4000000 2400 100000 35 650000 10
SMPS 735415966499163 102 532616923076924 163 160013 102 200000 20 3000000 2800 1150000 60 600000 20
SMPS 667026341708543 106 642390384615385 168 14813666666667 106 200000 40 2000000 2800 10000000 100 530000 40
SMPS 566092556113903 109 764663461538462 175 91535 109 1000000 70 1000000 3000 10000000 160 400000 70
SMPS 60451071356784 113 993782692307693 181 21280833333333 113 6300000 110 900000 3200 1400000 280 350000 120
SMPS 640447634840872 118 103840961538462 188 277361 118 8000000 200 800000 3200 120000 480 50000 200
SMPS 63931935678392 122 119893653846154 195 30501933333333 122 5000000 400 600000 3800 1400 640 20000 400
SMPS 67781860636516 126 155467692307692 202 35493966666667 126 800000 700 500000 3800 1000 960 10000 600
SMPS 678467648241207 131 173807500 209 25912033333333 131 1 800 400000 3800 1000 1920 5000 800
SMPS 736663748743719 136 198103846153846 217 20493533333333 136 1 1000 318900 3800 900 2560 100 1000
APS 791600921273033 141 245189807692308 225 34751733333333 141 300000 3800 750 5120
APS 776599182579565 146 27240826923077 233 43427866666667 146 200000 3800
APS 748095604690118 151 301905384615385 241 592247 151 100000 4000
APS 852265149078728 157 348734615384616 25 614018 157 90000 4100
APS 99985068676717 163 375607115384616 259 87004466666667 163 80000 4200
11043162479062 168 442790384615385 269 137845333333333 168 70000 4200
119948670016751 175 523365384615385 279 183715 175
112247051926298 181 445000384615385 289 241348 181
126325376884422 188 591696153846154 30 299061666666667 188
130470221105528 195 660759615384616 311 380613666666667 195
140578994974874 202 706025000000001 322 419054666666667 202
158666502512563 209 794851923076924 334 64940 209
15709983919598 217 860896153846155 346 883372 217
146305745393635 225 847675000000001 359 130709333333333 225
175050465661642 233 943019230769232 372 182267 233
20586516917923 241 949319230769232 385 263912666666667 241
21836616080402 25 96023076923077 40 355521333333333 25
221599480737019 259 956119230769232 414 484109 259
231432663316583 269 1025750000 429 647791 269
228343541038526 279 964151923076924 445 830633 279
238293788944724 289 982432692307693 461 1054740 289
24027170519263 30 103288461538462 478 125545333333333 30
254431427135679 311 981471153846155 514 1435950 311
281640274706868 322 100416538461539 533 161942333333333 322
279502308207705 334 995501923076924 552 169811666666667 334
273149989949749 346 969944230769232 573 182475666666667 346
301086837520938 359 89473076923077 594 187437333333333 359
337571587939699 372 791292307692308 615 1885320 372
335709822445561 385 719676923076924 638 184891666666667 385
303290958123953 40 67950576923077 661 177122333333333 40
296100891122278 414 554032692307693 685 167757333333333 414
305137175879397 429 441263461538462 71 1563790 429
298671450586265 445 39593576923077 737 143831333333333 445
267825041876047 461 294517500 764 1276340 461
268898750418761 478 235586538461539 791 111617666666667 478
246584087102178 496 219594615384616 82 956378666666667 496
22753597319933 514 183537307692308 851 786719333333333 514
20805557118928 533 132950384615385 882 654658 533
193145899497488 552 991526923076924 914 524162333333333 552
180397058626466 573 723884615384616 947 398477 573
159287497487437 594 49395000 982 294095333333333 594
140093966499163 615 329623653846154 1018 216415 615
125712003350084 638 232231346153846 1055 155941333333333 638
11582181239531 661 170568076923077 1094 109822 661
933554824120604 685 114283076923077 1134 811729333333333 685
766995862646567 71 851232692307693 1176 533704666666667 71
625145611390285 737 558684615384616 1219 398905 737
531419574539364 764 425857115384616 1263 272716 764
401304512562814 791 320039230769231 131 224988666666667 791
302290415410386 82 224643461538462 1358 175139333333333 82
234256559463987 851 204812115384616 1407 137377666666667 851
174277956448911 882 133968461538462 1459 1185743 882
119620948073702 914 120355384615385 1512 901657 914
860247541038527 947 1114950 1568 95869666666667 947
588795608040202 982 892715384615385 1625 866524 982
453500100502513 1018 75693076923077 1685 79995933333333 1018
306104184254607 1055 734100000000001 1747 855652 1055
214392951423786 1094 732648076923078 1811 82140833333333 1094
171584234505863 1134 530092307692308 1877 81683533333333 1134
129452606365159 1176 609534615384616 1946 71270166666667 1176
109800234170854 1219 491257692307693 2017 67286033333333 1219
875061487437187 1263 391936346153846 2091 75311933333333 1263
755701192629817 131 427556153846154 2167 71270066666667 131
76907041876047 1358 528136538461539 2247 670295 1358
816854716917924 1407 538875 2329 612828 1407
682292696817421 1459 484882692307693 2414 60685066666667 1459
484327912897823 1512 523173076923077 2503 64353 1512
601245688442212 1568 532400 2595 575052 1568
608947306532664 1625 391983653846154 269 53995533333333 1625
57423530318258 1685 39818576923077 2788 56581733333333 1685
665198110552765 1747 390621538461539 289 50526966666667 1747
641284469011726 1811 282454038461539 2996 52087233333333 1811
551386834170855 1877 301689807692308 3106 390656 1877
515487715242882 1946 392116538461539 322 40069366666667 1946
557056576214406 2017 262214807692308 3338 42029366666667 2017
585014763819096 2091 300040192307693 346
563217748743719 2167 327144807692308 3587
516019996649917 2247 291944038461539 3718
635039155778895 2329 410772307692308 3854
678386860971525 2414 438539038461539 3995
540607373534339 2503 810536808 542
534717524288108 2595 882899298 583
624962696817421 269 884130018 626
507626351758795 2788 848442984 673
482487487437186 289 79158372 723
462233661641542 2996 628394094 777
614290241206031 3106 484154992 835
549685423785595 322 3250266138 898
485615936348409 3338 1930962502 965
446652388609716 346 97717245 1037
733651755443887 3587 451665266 1114
73515500837521 3718 1710666186 1197
491714613065327 3854 750723816 1286
453128479061977 3995 3692090772 1382
22625785 542 08614861802 1486
23149945 583 11076250522 1596 89545 542
2547951466667 626 1 1715 10021 583
26411294 673 1 1843 11057 626
2478060433333 723 1 1981 12158 673
2428556433333 777 1 2129 12433 723
1953912566667 835 1 2288 113975 777
1421029306667 898 01230695642 2458 9234 835
797872833333 965 1 2642 70035 898
430967506667 1037 1 2839 49195 965
21839545 1114 1 3051 3452 1037
84446483333 1197 01230695642 3278 23495 1114
320313357 1286 1 3523 1597 1197
34943302333 1382 1 3786 1089 1286
17471639033 1486 1 4068 781 1382
116477634 1596 1 4371 5965 1486
08735821033 1715 1 4698 4325 1596
05823884733 1843 1 5048 3995 1715
05823884733 1981 1 5425 3185 1843
02911942367 2129 1 5829 2325 1981
1 2288 1 6264 2185 2129
02911942367 2458 1 6732 194 2288
02911942367 2642 1 7234 1705 2458
08735821033 2839 1 7774 1395 2642
02911942367 3051 1 8354 124 2839
08735821033 3278 1 8977 97 3051
05823884733 3523 1 9647 92 3278
08735818 3786 1 10370 71 3523
23295514667 4068 1 11140 56 3786
05823884733 4371 1 11970 51 4068
05823884733 4698 1 12860 35 4371
1 5048 1 13820 31 4698
1 5425 1 14860 21 5048
1 5829 1 15960 16 5425
1 6264 1 17150 1 5829
1 6732 1 18430 055 6264
1 7234 1 19810 05 6732
1 7774 055 7234
1 8354 02 7774
1 8977 005 8354
1 9647 0 8977
1 10370 01 9647
1 11140 005 10370
1 11970 005 11140
1 12860 01 11970
1 13820 0 12860
1 14860 0 13820
1 15960 0 14860
1 17150 0 15960
1 18430 0 17150
1 19810 0 18430
0 19810
0009
lt03
lt03
lt03
Page 9: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

9

Project Budget DOE Funding and Cost Share

SourceBudget Period 1

Jun 2018 ndash Nov 2018

Budget Period 2

Dec 2018 ndash Nov 2019

Budget Period 3

Dec 2019 ndash Nov 2020Total

DOE Funding $457822 $1290725 $1078826 $2827834

Cost Share $176612 $260949 $269860 $707421

Total Project $634435 $1551674 $1348686 $3534795

Cost share commitments

Linde $234869

University of Illinois (UIUC) $231339

Washington University in St Louis (WUSTL) $191213

Affiliated Construction Services (ACS) $50000

Technology Development

Rationale Background amp Previous Research

10

Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment

11

Amine losses

Flue gas cooler

Flue gas blower

Flue gas inlet

Condensate

Major factor aerosol particles in flue gas from coal-fired power plants

Aerosol particle formation during coal combustion

S N

N

S

Inorganic oxides and metals (eg SiO2 Fe P)

Sulfur

Nitrogen

Organic volatiles

Inorganic volatiles (eg Hg)

Coal particle1st stage

devolatilization

Burning of tar

Tar

Oxidation

CO2

Partial oxidation

Metal or its Suboxide vapor (eg SiO Ca)

Absorption

Re-oxidation amp particle formation

Nano-sized inorganic aerosol particle

(eg SiO2 particle)

Inorganic aerosols shielding organics

Aerosols sent in flue gas to PCC absorber

(1) Nucleation(2) Condensation

04 nmParticle Size 04 ndash 2 nm 2 - 100 nm 0001-1000 mm

(3) Coagulation

3 main stages of aerosol formation1

Burning of char

Bottom Ash

2nd stage devolatilization

Ash formation

1 Wang Xinlei amp Williams Brent amp Tang Y amp Huang Yuhsuan amp Kong L amp Yang Xin amp Biswas Pratim (2013) Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace Atmospheric Chemistry and Physics 13 105194acp-13-10919-2013

12

Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1

13

Phase IAerosol growth and nucleation from water in absorber

Phase IIAerosol growth from amine in absorber

Phase IIIBuildup of captured CO2and amine bound to CO2in aerosols

Phase IVSalt accumulation inside particles causing further amine and CO2 diffusion into aerosols

02 microm particle

1 G Lombardo B Fostas M Shah A Morken O Hvidsten J Mertens E Hamborg Results from Aerosol Measurement in Amine Plant Treating Gas Turbine and Residue Fluidized Catalytic Cracker Flue Gases at the CO2 Technology Centre Mongstad GHGT-13 Energy Procedia 2017 114 Pages 1210-1230

Water condensation

Nucleation from water supersaturation

1 microm particle

Amine absorption until complete saturation

2 microm particle

CO2 and CO2+amine absorption

2-5 microm particleSalt accumulationCO2 and amine diffusion

Amine contained in aerosol particles are then emitted from PCC absorber in treated gas stream

The Kelvin equation gives the minimum particle diameter d of a liquid1 supersaturation leads to nucleation of smaller particles

14

Benefits of aerosol particle reduction

Benefits

Manageable solvent supply and transport logistics

Optimum power plant efficiency

when integrated with PCC

Reduction of particulate that can unfavorably react with amine

solvent

Improved PCC plant specific

energy performance

Environmental sustainability and

performance

Improved PCC plant business

caselower cost

Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1

For power plants integrated with solvent-based PCC without an existing baghouse optimized flue gas aerosol pretreatment is the only viable option to reduce aerosol concentrations from gt109 particlescm3 to manageable levels near 104-106

particlescm3 for particles with diameters in the range of 70-200 nm

Pretreatment has traditionally been performed using simple ESPs and Brownian filters

Few systematic studies have been conducted to evaluate performance of different technologies over a full range of conditions

15

BH = baghouse

1 Based on single point experience some options eg dry bed conf may handle higher particle concentrations than others

Chart1

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment
10000000
1000000
10000000
1000000000

Literature data

Literature data

Abbott (no RH no dryer)
Abbott (RH w dryer)
SR (Wilsonville before BH)
SR (Wilsonville after BH)
Linde (Wilsonville after BH)
UT Austin (Wilsonville before BH)
TCM (no BH no BF)
Particle Diameter (nm)
Particle Number Concentration (cm3)

Methods

10E7 particlescm3 reported literature maximum
Abbott aerosol data showing gt10E7 particlescm3 compared to other flue gases
Abbott (reheater off no dryer)
Abbott (42 reheater w dryer)
NCCC after baghouse (WUSL measurements)
NCCC before baghouse (Southern Research measurements)
NCCC after baghouse (Southern Research measurements)
NCCC before baghouse (University of Texas at Austin measurements)
Residual fluidized catalytic cracker (Technology Centre Mongstad measurements)

Methods

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) at which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pre-treatment

TEA

Technology proposed in this work
Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Base case Case 1 Case 2 Case 3 Case 4 Case 5
DOE Case B12B Reference w baghouse wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system wo baghouse (breakeven)
Cost Basis Year 2011$ 2011$ 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4416576 4530755 4497804 4432245 4516307 45154043379888
Thermal input (kWt) (HHV) 1694366 1694366 1736605 1723975 1698847 1732627
Coal flowrate (kghr) 224791 224791 230395 228719 225385 229867 11478458479996
Total steam turbine power (kWe) 642000 642000 643332 654224 644359 656869
Gross Power (MWe) 6420 6420 6433 6542 6444 6569 96690 9669 3
Auxiliary Power (MWe) 913 913 934 1038 941 1072 9969
Net Power (MWe) 551 551 550 550 550 550
PCC Reboiler Duty (MW) 3311 3311 4106 3372 3323 3386
Specific Duty (MJkg CO2) 248 248 300 248 248 248 4405686
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal 450395408921933 982680892193308 445482004460967
Fuel Unit Cost ($ton) 6854 6854 6854 6854 6854 6854 440778425101536 440864946116186
Power Plant Efficiency () (HHV) 32500 32500 31668 31930 32387 31725
Boiler Efficiency () (HHV) 89100 89100 89100 89100 89100 89100
CO2 Produced (MThr) 480 480 492 489 482 491
CO2 Produced (lbhr) 1058945 1058945 1085344 1077450 1061745 1082857 4415000
CO2 Produced (MTyear) 4207729 4207729 4312625 4281259 4218856 4302745 443224546416968
CO2 Captured () 90 90 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085 085 085
Variable Cost $60366961 $82839499 $61871865 $61421865 $60526594 $60429346
Fixed Cost $63094548 $62118858 $62746820 $62624815 $62372778 $62753124
Fuel Cost $126458921 $126458921 $12961144817 $12866877277 $12679332619 $12931450746
Total Overnight Cost $2384351816 $2331909536 $2364444218 $2356810371 $2341063213 $2364453241 $2364444218
Total Plant Cost $1939142000 $1890358000 $1921756120 $1915655869 $1903054023 $1922071279
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $38782850 $37807160 $38435122 $38313117 $38061080 $38441426
Maintenance Material Cost $18097725 $18097725 $1854888787 $1841398019 $1814558223 $18145582
Consumables Cost $36775427 $59247965 $3769221114 $3741807239 $3687267513 $36775427
Waste Disposal Cost $5493809 $5493809 $563076559 $558981254 $550833671 $5508337
By-Products Cost $0 $0 $0 $0 $0 $0
Preproduction Costs (x1000) $59957 $60854 $59820 $59635 $59257 $59691
Inventory Capital (x1000) $41125 452270951087832 418250410605904 $4155922 410280350765301 $4159189
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0 $0 $0
Land (x1000) $900 $877 $892 $889 $883 $892
Other Owners Costs (x1000) $290871 $283554 $288263 $287348 $285458 $288311
Financing Costs (x1000) $52357 $51040 $51887 $51723 $51382 $51896
Total Overnight Costs (TOC) $2384351816 $2331909536 $2364444218 $235681037146 $2341063213 $236445324106
Coal and sorbent handling ($x1000) $52286 $52286 $53154 $52896 $52378 $53073
Coal and sorbent prep amp feed ($x1000) $24983 $24983 $25398 $25274 $25027 $25359
Feedwater amp misc BOP systems ($x1000) $112150 $112150 $114013 $113457 $112348 $113838
PC boiler ($x1000) $400793 $400793 $407450 $405465 $401502 $406825
Flue gas cleanup ($x1000) $197475 $148691 $151161 $150424 $148954 $150929
CO2 removal ($x1000) $533757 $533757 $542622 $543241 $544054 $545052 935327377984728
CO2 compression amp drying ($x1000) $98381 $98381 $100015 $99528 $98555 $99862
Heat and power integration ($x1000) $0 $0 $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45027 $45775 $45552 $45107 $45705
Steam turbine generaor ($x1000) $178176 $178176 $181135 $180253 $178491 $180858
Cooling water system ($x1000) $62254 $62254 $63288 $62980 $62364 $63191
Ashspent sorbent handling system ($x1000) $19028 $19028 $19344 $19250 $19062 $19314
Accessory electric plant ($x1000) $93584 $93584 $95138 $94675 $93749 $94993
Instrumentation amp control ($x1000) $31654 $31654 $32180 $32023 $31710 $32130
Improvements to site ($x1000) $18063 $18063 $18363 $18274 $18095 $18335
Buildings amp structures ($x1000) $71531 $71531 $72719 $72365 $71657 $72608
TPC without PCC ($x1000) $1307004 $1258220 $1279119 $1272887 $1260445 $1277157
PCC cost ($x1000) $632138 $632138 $642638 $642769 $642609 $644914
COE ($MWh wo TampS) $13320 $13686 $13368 $13305 $13185 $13279
COE ($MWh w TampS) $14280 $14646 $14353 $14282 $14149 $14262
Fuel Costs ($MWh) $3090 $3084 $3165 $3139 $3095 $3139
Variable Costs ($MWh) $1470 $2023 $1511 $1500 $1478 $1474
Fixed Costs ($MWh) $1540 $1517 $1532 $1529 $1523 $1529
Capital Costs ($MWh) $7220 $7062 $7160 $7137 $7089 $7136
Cost of CO2 Captured ($ton wo TampS) $5262 $7069 $6497 $6472 $6414 $6440
Cost of CO2 Captured ($MT wo TampS) $5800 $6413 $5894 $5872 $5818 $5842
Cost of CO2 Captured ($MT w TampS) $6901 $7514 $6995 $6972 $6919 $6943
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $46312929 $47467476 $47122241 $46435398 $47358727
CO2 TSM Cost ($MWh) $960 $960 $985 $977 $963 $984
Coal handling amp conveying (kWe) 480 480 492 488 481 491
Pulverizers 3370 3370 3454 3429 3379 3446
Sorbent handling amp reagent preparation (kWe) 1070 1070 1097 1089 1073 1094
Ash handling (kWe) 780 780 799 794 782 798
Primary air fans (kWe) 1670 1670 1712 1699 1674 1708
Forced draft fans (kWe) 2130 2130 2183 2167 2136 2178
Induced draft fans (kWe) 8350 8350 8558 8496 8372 8539
SCR (kWe) 60 60 61 61 60 61
Activated carbon injection (kWe) 27 27 28 27 27 28
Dry sorbent injection (kWe) 108 108 111 110 108 110
Baghouse (kWe) 110 110 113 112 110 112
Wet FGD (kWe) 3550 3550 3638 3612 3559 3630
PCC plant auxiliaries (kWe) 16000 16000 16399 27280 18682 30361 14000 2640
CO2 compression (kWe) 35690 35690 36580 36314 35784 36496
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400 400 400
Condensate pumps (kWe) 640 640 656 651 642 654
Circulating water pumps (kWe) 7750 7750 7943 7885 7770 7925
Ground water pumps (kWe) 710 710 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010 4010 4010
Transformer losses (kWe) 2380 2380 2439 2422 2386 2434
Total auxiliaries (kWe) 91285 91285 93383 103756 94148 107186
Net plant heat rate (BTUkWh) 10498 10498 10775 10686 10535 10755
Condenser cooling duty (GJhr) 1867 1867 1914 1900 1872 1909
Limestone sorbent flowrate (kghr) 22213 22213 22767 22601 22272 22715
Raw water withdrawal (m3min) 30 30 30 30 30 30
Raw water consumption (m3min) 23 23 24 24 23 24
NOx (MTyear) 1517 1517 1555 1544 1521 1551
Particulates (MTyear) 195 195 200 198 196 199
Hg (kgyear) 6 6 6 6 6 6
SO2 (MTyear) 0 0 0 0 0 0
COE Reduction (w TampS) 256 051 002 -092 -012
COE Reduction (wo TampS) 275 036 -011 -101 -031
Cost of CO2 Reduction (wo TampS) 1057 162 123 032 073
Cost of CO2 Reduction (w TampS) 888 136 104 027 061
PCC Plant Cost Reduction 000 -166 -168 -166 -202
Method Amine emissions (kg aminetonne CO2 Aerosol particle concentration range where adequate (particlescm3)
Baghouse 0009 0 to 1E+7 0 10000000
Dry bed operation (no BH) lt03 0 to 1E+6 0 1000000
Absorber operating conditions (no BH) lt03 0 to 1E+7 0 10000000
Pre-treatment solutions (no BH) lt03 0 to 1E+9 0 1000000000
Abbott Power Plant (42 reheat burner w dryer) Abbott Power Plant (0 reheat burner wo dryer) Wilsonville (after baghouse) (WashU) Wilsonville (before baghouse) (SR) UT Austin (NCCC) (before baghouse) TCM (no BH no BF) Wilsonville (after baghouse) (SR) Wilsonville Parametric Tests (Linde) Wilsonville Long-term Tests (Linde)
Anal Ins Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) kg amineMT CO2 04080107622 00095091096
SMPS 682819795644892 982 427900576923077 157 14468166666667 982 1000000 10 4000000 2400 100000 35 650000 10
SMPS 735415966499163 102 532616923076924 163 160013 102 200000 20 3000000 2800 1150000 60 600000 20
SMPS 667026341708543 106 642390384615385 168 14813666666667 106 200000 40 2000000 2800 10000000 100 530000 40
SMPS 566092556113903 109 764663461538462 175 91535 109 1000000 70 1000000 3000 10000000 160 400000 70
SMPS 60451071356784 113 993782692307693 181 21280833333333 113 6300000 110 900000 3200 1400000 280 350000 120
SMPS 640447634840872 118 103840961538462 188 277361 118 8000000 200 800000 3200 120000 480 50000 200
SMPS 63931935678392 122 119893653846154 195 30501933333333 122 5000000 400 600000 3800 1400 640 20000 400
SMPS 67781860636516 126 155467692307692 202 35493966666667 126 800000 700 500000 3800 1000 960 10000 600
SMPS 678467648241207 131 173807500 209 25912033333333 131 1 800 400000 3800 1000 1920 5000 800
SMPS 736663748743719 136 198103846153846 217 20493533333333 136 1 1000 318900 3800 900 2560 100 1000
APS 791600921273033 141 245189807692308 225 34751733333333 141 300000 3800 750 5120
APS 776599182579565 146 27240826923077 233 43427866666667 146 200000 3800
APS 748095604690118 151 301905384615385 241 592247 151 100000 4000
APS 852265149078728 157 348734615384616 25 614018 157 90000 4100
APS 99985068676717 163 375607115384616 259 87004466666667 163 80000 4200
11043162479062 168 442790384615385 269 137845333333333 168 70000 4200
119948670016751 175 523365384615385 279 183715 175
112247051926298 181 445000384615385 289 241348 181
126325376884422 188 591696153846154 30 299061666666667 188
130470221105528 195 660759615384616 311 380613666666667 195
140578994974874 202 706025000000001 322 419054666666667 202
158666502512563 209 794851923076924 334 64940 209
15709983919598 217 860896153846155 346 883372 217
146305745393635 225 847675000000001 359 130709333333333 225
175050465661642 233 943019230769232 372 182267 233
20586516917923 241 949319230769232 385 263912666666667 241
21836616080402 25 96023076923077 40 355521333333333 25
221599480737019 259 956119230769232 414 484109 259
231432663316583 269 1025750000 429 647791 269
228343541038526 279 964151923076924 445 830633 279
238293788944724 289 982432692307693 461 1054740 289
24027170519263 30 103288461538462 478 125545333333333 30
254431427135679 311 981471153846155 514 1435950 311
281640274706868 322 100416538461539 533 161942333333333 322
279502308207705 334 995501923076924 552 169811666666667 334
273149989949749 346 969944230769232 573 182475666666667 346
301086837520938 359 89473076923077 594 187437333333333 359
337571587939699 372 791292307692308 615 1885320 372
335709822445561 385 719676923076924 638 184891666666667 385
303290958123953 40 67950576923077 661 177122333333333 40
296100891122278 414 554032692307693 685 167757333333333 414
305137175879397 429 441263461538462 71 1563790 429
298671450586265 445 39593576923077 737 143831333333333 445
267825041876047 461 294517500 764 1276340 461
268898750418761 478 235586538461539 791 111617666666667 478
246584087102178 496 219594615384616 82 956378666666667 496
22753597319933 514 183537307692308 851 786719333333333 514
20805557118928 533 132950384615385 882 654658 533
193145899497488 552 991526923076924 914 524162333333333 552
180397058626466 573 723884615384616 947 398477 573
159287497487437 594 49395000 982 294095333333333 594
140093966499163 615 329623653846154 1018 216415 615
125712003350084 638 232231346153846 1055 155941333333333 638
11582181239531 661 170568076923077 1094 109822 661
933554824120604 685 114283076923077 1134 811729333333333 685
766995862646567 71 851232692307693 1176 533704666666667 71
625145611390285 737 558684615384616 1219 398905 737
531419574539364 764 425857115384616 1263 272716 764
401304512562814 791 320039230769231 131 224988666666667 791
302290415410386 82 224643461538462 1358 175139333333333 82
234256559463987 851 204812115384616 1407 137377666666667 851
174277956448911 882 133968461538462 1459 1185743 882
119620948073702 914 120355384615385 1512 901657 914
860247541038527 947 1114950 1568 95869666666667 947
588795608040202 982 892715384615385 1625 866524 982
453500100502513 1018 75693076923077 1685 79995933333333 1018
306104184254607 1055 734100000000001 1747 855652 1055
214392951423786 1094 732648076923078 1811 82140833333333 1094
171584234505863 1134 530092307692308 1877 81683533333333 1134
129452606365159 1176 609534615384616 1946 71270166666667 1176
109800234170854 1219 491257692307693 2017 67286033333333 1219
875061487437187 1263 391936346153846 2091 75311933333333 1263
755701192629817 131 427556153846154 2167 71270066666667 131
76907041876047 1358 528136538461539 2247 670295 1358
816854716917924 1407 538875 2329 612828 1407
682292696817421 1459 484882692307693 2414 60685066666667 1459
484327912897823 1512 523173076923077 2503 64353 1512
601245688442212 1568 532400 2595 575052 1568
608947306532664 1625 391983653846154 269 53995533333333 1625
57423530318258 1685 39818576923077 2788 56581733333333 1685
665198110552765 1747 390621538461539 289 50526966666667 1747
641284469011726 1811 282454038461539 2996 52087233333333 1811
551386834170855 1877 301689807692308 3106 390656 1877
515487715242882 1946 392116538461539 322 40069366666667 1946
557056576214406 2017 262214807692308 3338 42029366666667 2017
585014763819096 2091 300040192307693 346
563217748743719 2167 327144807692308 3587
516019996649917 2247 291944038461539 3718
635039155778895 2329 410772307692308 3854
678386860971525 2414 438539038461539 3995
540607373534339 2503 810536808 542
534717524288108 2595 882899298 583
624962696817421 269 884130018 626
507626351758795 2788 848442984 673
482487487437186 289 79158372 723
462233661641542 2996 628394094 777
614290241206031 3106 484154992 835
549685423785595 322 3250266138 898
485615936348409 3338 1930962502 965
446652388609716 346 97717245 1037
733651755443887 3587 451665266 1114
73515500837521 3718 1710666186 1197
491714613065327 3854 750723816 1286
453128479061977 3995 3692090772 1382
22625785 542 08614861802 1486
23149945 583 11076250522 1596 89545 542
2547951466667 626 1 1715 10021 583
26411294 673 1 1843 11057 626
2478060433333 723 1 1981 12158 673
2428556433333 777 1 2129 12433 723
1953912566667 835 1 2288 113975 777
1421029306667 898 01230695642 2458 9234 835
797872833333 965 1 2642 70035 898
430967506667 1037 1 2839 49195 965
21839545 1114 1 3051 3452 1037
84446483333 1197 01230695642 3278 23495 1114
320313357 1286 1 3523 1597 1197
34943302333 1382 1 3786 1089 1286
17471639033 1486 1 4068 781 1382
116477634 1596 1 4371 5965 1486
08735821033 1715 1 4698 4325 1596
05823884733 1843 1 5048 3995 1715
05823884733 1981 1 5425 3185 1843
02911942367 2129 1 5829 2325 1981
1 2288 1 6264 2185 2129
02911942367 2458 1 6732 194 2288
02911942367 2642 1 7234 1705 2458
08735821033 2839 1 7774 1395 2642
02911942367 3051 1 8354 124 2839
08735821033 3278 1 8977 97 3051
05823884733 3523 1 9647 92 3278
08735818 3786 1 10370 71 3523
23295514667 4068 1 11140 56 3786
05823884733 4371 1 11970 51 4068
05823884733 4698 1 12860 35 4371
1 5048 1 13820 31 4698
1 5425 1 14860 21 5048
1 5829 1 15960 16 5425
1 6264 1 17150 1 5829
1 6732 1 18430 055 6264
1 7234 1 19810 05 6732
1 7774 055 7234
1 8354 02 7774
1 8977 005 8354
1 9647 0 8977
1 10370 01 9647
1 11140 005 10370
1 11970 005 11140
1 12860 01 11970
1 13820 0 12860
1 14860 0 13820
1 15960 0 14860
1 17150 0 15960
1 18430 0 17150
1 19810 0 18430
0 19810
0009
lt03
lt03
lt03
Page 10: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Technology Development

Rationale Background amp Previous Research

10

Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment

11

Amine losses

Flue gas cooler

Flue gas blower

Flue gas inlet

Condensate

Major factor aerosol particles in flue gas from coal-fired power plants

Aerosol particle formation during coal combustion

S N

N

S

Inorganic oxides and metals (eg SiO2 Fe P)

Sulfur

Nitrogen

Organic volatiles

Inorganic volatiles (eg Hg)

Coal particle1st stage

devolatilization

Burning of tar

Tar

Oxidation

CO2

Partial oxidation

Metal or its Suboxide vapor (eg SiO Ca)

Absorption

Re-oxidation amp particle formation

Nano-sized inorganic aerosol particle

(eg SiO2 particle)

Inorganic aerosols shielding organics

Aerosols sent in flue gas to PCC absorber

(1) Nucleation(2) Condensation

04 nmParticle Size 04 ndash 2 nm 2 - 100 nm 0001-1000 mm

(3) Coagulation

3 main stages of aerosol formation1

Burning of char

Bottom Ash

2nd stage devolatilization

Ash formation

1 Wang Xinlei amp Williams Brent amp Tang Y amp Huang Yuhsuan amp Kong L amp Yang Xin amp Biswas Pratim (2013) Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace Atmospheric Chemistry and Physics 13 105194acp-13-10919-2013

12

Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1

13

Phase IAerosol growth and nucleation from water in absorber

Phase IIAerosol growth from amine in absorber

Phase IIIBuildup of captured CO2and amine bound to CO2in aerosols

Phase IVSalt accumulation inside particles causing further amine and CO2 diffusion into aerosols

02 microm particle

1 G Lombardo B Fostas M Shah A Morken O Hvidsten J Mertens E Hamborg Results from Aerosol Measurement in Amine Plant Treating Gas Turbine and Residue Fluidized Catalytic Cracker Flue Gases at the CO2 Technology Centre Mongstad GHGT-13 Energy Procedia 2017 114 Pages 1210-1230

Water condensation

Nucleation from water supersaturation

1 microm particle

Amine absorption until complete saturation

2 microm particle

CO2 and CO2+amine absorption

2-5 microm particleSalt accumulationCO2 and amine diffusion

Amine contained in aerosol particles are then emitted from PCC absorber in treated gas stream

The Kelvin equation gives the minimum particle diameter d of a liquid1 supersaturation leads to nucleation of smaller particles

14

Benefits of aerosol particle reduction

Benefits

Manageable solvent supply and transport logistics

Optimum power plant efficiency

when integrated with PCC

Reduction of particulate that can unfavorably react with amine

solvent

Improved PCC plant specific

energy performance

Environmental sustainability and

performance

Improved PCC plant business

caselower cost

Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1

For power plants integrated with solvent-based PCC without an existing baghouse optimized flue gas aerosol pretreatment is the only viable option to reduce aerosol concentrations from gt109 particlescm3 to manageable levels near 104-106

particlescm3 for particles with diameters in the range of 70-200 nm

Pretreatment has traditionally been performed using simple ESPs and Brownian filters

Few systematic studies have been conducted to evaluate performance of different technologies over a full range of conditions

15

BH = baghouse

1 Based on single point experience some options eg dry bed conf may handle higher particle concentrations than others

Chart1

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment
10000000
1000000
10000000
1000000000

Literature data

Literature data

Abbott (no RH no dryer)
Abbott (RH w dryer)
SR (Wilsonville before BH)
SR (Wilsonville after BH)
Linde (Wilsonville after BH)
UT Austin (Wilsonville before BH)
TCM (no BH no BF)
Particle Diameter (nm)
Particle Number Concentration (cm3)

Methods

10E7 particlescm3 reported literature maximum
Abbott aerosol data showing gt10E7 particlescm3 compared to other flue gases
Abbott (reheater off no dryer)
Abbott (42 reheater w dryer)
NCCC after baghouse (WUSL measurements)
NCCC before baghouse (Southern Research measurements)
NCCC after baghouse (Southern Research measurements)
NCCC before baghouse (University of Texas at Austin measurements)
Residual fluidized catalytic cracker (Technology Centre Mongstad measurements)

Methods

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) at which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pre-treatment

TEA

Technology proposed in this work
Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Base case Case 1 Case 2 Case 3 Case 4 Case 5
DOE Case B12B Reference w baghouse wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system wo baghouse (breakeven)
Cost Basis Year 2011$ 2011$ 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4416576 4530755 4497804 4432245 4516307 45154043379888
Thermal input (kWt) (HHV) 1694366 1694366 1736605 1723975 1698847 1732627
Coal flowrate (kghr) 224791 224791 230395 228719 225385 229867 11478458479996
Total steam turbine power (kWe) 642000 642000 643332 654224 644359 656869
Gross Power (MWe) 6420 6420 6433 6542 6444 6569 96690 9669 3
Auxiliary Power (MWe) 913 913 934 1038 941 1072 9969
Net Power (MWe) 551 551 550 550 550 550
PCC Reboiler Duty (MW) 3311 3311 4106 3372 3323 3386
Specific Duty (MJkg CO2) 248 248 300 248 248 248 4405686
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal 450395408921933 982680892193308 445482004460967
Fuel Unit Cost ($ton) 6854 6854 6854 6854 6854 6854 440778425101536 440864946116186
Power Plant Efficiency () (HHV) 32500 32500 31668 31930 32387 31725
Boiler Efficiency () (HHV) 89100 89100 89100 89100 89100 89100
CO2 Produced (MThr) 480 480 492 489 482 491
CO2 Produced (lbhr) 1058945 1058945 1085344 1077450 1061745 1082857 4415000
CO2 Produced (MTyear) 4207729 4207729 4312625 4281259 4218856 4302745 443224546416968
CO2 Captured () 90 90 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085 085 085
Variable Cost $60366961 $82839499 $61871865 $61421865 $60526594 $60429346
Fixed Cost $63094548 $62118858 $62746820 $62624815 $62372778 $62753124
Fuel Cost $126458921 $126458921 $12961144817 $12866877277 $12679332619 $12931450746
Total Overnight Cost $2384351816 $2331909536 $2364444218 $2356810371 $2341063213 $2364453241 $2364444218
Total Plant Cost $1939142000 $1890358000 $1921756120 $1915655869 $1903054023 $1922071279
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $38782850 $37807160 $38435122 $38313117 $38061080 $38441426
Maintenance Material Cost $18097725 $18097725 $1854888787 $1841398019 $1814558223 $18145582
Consumables Cost $36775427 $59247965 $3769221114 $3741807239 $3687267513 $36775427
Waste Disposal Cost $5493809 $5493809 $563076559 $558981254 $550833671 $5508337
By-Products Cost $0 $0 $0 $0 $0 $0
Preproduction Costs (x1000) $59957 $60854 $59820 $59635 $59257 $59691
Inventory Capital (x1000) $41125 452270951087832 418250410605904 $4155922 410280350765301 $4159189
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0 $0 $0
Land (x1000) $900 $877 $892 $889 $883 $892
Other Owners Costs (x1000) $290871 $283554 $288263 $287348 $285458 $288311
Financing Costs (x1000) $52357 $51040 $51887 $51723 $51382 $51896
Total Overnight Costs (TOC) $2384351816 $2331909536 $2364444218 $235681037146 $2341063213 $236445324106
Coal and sorbent handling ($x1000) $52286 $52286 $53154 $52896 $52378 $53073
Coal and sorbent prep amp feed ($x1000) $24983 $24983 $25398 $25274 $25027 $25359
Feedwater amp misc BOP systems ($x1000) $112150 $112150 $114013 $113457 $112348 $113838
PC boiler ($x1000) $400793 $400793 $407450 $405465 $401502 $406825
Flue gas cleanup ($x1000) $197475 $148691 $151161 $150424 $148954 $150929
CO2 removal ($x1000) $533757 $533757 $542622 $543241 $544054 $545052 935327377984728
CO2 compression amp drying ($x1000) $98381 $98381 $100015 $99528 $98555 $99862
Heat and power integration ($x1000) $0 $0 $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45027 $45775 $45552 $45107 $45705
Steam turbine generaor ($x1000) $178176 $178176 $181135 $180253 $178491 $180858
Cooling water system ($x1000) $62254 $62254 $63288 $62980 $62364 $63191
Ashspent sorbent handling system ($x1000) $19028 $19028 $19344 $19250 $19062 $19314
Accessory electric plant ($x1000) $93584 $93584 $95138 $94675 $93749 $94993
Instrumentation amp control ($x1000) $31654 $31654 $32180 $32023 $31710 $32130
Improvements to site ($x1000) $18063 $18063 $18363 $18274 $18095 $18335
Buildings amp structures ($x1000) $71531 $71531 $72719 $72365 $71657 $72608
TPC without PCC ($x1000) $1307004 $1258220 $1279119 $1272887 $1260445 $1277157
PCC cost ($x1000) $632138 $632138 $642638 $642769 $642609 $644914
COE ($MWh wo TampS) $13320 $13686 $13368 $13305 $13185 $13279
COE ($MWh w TampS) $14280 $14646 $14353 $14282 $14149 $14262
Fuel Costs ($MWh) $3090 $3084 $3165 $3139 $3095 $3139
Variable Costs ($MWh) $1470 $2023 $1511 $1500 $1478 $1474
Fixed Costs ($MWh) $1540 $1517 $1532 $1529 $1523 $1529
Capital Costs ($MWh) $7220 $7062 $7160 $7137 $7089 $7136
Cost of CO2 Captured ($ton wo TampS) $5262 $7069 $6497 $6472 $6414 $6440
Cost of CO2 Captured ($MT wo TampS) $5800 $6413 $5894 $5872 $5818 $5842
Cost of CO2 Captured ($MT w TampS) $6901 $7514 $6995 $6972 $6919 $6943
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $46312929 $47467476 $47122241 $46435398 $47358727
CO2 TSM Cost ($MWh) $960 $960 $985 $977 $963 $984
Coal handling amp conveying (kWe) 480 480 492 488 481 491
Pulverizers 3370 3370 3454 3429 3379 3446
Sorbent handling amp reagent preparation (kWe) 1070 1070 1097 1089 1073 1094
Ash handling (kWe) 780 780 799 794 782 798
Primary air fans (kWe) 1670 1670 1712 1699 1674 1708
Forced draft fans (kWe) 2130 2130 2183 2167 2136 2178
Induced draft fans (kWe) 8350 8350 8558 8496 8372 8539
SCR (kWe) 60 60 61 61 60 61
Activated carbon injection (kWe) 27 27 28 27 27 28
Dry sorbent injection (kWe) 108 108 111 110 108 110
Baghouse (kWe) 110 110 113 112 110 112
Wet FGD (kWe) 3550 3550 3638 3612 3559 3630
PCC plant auxiliaries (kWe) 16000 16000 16399 27280 18682 30361 14000 2640
CO2 compression (kWe) 35690 35690 36580 36314 35784 36496
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400 400 400
Condensate pumps (kWe) 640 640 656 651 642 654
Circulating water pumps (kWe) 7750 7750 7943 7885 7770 7925
Ground water pumps (kWe) 710 710 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010 4010 4010
Transformer losses (kWe) 2380 2380 2439 2422 2386 2434
Total auxiliaries (kWe) 91285 91285 93383 103756 94148 107186
Net plant heat rate (BTUkWh) 10498 10498 10775 10686 10535 10755
Condenser cooling duty (GJhr) 1867 1867 1914 1900 1872 1909
Limestone sorbent flowrate (kghr) 22213 22213 22767 22601 22272 22715
Raw water withdrawal (m3min) 30 30 30 30 30 30
Raw water consumption (m3min) 23 23 24 24 23 24
NOx (MTyear) 1517 1517 1555 1544 1521 1551
Particulates (MTyear) 195 195 200 198 196 199
Hg (kgyear) 6 6 6 6 6 6
SO2 (MTyear) 0 0 0 0 0 0
COE Reduction (w TampS) 256 051 002 -092 -012
COE Reduction (wo TampS) 275 036 -011 -101 -031
Cost of CO2 Reduction (wo TampS) 1057 162 123 032 073
Cost of CO2 Reduction (w TampS) 888 136 104 027 061
PCC Plant Cost Reduction 000 -166 -168 -166 -202
Method Amine emissions (kg aminetonne CO2 Aerosol particle concentration range where adequate (particlescm3)
Baghouse 0009 0 to 1E+7 0 10000000
Dry bed operation (no BH) lt03 0 to 1E+6 0 1000000
Absorber operating conditions (no BH) lt03 0 to 1E+7 0 10000000
Pre-treatment solutions (no BH) lt03 0 to 1E+9 0 1000000000
Abbott Power Plant (42 reheat burner w dryer) Abbott Power Plant (0 reheat burner wo dryer) Wilsonville (after baghouse) (WashU) Wilsonville (before baghouse) (SR) UT Austin (NCCC) (before baghouse) TCM (no BH no BF) Wilsonville (after baghouse) (SR) Wilsonville Parametric Tests (Linde) Wilsonville Long-term Tests (Linde)
Anal Ins Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) kg amineMT CO2 04080107622 00095091096
SMPS 682819795644892 982 427900576923077 157 14468166666667 982 1000000 10 4000000 2400 100000 35 650000 10
SMPS 735415966499163 102 532616923076924 163 160013 102 200000 20 3000000 2800 1150000 60 600000 20
SMPS 667026341708543 106 642390384615385 168 14813666666667 106 200000 40 2000000 2800 10000000 100 530000 40
SMPS 566092556113903 109 764663461538462 175 91535 109 1000000 70 1000000 3000 10000000 160 400000 70
SMPS 60451071356784 113 993782692307693 181 21280833333333 113 6300000 110 900000 3200 1400000 280 350000 120
SMPS 640447634840872 118 103840961538462 188 277361 118 8000000 200 800000 3200 120000 480 50000 200
SMPS 63931935678392 122 119893653846154 195 30501933333333 122 5000000 400 600000 3800 1400 640 20000 400
SMPS 67781860636516 126 155467692307692 202 35493966666667 126 800000 700 500000 3800 1000 960 10000 600
SMPS 678467648241207 131 173807500 209 25912033333333 131 1 800 400000 3800 1000 1920 5000 800
SMPS 736663748743719 136 198103846153846 217 20493533333333 136 1 1000 318900 3800 900 2560 100 1000
APS 791600921273033 141 245189807692308 225 34751733333333 141 300000 3800 750 5120
APS 776599182579565 146 27240826923077 233 43427866666667 146 200000 3800
APS 748095604690118 151 301905384615385 241 592247 151 100000 4000
APS 852265149078728 157 348734615384616 25 614018 157 90000 4100
APS 99985068676717 163 375607115384616 259 87004466666667 163 80000 4200
11043162479062 168 442790384615385 269 137845333333333 168 70000 4200
119948670016751 175 523365384615385 279 183715 175
112247051926298 181 445000384615385 289 241348 181
126325376884422 188 591696153846154 30 299061666666667 188
130470221105528 195 660759615384616 311 380613666666667 195
140578994974874 202 706025000000001 322 419054666666667 202
158666502512563 209 794851923076924 334 64940 209
15709983919598 217 860896153846155 346 883372 217
146305745393635 225 847675000000001 359 130709333333333 225
175050465661642 233 943019230769232 372 182267 233
20586516917923 241 949319230769232 385 263912666666667 241
21836616080402 25 96023076923077 40 355521333333333 25
221599480737019 259 956119230769232 414 484109 259
231432663316583 269 1025750000 429 647791 269
228343541038526 279 964151923076924 445 830633 279
238293788944724 289 982432692307693 461 1054740 289
24027170519263 30 103288461538462 478 125545333333333 30
254431427135679 311 981471153846155 514 1435950 311
281640274706868 322 100416538461539 533 161942333333333 322
279502308207705 334 995501923076924 552 169811666666667 334
273149989949749 346 969944230769232 573 182475666666667 346
301086837520938 359 89473076923077 594 187437333333333 359
337571587939699 372 791292307692308 615 1885320 372
335709822445561 385 719676923076924 638 184891666666667 385
303290958123953 40 67950576923077 661 177122333333333 40
296100891122278 414 554032692307693 685 167757333333333 414
305137175879397 429 441263461538462 71 1563790 429
298671450586265 445 39593576923077 737 143831333333333 445
267825041876047 461 294517500 764 1276340 461
268898750418761 478 235586538461539 791 111617666666667 478
246584087102178 496 219594615384616 82 956378666666667 496
22753597319933 514 183537307692308 851 786719333333333 514
20805557118928 533 132950384615385 882 654658 533
193145899497488 552 991526923076924 914 524162333333333 552
180397058626466 573 723884615384616 947 398477 573
159287497487437 594 49395000 982 294095333333333 594
140093966499163 615 329623653846154 1018 216415 615
125712003350084 638 232231346153846 1055 155941333333333 638
11582181239531 661 170568076923077 1094 109822 661
933554824120604 685 114283076923077 1134 811729333333333 685
766995862646567 71 851232692307693 1176 533704666666667 71
625145611390285 737 558684615384616 1219 398905 737
531419574539364 764 425857115384616 1263 272716 764
401304512562814 791 320039230769231 131 224988666666667 791
302290415410386 82 224643461538462 1358 175139333333333 82
234256559463987 851 204812115384616 1407 137377666666667 851
174277956448911 882 133968461538462 1459 1185743 882
119620948073702 914 120355384615385 1512 901657 914
860247541038527 947 1114950 1568 95869666666667 947
588795608040202 982 892715384615385 1625 866524 982
453500100502513 1018 75693076923077 1685 79995933333333 1018
306104184254607 1055 734100000000001 1747 855652 1055
214392951423786 1094 732648076923078 1811 82140833333333 1094
171584234505863 1134 530092307692308 1877 81683533333333 1134
129452606365159 1176 609534615384616 1946 71270166666667 1176
109800234170854 1219 491257692307693 2017 67286033333333 1219
875061487437187 1263 391936346153846 2091 75311933333333 1263
755701192629817 131 427556153846154 2167 71270066666667 131
76907041876047 1358 528136538461539 2247 670295 1358
816854716917924 1407 538875 2329 612828 1407
682292696817421 1459 484882692307693 2414 60685066666667 1459
484327912897823 1512 523173076923077 2503 64353 1512
601245688442212 1568 532400 2595 575052 1568
608947306532664 1625 391983653846154 269 53995533333333 1625
57423530318258 1685 39818576923077 2788 56581733333333 1685
665198110552765 1747 390621538461539 289 50526966666667 1747
641284469011726 1811 282454038461539 2996 52087233333333 1811
551386834170855 1877 301689807692308 3106 390656 1877
515487715242882 1946 392116538461539 322 40069366666667 1946
557056576214406 2017 262214807692308 3338 42029366666667 2017
585014763819096 2091 300040192307693 346
563217748743719 2167 327144807692308 3587
516019996649917 2247 291944038461539 3718
635039155778895 2329 410772307692308 3854
678386860971525 2414 438539038461539 3995
540607373534339 2503 810536808 542
534717524288108 2595 882899298 583
624962696817421 269 884130018 626
507626351758795 2788 848442984 673
482487487437186 289 79158372 723
462233661641542 2996 628394094 777
614290241206031 3106 484154992 835
549685423785595 322 3250266138 898
485615936348409 3338 1930962502 965
446652388609716 346 97717245 1037
733651755443887 3587 451665266 1114
73515500837521 3718 1710666186 1197
491714613065327 3854 750723816 1286
453128479061977 3995 3692090772 1382
22625785 542 08614861802 1486
23149945 583 11076250522 1596 89545 542
2547951466667 626 1 1715 10021 583
26411294 673 1 1843 11057 626
2478060433333 723 1 1981 12158 673
2428556433333 777 1 2129 12433 723
1953912566667 835 1 2288 113975 777
1421029306667 898 01230695642 2458 9234 835
797872833333 965 1 2642 70035 898
430967506667 1037 1 2839 49195 965
21839545 1114 1 3051 3452 1037
84446483333 1197 01230695642 3278 23495 1114
320313357 1286 1 3523 1597 1197
34943302333 1382 1 3786 1089 1286
17471639033 1486 1 4068 781 1382
116477634 1596 1 4371 5965 1486
08735821033 1715 1 4698 4325 1596
05823884733 1843 1 5048 3995 1715
05823884733 1981 1 5425 3185 1843
02911942367 2129 1 5829 2325 1981
1 2288 1 6264 2185 2129
02911942367 2458 1 6732 194 2288
02911942367 2642 1 7234 1705 2458
08735821033 2839 1 7774 1395 2642
02911942367 3051 1 8354 124 2839
08735821033 3278 1 8977 97 3051
05823884733 3523 1 9647 92 3278
08735818 3786 1 10370 71 3523
23295514667 4068 1 11140 56 3786
05823884733 4371 1 11970 51 4068
05823884733 4698 1 12860 35 4371
1 5048 1 13820 31 4698
1 5425 1 14860 21 5048
1 5829 1 15960 16 5425
1 6264 1 17150 1 5829
1 6732 1 18430 055 6264
1 7234 1 19810 05 6732
1 7774 055 7234
1 8354 02 7774
1 8977 005 8354
1 9647 0 8977
1 10370 01 9647
1 11140 005 10370
1 11970 005 11140
1 12860 01 11970
1 13820 0 12860
1 14860 0 13820
1 15960 0 14860
1 17150 0 15960
1 18430 0 17150
1 19810 0 18430
0 19810
0009
lt03
lt03
lt03
Page 11: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment

11

Amine losses

Flue gas cooler

Flue gas blower

Flue gas inlet

Condensate

Major factor aerosol particles in flue gas from coal-fired power plants

Aerosol particle formation during coal combustion

S N

N

S

Inorganic oxides and metals (eg SiO2 Fe P)

Sulfur

Nitrogen

Organic volatiles

Inorganic volatiles (eg Hg)

Coal particle1st stage

devolatilization

Burning of tar

Tar

Oxidation

CO2

Partial oxidation

Metal or its Suboxide vapor (eg SiO Ca)

Absorption

Re-oxidation amp particle formation

Nano-sized inorganic aerosol particle

(eg SiO2 particle)

Inorganic aerosols shielding organics

Aerosols sent in flue gas to PCC absorber

(1) Nucleation(2) Condensation

04 nmParticle Size 04 ndash 2 nm 2 - 100 nm 0001-1000 mm

(3) Coagulation

3 main stages of aerosol formation1

Burning of char

Bottom Ash

2nd stage devolatilization

Ash formation

1 Wang Xinlei amp Williams Brent amp Tang Y amp Huang Yuhsuan amp Kong L amp Yang Xin amp Biswas Pratim (2013) Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace Atmospheric Chemistry and Physics 13 105194acp-13-10919-2013

12

Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1

13

Phase IAerosol growth and nucleation from water in absorber

Phase IIAerosol growth from amine in absorber

Phase IIIBuildup of captured CO2and amine bound to CO2in aerosols

Phase IVSalt accumulation inside particles causing further amine and CO2 diffusion into aerosols

02 microm particle

1 G Lombardo B Fostas M Shah A Morken O Hvidsten J Mertens E Hamborg Results from Aerosol Measurement in Amine Plant Treating Gas Turbine and Residue Fluidized Catalytic Cracker Flue Gases at the CO2 Technology Centre Mongstad GHGT-13 Energy Procedia 2017 114 Pages 1210-1230

Water condensation

Nucleation from water supersaturation

1 microm particle

Amine absorption until complete saturation

2 microm particle

CO2 and CO2+amine absorption

2-5 microm particleSalt accumulationCO2 and amine diffusion

Amine contained in aerosol particles are then emitted from PCC absorber in treated gas stream

The Kelvin equation gives the minimum particle diameter d of a liquid1 supersaturation leads to nucleation of smaller particles

14

Benefits of aerosol particle reduction

Benefits

Manageable solvent supply and transport logistics

Optimum power plant efficiency

when integrated with PCC

Reduction of particulate that can unfavorably react with amine

solvent

Improved PCC plant specific

energy performance

Environmental sustainability and

performance

Improved PCC plant business

caselower cost

Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1

For power plants integrated with solvent-based PCC without an existing baghouse optimized flue gas aerosol pretreatment is the only viable option to reduce aerosol concentrations from gt109 particlescm3 to manageable levels near 104-106

particlescm3 for particles with diameters in the range of 70-200 nm

Pretreatment has traditionally been performed using simple ESPs and Brownian filters

Few systematic studies have been conducted to evaluate performance of different technologies over a full range of conditions

15

BH = baghouse

1 Based on single point experience some options eg dry bed conf may handle higher particle concentrations than others

Chart1

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment
10000000
1000000
10000000
1000000000

Literature data

Literature data

Abbott (no RH no dryer)
Abbott (RH w dryer)
SR (Wilsonville before BH)
SR (Wilsonville after BH)
Linde (Wilsonville after BH)
UT Austin (Wilsonville before BH)
TCM (no BH no BF)
Particle Diameter (nm)
Particle Number Concentration (cm3)

Methods

10E7 particlescm3 reported literature maximum
Abbott aerosol data showing gt10E7 particlescm3 compared to other flue gases
Abbott (reheater off no dryer)
Abbott (42 reheater w dryer)
NCCC after baghouse (WUSL measurements)
NCCC before baghouse (Southern Research measurements)
NCCC after baghouse (Southern Research measurements)
NCCC before baghouse (University of Texas at Austin measurements)
Residual fluidized catalytic cracker (Technology Centre Mongstad measurements)

Methods

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) at which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pre-treatment

TEA

Technology proposed in this work
Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Base case Case 1 Case 2 Case 3 Case 4 Case 5
DOE Case B12B Reference w baghouse wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system wo baghouse (breakeven)
Cost Basis Year 2011$ 2011$ 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4416576 4530755 4497804 4432245 4516307 45154043379888
Thermal input (kWt) (HHV) 1694366 1694366 1736605 1723975 1698847 1732627
Coal flowrate (kghr) 224791 224791 230395 228719 225385 229867 11478458479996
Total steam turbine power (kWe) 642000 642000 643332 654224 644359 656869
Gross Power (MWe) 6420 6420 6433 6542 6444 6569 96690 9669 3
Auxiliary Power (MWe) 913 913 934 1038 941 1072 9969
Net Power (MWe) 551 551 550 550 550 550
PCC Reboiler Duty (MW) 3311 3311 4106 3372 3323 3386
Specific Duty (MJkg CO2) 248 248 300 248 248 248 4405686
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal 450395408921933 982680892193308 445482004460967
Fuel Unit Cost ($ton) 6854 6854 6854 6854 6854 6854 440778425101536 440864946116186
Power Plant Efficiency () (HHV) 32500 32500 31668 31930 32387 31725
Boiler Efficiency () (HHV) 89100 89100 89100 89100 89100 89100
CO2 Produced (MThr) 480 480 492 489 482 491
CO2 Produced (lbhr) 1058945 1058945 1085344 1077450 1061745 1082857 4415000
CO2 Produced (MTyear) 4207729 4207729 4312625 4281259 4218856 4302745 443224546416968
CO2 Captured () 90 90 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085 085 085
Variable Cost $60366961 $82839499 $61871865 $61421865 $60526594 $60429346
Fixed Cost $63094548 $62118858 $62746820 $62624815 $62372778 $62753124
Fuel Cost $126458921 $126458921 $12961144817 $12866877277 $12679332619 $12931450746
Total Overnight Cost $2384351816 $2331909536 $2364444218 $2356810371 $2341063213 $2364453241 $2364444218
Total Plant Cost $1939142000 $1890358000 $1921756120 $1915655869 $1903054023 $1922071279
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $38782850 $37807160 $38435122 $38313117 $38061080 $38441426
Maintenance Material Cost $18097725 $18097725 $1854888787 $1841398019 $1814558223 $18145582
Consumables Cost $36775427 $59247965 $3769221114 $3741807239 $3687267513 $36775427
Waste Disposal Cost $5493809 $5493809 $563076559 $558981254 $550833671 $5508337
By-Products Cost $0 $0 $0 $0 $0 $0
Preproduction Costs (x1000) $59957 $60854 $59820 $59635 $59257 $59691
Inventory Capital (x1000) $41125 452270951087832 418250410605904 $4155922 410280350765301 $4159189
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0 $0 $0
Land (x1000) $900 $877 $892 $889 $883 $892
Other Owners Costs (x1000) $290871 $283554 $288263 $287348 $285458 $288311
Financing Costs (x1000) $52357 $51040 $51887 $51723 $51382 $51896
Total Overnight Costs (TOC) $2384351816 $2331909536 $2364444218 $235681037146 $2341063213 $236445324106
Coal and sorbent handling ($x1000) $52286 $52286 $53154 $52896 $52378 $53073
Coal and sorbent prep amp feed ($x1000) $24983 $24983 $25398 $25274 $25027 $25359
Feedwater amp misc BOP systems ($x1000) $112150 $112150 $114013 $113457 $112348 $113838
PC boiler ($x1000) $400793 $400793 $407450 $405465 $401502 $406825
Flue gas cleanup ($x1000) $197475 $148691 $151161 $150424 $148954 $150929
CO2 removal ($x1000) $533757 $533757 $542622 $543241 $544054 $545052 935327377984728
CO2 compression amp drying ($x1000) $98381 $98381 $100015 $99528 $98555 $99862
Heat and power integration ($x1000) $0 $0 $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45027 $45775 $45552 $45107 $45705
Steam turbine generaor ($x1000) $178176 $178176 $181135 $180253 $178491 $180858
Cooling water system ($x1000) $62254 $62254 $63288 $62980 $62364 $63191
Ashspent sorbent handling system ($x1000) $19028 $19028 $19344 $19250 $19062 $19314
Accessory electric plant ($x1000) $93584 $93584 $95138 $94675 $93749 $94993
Instrumentation amp control ($x1000) $31654 $31654 $32180 $32023 $31710 $32130
Improvements to site ($x1000) $18063 $18063 $18363 $18274 $18095 $18335
Buildings amp structures ($x1000) $71531 $71531 $72719 $72365 $71657 $72608
TPC without PCC ($x1000) $1307004 $1258220 $1279119 $1272887 $1260445 $1277157
PCC cost ($x1000) $632138 $632138 $642638 $642769 $642609 $644914
COE ($MWh wo TampS) $13320 $13686 $13368 $13305 $13185 $13279
COE ($MWh w TampS) $14280 $14646 $14353 $14282 $14149 $14262
Fuel Costs ($MWh) $3090 $3084 $3165 $3139 $3095 $3139
Variable Costs ($MWh) $1470 $2023 $1511 $1500 $1478 $1474
Fixed Costs ($MWh) $1540 $1517 $1532 $1529 $1523 $1529
Capital Costs ($MWh) $7220 $7062 $7160 $7137 $7089 $7136
Cost of CO2 Captured ($ton wo TampS) $5262 $7069 $6497 $6472 $6414 $6440
Cost of CO2 Captured ($MT wo TampS) $5800 $6413 $5894 $5872 $5818 $5842
Cost of CO2 Captured ($MT w TampS) $6901 $7514 $6995 $6972 $6919 $6943
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $46312929 $47467476 $47122241 $46435398 $47358727
CO2 TSM Cost ($MWh) $960 $960 $985 $977 $963 $984
Coal handling amp conveying (kWe) 480 480 492 488 481 491
Pulverizers 3370 3370 3454 3429 3379 3446
Sorbent handling amp reagent preparation (kWe) 1070 1070 1097 1089 1073 1094
Ash handling (kWe) 780 780 799 794 782 798
Primary air fans (kWe) 1670 1670 1712 1699 1674 1708
Forced draft fans (kWe) 2130 2130 2183 2167 2136 2178
Induced draft fans (kWe) 8350 8350 8558 8496 8372 8539
SCR (kWe) 60 60 61 61 60 61
Activated carbon injection (kWe) 27 27 28 27 27 28
Dry sorbent injection (kWe) 108 108 111 110 108 110
Baghouse (kWe) 110 110 113 112 110 112
Wet FGD (kWe) 3550 3550 3638 3612 3559 3630
PCC plant auxiliaries (kWe) 16000 16000 16399 27280 18682 30361 14000 2640
CO2 compression (kWe) 35690 35690 36580 36314 35784 36496
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400 400 400
Condensate pumps (kWe) 640 640 656 651 642 654
Circulating water pumps (kWe) 7750 7750 7943 7885 7770 7925
Ground water pumps (kWe) 710 710 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010 4010 4010
Transformer losses (kWe) 2380 2380 2439 2422 2386 2434
Total auxiliaries (kWe) 91285 91285 93383 103756 94148 107186
Net plant heat rate (BTUkWh) 10498 10498 10775 10686 10535 10755
Condenser cooling duty (GJhr) 1867 1867 1914 1900 1872 1909
Limestone sorbent flowrate (kghr) 22213 22213 22767 22601 22272 22715
Raw water withdrawal (m3min) 30 30 30 30 30 30
Raw water consumption (m3min) 23 23 24 24 23 24
NOx (MTyear) 1517 1517 1555 1544 1521 1551
Particulates (MTyear) 195 195 200 198 196 199
Hg (kgyear) 6 6 6 6 6 6
SO2 (MTyear) 0 0 0 0 0 0
COE Reduction (w TampS) 256 051 002 -092 -012
COE Reduction (wo TampS) 275 036 -011 -101 -031
Cost of CO2 Reduction (wo TampS) 1057 162 123 032 073
Cost of CO2 Reduction (w TampS) 888 136 104 027 061
PCC Plant Cost Reduction 000 -166 -168 -166 -202
Method Amine emissions (kg aminetonne CO2 Aerosol particle concentration range where adequate (particlescm3)
Baghouse 0009 0 to 1E+7 0 10000000
Dry bed operation (no BH) lt03 0 to 1E+6 0 1000000
Absorber operating conditions (no BH) lt03 0 to 1E+7 0 10000000
Pre-treatment solutions (no BH) lt03 0 to 1E+9 0 1000000000
Abbott Power Plant (42 reheat burner w dryer) Abbott Power Plant (0 reheat burner wo dryer) Wilsonville (after baghouse) (WashU) Wilsonville (before baghouse) (SR) UT Austin (NCCC) (before baghouse) TCM (no BH no BF) Wilsonville (after baghouse) (SR) Wilsonville Parametric Tests (Linde) Wilsonville Long-term Tests (Linde)
Anal Ins Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) kg amineMT CO2 04080107622 00095091096
SMPS 682819795644892 982 427900576923077 157 14468166666667 982 1000000 10 4000000 2400 100000 35 650000 10
SMPS 735415966499163 102 532616923076924 163 160013 102 200000 20 3000000 2800 1150000 60 600000 20
SMPS 667026341708543 106 642390384615385 168 14813666666667 106 200000 40 2000000 2800 10000000 100 530000 40
SMPS 566092556113903 109 764663461538462 175 91535 109 1000000 70 1000000 3000 10000000 160 400000 70
SMPS 60451071356784 113 993782692307693 181 21280833333333 113 6300000 110 900000 3200 1400000 280 350000 120
SMPS 640447634840872 118 103840961538462 188 277361 118 8000000 200 800000 3200 120000 480 50000 200
SMPS 63931935678392 122 119893653846154 195 30501933333333 122 5000000 400 600000 3800 1400 640 20000 400
SMPS 67781860636516 126 155467692307692 202 35493966666667 126 800000 700 500000 3800 1000 960 10000 600
SMPS 678467648241207 131 173807500 209 25912033333333 131 1 800 400000 3800 1000 1920 5000 800
SMPS 736663748743719 136 198103846153846 217 20493533333333 136 1 1000 318900 3800 900 2560 100 1000
APS 791600921273033 141 245189807692308 225 34751733333333 141 300000 3800 750 5120
APS 776599182579565 146 27240826923077 233 43427866666667 146 200000 3800
APS 748095604690118 151 301905384615385 241 592247 151 100000 4000
APS 852265149078728 157 348734615384616 25 614018 157 90000 4100
APS 99985068676717 163 375607115384616 259 87004466666667 163 80000 4200
11043162479062 168 442790384615385 269 137845333333333 168 70000 4200
119948670016751 175 523365384615385 279 183715 175
112247051926298 181 445000384615385 289 241348 181
126325376884422 188 591696153846154 30 299061666666667 188
130470221105528 195 660759615384616 311 380613666666667 195
140578994974874 202 706025000000001 322 419054666666667 202
158666502512563 209 794851923076924 334 64940 209
15709983919598 217 860896153846155 346 883372 217
146305745393635 225 847675000000001 359 130709333333333 225
175050465661642 233 943019230769232 372 182267 233
20586516917923 241 949319230769232 385 263912666666667 241
21836616080402 25 96023076923077 40 355521333333333 25
221599480737019 259 956119230769232 414 484109 259
231432663316583 269 1025750000 429 647791 269
228343541038526 279 964151923076924 445 830633 279
238293788944724 289 982432692307693 461 1054740 289
24027170519263 30 103288461538462 478 125545333333333 30
254431427135679 311 981471153846155 514 1435950 311
281640274706868 322 100416538461539 533 161942333333333 322
279502308207705 334 995501923076924 552 169811666666667 334
273149989949749 346 969944230769232 573 182475666666667 346
301086837520938 359 89473076923077 594 187437333333333 359
337571587939699 372 791292307692308 615 1885320 372
335709822445561 385 719676923076924 638 184891666666667 385
303290958123953 40 67950576923077 661 177122333333333 40
296100891122278 414 554032692307693 685 167757333333333 414
305137175879397 429 441263461538462 71 1563790 429
298671450586265 445 39593576923077 737 143831333333333 445
267825041876047 461 294517500 764 1276340 461
268898750418761 478 235586538461539 791 111617666666667 478
246584087102178 496 219594615384616 82 956378666666667 496
22753597319933 514 183537307692308 851 786719333333333 514
20805557118928 533 132950384615385 882 654658 533
193145899497488 552 991526923076924 914 524162333333333 552
180397058626466 573 723884615384616 947 398477 573
159287497487437 594 49395000 982 294095333333333 594
140093966499163 615 329623653846154 1018 216415 615
125712003350084 638 232231346153846 1055 155941333333333 638
11582181239531 661 170568076923077 1094 109822 661
933554824120604 685 114283076923077 1134 811729333333333 685
766995862646567 71 851232692307693 1176 533704666666667 71
625145611390285 737 558684615384616 1219 398905 737
531419574539364 764 425857115384616 1263 272716 764
401304512562814 791 320039230769231 131 224988666666667 791
302290415410386 82 224643461538462 1358 175139333333333 82
234256559463987 851 204812115384616 1407 137377666666667 851
174277956448911 882 133968461538462 1459 1185743 882
119620948073702 914 120355384615385 1512 901657 914
860247541038527 947 1114950 1568 95869666666667 947
588795608040202 982 892715384615385 1625 866524 982
453500100502513 1018 75693076923077 1685 79995933333333 1018
306104184254607 1055 734100000000001 1747 855652 1055
214392951423786 1094 732648076923078 1811 82140833333333 1094
171584234505863 1134 530092307692308 1877 81683533333333 1134
129452606365159 1176 609534615384616 1946 71270166666667 1176
109800234170854 1219 491257692307693 2017 67286033333333 1219
875061487437187 1263 391936346153846 2091 75311933333333 1263
755701192629817 131 427556153846154 2167 71270066666667 131
76907041876047 1358 528136538461539 2247 670295 1358
816854716917924 1407 538875 2329 612828 1407
682292696817421 1459 484882692307693 2414 60685066666667 1459
484327912897823 1512 523173076923077 2503 64353 1512
601245688442212 1568 532400 2595 575052 1568
608947306532664 1625 391983653846154 269 53995533333333 1625
57423530318258 1685 39818576923077 2788 56581733333333 1685
665198110552765 1747 390621538461539 289 50526966666667 1747
641284469011726 1811 282454038461539 2996 52087233333333 1811
551386834170855 1877 301689807692308 3106 390656 1877
515487715242882 1946 392116538461539 322 40069366666667 1946
557056576214406 2017 262214807692308 3338 42029366666667 2017
585014763819096 2091 300040192307693 346
563217748743719 2167 327144807692308 3587
516019996649917 2247 291944038461539 3718
635039155778895 2329 410772307692308 3854
678386860971525 2414 438539038461539 3995
540607373534339 2503 810536808 542
534717524288108 2595 882899298 583
624962696817421 269 884130018 626
507626351758795 2788 848442984 673
482487487437186 289 79158372 723
462233661641542 2996 628394094 777
614290241206031 3106 484154992 835
549685423785595 322 3250266138 898
485615936348409 3338 1930962502 965
446652388609716 346 97717245 1037
733651755443887 3587 451665266 1114
73515500837521 3718 1710666186 1197
491714613065327 3854 750723816 1286
453128479061977 3995 3692090772 1382
22625785 542 08614861802 1486
23149945 583 11076250522 1596 89545 542
2547951466667 626 1 1715 10021 583
26411294 673 1 1843 11057 626
2478060433333 723 1 1981 12158 673
2428556433333 777 1 2129 12433 723
1953912566667 835 1 2288 113975 777
1421029306667 898 01230695642 2458 9234 835
797872833333 965 1 2642 70035 898
430967506667 1037 1 2839 49195 965
21839545 1114 1 3051 3452 1037
84446483333 1197 01230695642 3278 23495 1114
320313357 1286 1 3523 1597 1197
34943302333 1382 1 3786 1089 1286
17471639033 1486 1 4068 781 1382
116477634 1596 1 4371 5965 1486
08735821033 1715 1 4698 4325 1596
05823884733 1843 1 5048 3995 1715
05823884733 1981 1 5425 3185 1843
02911942367 2129 1 5829 2325 1981
1 2288 1 6264 2185 2129
02911942367 2458 1 6732 194 2288
02911942367 2642 1 7234 1705 2458
08735821033 2839 1 7774 1395 2642
02911942367 3051 1 8354 124 2839
08735821033 3278 1 8977 97 3051
05823884733 3523 1 9647 92 3278
08735818 3786 1 10370 71 3523
23295514667 4068 1 11140 56 3786
05823884733 4371 1 11970 51 4068
05823884733 4698 1 12860 35 4371
1 5048 1 13820 31 4698
1 5425 1 14860 21 5048
1 5829 1 15960 16 5425
1 6264 1 17150 1 5829
1 6732 1 18430 055 6264
1 7234 1 19810 05 6732
1 7774 055 7234
1 8354 02 7774
1 8977 005 8354
1 9647 0 8977
1 10370 01 9647
1 11140 005 10370
1 11970 005 11140
1 12860 01 11970
1 13820 0 12860
1 14860 0 13820
1 15960 0 14860
1 17150 0 15960
1 18430 0 17150
1 19810 0 18430
0 19810
0009
lt03
lt03
lt03
Page 12: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Aerosol particle formation during coal combustion

S N

N

S

Inorganic oxides and metals (eg SiO2 Fe P)

Sulfur

Nitrogen

Organic volatiles

Inorganic volatiles (eg Hg)

Coal particle1st stage

devolatilization

Burning of tar

Tar

Oxidation

CO2

Partial oxidation

Metal or its Suboxide vapor (eg SiO Ca)

Absorption

Re-oxidation amp particle formation

Nano-sized inorganic aerosol particle

(eg SiO2 particle)

Inorganic aerosols shielding organics

Aerosols sent in flue gas to PCC absorber

(1) Nucleation(2) Condensation

04 nmParticle Size 04 ndash 2 nm 2 - 100 nm 0001-1000 mm

(3) Coagulation

3 main stages of aerosol formation1

Burning of char

Bottom Ash

2nd stage devolatilization

Ash formation

1 Wang Xinlei amp Williams Brent amp Tang Y amp Huang Yuhsuan amp Kong L amp Yang Xin amp Biswas Pratim (2013) Characterization of organic aerosol produced during pulverized coal combustion in a drop tube furnace Atmospheric Chemistry and Physics 13 105194acp-13-10919-2013

12

Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1

13

Phase IAerosol growth and nucleation from water in absorber

Phase IIAerosol growth from amine in absorber

Phase IIIBuildup of captured CO2and amine bound to CO2in aerosols

Phase IVSalt accumulation inside particles causing further amine and CO2 diffusion into aerosols

02 microm particle

1 G Lombardo B Fostas M Shah A Morken O Hvidsten J Mertens E Hamborg Results from Aerosol Measurement in Amine Plant Treating Gas Turbine and Residue Fluidized Catalytic Cracker Flue Gases at the CO2 Technology Centre Mongstad GHGT-13 Energy Procedia 2017 114 Pages 1210-1230

Water condensation

Nucleation from water supersaturation

1 microm particle

Amine absorption until complete saturation

2 microm particle

CO2 and CO2+amine absorption

2-5 microm particleSalt accumulationCO2 and amine diffusion

Amine contained in aerosol particles are then emitted from PCC absorber in treated gas stream

The Kelvin equation gives the minimum particle diameter d of a liquid1 supersaturation leads to nucleation of smaller particles

14

Benefits of aerosol particle reduction

Benefits

Manageable solvent supply and transport logistics

Optimum power plant efficiency

when integrated with PCC

Reduction of particulate that can unfavorably react with amine

solvent

Improved PCC plant specific

energy performance

Environmental sustainability and

performance

Improved PCC plant business

caselower cost

Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1

For power plants integrated with solvent-based PCC without an existing baghouse optimized flue gas aerosol pretreatment is the only viable option to reduce aerosol concentrations from gt109 particlescm3 to manageable levels near 104-106

particlescm3 for particles with diameters in the range of 70-200 nm

Pretreatment has traditionally been performed using simple ESPs and Brownian filters

Few systematic studies have been conducted to evaluate performance of different technologies over a full range of conditions

15

BH = baghouse

1 Based on single point experience some options eg dry bed conf may handle higher particle concentrations than others

Chart1

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment
10000000
1000000
10000000
1000000000

Literature data

Literature data

Abbott (no RH no dryer)
Abbott (RH w dryer)
SR (Wilsonville before BH)
SR (Wilsonville after BH)
Linde (Wilsonville after BH)
UT Austin (Wilsonville before BH)
TCM (no BH no BF)
Particle Diameter (nm)
Particle Number Concentration (cm3)

Methods

10E7 particlescm3 reported literature maximum
Abbott aerosol data showing gt10E7 particlescm3 compared to other flue gases
Abbott (reheater off no dryer)
Abbott (42 reheater w dryer)
NCCC after baghouse (WUSL measurements)
NCCC before baghouse (Southern Research measurements)
NCCC after baghouse (Southern Research measurements)
NCCC before baghouse (University of Texas at Austin measurements)
Residual fluidized catalytic cracker (Technology Centre Mongstad measurements)

Methods

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) at which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pre-treatment

TEA

Technology proposed in this work
Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Base case Case 1 Case 2 Case 3 Case 4 Case 5
DOE Case B12B Reference w baghouse wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system wo baghouse (breakeven)
Cost Basis Year 2011$ 2011$ 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4416576 4530755 4497804 4432245 4516307 45154043379888
Thermal input (kWt) (HHV) 1694366 1694366 1736605 1723975 1698847 1732627
Coal flowrate (kghr) 224791 224791 230395 228719 225385 229867 11478458479996
Total steam turbine power (kWe) 642000 642000 643332 654224 644359 656869
Gross Power (MWe) 6420 6420 6433 6542 6444 6569 96690 9669 3
Auxiliary Power (MWe) 913 913 934 1038 941 1072 9969
Net Power (MWe) 551 551 550 550 550 550
PCC Reboiler Duty (MW) 3311 3311 4106 3372 3323 3386
Specific Duty (MJkg CO2) 248 248 300 248 248 248 4405686
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal 450395408921933 982680892193308 445482004460967
Fuel Unit Cost ($ton) 6854 6854 6854 6854 6854 6854 440778425101536 440864946116186
Power Plant Efficiency () (HHV) 32500 32500 31668 31930 32387 31725
Boiler Efficiency () (HHV) 89100 89100 89100 89100 89100 89100
CO2 Produced (MThr) 480 480 492 489 482 491
CO2 Produced (lbhr) 1058945 1058945 1085344 1077450 1061745 1082857 4415000
CO2 Produced (MTyear) 4207729 4207729 4312625 4281259 4218856 4302745 443224546416968
CO2 Captured () 90 90 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085 085 085
Variable Cost $60366961 $82839499 $61871865 $61421865 $60526594 $60429346
Fixed Cost $63094548 $62118858 $62746820 $62624815 $62372778 $62753124
Fuel Cost $126458921 $126458921 $12961144817 $12866877277 $12679332619 $12931450746
Total Overnight Cost $2384351816 $2331909536 $2364444218 $2356810371 $2341063213 $2364453241 $2364444218
Total Plant Cost $1939142000 $1890358000 $1921756120 $1915655869 $1903054023 $1922071279
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $38782850 $37807160 $38435122 $38313117 $38061080 $38441426
Maintenance Material Cost $18097725 $18097725 $1854888787 $1841398019 $1814558223 $18145582
Consumables Cost $36775427 $59247965 $3769221114 $3741807239 $3687267513 $36775427
Waste Disposal Cost $5493809 $5493809 $563076559 $558981254 $550833671 $5508337
By-Products Cost $0 $0 $0 $0 $0 $0
Preproduction Costs (x1000) $59957 $60854 $59820 $59635 $59257 $59691
Inventory Capital (x1000) $41125 452270951087832 418250410605904 $4155922 410280350765301 $4159189
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0 $0 $0
Land (x1000) $900 $877 $892 $889 $883 $892
Other Owners Costs (x1000) $290871 $283554 $288263 $287348 $285458 $288311
Financing Costs (x1000) $52357 $51040 $51887 $51723 $51382 $51896
Total Overnight Costs (TOC) $2384351816 $2331909536 $2364444218 $235681037146 $2341063213 $236445324106
Coal and sorbent handling ($x1000) $52286 $52286 $53154 $52896 $52378 $53073
Coal and sorbent prep amp feed ($x1000) $24983 $24983 $25398 $25274 $25027 $25359
Feedwater amp misc BOP systems ($x1000) $112150 $112150 $114013 $113457 $112348 $113838
PC boiler ($x1000) $400793 $400793 $407450 $405465 $401502 $406825
Flue gas cleanup ($x1000) $197475 $148691 $151161 $150424 $148954 $150929
CO2 removal ($x1000) $533757 $533757 $542622 $543241 $544054 $545052 935327377984728
CO2 compression amp drying ($x1000) $98381 $98381 $100015 $99528 $98555 $99862
Heat and power integration ($x1000) $0 $0 $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45027 $45775 $45552 $45107 $45705
Steam turbine generaor ($x1000) $178176 $178176 $181135 $180253 $178491 $180858
Cooling water system ($x1000) $62254 $62254 $63288 $62980 $62364 $63191
Ashspent sorbent handling system ($x1000) $19028 $19028 $19344 $19250 $19062 $19314
Accessory electric plant ($x1000) $93584 $93584 $95138 $94675 $93749 $94993
Instrumentation amp control ($x1000) $31654 $31654 $32180 $32023 $31710 $32130
Improvements to site ($x1000) $18063 $18063 $18363 $18274 $18095 $18335
Buildings amp structures ($x1000) $71531 $71531 $72719 $72365 $71657 $72608
TPC without PCC ($x1000) $1307004 $1258220 $1279119 $1272887 $1260445 $1277157
PCC cost ($x1000) $632138 $632138 $642638 $642769 $642609 $644914
COE ($MWh wo TampS) $13320 $13686 $13368 $13305 $13185 $13279
COE ($MWh w TampS) $14280 $14646 $14353 $14282 $14149 $14262
Fuel Costs ($MWh) $3090 $3084 $3165 $3139 $3095 $3139
Variable Costs ($MWh) $1470 $2023 $1511 $1500 $1478 $1474
Fixed Costs ($MWh) $1540 $1517 $1532 $1529 $1523 $1529
Capital Costs ($MWh) $7220 $7062 $7160 $7137 $7089 $7136
Cost of CO2 Captured ($ton wo TampS) $5262 $7069 $6497 $6472 $6414 $6440
Cost of CO2 Captured ($MT wo TampS) $5800 $6413 $5894 $5872 $5818 $5842
Cost of CO2 Captured ($MT w TampS) $6901 $7514 $6995 $6972 $6919 $6943
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $46312929 $47467476 $47122241 $46435398 $47358727
CO2 TSM Cost ($MWh) $960 $960 $985 $977 $963 $984
Coal handling amp conveying (kWe) 480 480 492 488 481 491
Pulverizers 3370 3370 3454 3429 3379 3446
Sorbent handling amp reagent preparation (kWe) 1070 1070 1097 1089 1073 1094
Ash handling (kWe) 780 780 799 794 782 798
Primary air fans (kWe) 1670 1670 1712 1699 1674 1708
Forced draft fans (kWe) 2130 2130 2183 2167 2136 2178
Induced draft fans (kWe) 8350 8350 8558 8496 8372 8539
SCR (kWe) 60 60 61 61 60 61
Activated carbon injection (kWe) 27 27 28 27 27 28
Dry sorbent injection (kWe) 108 108 111 110 108 110
Baghouse (kWe) 110 110 113 112 110 112
Wet FGD (kWe) 3550 3550 3638 3612 3559 3630
PCC plant auxiliaries (kWe) 16000 16000 16399 27280 18682 30361 14000 2640
CO2 compression (kWe) 35690 35690 36580 36314 35784 36496
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400 400 400
Condensate pumps (kWe) 640 640 656 651 642 654
Circulating water pumps (kWe) 7750 7750 7943 7885 7770 7925
Ground water pumps (kWe) 710 710 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010 4010 4010
Transformer losses (kWe) 2380 2380 2439 2422 2386 2434
Total auxiliaries (kWe) 91285 91285 93383 103756 94148 107186
Net plant heat rate (BTUkWh) 10498 10498 10775 10686 10535 10755
Condenser cooling duty (GJhr) 1867 1867 1914 1900 1872 1909
Limestone sorbent flowrate (kghr) 22213 22213 22767 22601 22272 22715
Raw water withdrawal (m3min) 30 30 30 30 30 30
Raw water consumption (m3min) 23 23 24 24 23 24
NOx (MTyear) 1517 1517 1555 1544 1521 1551
Particulates (MTyear) 195 195 200 198 196 199
Hg (kgyear) 6 6 6 6 6 6
SO2 (MTyear) 0 0 0 0 0 0
COE Reduction (w TampS) 256 051 002 -092 -012
COE Reduction (wo TampS) 275 036 -011 -101 -031
Cost of CO2 Reduction (wo TampS) 1057 162 123 032 073
Cost of CO2 Reduction (w TampS) 888 136 104 027 061
PCC Plant Cost Reduction 000 -166 -168 -166 -202
Method Amine emissions (kg aminetonne CO2 Aerosol particle concentration range where adequate (particlescm3)
Baghouse 0009 0 to 1E+7 0 10000000
Dry bed operation (no BH) lt03 0 to 1E+6 0 1000000
Absorber operating conditions (no BH) lt03 0 to 1E+7 0 10000000
Pre-treatment solutions (no BH) lt03 0 to 1E+9 0 1000000000
Abbott Power Plant (42 reheat burner w dryer) Abbott Power Plant (0 reheat burner wo dryer) Wilsonville (after baghouse) (WashU) Wilsonville (before baghouse) (SR) UT Austin (NCCC) (before baghouse) TCM (no BH no BF) Wilsonville (after baghouse) (SR) Wilsonville Parametric Tests (Linde) Wilsonville Long-term Tests (Linde)
Anal Ins Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) kg amineMT CO2 04080107622 00095091096
SMPS 682819795644892 982 427900576923077 157 14468166666667 982 1000000 10 4000000 2400 100000 35 650000 10
SMPS 735415966499163 102 532616923076924 163 160013 102 200000 20 3000000 2800 1150000 60 600000 20
SMPS 667026341708543 106 642390384615385 168 14813666666667 106 200000 40 2000000 2800 10000000 100 530000 40
SMPS 566092556113903 109 764663461538462 175 91535 109 1000000 70 1000000 3000 10000000 160 400000 70
SMPS 60451071356784 113 993782692307693 181 21280833333333 113 6300000 110 900000 3200 1400000 280 350000 120
SMPS 640447634840872 118 103840961538462 188 277361 118 8000000 200 800000 3200 120000 480 50000 200
SMPS 63931935678392 122 119893653846154 195 30501933333333 122 5000000 400 600000 3800 1400 640 20000 400
SMPS 67781860636516 126 155467692307692 202 35493966666667 126 800000 700 500000 3800 1000 960 10000 600
SMPS 678467648241207 131 173807500 209 25912033333333 131 1 800 400000 3800 1000 1920 5000 800
SMPS 736663748743719 136 198103846153846 217 20493533333333 136 1 1000 318900 3800 900 2560 100 1000
APS 791600921273033 141 245189807692308 225 34751733333333 141 300000 3800 750 5120
APS 776599182579565 146 27240826923077 233 43427866666667 146 200000 3800
APS 748095604690118 151 301905384615385 241 592247 151 100000 4000
APS 852265149078728 157 348734615384616 25 614018 157 90000 4100
APS 99985068676717 163 375607115384616 259 87004466666667 163 80000 4200
11043162479062 168 442790384615385 269 137845333333333 168 70000 4200
119948670016751 175 523365384615385 279 183715 175
112247051926298 181 445000384615385 289 241348 181
126325376884422 188 591696153846154 30 299061666666667 188
130470221105528 195 660759615384616 311 380613666666667 195
140578994974874 202 706025000000001 322 419054666666667 202
158666502512563 209 794851923076924 334 64940 209
15709983919598 217 860896153846155 346 883372 217
146305745393635 225 847675000000001 359 130709333333333 225
175050465661642 233 943019230769232 372 182267 233
20586516917923 241 949319230769232 385 263912666666667 241
21836616080402 25 96023076923077 40 355521333333333 25
221599480737019 259 956119230769232 414 484109 259
231432663316583 269 1025750000 429 647791 269
228343541038526 279 964151923076924 445 830633 279
238293788944724 289 982432692307693 461 1054740 289
24027170519263 30 103288461538462 478 125545333333333 30
254431427135679 311 981471153846155 514 1435950 311
281640274706868 322 100416538461539 533 161942333333333 322
279502308207705 334 995501923076924 552 169811666666667 334
273149989949749 346 969944230769232 573 182475666666667 346
301086837520938 359 89473076923077 594 187437333333333 359
337571587939699 372 791292307692308 615 1885320 372
335709822445561 385 719676923076924 638 184891666666667 385
303290958123953 40 67950576923077 661 177122333333333 40
296100891122278 414 554032692307693 685 167757333333333 414
305137175879397 429 441263461538462 71 1563790 429
298671450586265 445 39593576923077 737 143831333333333 445
267825041876047 461 294517500 764 1276340 461
268898750418761 478 235586538461539 791 111617666666667 478
246584087102178 496 219594615384616 82 956378666666667 496
22753597319933 514 183537307692308 851 786719333333333 514
20805557118928 533 132950384615385 882 654658 533
193145899497488 552 991526923076924 914 524162333333333 552
180397058626466 573 723884615384616 947 398477 573
159287497487437 594 49395000 982 294095333333333 594
140093966499163 615 329623653846154 1018 216415 615
125712003350084 638 232231346153846 1055 155941333333333 638
11582181239531 661 170568076923077 1094 109822 661
933554824120604 685 114283076923077 1134 811729333333333 685
766995862646567 71 851232692307693 1176 533704666666667 71
625145611390285 737 558684615384616 1219 398905 737
531419574539364 764 425857115384616 1263 272716 764
401304512562814 791 320039230769231 131 224988666666667 791
302290415410386 82 224643461538462 1358 175139333333333 82
234256559463987 851 204812115384616 1407 137377666666667 851
174277956448911 882 133968461538462 1459 1185743 882
119620948073702 914 120355384615385 1512 901657 914
860247541038527 947 1114950 1568 95869666666667 947
588795608040202 982 892715384615385 1625 866524 982
453500100502513 1018 75693076923077 1685 79995933333333 1018
306104184254607 1055 734100000000001 1747 855652 1055
214392951423786 1094 732648076923078 1811 82140833333333 1094
171584234505863 1134 530092307692308 1877 81683533333333 1134
129452606365159 1176 609534615384616 1946 71270166666667 1176
109800234170854 1219 491257692307693 2017 67286033333333 1219
875061487437187 1263 391936346153846 2091 75311933333333 1263
755701192629817 131 427556153846154 2167 71270066666667 131
76907041876047 1358 528136538461539 2247 670295 1358
816854716917924 1407 538875 2329 612828 1407
682292696817421 1459 484882692307693 2414 60685066666667 1459
484327912897823 1512 523173076923077 2503 64353 1512
601245688442212 1568 532400 2595 575052 1568
608947306532664 1625 391983653846154 269 53995533333333 1625
57423530318258 1685 39818576923077 2788 56581733333333 1685
665198110552765 1747 390621538461539 289 50526966666667 1747
641284469011726 1811 282454038461539 2996 52087233333333 1811
551386834170855 1877 301689807692308 3106 390656 1877
515487715242882 1946 392116538461539 322 40069366666667 1946
557056576214406 2017 262214807692308 3338 42029366666667 2017
585014763819096 2091 300040192307693 346
563217748743719 2167 327144807692308 3587
516019996649917 2247 291944038461539 3718
635039155778895 2329 410772307692308 3854
678386860971525 2414 438539038461539 3995
540607373534339 2503 810536808 542
534717524288108 2595 882899298 583
624962696817421 269 884130018 626
507626351758795 2788 848442984 673
482487487437186 289 79158372 723
462233661641542 2996 628394094 777
614290241206031 3106 484154992 835
549685423785595 322 3250266138 898
485615936348409 3338 1930962502 965
446652388609716 346 97717245 1037
733651755443887 3587 451665266 1114
73515500837521 3718 1710666186 1197
491714613065327 3854 750723816 1286
453128479061977 3995 3692090772 1382
22625785 542 08614861802 1486
23149945 583 11076250522 1596 89545 542
2547951466667 626 1 1715 10021 583
26411294 673 1 1843 11057 626
2478060433333 723 1 1981 12158 673
2428556433333 777 1 2129 12433 723
1953912566667 835 1 2288 113975 777
1421029306667 898 01230695642 2458 9234 835
797872833333 965 1 2642 70035 898
430967506667 1037 1 2839 49195 965
21839545 1114 1 3051 3452 1037
84446483333 1197 01230695642 3278 23495 1114
320313357 1286 1 3523 1597 1197
34943302333 1382 1 3786 1089 1286
17471639033 1486 1 4068 781 1382
116477634 1596 1 4371 5965 1486
08735821033 1715 1 4698 4325 1596
05823884733 1843 1 5048 3995 1715
05823884733 1981 1 5425 3185 1843
02911942367 2129 1 5829 2325 1981
1 2288 1 6264 2185 2129
02911942367 2458 1 6732 194 2288
02911942367 2642 1 7234 1705 2458
08735821033 2839 1 7774 1395 2642
02911942367 3051 1 8354 124 2839
08735821033 3278 1 8977 97 3051
05823884733 3523 1 9647 92 3278
08735818 3786 1 10370 71 3523
23295514667 4068 1 11140 56 3786
05823884733 4371 1 11970 51 4068
05823884733 4698 1 12860 35 4371
1 5048 1 13820 31 4698
1 5425 1 14860 21 5048
1 5829 1 15960 16 5425
1 6264 1 17150 1 5829
1 6732 1 18430 055 6264
1 7234 1 19810 05 6732
1 7774 055 7234
1 8354 02 7774
1 8977 005 8354
1 9647 0 8977
1 10370 01 9647
1 11140 005 10370
1 11970 005 11140
1 12860 01 11970
1 13820 0 12860
1 14860 0 13820
1 15960 0 14860
1 17150 0 15960
1 18430 0 17150
1 19810 0 18430
0 19810
0009
lt03
lt03
lt03
Page 13: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1

13

Phase IAerosol growth and nucleation from water in absorber

Phase IIAerosol growth from amine in absorber

Phase IIIBuildup of captured CO2and amine bound to CO2in aerosols

Phase IVSalt accumulation inside particles causing further amine and CO2 diffusion into aerosols

02 microm particle

1 G Lombardo B Fostas M Shah A Morken O Hvidsten J Mertens E Hamborg Results from Aerosol Measurement in Amine Plant Treating Gas Turbine and Residue Fluidized Catalytic Cracker Flue Gases at the CO2 Technology Centre Mongstad GHGT-13 Energy Procedia 2017 114 Pages 1210-1230

Water condensation

Nucleation from water supersaturation

1 microm particle

Amine absorption until complete saturation

2 microm particle

CO2 and CO2+amine absorption

2-5 microm particleSalt accumulationCO2 and amine diffusion

Amine contained in aerosol particles are then emitted from PCC absorber in treated gas stream

The Kelvin equation gives the minimum particle diameter d of a liquid1 supersaturation leads to nucleation of smaller particles

14

Benefits of aerosol particle reduction

Benefits

Manageable solvent supply and transport logistics

Optimum power plant efficiency

when integrated with PCC

Reduction of particulate that can unfavorably react with amine

solvent

Improved PCC plant specific

energy performance

Environmental sustainability and

performance

Improved PCC plant business

caselower cost

Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1

For power plants integrated with solvent-based PCC without an existing baghouse optimized flue gas aerosol pretreatment is the only viable option to reduce aerosol concentrations from gt109 particlescm3 to manageable levels near 104-106

particlescm3 for particles with diameters in the range of 70-200 nm

Pretreatment has traditionally been performed using simple ESPs and Brownian filters

Few systematic studies have been conducted to evaluate performance of different technologies over a full range of conditions

15

BH = baghouse

1 Based on single point experience some options eg dry bed conf may handle higher particle concentrations than others

Chart1

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment
10000000
1000000
10000000
1000000000

Literature data

Literature data

Abbott (no RH no dryer)
Abbott (RH w dryer)
SR (Wilsonville before BH)
SR (Wilsonville after BH)
Linde (Wilsonville after BH)
UT Austin (Wilsonville before BH)
TCM (no BH no BF)
Particle Diameter (nm)
Particle Number Concentration (cm3)

Methods

10E7 particlescm3 reported literature maximum
Abbott aerosol data showing gt10E7 particlescm3 compared to other flue gases
Abbott (reheater off no dryer)
Abbott (42 reheater w dryer)
NCCC after baghouse (WUSL measurements)
NCCC before baghouse (Southern Research measurements)
NCCC after baghouse (Southern Research measurements)
NCCC before baghouse (University of Texas at Austin measurements)
Residual fluidized catalytic cracker (Technology Centre Mongstad measurements)

Methods

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) at which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pre-treatment

TEA

Technology proposed in this work
Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Base case Case 1 Case 2 Case 3 Case 4 Case 5
DOE Case B12B Reference w baghouse wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system wo baghouse (breakeven)
Cost Basis Year 2011$ 2011$ 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4416576 4530755 4497804 4432245 4516307 45154043379888
Thermal input (kWt) (HHV) 1694366 1694366 1736605 1723975 1698847 1732627
Coal flowrate (kghr) 224791 224791 230395 228719 225385 229867 11478458479996
Total steam turbine power (kWe) 642000 642000 643332 654224 644359 656869
Gross Power (MWe) 6420 6420 6433 6542 6444 6569 96690 9669 3
Auxiliary Power (MWe) 913 913 934 1038 941 1072 9969
Net Power (MWe) 551 551 550 550 550 550
PCC Reboiler Duty (MW) 3311 3311 4106 3372 3323 3386
Specific Duty (MJkg CO2) 248 248 300 248 248 248 4405686
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal 450395408921933 982680892193308 445482004460967
Fuel Unit Cost ($ton) 6854 6854 6854 6854 6854 6854 440778425101536 440864946116186
Power Plant Efficiency () (HHV) 32500 32500 31668 31930 32387 31725
Boiler Efficiency () (HHV) 89100 89100 89100 89100 89100 89100
CO2 Produced (MThr) 480 480 492 489 482 491
CO2 Produced (lbhr) 1058945 1058945 1085344 1077450 1061745 1082857 4415000
CO2 Produced (MTyear) 4207729 4207729 4312625 4281259 4218856 4302745 443224546416968
CO2 Captured () 90 90 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085 085 085
Variable Cost $60366961 $82839499 $61871865 $61421865 $60526594 $60429346
Fixed Cost $63094548 $62118858 $62746820 $62624815 $62372778 $62753124
Fuel Cost $126458921 $126458921 $12961144817 $12866877277 $12679332619 $12931450746
Total Overnight Cost $2384351816 $2331909536 $2364444218 $2356810371 $2341063213 $2364453241 $2364444218
Total Plant Cost $1939142000 $1890358000 $1921756120 $1915655869 $1903054023 $1922071279
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $38782850 $37807160 $38435122 $38313117 $38061080 $38441426
Maintenance Material Cost $18097725 $18097725 $1854888787 $1841398019 $1814558223 $18145582
Consumables Cost $36775427 $59247965 $3769221114 $3741807239 $3687267513 $36775427
Waste Disposal Cost $5493809 $5493809 $563076559 $558981254 $550833671 $5508337
By-Products Cost $0 $0 $0 $0 $0 $0
Preproduction Costs (x1000) $59957 $60854 $59820 $59635 $59257 $59691
Inventory Capital (x1000) $41125 452270951087832 418250410605904 $4155922 410280350765301 $4159189
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0 $0 $0
Land (x1000) $900 $877 $892 $889 $883 $892
Other Owners Costs (x1000) $290871 $283554 $288263 $287348 $285458 $288311
Financing Costs (x1000) $52357 $51040 $51887 $51723 $51382 $51896
Total Overnight Costs (TOC) $2384351816 $2331909536 $2364444218 $235681037146 $2341063213 $236445324106
Coal and sorbent handling ($x1000) $52286 $52286 $53154 $52896 $52378 $53073
Coal and sorbent prep amp feed ($x1000) $24983 $24983 $25398 $25274 $25027 $25359
Feedwater amp misc BOP systems ($x1000) $112150 $112150 $114013 $113457 $112348 $113838
PC boiler ($x1000) $400793 $400793 $407450 $405465 $401502 $406825
Flue gas cleanup ($x1000) $197475 $148691 $151161 $150424 $148954 $150929
CO2 removal ($x1000) $533757 $533757 $542622 $543241 $544054 $545052 935327377984728
CO2 compression amp drying ($x1000) $98381 $98381 $100015 $99528 $98555 $99862
Heat and power integration ($x1000) $0 $0 $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45027 $45775 $45552 $45107 $45705
Steam turbine generaor ($x1000) $178176 $178176 $181135 $180253 $178491 $180858
Cooling water system ($x1000) $62254 $62254 $63288 $62980 $62364 $63191
Ashspent sorbent handling system ($x1000) $19028 $19028 $19344 $19250 $19062 $19314
Accessory electric plant ($x1000) $93584 $93584 $95138 $94675 $93749 $94993
Instrumentation amp control ($x1000) $31654 $31654 $32180 $32023 $31710 $32130
Improvements to site ($x1000) $18063 $18063 $18363 $18274 $18095 $18335
Buildings amp structures ($x1000) $71531 $71531 $72719 $72365 $71657 $72608
TPC without PCC ($x1000) $1307004 $1258220 $1279119 $1272887 $1260445 $1277157
PCC cost ($x1000) $632138 $632138 $642638 $642769 $642609 $644914
COE ($MWh wo TampS) $13320 $13686 $13368 $13305 $13185 $13279
COE ($MWh w TampS) $14280 $14646 $14353 $14282 $14149 $14262
Fuel Costs ($MWh) $3090 $3084 $3165 $3139 $3095 $3139
Variable Costs ($MWh) $1470 $2023 $1511 $1500 $1478 $1474
Fixed Costs ($MWh) $1540 $1517 $1532 $1529 $1523 $1529
Capital Costs ($MWh) $7220 $7062 $7160 $7137 $7089 $7136
Cost of CO2 Captured ($ton wo TampS) $5262 $7069 $6497 $6472 $6414 $6440
Cost of CO2 Captured ($MT wo TampS) $5800 $6413 $5894 $5872 $5818 $5842
Cost of CO2 Captured ($MT w TampS) $6901 $7514 $6995 $6972 $6919 $6943
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $46312929 $47467476 $47122241 $46435398 $47358727
CO2 TSM Cost ($MWh) $960 $960 $985 $977 $963 $984
Coal handling amp conveying (kWe) 480 480 492 488 481 491
Pulverizers 3370 3370 3454 3429 3379 3446
Sorbent handling amp reagent preparation (kWe) 1070 1070 1097 1089 1073 1094
Ash handling (kWe) 780 780 799 794 782 798
Primary air fans (kWe) 1670 1670 1712 1699 1674 1708
Forced draft fans (kWe) 2130 2130 2183 2167 2136 2178
Induced draft fans (kWe) 8350 8350 8558 8496 8372 8539
SCR (kWe) 60 60 61 61 60 61
Activated carbon injection (kWe) 27 27 28 27 27 28
Dry sorbent injection (kWe) 108 108 111 110 108 110
Baghouse (kWe) 110 110 113 112 110 112
Wet FGD (kWe) 3550 3550 3638 3612 3559 3630
PCC plant auxiliaries (kWe) 16000 16000 16399 27280 18682 30361 14000 2640
CO2 compression (kWe) 35690 35690 36580 36314 35784 36496
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400 400 400
Condensate pumps (kWe) 640 640 656 651 642 654
Circulating water pumps (kWe) 7750 7750 7943 7885 7770 7925
Ground water pumps (kWe) 710 710 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010 4010 4010
Transformer losses (kWe) 2380 2380 2439 2422 2386 2434
Total auxiliaries (kWe) 91285 91285 93383 103756 94148 107186
Net plant heat rate (BTUkWh) 10498 10498 10775 10686 10535 10755
Condenser cooling duty (GJhr) 1867 1867 1914 1900 1872 1909
Limestone sorbent flowrate (kghr) 22213 22213 22767 22601 22272 22715
Raw water withdrawal (m3min) 30 30 30 30 30 30
Raw water consumption (m3min) 23 23 24 24 23 24
NOx (MTyear) 1517 1517 1555 1544 1521 1551
Particulates (MTyear) 195 195 200 198 196 199
Hg (kgyear) 6 6 6 6 6 6
SO2 (MTyear) 0 0 0 0 0 0
COE Reduction (w TampS) 256 051 002 -092 -012
COE Reduction (wo TampS) 275 036 -011 -101 -031
Cost of CO2 Reduction (wo TampS) 1057 162 123 032 073
Cost of CO2 Reduction (w TampS) 888 136 104 027 061
PCC Plant Cost Reduction 000 -166 -168 -166 -202
Method Amine emissions (kg aminetonne CO2 Aerosol particle concentration range where adequate (particlescm3)
Baghouse 0009 0 to 1E+7 0 10000000
Dry bed operation (no BH) lt03 0 to 1E+6 0 1000000
Absorber operating conditions (no BH) lt03 0 to 1E+7 0 10000000
Pre-treatment solutions (no BH) lt03 0 to 1E+9 0 1000000000
Abbott Power Plant (42 reheat burner w dryer) Abbott Power Plant (0 reheat burner wo dryer) Wilsonville (after baghouse) (WashU) Wilsonville (before baghouse) (SR) UT Austin (NCCC) (before baghouse) TCM (no BH no BF) Wilsonville (after baghouse) (SR) Wilsonville Parametric Tests (Linde) Wilsonville Long-term Tests (Linde)
Anal Ins Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) kg amineMT CO2 04080107622 00095091096
SMPS 682819795644892 982 427900576923077 157 14468166666667 982 1000000 10 4000000 2400 100000 35 650000 10
SMPS 735415966499163 102 532616923076924 163 160013 102 200000 20 3000000 2800 1150000 60 600000 20
SMPS 667026341708543 106 642390384615385 168 14813666666667 106 200000 40 2000000 2800 10000000 100 530000 40
SMPS 566092556113903 109 764663461538462 175 91535 109 1000000 70 1000000 3000 10000000 160 400000 70
SMPS 60451071356784 113 993782692307693 181 21280833333333 113 6300000 110 900000 3200 1400000 280 350000 120
SMPS 640447634840872 118 103840961538462 188 277361 118 8000000 200 800000 3200 120000 480 50000 200
SMPS 63931935678392 122 119893653846154 195 30501933333333 122 5000000 400 600000 3800 1400 640 20000 400
SMPS 67781860636516 126 155467692307692 202 35493966666667 126 800000 700 500000 3800 1000 960 10000 600
SMPS 678467648241207 131 173807500 209 25912033333333 131 1 800 400000 3800 1000 1920 5000 800
SMPS 736663748743719 136 198103846153846 217 20493533333333 136 1 1000 318900 3800 900 2560 100 1000
APS 791600921273033 141 245189807692308 225 34751733333333 141 300000 3800 750 5120
APS 776599182579565 146 27240826923077 233 43427866666667 146 200000 3800
APS 748095604690118 151 301905384615385 241 592247 151 100000 4000
APS 852265149078728 157 348734615384616 25 614018 157 90000 4100
APS 99985068676717 163 375607115384616 259 87004466666667 163 80000 4200
11043162479062 168 442790384615385 269 137845333333333 168 70000 4200
119948670016751 175 523365384615385 279 183715 175
112247051926298 181 445000384615385 289 241348 181
126325376884422 188 591696153846154 30 299061666666667 188
130470221105528 195 660759615384616 311 380613666666667 195
140578994974874 202 706025000000001 322 419054666666667 202
158666502512563 209 794851923076924 334 64940 209
15709983919598 217 860896153846155 346 883372 217
146305745393635 225 847675000000001 359 130709333333333 225
175050465661642 233 943019230769232 372 182267 233
20586516917923 241 949319230769232 385 263912666666667 241
21836616080402 25 96023076923077 40 355521333333333 25
221599480737019 259 956119230769232 414 484109 259
231432663316583 269 1025750000 429 647791 269
228343541038526 279 964151923076924 445 830633 279
238293788944724 289 982432692307693 461 1054740 289
24027170519263 30 103288461538462 478 125545333333333 30
254431427135679 311 981471153846155 514 1435950 311
281640274706868 322 100416538461539 533 161942333333333 322
279502308207705 334 995501923076924 552 169811666666667 334
273149989949749 346 969944230769232 573 182475666666667 346
301086837520938 359 89473076923077 594 187437333333333 359
337571587939699 372 791292307692308 615 1885320 372
335709822445561 385 719676923076924 638 184891666666667 385
303290958123953 40 67950576923077 661 177122333333333 40
296100891122278 414 554032692307693 685 167757333333333 414
305137175879397 429 441263461538462 71 1563790 429
298671450586265 445 39593576923077 737 143831333333333 445
267825041876047 461 294517500 764 1276340 461
268898750418761 478 235586538461539 791 111617666666667 478
246584087102178 496 219594615384616 82 956378666666667 496
22753597319933 514 183537307692308 851 786719333333333 514
20805557118928 533 132950384615385 882 654658 533
193145899497488 552 991526923076924 914 524162333333333 552
180397058626466 573 723884615384616 947 398477 573
159287497487437 594 49395000 982 294095333333333 594
140093966499163 615 329623653846154 1018 216415 615
125712003350084 638 232231346153846 1055 155941333333333 638
11582181239531 661 170568076923077 1094 109822 661
933554824120604 685 114283076923077 1134 811729333333333 685
766995862646567 71 851232692307693 1176 533704666666667 71
625145611390285 737 558684615384616 1219 398905 737
531419574539364 764 425857115384616 1263 272716 764
401304512562814 791 320039230769231 131 224988666666667 791
302290415410386 82 224643461538462 1358 175139333333333 82
234256559463987 851 204812115384616 1407 137377666666667 851
174277956448911 882 133968461538462 1459 1185743 882
119620948073702 914 120355384615385 1512 901657 914
860247541038527 947 1114950 1568 95869666666667 947
588795608040202 982 892715384615385 1625 866524 982
453500100502513 1018 75693076923077 1685 79995933333333 1018
306104184254607 1055 734100000000001 1747 855652 1055
214392951423786 1094 732648076923078 1811 82140833333333 1094
171584234505863 1134 530092307692308 1877 81683533333333 1134
129452606365159 1176 609534615384616 1946 71270166666667 1176
109800234170854 1219 491257692307693 2017 67286033333333 1219
875061487437187 1263 391936346153846 2091 75311933333333 1263
755701192629817 131 427556153846154 2167 71270066666667 131
76907041876047 1358 528136538461539 2247 670295 1358
816854716917924 1407 538875 2329 612828 1407
682292696817421 1459 484882692307693 2414 60685066666667 1459
484327912897823 1512 523173076923077 2503 64353 1512
601245688442212 1568 532400 2595 575052 1568
608947306532664 1625 391983653846154 269 53995533333333 1625
57423530318258 1685 39818576923077 2788 56581733333333 1685
665198110552765 1747 390621538461539 289 50526966666667 1747
641284469011726 1811 282454038461539 2996 52087233333333 1811
551386834170855 1877 301689807692308 3106 390656 1877
515487715242882 1946 392116538461539 322 40069366666667 1946
557056576214406 2017 262214807692308 3338 42029366666667 2017
585014763819096 2091 300040192307693 346
563217748743719 2167 327144807692308 3587
516019996649917 2247 291944038461539 3718
635039155778895 2329 410772307692308 3854
678386860971525 2414 438539038461539 3995
540607373534339 2503 810536808 542
534717524288108 2595 882899298 583
624962696817421 269 884130018 626
507626351758795 2788 848442984 673
482487487437186 289 79158372 723
462233661641542 2996 628394094 777
614290241206031 3106 484154992 835
549685423785595 322 3250266138 898
485615936348409 3338 1930962502 965
446652388609716 346 97717245 1037
733651755443887 3587 451665266 1114
73515500837521 3718 1710666186 1197
491714613065327 3854 750723816 1286
453128479061977 3995 3692090772 1382
22625785 542 08614861802 1486
23149945 583 11076250522 1596 89545 542
2547951466667 626 1 1715 10021 583
26411294 673 1 1843 11057 626
2478060433333 723 1 1981 12158 673
2428556433333 777 1 2129 12433 723
1953912566667 835 1 2288 113975 777
1421029306667 898 01230695642 2458 9234 835
797872833333 965 1 2642 70035 898
430967506667 1037 1 2839 49195 965
21839545 1114 1 3051 3452 1037
84446483333 1197 01230695642 3278 23495 1114
320313357 1286 1 3523 1597 1197
34943302333 1382 1 3786 1089 1286
17471639033 1486 1 4068 781 1382
116477634 1596 1 4371 5965 1486
08735821033 1715 1 4698 4325 1596
05823884733 1843 1 5048 3995 1715
05823884733 1981 1 5425 3185 1843
02911942367 2129 1 5829 2325 1981
1 2288 1 6264 2185 2129
02911942367 2458 1 6732 194 2288
02911942367 2642 1 7234 1705 2458
08735821033 2839 1 7774 1395 2642
02911942367 3051 1 8354 124 2839
08735821033 3278 1 8977 97 3051
05823884733 3523 1 9647 92 3278
08735818 3786 1 10370 71 3523
23295514667 4068 1 11140 56 3786
05823884733 4371 1 11970 51 4068
05823884733 4698 1 12860 35 4371
1 5048 1 13820 31 4698
1 5425 1 14860 21 5048
1 5829 1 15960 16 5425
1 6264 1 17150 1 5829
1 6732 1 18430 055 6264
1 7234 1 19810 05 6732
1 7774 055 7234
1 8354 02 7774
1 8977 005 8354
1 9647 0 8977
1 10370 01 9647
1 11140 005 10370
1 11970 005 11140
1 12860 01 11970
1 13820 0 12860
1 14860 0 13820
1 15960 0 14860
1 17150 0 15960
1 18430 0 17150
1 19810 0 18430
0 19810
0009
lt03
lt03
lt03
Page 14: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

14

Benefits of aerosol particle reduction

Benefits

Manageable solvent supply and transport logistics

Optimum power plant efficiency

when integrated with PCC

Reduction of particulate that can unfavorably react with amine

solvent

Improved PCC plant specific

energy performance

Environmental sustainability and

performance

Improved PCC plant business

caselower cost

Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1

For power plants integrated with solvent-based PCC without an existing baghouse optimized flue gas aerosol pretreatment is the only viable option to reduce aerosol concentrations from gt109 particlescm3 to manageable levels near 104-106

particlescm3 for particles with diameters in the range of 70-200 nm

Pretreatment has traditionally been performed using simple ESPs and Brownian filters

Few systematic studies have been conducted to evaluate performance of different technologies over a full range of conditions

15

BH = baghouse

1 Based on single point experience some options eg dry bed conf may handle higher particle concentrations than others

Chart1

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment
10000000
1000000
10000000
1000000000

Literature data

Literature data

Abbott (no RH no dryer)
Abbott (RH w dryer)
SR (Wilsonville before BH)
SR (Wilsonville after BH)
Linde (Wilsonville after BH)
UT Austin (Wilsonville before BH)
TCM (no BH no BF)
Particle Diameter (nm)
Particle Number Concentration (cm3)

Methods

10E7 particlescm3 reported literature maximum
Abbott aerosol data showing gt10E7 particlescm3 compared to other flue gases
Abbott (reheater off no dryer)
Abbott (42 reheater w dryer)
NCCC after baghouse (WUSL measurements)
NCCC before baghouse (Southern Research measurements)
NCCC after baghouse (Southern Research measurements)
NCCC before baghouse (University of Texas at Austin measurements)
Residual fluidized catalytic cracker (Technology Centre Mongstad measurements)

Methods

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) at which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pre-treatment

TEA

Technology proposed in this work
Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Base case Case 1 Case 2 Case 3 Case 4 Case 5
DOE Case B12B Reference w baghouse wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system wo baghouse (breakeven)
Cost Basis Year 2011$ 2011$ 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4416576 4530755 4497804 4432245 4516307 45154043379888
Thermal input (kWt) (HHV) 1694366 1694366 1736605 1723975 1698847 1732627
Coal flowrate (kghr) 224791 224791 230395 228719 225385 229867 11478458479996
Total steam turbine power (kWe) 642000 642000 643332 654224 644359 656869
Gross Power (MWe) 6420 6420 6433 6542 6444 6569 96690 9669 3
Auxiliary Power (MWe) 913 913 934 1038 941 1072 9969
Net Power (MWe) 551 551 550 550 550 550
PCC Reboiler Duty (MW) 3311 3311 4106 3372 3323 3386
Specific Duty (MJkg CO2) 248 248 300 248 248 248 4405686
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal 450395408921933 982680892193308 445482004460967
Fuel Unit Cost ($ton) 6854 6854 6854 6854 6854 6854 440778425101536 440864946116186
Power Plant Efficiency () (HHV) 32500 32500 31668 31930 32387 31725
Boiler Efficiency () (HHV) 89100 89100 89100 89100 89100 89100
CO2 Produced (MThr) 480 480 492 489 482 491
CO2 Produced (lbhr) 1058945 1058945 1085344 1077450 1061745 1082857 4415000
CO2 Produced (MTyear) 4207729 4207729 4312625 4281259 4218856 4302745 443224546416968
CO2 Captured () 90 90 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085 085 085
Variable Cost $60366961 $82839499 $61871865 $61421865 $60526594 $60429346
Fixed Cost $63094548 $62118858 $62746820 $62624815 $62372778 $62753124
Fuel Cost $126458921 $126458921 $12961144817 $12866877277 $12679332619 $12931450746
Total Overnight Cost $2384351816 $2331909536 $2364444218 $2356810371 $2341063213 $2364453241 $2364444218
Total Plant Cost $1939142000 $1890358000 $1921756120 $1915655869 $1903054023 $1922071279
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $38782850 $37807160 $38435122 $38313117 $38061080 $38441426
Maintenance Material Cost $18097725 $18097725 $1854888787 $1841398019 $1814558223 $18145582
Consumables Cost $36775427 $59247965 $3769221114 $3741807239 $3687267513 $36775427
Waste Disposal Cost $5493809 $5493809 $563076559 $558981254 $550833671 $5508337
By-Products Cost $0 $0 $0 $0 $0 $0
Preproduction Costs (x1000) $59957 $60854 $59820 $59635 $59257 $59691
Inventory Capital (x1000) $41125 452270951087832 418250410605904 $4155922 410280350765301 $4159189
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0 $0 $0
Land (x1000) $900 $877 $892 $889 $883 $892
Other Owners Costs (x1000) $290871 $283554 $288263 $287348 $285458 $288311
Financing Costs (x1000) $52357 $51040 $51887 $51723 $51382 $51896
Total Overnight Costs (TOC) $2384351816 $2331909536 $2364444218 $235681037146 $2341063213 $236445324106
Coal and sorbent handling ($x1000) $52286 $52286 $53154 $52896 $52378 $53073
Coal and sorbent prep amp feed ($x1000) $24983 $24983 $25398 $25274 $25027 $25359
Feedwater amp misc BOP systems ($x1000) $112150 $112150 $114013 $113457 $112348 $113838
PC boiler ($x1000) $400793 $400793 $407450 $405465 $401502 $406825
Flue gas cleanup ($x1000) $197475 $148691 $151161 $150424 $148954 $150929
CO2 removal ($x1000) $533757 $533757 $542622 $543241 $544054 $545052 935327377984728
CO2 compression amp drying ($x1000) $98381 $98381 $100015 $99528 $98555 $99862
Heat and power integration ($x1000) $0 $0 $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45027 $45775 $45552 $45107 $45705
Steam turbine generaor ($x1000) $178176 $178176 $181135 $180253 $178491 $180858
Cooling water system ($x1000) $62254 $62254 $63288 $62980 $62364 $63191
Ashspent sorbent handling system ($x1000) $19028 $19028 $19344 $19250 $19062 $19314
Accessory electric plant ($x1000) $93584 $93584 $95138 $94675 $93749 $94993
Instrumentation amp control ($x1000) $31654 $31654 $32180 $32023 $31710 $32130
Improvements to site ($x1000) $18063 $18063 $18363 $18274 $18095 $18335
Buildings amp structures ($x1000) $71531 $71531 $72719 $72365 $71657 $72608
TPC without PCC ($x1000) $1307004 $1258220 $1279119 $1272887 $1260445 $1277157
PCC cost ($x1000) $632138 $632138 $642638 $642769 $642609 $644914
COE ($MWh wo TampS) $13320 $13686 $13368 $13305 $13185 $13279
COE ($MWh w TampS) $14280 $14646 $14353 $14282 $14149 $14262
Fuel Costs ($MWh) $3090 $3084 $3165 $3139 $3095 $3139
Variable Costs ($MWh) $1470 $2023 $1511 $1500 $1478 $1474
Fixed Costs ($MWh) $1540 $1517 $1532 $1529 $1523 $1529
Capital Costs ($MWh) $7220 $7062 $7160 $7137 $7089 $7136
Cost of CO2 Captured ($ton wo TampS) $5262 $7069 $6497 $6472 $6414 $6440
Cost of CO2 Captured ($MT wo TampS) $5800 $6413 $5894 $5872 $5818 $5842
Cost of CO2 Captured ($MT w TampS) $6901 $7514 $6995 $6972 $6919 $6943
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $46312929 $47467476 $47122241 $46435398 $47358727
CO2 TSM Cost ($MWh) $960 $960 $985 $977 $963 $984
Coal handling amp conveying (kWe) 480 480 492 488 481 491
Pulverizers 3370 3370 3454 3429 3379 3446
Sorbent handling amp reagent preparation (kWe) 1070 1070 1097 1089 1073 1094
Ash handling (kWe) 780 780 799 794 782 798
Primary air fans (kWe) 1670 1670 1712 1699 1674 1708
Forced draft fans (kWe) 2130 2130 2183 2167 2136 2178
Induced draft fans (kWe) 8350 8350 8558 8496 8372 8539
SCR (kWe) 60 60 61 61 60 61
Activated carbon injection (kWe) 27 27 28 27 27 28
Dry sorbent injection (kWe) 108 108 111 110 108 110
Baghouse (kWe) 110 110 113 112 110 112
Wet FGD (kWe) 3550 3550 3638 3612 3559 3630
PCC plant auxiliaries (kWe) 16000 16000 16399 27280 18682 30361 14000 2640
CO2 compression (kWe) 35690 35690 36580 36314 35784 36496
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400 400 400
Condensate pumps (kWe) 640 640 656 651 642 654
Circulating water pumps (kWe) 7750 7750 7943 7885 7770 7925
Ground water pumps (kWe) 710 710 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010 4010 4010
Transformer losses (kWe) 2380 2380 2439 2422 2386 2434
Total auxiliaries (kWe) 91285 91285 93383 103756 94148 107186
Net plant heat rate (BTUkWh) 10498 10498 10775 10686 10535 10755
Condenser cooling duty (GJhr) 1867 1867 1914 1900 1872 1909
Limestone sorbent flowrate (kghr) 22213 22213 22767 22601 22272 22715
Raw water withdrawal (m3min) 30 30 30 30 30 30
Raw water consumption (m3min) 23 23 24 24 23 24
NOx (MTyear) 1517 1517 1555 1544 1521 1551
Particulates (MTyear) 195 195 200 198 196 199
Hg (kgyear) 6 6 6 6 6 6
SO2 (MTyear) 0 0 0 0 0 0
COE Reduction (w TampS) 256 051 002 -092 -012
COE Reduction (wo TampS) 275 036 -011 -101 -031
Cost of CO2 Reduction (wo TampS) 1057 162 123 032 073
Cost of CO2 Reduction (w TampS) 888 136 104 027 061
PCC Plant Cost Reduction 000 -166 -168 -166 -202
Method Amine emissions (kg aminetonne CO2 Aerosol particle concentration range where adequate (particlescm3)
Baghouse 0009 0 to 1E+7 0 10000000
Dry bed operation (no BH) lt03 0 to 1E+6 0 1000000
Absorber operating conditions (no BH) lt03 0 to 1E+7 0 10000000
Pre-treatment solutions (no BH) lt03 0 to 1E+9 0 1000000000
Abbott Power Plant (42 reheat burner w dryer) Abbott Power Plant (0 reheat burner wo dryer) Wilsonville (after baghouse) (WashU) Wilsonville (before baghouse) (SR) UT Austin (NCCC) (before baghouse) TCM (no BH no BF) Wilsonville (after baghouse) (SR) Wilsonville Parametric Tests (Linde) Wilsonville Long-term Tests (Linde)
Anal Ins Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) kg amineMT CO2 04080107622 00095091096
SMPS 682819795644892 982 427900576923077 157 14468166666667 982 1000000 10 4000000 2400 100000 35 650000 10
SMPS 735415966499163 102 532616923076924 163 160013 102 200000 20 3000000 2800 1150000 60 600000 20
SMPS 667026341708543 106 642390384615385 168 14813666666667 106 200000 40 2000000 2800 10000000 100 530000 40
SMPS 566092556113903 109 764663461538462 175 91535 109 1000000 70 1000000 3000 10000000 160 400000 70
SMPS 60451071356784 113 993782692307693 181 21280833333333 113 6300000 110 900000 3200 1400000 280 350000 120
SMPS 640447634840872 118 103840961538462 188 277361 118 8000000 200 800000 3200 120000 480 50000 200
SMPS 63931935678392 122 119893653846154 195 30501933333333 122 5000000 400 600000 3800 1400 640 20000 400
SMPS 67781860636516 126 155467692307692 202 35493966666667 126 800000 700 500000 3800 1000 960 10000 600
SMPS 678467648241207 131 173807500 209 25912033333333 131 1 800 400000 3800 1000 1920 5000 800
SMPS 736663748743719 136 198103846153846 217 20493533333333 136 1 1000 318900 3800 900 2560 100 1000
APS 791600921273033 141 245189807692308 225 34751733333333 141 300000 3800 750 5120
APS 776599182579565 146 27240826923077 233 43427866666667 146 200000 3800
APS 748095604690118 151 301905384615385 241 592247 151 100000 4000
APS 852265149078728 157 348734615384616 25 614018 157 90000 4100
APS 99985068676717 163 375607115384616 259 87004466666667 163 80000 4200
11043162479062 168 442790384615385 269 137845333333333 168 70000 4200
119948670016751 175 523365384615385 279 183715 175
112247051926298 181 445000384615385 289 241348 181
126325376884422 188 591696153846154 30 299061666666667 188
130470221105528 195 660759615384616 311 380613666666667 195
140578994974874 202 706025000000001 322 419054666666667 202
158666502512563 209 794851923076924 334 64940 209
15709983919598 217 860896153846155 346 883372 217
146305745393635 225 847675000000001 359 130709333333333 225
175050465661642 233 943019230769232 372 182267 233
20586516917923 241 949319230769232 385 263912666666667 241
21836616080402 25 96023076923077 40 355521333333333 25
221599480737019 259 956119230769232 414 484109 259
231432663316583 269 1025750000 429 647791 269
228343541038526 279 964151923076924 445 830633 279
238293788944724 289 982432692307693 461 1054740 289
24027170519263 30 103288461538462 478 125545333333333 30
254431427135679 311 981471153846155 514 1435950 311
281640274706868 322 100416538461539 533 161942333333333 322
279502308207705 334 995501923076924 552 169811666666667 334
273149989949749 346 969944230769232 573 182475666666667 346
301086837520938 359 89473076923077 594 187437333333333 359
337571587939699 372 791292307692308 615 1885320 372
335709822445561 385 719676923076924 638 184891666666667 385
303290958123953 40 67950576923077 661 177122333333333 40
296100891122278 414 554032692307693 685 167757333333333 414
305137175879397 429 441263461538462 71 1563790 429
298671450586265 445 39593576923077 737 143831333333333 445
267825041876047 461 294517500 764 1276340 461
268898750418761 478 235586538461539 791 111617666666667 478
246584087102178 496 219594615384616 82 956378666666667 496
22753597319933 514 183537307692308 851 786719333333333 514
20805557118928 533 132950384615385 882 654658 533
193145899497488 552 991526923076924 914 524162333333333 552
180397058626466 573 723884615384616 947 398477 573
159287497487437 594 49395000 982 294095333333333 594
140093966499163 615 329623653846154 1018 216415 615
125712003350084 638 232231346153846 1055 155941333333333 638
11582181239531 661 170568076923077 1094 109822 661
933554824120604 685 114283076923077 1134 811729333333333 685
766995862646567 71 851232692307693 1176 533704666666667 71
625145611390285 737 558684615384616 1219 398905 737
531419574539364 764 425857115384616 1263 272716 764
401304512562814 791 320039230769231 131 224988666666667 791
302290415410386 82 224643461538462 1358 175139333333333 82
234256559463987 851 204812115384616 1407 137377666666667 851
174277956448911 882 133968461538462 1459 1185743 882
119620948073702 914 120355384615385 1512 901657 914
860247541038527 947 1114950 1568 95869666666667 947
588795608040202 982 892715384615385 1625 866524 982
453500100502513 1018 75693076923077 1685 79995933333333 1018
306104184254607 1055 734100000000001 1747 855652 1055
214392951423786 1094 732648076923078 1811 82140833333333 1094
171584234505863 1134 530092307692308 1877 81683533333333 1134
129452606365159 1176 609534615384616 1946 71270166666667 1176
109800234170854 1219 491257692307693 2017 67286033333333 1219
875061487437187 1263 391936346153846 2091 75311933333333 1263
755701192629817 131 427556153846154 2167 71270066666667 131
76907041876047 1358 528136538461539 2247 670295 1358
816854716917924 1407 538875 2329 612828 1407
682292696817421 1459 484882692307693 2414 60685066666667 1459
484327912897823 1512 523173076923077 2503 64353 1512
601245688442212 1568 532400 2595 575052 1568
608947306532664 1625 391983653846154 269 53995533333333 1625
57423530318258 1685 39818576923077 2788 56581733333333 1685
665198110552765 1747 390621538461539 289 50526966666667 1747
641284469011726 1811 282454038461539 2996 52087233333333 1811
551386834170855 1877 301689807692308 3106 390656 1877
515487715242882 1946 392116538461539 322 40069366666667 1946
557056576214406 2017 262214807692308 3338 42029366666667 2017
585014763819096 2091 300040192307693 346
563217748743719 2167 327144807692308 3587
516019996649917 2247 291944038461539 3718
635039155778895 2329 410772307692308 3854
678386860971525 2414 438539038461539 3995
540607373534339 2503 810536808 542
534717524288108 2595 882899298 583
624962696817421 269 884130018 626
507626351758795 2788 848442984 673
482487487437186 289 79158372 723
462233661641542 2996 628394094 777
614290241206031 3106 484154992 835
549685423785595 322 3250266138 898
485615936348409 3338 1930962502 965
446652388609716 346 97717245 1037
733651755443887 3587 451665266 1114
73515500837521 3718 1710666186 1197
491714613065327 3854 750723816 1286
453128479061977 3995 3692090772 1382
22625785 542 08614861802 1486
23149945 583 11076250522 1596 89545 542
2547951466667 626 1 1715 10021 583
26411294 673 1 1843 11057 626
2478060433333 723 1 1981 12158 673
2428556433333 777 1 2129 12433 723
1953912566667 835 1 2288 113975 777
1421029306667 898 01230695642 2458 9234 835
797872833333 965 1 2642 70035 898
430967506667 1037 1 2839 49195 965
21839545 1114 1 3051 3452 1037
84446483333 1197 01230695642 3278 23495 1114
320313357 1286 1 3523 1597 1197
34943302333 1382 1 3786 1089 1286
17471639033 1486 1 4068 781 1382
116477634 1596 1 4371 5965 1486
08735821033 1715 1 4698 4325 1596
05823884733 1843 1 5048 3995 1715
05823884733 1981 1 5425 3185 1843
02911942367 2129 1 5829 2325 1981
1 2288 1 6264 2185 2129
02911942367 2458 1 6732 194 2288
02911942367 2642 1 7234 1705 2458
08735821033 2839 1 7774 1395 2642
02911942367 3051 1 8354 124 2839
08735821033 3278 1 8977 97 3051
05823884733 3523 1 9647 92 3278
08735818 3786 1 10370 71 3523
23295514667 4068 1 11140 56 3786
05823884733 4371 1 11970 51 4068
05823884733 4698 1 12860 35 4371
1 5048 1 13820 31 4698
1 5425 1 14860 21 5048
1 5829 1 15960 16 5425
1 6264 1 17150 1 5829
1 6732 1 18430 055 6264
1 7234 1 19810 05 6732
1 7774 055 7234
1 8354 02 7774
1 8977 005 8354
1 9647 0 8977
1 10370 01 9647
1 11140 005 10370
1 11970 005 11140
1 12860 01 11970
1 13820 0 12860
1 14860 0 13820
1 15960 0 14860
1 17150 0 15960
1 18430 0 17150
1 19810 0 18430
0 19810
0009
lt03
lt03
lt03
Page 15: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1

For power plants integrated with solvent-based PCC without an existing baghouse optimized flue gas aerosol pretreatment is the only viable option to reduce aerosol concentrations from gt109 particlescm3 to manageable levels near 104-106

particlescm3 for particles with diameters in the range of 70-200 nm

Pretreatment has traditionally been performed using simple ESPs and Brownian filters

Few systematic studies have been conducted to evaluate performance of different technologies over a full range of conditions

15

BH = baghouse

1 Based on single point experience some options eg dry bed conf may handle higher particle concentrations than others

Chart1

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment
10000000
1000000
10000000
1000000000

Literature data

Literature data

Abbott (no RH no dryer)
Abbott (RH w dryer)
SR (Wilsonville before BH)
SR (Wilsonville after BH)
Linde (Wilsonville after BH)
UT Austin (Wilsonville before BH)
TCM (no BH no BF)
Particle Diameter (nm)
Particle Number Concentration (cm3)

Methods

10E7 particlescm3 reported literature maximum
Abbott aerosol data showing gt10E7 particlescm3 compared to other flue gases
Abbott (reheater off no dryer)
Abbott (42 reheater w dryer)
NCCC after baghouse (WUSL measurements)
NCCC before baghouse (Southern Research measurements)
NCCC after baghouse (Southern Research measurements)
NCCC before baghouse (University of Texas at Austin measurements)
Residual fluidized catalytic cracker (Technology Centre Mongstad measurements)

Methods

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) at which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pre-treatment

TEA

Technology proposed in this work
Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Base case Case 1 Case 2 Case 3 Case 4 Case 5
DOE Case B12B Reference w baghouse wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system wo baghouse (breakeven)
Cost Basis Year 2011$ 2011$ 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4416576 4530755 4497804 4432245 4516307 45154043379888
Thermal input (kWt) (HHV) 1694366 1694366 1736605 1723975 1698847 1732627
Coal flowrate (kghr) 224791 224791 230395 228719 225385 229867 11478458479996
Total steam turbine power (kWe) 642000 642000 643332 654224 644359 656869
Gross Power (MWe) 6420 6420 6433 6542 6444 6569 96690 9669 3
Auxiliary Power (MWe) 913 913 934 1038 941 1072 9969
Net Power (MWe) 551 551 550 550 550 550
PCC Reboiler Duty (MW) 3311 3311 4106 3372 3323 3386
Specific Duty (MJkg CO2) 248 248 300 248 248 248 4405686
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal 450395408921933 982680892193308 445482004460967
Fuel Unit Cost ($ton) 6854 6854 6854 6854 6854 6854 440778425101536 440864946116186
Power Plant Efficiency () (HHV) 32500 32500 31668 31930 32387 31725
Boiler Efficiency () (HHV) 89100 89100 89100 89100 89100 89100
CO2 Produced (MThr) 480 480 492 489 482 491
CO2 Produced (lbhr) 1058945 1058945 1085344 1077450 1061745 1082857 4415000
CO2 Produced (MTyear) 4207729 4207729 4312625 4281259 4218856 4302745 443224546416968
CO2 Captured () 90 90 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085 085 085
Variable Cost $60366961 $82839499 $61871865 $61421865 $60526594 $60429346
Fixed Cost $63094548 $62118858 $62746820 $62624815 $62372778 $62753124
Fuel Cost $126458921 $126458921 $12961144817 $12866877277 $12679332619 $12931450746
Total Overnight Cost $2384351816 $2331909536 $2364444218 $2356810371 $2341063213 $2364453241 $2364444218
Total Plant Cost $1939142000 $1890358000 $1921756120 $1915655869 $1903054023 $1922071279
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $38782850 $37807160 $38435122 $38313117 $38061080 $38441426
Maintenance Material Cost $18097725 $18097725 $1854888787 $1841398019 $1814558223 $18145582
Consumables Cost $36775427 $59247965 $3769221114 $3741807239 $3687267513 $36775427
Waste Disposal Cost $5493809 $5493809 $563076559 $558981254 $550833671 $5508337
By-Products Cost $0 $0 $0 $0 $0 $0
Preproduction Costs (x1000) $59957 $60854 $59820 $59635 $59257 $59691
Inventory Capital (x1000) $41125 452270951087832 418250410605904 $4155922 410280350765301 $4159189
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0 $0 $0
Land (x1000) $900 $877 $892 $889 $883 $892
Other Owners Costs (x1000) $290871 $283554 $288263 $287348 $285458 $288311
Financing Costs (x1000) $52357 $51040 $51887 $51723 $51382 $51896
Total Overnight Costs (TOC) $2384351816 $2331909536 $2364444218 $235681037146 $2341063213 $236445324106
Coal and sorbent handling ($x1000) $52286 $52286 $53154 $52896 $52378 $53073
Coal and sorbent prep amp feed ($x1000) $24983 $24983 $25398 $25274 $25027 $25359
Feedwater amp misc BOP systems ($x1000) $112150 $112150 $114013 $113457 $112348 $113838
PC boiler ($x1000) $400793 $400793 $407450 $405465 $401502 $406825
Flue gas cleanup ($x1000) $197475 $148691 $151161 $150424 $148954 $150929
CO2 removal ($x1000) $533757 $533757 $542622 $543241 $544054 $545052 935327377984728
CO2 compression amp drying ($x1000) $98381 $98381 $100015 $99528 $98555 $99862
Heat and power integration ($x1000) $0 $0 $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45027 $45775 $45552 $45107 $45705
Steam turbine generaor ($x1000) $178176 $178176 $181135 $180253 $178491 $180858
Cooling water system ($x1000) $62254 $62254 $63288 $62980 $62364 $63191
Ashspent sorbent handling system ($x1000) $19028 $19028 $19344 $19250 $19062 $19314
Accessory electric plant ($x1000) $93584 $93584 $95138 $94675 $93749 $94993
Instrumentation amp control ($x1000) $31654 $31654 $32180 $32023 $31710 $32130
Improvements to site ($x1000) $18063 $18063 $18363 $18274 $18095 $18335
Buildings amp structures ($x1000) $71531 $71531 $72719 $72365 $71657 $72608
TPC without PCC ($x1000) $1307004 $1258220 $1279119 $1272887 $1260445 $1277157
PCC cost ($x1000) $632138 $632138 $642638 $642769 $642609 $644914
COE ($MWh wo TampS) $13320 $13686 $13368 $13305 $13185 $13279
COE ($MWh w TampS) $14280 $14646 $14353 $14282 $14149 $14262
Fuel Costs ($MWh) $3090 $3084 $3165 $3139 $3095 $3139
Variable Costs ($MWh) $1470 $2023 $1511 $1500 $1478 $1474
Fixed Costs ($MWh) $1540 $1517 $1532 $1529 $1523 $1529
Capital Costs ($MWh) $7220 $7062 $7160 $7137 $7089 $7136
Cost of CO2 Captured ($ton wo TampS) $5262 $7069 $6497 $6472 $6414 $6440
Cost of CO2 Captured ($MT wo TampS) $5800 $6413 $5894 $5872 $5818 $5842
Cost of CO2 Captured ($MT w TampS) $6901 $7514 $6995 $6972 $6919 $6943
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $46312929 $47467476 $47122241 $46435398 $47358727
CO2 TSM Cost ($MWh) $960 $960 $985 $977 $963 $984
Coal handling amp conveying (kWe) 480 480 492 488 481 491
Pulverizers 3370 3370 3454 3429 3379 3446
Sorbent handling amp reagent preparation (kWe) 1070 1070 1097 1089 1073 1094
Ash handling (kWe) 780 780 799 794 782 798
Primary air fans (kWe) 1670 1670 1712 1699 1674 1708
Forced draft fans (kWe) 2130 2130 2183 2167 2136 2178
Induced draft fans (kWe) 8350 8350 8558 8496 8372 8539
SCR (kWe) 60 60 61 61 60 61
Activated carbon injection (kWe) 27 27 28 27 27 28
Dry sorbent injection (kWe) 108 108 111 110 108 110
Baghouse (kWe) 110 110 113 112 110 112
Wet FGD (kWe) 3550 3550 3638 3612 3559 3630
PCC plant auxiliaries (kWe) 16000 16000 16399 27280 18682 30361 14000 2640
CO2 compression (kWe) 35690 35690 36580 36314 35784 36496
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400 400 400
Condensate pumps (kWe) 640 640 656 651 642 654
Circulating water pumps (kWe) 7750 7750 7943 7885 7770 7925
Ground water pumps (kWe) 710 710 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010 4010 4010
Transformer losses (kWe) 2380 2380 2439 2422 2386 2434
Total auxiliaries (kWe) 91285 91285 93383 103756 94148 107186
Net plant heat rate (BTUkWh) 10498 10498 10775 10686 10535 10755
Condenser cooling duty (GJhr) 1867 1867 1914 1900 1872 1909
Limestone sorbent flowrate (kghr) 22213 22213 22767 22601 22272 22715
Raw water withdrawal (m3min) 30 30 30 30 30 30
Raw water consumption (m3min) 23 23 24 24 23 24
NOx (MTyear) 1517 1517 1555 1544 1521 1551
Particulates (MTyear) 195 195 200 198 196 199
Hg (kgyear) 6 6 6 6 6 6
SO2 (MTyear) 0 0 0 0 0 0
COE Reduction (w TampS) 256 051 002 -092 -012
COE Reduction (wo TampS) 275 036 -011 -101 -031
Cost of CO2 Reduction (wo TampS) 1057 162 123 032 073
Cost of CO2 Reduction (w TampS) 888 136 104 027 061
PCC Plant Cost Reduction 000 -166 -168 -166 -202
Method Amine emissions (kg aminetonne CO2 Aerosol particle concentration range where adequate (particlescm3)
Baghouse 0009 0 to 1E+7 0 10000000
Dry bed operation (no BH) lt03 0 to 1E+6 0 1000000
Absorber operating conditions (no BH) lt03 0 to 1E+7 0 10000000
Pre-treatment solutions (no BH) lt03 0 to 1E+9 0 1000000000
Abbott Power Plant (42 reheat burner w dryer) Abbott Power Plant (0 reheat burner wo dryer) Wilsonville (after baghouse) (WashU) Wilsonville (before baghouse) (SR) UT Austin (NCCC) (before baghouse) TCM (no BH no BF) Wilsonville (after baghouse) (SR) Wilsonville Parametric Tests (Linde) Wilsonville Long-term Tests (Linde)
Anal Ins Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) kg amineMT CO2 04080107622 00095091096
SMPS 682819795644892 982 427900576923077 157 14468166666667 982 1000000 10 4000000 2400 100000 35 650000 10
SMPS 735415966499163 102 532616923076924 163 160013 102 200000 20 3000000 2800 1150000 60 600000 20
SMPS 667026341708543 106 642390384615385 168 14813666666667 106 200000 40 2000000 2800 10000000 100 530000 40
SMPS 566092556113903 109 764663461538462 175 91535 109 1000000 70 1000000 3000 10000000 160 400000 70
SMPS 60451071356784 113 993782692307693 181 21280833333333 113 6300000 110 900000 3200 1400000 280 350000 120
SMPS 640447634840872 118 103840961538462 188 277361 118 8000000 200 800000 3200 120000 480 50000 200
SMPS 63931935678392 122 119893653846154 195 30501933333333 122 5000000 400 600000 3800 1400 640 20000 400
SMPS 67781860636516 126 155467692307692 202 35493966666667 126 800000 700 500000 3800 1000 960 10000 600
SMPS 678467648241207 131 173807500 209 25912033333333 131 1 800 400000 3800 1000 1920 5000 800
SMPS 736663748743719 136 198103846153846 217 20493533333333 136 1 1000 318900 3800 900 2560 100 1000
APS 791600921273033 141 245189807692308 225 34751733333333 141 300000 3800 750 5120
APS 776599182579565 146 27240826923077 233 43427866666667 146 200000 3800
APS 748095604690118 151 301905384615385 241 592247 151 100000 4000
APS 852265149078728 157 348734615384616 25 614018 157 90000 4100
APS 99985068676717 163 375607115384616 259 87004466666667 163 80000 4200
11043162479062 168 442790384615385 269 137845333333333 168 70000 4200
119948670016751 175 523365384615385 279 183715 175
112247051926298 181 445000384615385 289 241348 181
126325376884422 188 591696153846154 30 299061666666667 188
130470221105528 195 660759615384616 311 380613666666667 195
140578994974874 202 706025000000001 322 419054666666667 202
158666502512563 209 794851923076924 334 64940 209
15709983919598 217 860896153846155 346 883372 217
146305745393635 225 847675000000001 359 130709333333333 225
175050465661642 233 943019230769232 372 182267 233
20586516917923 241 949319230769232 385 263912666666667 241
21836616080402 25 96023076923077 40 355521333333333 25
221599480737019 259 956119230769232 414 484109 259
231432663316583 269 1025750000 429 647791 269
228343541038526 279 964151923076924 445 830633 279
238293788944724 289 982432692307693 461 1054740 289
24027170519263 30 103288461538462 478 125545333333333 30
254431427135679 311 981471153846155 514 1435950 311
281640274706868 322 100416538461539 533 161942333333333 322
279502308207705 334 995501923076924 552 169811666666667 334
273149989949749 346 969944230769232 573 182475666666667 346
301086837520938 359 89473076923077 594 187437333333333 359
337571587939699 372 791292307692308 615 1885320 372
335709822445561 385 719676923076924 638 184891666666667 385
303290958123953 40 67950576923077 661 177122333333333 40
296100891122278 414 554032692307693 685 167757333333333 414
305137175879397 429 441263461538462 71 1563790 429
298671450586265 445 39593576923077 737 143831333333333 445
267825041876047 461 294517500 764 1276340 461
268898750418761 478 235586538461539 791 111617666666667 478
246584087102178 496 219594615384616 82 956378666666667 496
22753597319933 514 183537307692308 851 786719333333333 514
20805557118928 533 132950384615385 882 654658 533
193145899497488 552 991526923076924 914 524162333333333 552
180397058626466 573 723884615384616 947 398477 573
159287497487437 594 49395000 982 294095333333333 594
140093966499163 615 329623653846154 1018 216415 615
125712003350084 638 232231346153846 1055 155941333333333 638
11582181239531 661 170568076923077 1094 109822 661
933554824120604 685 114283076923077 1134 811729333333333 685
766995862646567 71 851232692307693 1176 533704666666667 71
625145611390285 737 558684615384616 1219 398905 737
531419574539364 764 425857115384616 1263 272716 764
401304512562814 791 320039230769231 131 224988666666667 791
302290415410386 82 224643461538462 1358 175139333333333 82
234256559463987 851 204812115384616 1407 137377666666667 851
174277956448911 882 133968461538462 1459 1185743 882
119620948073702 914 120355384615385 1512 901657 914
860247541038527 947 1114950 1568 95869666666667 947
588795608040202 982 892715384615385 1625 866524 982
453500100502513 1018 75693076923077 1685 79995933333333 1018
306104184254607 1055 734100000000001 1747 855652 1055
214392951423786 1094 732648076923078 1811 82140833333333 1094
171584234505863 1134 530092307692308 1877 81683533333333 1134
129452606365159 1176 609534615384616 1946 71270166666667 1176
109800234170854 1219 491257692307693 2017 67286033333333 1219
875061487437187 1263 391936346153846 2091 75311933333333 1263
755701192629817 131 427556153846154 2167 71270066666667 131
76907041876047 1358 528136538461539 2247 670295 1358
816854716917924 1407 538875 2329 612828 1407
682292696817421 1459 484882692307693 2414 60685066666667 1459
484327912897823 1512 523173076923077 2503 64353 1512
601245688442212 1568 532400 2595 575052 1568
608947306532664 1625 391983653846154 269 53995533333333 1625
57423530318258 1685 39818576923077 2788 56581733333333 1685
665198110552765 1747 390621538461539 289 50526966666667 1747
641284469011726 1811 282454038461539 2996 52087233333333 1811
551386834170855 1877 301689807692308 3106 390656 1877
515487715242882 1946 392116538461539 322 40069366666667 1946
557056576214406 2017 262214807692308 3338 42029366666667 2017
585014763819096 2091 300040192307693 346
563217748743719 2167 327144807692308 3587
516019996649917 2247 291944038461539 3718
635039155778895 2329 410772307692308 3854
678386860971525 2414 438539038461539 3995
540607373534339 2503 810536808 542
534717524288108 2595 882899298 583
624962696817421 269 884130018 626
507626351758795 2788 848442984 673
482487487437186 289 79158372 723
462233661641542 2996 628394094 777
614290241206031 3106 484154992 835
549685423785595 322 3250266138 898
485615936348409 3338 1930962502 965
446652388609716 346 97717245 1037
733651755443887 3587 451665266 1114
73515500837521 3718 1710666186 1197
491714613065327 3854 750723816 1286
453128479061977 3995 3692090772 1382
22625785 542 08614861802 1486
23149945 583 11076250522 1596 89545 542
2547951466667 626 1 1715 10021 583
26411294 673 1 1843 11057 626
2478060433333 723 1 1981 12158 673
2428556433333 777 1 2129 12433 723
1953912566667 835 1 2288 113975 777
1421029306667 898 01230695642 2458 9234 835
797872833333 965 1 2642 70035 898
430967506667 1037 1 2839 49195 965
21839545 1114 1 3051 3452 1037
84446483333 1197 01230695642 3278 23495 1114
320313357 1286 1 3523 1597 1197
34943302333 1382 1 3786 1089 1286
17471639033 1486 1 4068 781 1382
116477634 1596 1 4371 5965 1486
08735821033 1715 1 4698 4325 1596
05823884733 1843 1 5048 3995 1715
05823884733 1981 1 5425 3185 1843
02911942367 2129 1 5829 2325 1981
1 2288 1 6264 2185 2129
02911942367 2458 1 6732 194 2288
02911942367 2642 1 7234 1705 2458
08735821033 2839 1 7774 1395 2642
02911942367 3051 1 8354 124 2839
08735821033 3278 1 8977 97 3051
05823884733 3523 1 9647 92 3278
08735818 3786 1 10370 71 3523
23295514667 4068 1 11140 56 3786
05823884733 4371 1 11970 51 4068
05823884733 4698 1 12860 35 4371
1 5048 1 13820 31 4698
1 5425 1 14860 21 5048
1 5829 1 15960 16 5425
1 6264 1 17150 1 5829
1 6732 1 18430 055 6264
1 7234 1 19810 05 6732
1 7774 055 7234
1 8354 02 7774
1 8977 005 8354
1 9647 0 8977
1 10370 01 9647
1 11140 005 10370
1 11970 005 11140
1 12860 01 11970
1 13820 0 12860
1 14860 0 13820
1 15960 0 14860
1 17150 0 15960
1 18430 0 17150
1 19810 0 18430
0 19810
0009
lt03
lt03
lt03
Page 16: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Chart1

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment
10000000
1000000
10000000
1000000000

Literature data

Literature data

Abbott (no RH no dryer)
Abbott (RH w dryer)
SR (Wilsonville before BH)
SR (Wilsonville after BH)
Linde (Wilsonville after BH)
UT Austin (Wilsonville before BH)
TCM (no BH no BF)
Particle Diameter (nm)
Particle Number Concentration (cm3)

Methods

10E7 particlescm3 reported literature maximum
Abbott aerosol data showing gt10E7 particlescm3 compared to other flue gases
Abbott (reheater off no dryer)
Abbott (42 reheater w dryer)
NCCC after baghouse (WUSL measurements)
NCCC before baghouse (Southern Research measurements)
NCCC after baghouse (Southern Research measurements)
NCCC before baghouse (University of Texas at Austin measurements)
Residual fluidized catalytic cracker (Technology Centre Mongstad measurements)

Methods

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) at which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pre-treatment

TEA

Technology proposed in this work
Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Base case Case 1 Case 2 Case 3 Case 4 Case 5
DOE Case B12B Reference w baghouse wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system wo baghouse (breakeven)
Cost Basis Year 2011$ 2011$ 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4416576 4530755 4497804 4432245 4516307 45154043379888
Thermal input (kWt) (HHV) 1694366 1694366 1736605 1723975 1698847 1732627
Coal flowrate (kghr) 224791 224791 230395 228719 225385 229867 11478458479996
Total steam turbine power (kWe) 642000 642000 643332 654224 644359 656869
Gross Power (MWe) 6420 6420 6433 6542 6444 6569 96690 9669 3
Auxiliary Power (MWe) 913 913 934 1038 941 1072 9969
Net Power (MWe) 551 551 550 550 550 550
PCC Reboiler Duty (MW) 3311 3311 4106 3372 3323 3386
Specific Duty (MJkg CO2) 248 248 300 248 248 248 4405686
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal 450395408921933 982680892193308 445482004460967
Fuel Unit Cost ($ton) 6854 6854 6854 6854 6854 6854 440778425101536 440864946116186
Power Plant Efficiency () (HHV) 32500 32500 31668 31930 32387 31725
Boiler Efficiency () (HHV) 89100 89100 89100 89100 89100 89100
CO2 Produced (MThr) 480 480 492 489 482 491
CO2 Produced (lbhr) 1058945 1058945 1085344 1077450 1061745 1082857 4415000
CO2 Produced (MTyear) 4207729 4207729 4312625 4281259 4218856 4302745 443224546416968
CO2 Captured () 90 90 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085 085 085
Variable Cost $60366961 $82839499 $61871865 $61421865 $60526594 $60429346
Fixed Cost $63094548 $62118858 $62746820 $62624815 $62372778 $62753124
Fuel Cost $126458921 $126458921 $12961144817 $12866877277 $12679332619 $12931450746
Total Overnight Cost $2384351816 $2331909536 $2364444218 $2356810371 $2341063213 $2364453241 $2364444218
Total Plant Cost $1939142000 $1890358000 $1921756120 $1915655869 $1903054023 $1922071279
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $38782850 $37807160 $38435122 $38313117 $38061080 $38441426
Maintenance Material Cost $18097725 $18097725 $1854888787 $1841398019 $1814558223 $18145582
Consumables Cost $36775427 $59247965 $3769221114 $3741807239 $3687267513 $36775427
Waste Disposal Cost $5493809 $5493809 $563076559 $558981254 $550833671 $5508337
By-Products Cost $0 $0 $0 $0 $0 $0
Preproduction Costs (x1000) $59957 $60854 $59820 $59635 $59257 $59691
Inventory Capital (x1000) $41125 452270951087832 418250410605904 $4155922 410280350765301 $4159189
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0 $0 $0
Land (x1000) $900 $877 $892 $889 $883 $892
Other Owners Costs (x1000) $290871 $283554 $288263 $287348 $285458 $288311
Financing Costs (x1000) $52357 $51040 $51887 $51723 $51382 $51896
Total Overnight Costs (TOC) $2384351816 $2331909536 $2364444218 $235681037146 $2341063213 $236445324106
Coal and sorbent handling ($x1000) $52286 $52286 $53154 $52896 $52378 $53073
Coal and sorbent prep amp feed ($x1000) $24983 $24983 $25398 $25274 $25027 $25359
Feedwater amp misc BOP systems ($x1000) $112150 $112150 $114013 $113457 $112348 $113838
PC boiler ($x1000) $400793 $400793 $407450 $405465 $401502 $406825
Flue gas cleanup ($x1000) $197475 $148691 $151161 $150424 $148954 $150929
CO2 removal ($x1000) $533757 $533757 $542622 $543241 $544054 $545052 935327377984728
CO2 compression amp drying ($x1000) $98381 $98381 $100015 $99528 $98555 $99862
Heat and power integration ($x1000) $0 $0 $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45027 $45775 $45552 $45107 $45705
Steam turbine generaor ($x1000) $178176 $178176 $181135 $180253 $178491 $180858
Cooling water system ($x1000) $62254 $62254 $63288 $62980 $62364 $63191
Ashspent sorbent handling system ($x1000) $19028 $19028 $19344 $19250 $19062 $19314
Accessory electric plant ($x1000) $93584 $93584 $95138 $94675 $93749 $94993
Instrumentation amp control ($x1000) $31654 $31654 $32180 $32023 $31710 $32130
Improvements to site ($x1000) $18063 $18063 $18363 $18274 $18095 $18335
Buildings amp structures ($x1000) $71531 $71531 $72719 $72365 $71657 $72608
TPC without PCC ($x1000) $1307004 $1258220 $1279119 $1272887 $1260445 $1277157
PCC cost ($x1000) $632138 $632138 $642638 $642769 $642609 $644914
COE ($MWh wo TampS) $13320 $13686 $13368 $13305 $13185 $13279
COE ($MWh w TampS) $14280 $14646 $14353 $14282 $14149 $14262
Fuel Costs ($MWh) $3090 $3084 $3165 $3139 $3095 $3139
Variable Costs ($MWh) $1470 $2023 $1511 $1500 $1478 $1474
Fixed Costs ($MWh) $1540 $1517 $1532 $1529 $1523 $1529
Capital Costs ($MWh) $7220 $7062 $7160 $7137 $7089 $7136
Cost of CO2 Captured ($ton wo TampS) $5262 $7069 $6497 $6472 $6414 $6440
Cost of CO2 Captured ($MT wo TampS) $5800 $6413 $5894 $5872 $5818 $5842
Cost of CO2 Captured ($MT w TampS) $6901 $7514 $6995 $6972 $6919 $6943
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $46312929 $47467476 $47122241 $46435398 $47358727
CO2 TSM Cost ($MWh) $960 $960 $985 $977 $963 $984
Coal handling amp conveying (kWe) 480 480 492 488 481 491
Pulverizers 3370 3370 3454 3429 3379 3446
Sorbent handling amp reagent preparation (kWe) 1070 1070 1097 1089 1073 1094
Ash handling (kWe) 780 780 799 794 782 798
Primary air fans (kWe) 1670 1670 1712 1699 1674 1708
Forced draft fans (kWe) 2130 2130 2183 2167 2136 2178
Induced draft fans (kWe) 8350 8350 8558 8496 8372 8539
SCR (kWe) 60 60 61 61 60 61
Activated carbon injection (kWe) 27 27 28 27 27 28
Dry sorbent injection (kWe) 108 108 111 110 108 110
Baghouse (kWe) 110 110 113 112 110 112
Wet FGD (kWe) 3550 3550 3638 3612 3559 3630
PCC plant auxiliaries (kWe) 16000 16000 16399 27280 18682 30361 14000 2640
CO2 compression (kWe) 35690 35690 36580 36314 35784 36496
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400 400 400
Condensate pumps (kWe) 640 640 656 651 642 654
Circulating water pumps (kWe) 7750 7750 7943 7885 7770 7925
Ground water pumps (kWe) 710 710 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010 4010 4010
Transformer losses (kWe) 2380 2380 2439 2422 2386 2434
Total auxiliaries (kWe) 91285 91285 93383 103756 94148 107186
Net plant heat rate (BTUkWh) 10498 10498 10775 10686 10535 10755
Condenser cooling duty (GJhr) 1867 1867 1914 1900 1872 1909
Limestone sorbent flowrate (kghr) 22213 22213 22767 22601 22272 22715
Raw water withdrawal (m3min) 30 30 30 30 30 30
Raw water consumption (m3min) 23 23 24 24 23 24
NOx (MTyear) 1517 1517 1555 1544 1521 1551
Particulates (MTyear) 195 195 200 198 196 199
Hg (kgyear) 6 6 6 6 6 6
SO2 (MTyear) 0 0 0 0 0 0
COE Reduction (w TampS) 256 051 002 -092 -012
COE Reduction (wo TampS) 275 036 -011 -101 -031
Cost of CO2 Reduction (wo TampS) 1057 162 123 032 073
Cost of CO2 Reduction (w TampS) 888 136 104 027 061
PCC Plant Cost Reduction 000 -166 -168 -166 -202
Method Amine emissions (kg aminetonne CO2 Aerosol particle concentration range where adequate (particlescm3)
Baghouse 0009 0 to 1E+7 0 10000000
Dry bed operation (no BH) lt03 0 to 1E+6 0 1000000
Absorber operating conditions (no BH) lt03 0 to 1E+7 0 10000000
Pre-treatment solutions (no BH) lt03 0 to 1E+9 0 1000000000
Abbott Power Plant (42 reheat burner w dryer) Abbott Power Plant (0 reheat burner wo dryer) Wilsonville (after baghouse) (WashU) Wilsonville (before baghouse) (SR) UT Austin (NCCC) (before baghouse) TCM (no BH no BF) Wilsonville (after baghouse) (SR) Wilsonville Parametric Tests (Linde) Wilsonville Long-term Tests (Linde)
Anal Ins Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) kg amineMT CO2 04080107622 00095091096
SMPS 682819795644892 982 427900576923077 157 14468166666667 982 1000000 10 4000000 2400 100000 35 650000 10
SMPS 735415966499163 102 532616923076924 163 160013 102 200000 20 3000000 2800 1150000 60 600000 20
SMPS 667026341708543 106 642390384615385 168 14813666666667 106 200000 40 2000000 2800 10000000 100 530000 40
SMPS 566092556113903 109 764663461538462 175 91535 109 1000000 70 1000000 3000 10000000 160 400000 70
SMPS 60451071356784 113 993782692307693 181 21280833333333 113 6300000 110 900000 3200 1400000 280 350000 120
SMPS 640447634840872 118 103840961538462 188 277361 118 8000000 200 800000 3200 120000 480 50000 200
SMPS 63931935678392 122 119893653846154 195 30501933333333 122 5000000 400 600000 3800 1400 640 20000 400
SMPS 67781860636516 126 155467692307692 202 35493966666667 126 800000 700 500000 3800 1000 960 10000 600
SMPS 678467648241207 131 173807500 209 25912033333333 131 1 800 400000 3800 1000 1920 5000 800
SMPS 736663748743719 136 198103846153846 217 20493533333333 136 1 1000 318900 3800 900 2560 100 1000
APS 791600921273033 141 245189807692308 225 34751733333333 141 300000 3800 750 5120
APS 776599182579565 146 27240826923077 233 43427866666667 146 200000 3800
APS 748095604690118 151 301905384615385 241 592247 151 100000 4000
APS 852265149078728 157 348734615384616 25 614018 157 90000 4100
APS 99985068676717 163 375607115384616 259 87004466666667 163 80000 4200
11043162479062 168 442790384615385 269 137845333333333 168 70000 4200
119948670016751 175 523365384615385 279 183715 175
112247051926298 181 445000384615385 289 241348 181
126325376884422 188 591696153846154 30 299061666666667 188
130470221105528 195 660759615384616 311 380613666666667 195
140578994974874 202 706025000000001 322 419054666666667 202
158666502512563 209 794851923076924 334 64940 209
15709983919598 217 860896153846155 346 883372 217
146305745393635 225 847675000000001 359 130709333333333 225
175050465661642 233 943019230769232 372 182267 233
20586516917923 241 949319230769232 385 263912666666667 241
21836616080402 25 96023076923077 40 355521333333333 25
221599480737019 259 956119230769232 414 484109 259
231432663316583 269 1025750000 429 647791 269
228343541038526 279 964151923076924 445 830633 279
238293788944724 289 982432692307693 461 1054740 289
24027170519263 30 103288461538462 478 125545333333333 30
254431427135679 311 981471153846155 514 1435950 311
281640274706868 322 100416538461539 533 161942333333333 322
279502308207705 334 995501923076924 552 169811666666667 334
273149989949749 346 969944230769232 573 182475666666667 346
301086837520938 359 89473076923077 594 187437333333333 359
337571587939699 372 791292307692308 615 1885320 372
335709822445561 385 719676923076924 638 184891666666667 385
303290958123953 40 67950576923077 661 177122333333333 40
296100891122278 414 554032692307693 685 167757333333333 414
305137175879397 429 441263461538462 71 1563790 429
298671450586265 445 39593576923077 737 143831333333333 445
267825041876047 461 294517500 764 1276340 461
268898750418761 478 235586538461539 791 111617666666667 478
246584087102178 496 219594615384616 82 956378666666667 496
22753597319933 514 183537307692308 851 786719333333333 514
20805557118928 533 132950384615385 882 654658 533
193145899497488 552 991526923076924 914 524162333333333 552
180397058626466 573 723884615384616 947 398477 573
159287497487437 594 49395000 982 294095333333333 594
140093966499163 615 329623653846154 1018 216415 615
125712003350084 638 232231346153846 1055 155941333333333 638
11582181239531 661 170568076923077 1094 109822 661
933554824120604 685 114283076923077 1134 811729333333333 685
766995862646567 71 851232692307693 1176 533704666666667 71
625145611390285 737 558684615384616 1219 398905 737
531419574539364 764 425857115384616 1263 272716 764
401304512562814 791 320039230769231 131 224988666666667 791
302290415410386 82 224643461538462 1358 175139333333333 82
234256559463987 851 204812115384616 1407 137377666666667 851
174277956448911 882 133968461538462 1459 1185743 882
119620948073702 914 120355384615385 1512 901657 914
860247541038527 947 1114950 1568 95869666666667 947
588795608040202 982 892715384615385 1625 866524 982
453500100502513 1018 75693076923077 1685 79995933333333 1018
306104184254607 1055 734100000000001 1747 855652 1055
214392951423786 1094 732648076923078 1811 82140833333333 1094
171584234505863 1134 530092307692308 1877 81683533333333 1134
129452606365159 1176 609534615384616 1946 71270166666667 1176
109800234170854 1219 491257692307693 2017 67286033333333 1219
875061487437187 1263 391936346153846 2091 75311933333333 1263
755701192629817 131 427556153846154 2167 71270066666667 131
76907041876047 1358 528136538461539 2247 670295 1358
816854716917924 1407 538875 2329 612828 1407
682292696817421 1459 484882692307693 2414 60685066666667 1459
484327912897823 1512 523173076923077 2503 64353 1512
601245688442212 1568 532400 2595 575052 1568
608947306532664 1625 391983653846154 269 53995533333333 1625
57423530318258 1685 39818576923077 2788 56581733333333 1685
665198110552765 1747 390621538461539 289 50526966666667 1747
641284469011726 1811 282454038461539 2996 52087233333333 1811
551386834170855 1877 301689807692308 3106 390656 1877
515487715242882 1946 392116538461539 322 40069366666667 1946
557056576214406 2017 262214807692308 3338 42029366666667 2017
585014763819096 2091 300040192307693 346
563217748743719 2167 327144807692308 3587
516019996649917 2247 291944038461539 3718
635039155778895 2329 410772307692308 3854
678386860971525 2414 438539038461539 3995
540607373534339 2503 810536808 542
534717524288108 2595 882899298 583
624962696817421 269 884130018 626
507626351758795 2788 848442984 673
482487487437186 289 79158372 723
462233661641542 2996 628394094 777
614290241206031 3106 484154992 835
549685423785595 322 3250266138 898
485615936348409 3338 1930962502 965
446652388609716 346 97717245 1037
733651755443887 3587 451665266 1114
73515500837521 3718 1710666186 1197
491714613065327 3854 750723816 1286
453128479061977 3995 3692090772 1382
22625785 542 08614861802 1486
23149945 583 11076250522 1596 89545 542
2547951466667 626 1 1715 10021 583
26411294 673 1 1843 11057 626
2478060433333 723 1 1981 12158 673
2428556433333 777 1 2129 12433 723
1953912566667 835 1 2288 113975 777
1421029306667 898 01230695642 2458 9234 835
797872833333 965 1 2642 70035 898
430967506667 1037 1 2839 49195 965
21839545 1114 1 3051 3452 1037
84446483333 1197 01230695642 3278 23495 1114
320313357 1286 1 3523 1597 1197
34943302333 1382 1 3786 1089 1286
17471639033 1486 1 4068 781 1382
116477634 1596 1 4371 5965 1486
08735821033 1715 1 4698 4325 1596
05823884733 1843 1 5048 3995 1715
05823884733 1981 1 5425 3185 1843
02911942367 2129 1 5829 2325 1981
1 2288 1 6264 2185 2129
02911942367 2458 1 6732 194 2288
02911942367 2642 1 7234 1705 2458
08735821033 2839 1 7774 1395 2642
02911942367 3051 1 8354 124 2839
08735821033 3278 1 8977 97 3051
05823884733 3523 1 9647 92 3278
08735818 3786 1 10370 71 3523
23295514667 4068 1 11140 56 3786
05823884733 4371 1 11970 51 4068
05823884733 4698 1 12860 35 4371
1 5048 1 13820 31 4698
1 5425 1 14860 21 5048
1 5829 1 15960 16 5425
1 6264 1 17150 1 5829
1 6732 1 18430 055 6264
1 7234 1 19810 05 6732
1 7774 055 7234
1 8354 02 7774
1 8977 005 8354
1 9647 0 8977
1 10370 01 9647
1 11140 005 10370
1 11970 005 11140
1 12860 01 11970
1 13820 0 12860
1 14860 0 13820
1 15960 0 14860
1 17150 0 15960
1 18430 0 17150
1 19810 0 18430
0 19810
0009
lt03
lt03
lt03
Page 17: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Literature data

Literature data

Abbott (no RH no dryer)
Abbott (RH w dryer)
SR (Wilsonville before BH)
SR (Wilsonville after BH)
Linde (Wilsonville after BH)
UT Austin (Wilsonville before BH)
TCM (no BH no BF)
Particle Diameter (nm)
Particle Number Concentration (cm3)

Methods

10E7 particlescm3 reported literature maximum
Abbott aerosol data showing gt10E7 particlescm3 compared to other flue gases
Abbott (reheater off no dryer)
Abbott (42 reheater w dryer)
NCCC after baghouse (WUSL measurements)
NCCC before baghouse (Southern Research measurements)
NCCC after baghouse (Southern Research measurements)
NCCC before baghouse (University of Texas at Austin measurements)
Residual fluidized catalytic cracker (Technology Centre Mongstad measurements)

Methods

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) at which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pre-treatment

TEA

Technology proposed in this work
Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Base case Case 1 Case 2 Case 3 Case 4 Case 5
DOE Case B12B Reference w baghouse wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system wo baghouse (breakeven)
Cost Basis Year 2011$ 2011$ 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4416576 4530755 4497804 4432245 4516307 45154043379888
Thermal input (kWt) (HHV) 1694366 1694366 1736605 1723975 1698847 1732627
Coal flowrate (kghr) 224791 224791 230395 228719 225385 229867 11478458479996
Total steam turbine power (kWe) 642000 642000 643332 654224 644359 656869
Gross Power (MWe) 6420 6420 6433 6542 6444 6569 96690 9669 3
Auxiliary Power (MWe) 913 913 934 1038 941 1072 9969
Net Power (MWe) 551 551 550 550 550 550
PCC Reboiler Duty (MW) 3311 3311 4106 3372 3323 3386
Specific Duty (MJkg CO2) 248 248 300 248 248 248 4405686
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal 450395408921933 982680892193308 445482004460967
Fuel Unit Cost ($ton) 6854 6854 6854 6854 6854 6854 440778425101536 440864946116186
Power Plant Efficiency () (HHV) 32500 32500 31668 31930 32387 31725
Boiler Efficiency () (HHV) 89100 89100 89100 89100 89100 89100
CO2 Produced (MThr) 480 480 492 489 482 491
CO2 Produced (lbhr) 1058945 1058945 1085344 1077450 1061745 1082857 4415000
CO2 Produced (MTyear) 4207729 4207729 4312625 4281259 4218856 4302745 443224546416968
CO2 Captured () 90 90 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085 085 085
Variable Cost $60366961 $82839499 $61871865 $61421865 $60526594 $60429346
Fixed Cost $63094548 $62118858 $62746820 $62624815 $62372778 $62753124
Fuel Cost $126458921 $126458921 $12961144817 $12866877277 $12679332619 $12931450746
Total Overnight Cost $2384351816 $2331909536 $2364444218 $2356810371 $2341063213 $2364453241 $2364444218
Total Plant Cost $1939142000 $1890358000 $1921756120 $1915655869 $1903054023 $1922071279
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $38782850 $37807160 $38435122 $38313117 $38061080 $38441426
Maintenance Material Cost $18097725 $18097725 $1854888787 $1841398019 $1814558223 $18145582
Consumables Cost $36775427 $59247965 $3769221114 $3741807239 $3687267513 $36775427
Waste Disposal Cost $5493809 $5493809 $563076559 $558981254 $550833671 $5508337
By-Products Cost $0 $0 $0 $0 $0 $0
Preproduction Costs (x1000) $59957 $60854 $59820 $59635 $59257 $59691
Inventory Capital (x1000) $41125 452270951087832 418250410605904 $4155922 410280350765301 $4159189
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0 $0 $0
Land (x1000) $900 $877 $892 $889 $883 $892
Other Owners Costs (x1000) $290871 $283554 $288263 $287348 $285458 $288311
Financing Costs (x1000) $52357 $51040 $51887 $51723 $51382 $51896
Total Overnight Costs (TOC) $2384351816 $2331909536 $2364444218 $235681037146 $2341063213 $236445324106
Coal and sorbent handling ($x1000) $52286 $52286 $53154 $52896 $52378 $53073
Coal and sorbent prep amp feed ($x1000) $24983 $24983 $25398 $25274 $25027 $25359
Feedwater amp misc BOP systems ($x1000) $112150 $112150 $114013 $113457 $112348 $113838
PC boiler ($x1000) $400793 $400793 $407450 $405465 $401502 $406825
Flue gas cleanup ($x1000) $197475 $148691 $151161 $150424 $148954 $150929
CO2 removal ($x1000) $533757 $533757 $542622 $543241 $544054 $545052 935327377984728
CO2 compression amp drying ($x1000) $98381 $98381 $100015 $99528 $98555 $99862
Heat and power integration ($x1000) $0 $0 $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45027 $45775 $45552 $45107 $45705
Steam turbine generaor ($x1000) $178176 $178176 $181135 $180253 $178491 $180858
Cooling water system ($x1000) $62254 $62254 $63288 $62980 $62364 $63191
Ashspent sorbent handling system ($x1000) $19028 $19028 $19344 $19250 $19062 $19314
Accessory electric plant ($x1000) $93584 $93584 $95138 $94675 $93749 $94993
Instrumentation amp control ($x1000) $31654 $31654 $32180 $32023 $31710 $32130
Improvements to site ($x1000) $18063 $18063 $18363 $18274 $18095 $18335
Buildings amp structures ($x1000) $71531 $71531 $72719 $72365 $71657 $72608
TPC without PCC ($x1000) $1307004 $1258220 $1279119 $1272887 $1260445 $1277157
PCC cost ($x1000) $632138 $632138 $642638 $642769 $642609 $644914
COE ($MWh wo TampS) $13320 $13686 $13368 $13305 $13185 $13279
COE ($MWh w TampS) $14280 $14646 $14353 $14282 $14149 $14262
Fuel Costs ($MWh) $3090 $3084 $3165 $3139 $3095 $3139
Variable Costs ($MWh) $1470 $2023 $1511 $1500 $1478 $1474
Fixed Costs ($MWh) $1540 $1517 $1532 $1529 $1523 $1529
Capital Costs ($MWh) $7220 $7062 $7160 $7137 $7089 $7136
Cost of CO2 Captured ($ton wo TampS) $5262 $7069 $6497 $6472 $6414 $6440
Cost of CO2 Captured ($MT wo TampS) $5800 $6413 $5894 $5872 $5818 $5842
Cost of CO2 Captured ($MT w TampS) $6901 $7514 $6995 $6972 $6919 $6943
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $46312929 $47467476 $47122241 $46435398 $47358727
CO2 TSM Cost ($MWh) $960 $960 $985 $977 $963 $984
Coal handling amp conveying (kWe) 480 480 492 488 481 491
Pulverizers 3370 3370 3454 3429 3379 3446
Sorbent handling amp reagent preparation (kWe) 1070 1070 1097 1089 1073 1094
Ash handling (kWe) 780 780 799 794 782 798
Primary air fans (kWe) 1670 1670 1712 1699 1674 1708
Forced draft fans (kWe) 2130 2130 2183 2167 2136 2178
Induced draft fans (kWe) 8350 8350 8558 8496 8372 8539
SCR (kWe) 60 60 61 61 60 61
Activated carbon injection (kWe) 27 27 28 27 27 28
Dry sorbent injection (kWe) 108 108 111 110 108 110
Baghouse (kWe) 110 110 113 112 110 112
Wet FGD (kWe) 3550 3550 3638 3612 3559 3630
PCC plant auxiliaries (kWe) 16000 16000 16399 27280 18682 30361 14000 2640
CO2 compression (kWe) 35690 35690 36580 36314 35784 36496
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400 400 400
Condensate pumps (kWe) 640 640 656 651 642 654
Circulating water pumps (kWe) 7750 7750 7943 7885 7770 7925
Ground water pumps (kWe) 710 710 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010 4010 4010
Transformer losses (kWe) 2380 2380 2439 2422 2386 2434
Total auxiliaries (kWe) 91285 91285 93383 103756 94148 107186
Net plant heat rate (BTUkWh) 10498 10498 10775 10686 10535 10755
Condenser cooling duty (GJhr) 1867 1867 1914 1900 1872 1909
Limestone sorbent flowrate (kghr) 22213 22213 22767 22601 22272 22715
Raw water withdrawal (m3min) 30 30 30 30 30 30
Raw water consumption (m3min) 23 23 24 24 23 24
NOx (MTyear) 1517 1517 1555 1544 1521 1551
Particulates (MTyear) 195 195 200 198 196 199
Hg (kgyear) 6 6 6 6 6 6
SO2 (MTyear) 0 0 0 0 0 0
COE Reduction (w TampS) 256 051 002 -092 -012
COE Reduction (wo TampS) 275 036 -011 -101 -031
Cost of CO2 Reduction (wo TampS) 1057 162 123 032 073
Cost of CO2 Reduction (w TampS) 888 136 104 027 061
PCC Plant Cost Reduction 000 -166 -168 -166 -202
Method Amine emissions (kg aminetonne CO2 Aerosol particle concentration range where adequate (particlescm3)
Baghouse 0009 0 to 1E+7 0 10000000
Dry bed operation (no BH) lt03 0 to 1E+6 0 1000000
Absorber operating conditions (no BH) lt03 0 to 1E+7 0 10000000
Pre-treatment solutions (no BH) lt03 0 to 1E+9 0 1000000000
Abbott Power Plant (42 reheat burner w dryer) Abbott Power Plant (0 reheat burner wo dryer) Wilsonville (after baghouse) (WashU) Wilsonville (before baghouse) (SR) UT Austin (NCCC) (before baghouse) TCM (no BH no BF) Wilsonville (after baghouse) (SR) Wilsonville Parametric Tests (Linde) Wilsonville Long-term Tests (Linde)
Anal Ins Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) Particle number (cm3) Particle diameter (nm) kg amineMT CO2 04080107622 00095091096
SMPS 682819795644892 982 427900576923077 157 14468166666667 982 1000000 10 4000000 2400 100000 35 650000 10
SMPS 735415966499163 102 532616923076924 163 160013 102 200000 20 3000000 2800 1150000 60 600000 20
SMPS 667026341708543 106 642390384615385 168 14813666666667 106 200000 40 2000000 2800 10000000 100 530000 40
SMPS 566092556113903 109 764663461538462 175 91535 109 1000000 70 1000000 3000 10000000 160 400000 70
SMPS 60451071356784 113 993782692307693 181 21280833333333 113 6300000 110 900000 3200 1400000 280 350000 120
SMPS 640447634840872 118 103840961538462 188 277361 118 8000000 200 800000 3200 120000 480 50000 200
SMPS 63931935678392 122 119893653846154 195 30501933333333 122 5000000 400 600000 3800 1400 640 20000 400
SMPS 67781860636516 126 155467692307692 202 35493966666667 126 800000 700 500000 3800 1000 960 10000 600
SMPS 678467648241207 131 173807500 209 25912033333333 131 1 800 400000 3800 1000 1920 5000 800
SMPS 736663748743719 136 198103846153846 217 20493533333333 136 1 1000 318900 3800 900 2560 100 1000
APS 791600921273033 141 245189807692308 225 34751733333333 141 300000 3800 750 5120
APS 776599182579565 146 27240826923077 233 43427866666667 146 200000 3800
APS 748095604690118 151 301905384615385 241 592247 151 100000 4000
APS 852265149078728 157 348734615384616 25 614018 157 90000 4100
APS 99985068676717 163 375607115384616 259 87004466666667 163 80000 4200
11043162479062 168 442790384615385 269 137845333333333 168 70000 4200
119948670016751 175 523365384615385 279 183715 175
112247051926298 181 445000384615385 289 241348 181
126325376884422 188 591696153846154 30 299061666666667 188
130470221105528 195 660759615384616 311 380613666666667 195
140578994974874 202 706025000000001 322 419054666666667 202
158666502512563 209 794851923076924 334 64940 209
15709983919598 217 860896153846155 346 883372 217
146305745393635 225 847675000000001 359 130709333333333 225
175050465661642 233 943019230769232 372 182267 233
20586516917923 241 949319230769232 385 263912666666667 241
21836616080402 25 96023076923077 40 355521333333333 25
221599480737019 259 956119230769232 414 484109 259
231432663316583 269 1025750000 429 647791 269
228343541038526 279 964151923076924 445 830633 279
238293788944724 289 982432692307693 461 1054740 289
24027170519263 30 103288461538462 478 125545333333333 30
254431427135679 311 981471153846155 514 1435950 311
281640274706868 322 100416538461539 533 161942333333333 322
279502308207705 334 995501923076924 552 169811666666667 334
273149989949749 346 969944230769232 573 182475666666667 346
301086837520938 359 89473076923077 594 187437333333333 359
337571587939699 372 791292307692308 615 1885320 372
335709822445561 385 719676923076924 638 184891666666667 385
303290958123953 40 67950576923077 661 177122333333333 40
296100891122278 414 554032692307693 685 167757333333333 414
305137175879397 429 441263461538462 71 1563790 429
298671450586265 445 39593576923077 737 143831333333333 445
267825041876047 461 294517500 764 1276340 461
268898750418761 478 235586538461539 791 111617666666667 478
246584087102178 496 219594615384616 82 956378666666667 496
22753597319933 514 183537307692308 851 786719333333333 514
20805557118928 533 132950384615385 882 654658 533
193145899497488 552 991526923076924 914 524162333333333 552
180397058626466 573 723884615384616 947 398477 573
159287497487437 594 49395000 982 294095333333333 594
140093966499163 615 329623653846154 1018 216415 615
125712003350084 638 232231346153846 1055 155941333333333 638
11582181239531 661 170568076923077 1094 109822 661
933554824120604 685 114283076923077 1134 811729333333333 685
766995862646567 71 851232692307693 1176 533704666666667 71
625145611390285 737 558684615384616 1219 398905 737
531419574539364 764 425857115384616 1263 272716 764
401304512562814 791 320039230769231 131 224988666666667 791
302290415410386 82 224643461538462 1358 175139333333333 82
234256559463987 851 204812115384616 1407 137377666666667 851
174277956448911 882 133968461538462 1459 1185743 882
119620948073702 914 120355384615385 1512 901657 914
860247541038527 947 1114950 1568 95869666666667 947
588795608040202 982 892715384615385 1625 866524 982
453500100502513 1018 75693076923077 1685 79995933333333 1018
306104184254607 1055 734100000000001 1747 855652 1055
214392951423786 1094 732648076923078 1811 82140833333333 1094
171584234505863 1134 530092307692308 1877 81683533333333 1134
129452606365159 1176 609534615384616 1946 71270166666667 1176
109800234170854 1219 491257692307693 2017 67286033333333 1219
875061487437187 1263 391936346153846 2091 75311933333333 1263
755701192629817 131 427556153846154 2167 71270066666667 131
76907041876047 1358 528136538461539 2247 670295 1358
816854716917924 1407 538875 2329 612828 1407
682292696817421 1459 484882692307693 2414 60685066666667 1459
484327912897823 1512 523173076923077 2503 64353 1512
601245688442212 1568 532400 2595 575052 1568
608947306532664 1625 391983653846154 269 53995533333333 1625
57423530318258 1685 39818576923077 2788 56581733333333 1685
665198110552765 1747 390621538461539 289 50526966666667 1747
641284469011726 1811 282454038461539 2996 52087233333333 1811
551386834170855 1877 301689807692308 3106 390656 1877
515487715242882 1946 392116538461539 322 40069366666667 1946
557056576214406 2017 262214807692308 3338 42029366666667 2017
585014763819096 2091 300040192307693 346
563217748743719 2167 327144807692308 3587
516019996649917 2247 291944038461539 3718
635039155778895 2329 410772307692308 3854
678386860971525 2414 438539038461539 3995
540607373534339 2503 810536808 542
534717524288108 2595 882899298 583
624962696817421 269 884130018 626
507626351758795 2788 848442984 673
482487487437186 289 79158372 723
462233661641542 2996 628394094 777
614290241206031 3106 484154992 835
549685423785595 322 3250266138 898
485615936348409 3338 1930962502 965
446652388609716 346 97717245 1037
733651755443887 3587 451665266 1114
73515500837521 3718 1710666186 1197
491714613065327 3854 750723816 1286
453128479061977 3995 3692090772 1382
22625785 542 08614861802 1486
23149945 583 11076250522 1596 89545 542
2547951466667 626 1 1715 10021 583
26411294 673 1 1843 11057 626
2478060433333 723 1 1981 12158 673
2428556433333 777 1 2129 12433 723
1953912566667 835 1 2288 113975 777
1421029306667 898 01230695642 2458 9234 835
797872833333 965 1 2642 70035 898
430967506667 1037 1 2839 49195 965
21839545 1114 1 3051 3452 1037
84446483333 1197 01230695642 3278 23495 1114
320313357 1286 1 3523 1597 1197
34943302333 1382 1 3786 1089 1286
17471639033 1486 1 4068 781 1382
116477634 1596 1 4371 5965 1486
08735821033 1715 1 4698 4325 1596
05823884733 1843 1 5048 3995 1715
05823884733 1981 1 5425 3185 1843
02911942367 2129 1 5829 2325 1981
1 2288 1 6264 2185 2129
02911942367 2458 1 6732 194 2288
02911942367 2642 1 7234 1705 2458
08735821033 2839 1 7774 1395 2642
02911942367 3051 1 8354 124 2839
08735821033 3278 1 8977 97 3051
05823884733 3523 1 9647 92 3278
08735818 3786 1 10370 71 3523
23295514667 4068 1 11140 56 3786
05823884733 4371 1 11970 51 4068
05823884733 4698 1 12860 35 4371
1 5048 1 13820 31 4698
1 5425 1 14860 21 5048
1 5829 1 15960 16 5425
1 6264 1 17150 1 5829
1 6732 1 18430 055 6264
1 7234 1 19810 05 6732
1 7774 055 7234
1 8354 02 7774
1 8977 005 8354
1 9647 0 8977
1 10370 01 9647
1 11140 005 10370
1 11970 005 11140
1 12860 01 11970
1 13820 0 12860
1 14860 0 13820
1 15960 0 14860
1 17150 0 15960
1 18430 0 17150
1 19810 0 18430
0 19810
Page 18: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Literature data

Abbott (no RH no dryer)
Abbott (RH w dryer)
SR (Wilsonville before BH)
SR (Wilsonville after BH)
Linde (Wilsonville after BH)
UT Austin (Wilsonville before BH)
TCM (no BH no BF)
Particle Diameter (nm)
Particle Number Concentration (cm3)

Methods

10E7 particlescm3 reported literature maximum
Abbott aerosol data showing gt10E7 particlescm3 compared to other flue gases
Abbott (reheater off no dryer)
Abbott (42 reheater w dryer)
NCCC after baghouse (WUSL measurements)
NCCC before baghouse (Southern Research measurements)
NCCC after baghouse (Southern Research measurements)
NCCC before baghouse (University of Texas at Austin measurements)
Residual fluidized catalytic cracker (Technology Centre Mongstad measurements)

Methods

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) at which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pre-treatment

TEA

Technology proposed in this work
Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Base case Case 1 Case 2 Case 3 Case 4 Case 5
DOE Case B12B Reference w baghouse wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system wo baghouse (breakeven)
Cost Basis Year 2011$ 2011$ 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4416576 4530755 4497804 4432245 4516307 45154043379888
Thermal input (kWt) (HHV) 1694366 1694366 1736605 1723975 1698847 1732627
Coal flowrate (kghr) 224791 224791 230395 228719 225385 229867 11478458479996
Total steam turbine power (kWe) 642000 642000 643332 654224 644359 656869
Gross Power (MWe) 6420 6420 6433 6542 6444 6569 96690 9669 3
Auxiliary Power (MWe) 913 913 934 1038 941 1072 9969
Net Power (MWe) 551 551 550 550 550 550
PCC Reboiler Duty (MW) 3311 3311 4106 3372 3323 3386
Specific Duty (MJkg CO2) 248 248 300 248 248 248 4405686
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal 450395408921933 982680892193308 445482004460967
Fuel Unit Cost ($ton) 6854 6854 6854 6854 6854 6854 440778425101536 440864946116186
Power Plant Efficiency () (HHV) 32500 32500 31668 31930 32387 31725
Boiler Efficiency () (HHV) 89100 89100 89100 89100 89100 89100
CO2 Produced (MThr) 480 480 492 489 482 491
CO2 Produced (lbhr) 1058945 1058945 1085344 1077450 1061745 1082857 4415000
CO2 Produced (MTyear) 4207729 4207729 4312625 4281259 4218856 4302745 443224546416968
CO2 Captured () 90 90 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085 085 085
Variable Cost $60366961 $82839499 $61871865 $61421865 $60526594 $60429346
Fixed Cost $63094548 $62118858 $62746820 $62624815 $62372778 $62753124
Fuel Cost $126458921 $126458921 $12961144817 $12866877277 $12679332619 $12931450746
Total Overnight Cost $2384351816 $2331909536 $2364444218 $2356810371 $2341063213 $2364453241 $2364444218
Total Plant Cost $1939142000 $1890358000 $1921756120 $1915655869 $1903054023 $1922071279
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $38782850 $37807160 $38435122 $38313117 $38061080 $38441426
Maintenance Material Cost $18097725 $18097725 $1854888787 $1841398019 $1814558223 $18145582
Consumables Cost $36775427 $59247965 $3769221114 $3741807239 $3687267513 $36775427
Waste Disposal Cost $5493809 $5493809 $563076559 $558981254 $550833671 $5508337
By-Products Cost $0 $0 $0 $0 $0 $0
Preproduction Costs (x1000) $59957 $60854 $59820 $59635 $59257 $59691
Inventory Capital (x1000) $41125 452270951087832 418250410605904 $4155922 410280350765301 $4159189
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0 $0 $0
Land (x1000) $900 $877 $892 $889 $883 $892
Other Owners Costs (x1000) $290871 $283554 $288263 $287348 $285458 $288311
Financing Costs (x1000) $52357 $51040 $51887 $51723 $51382 $51896
Total Overnight Costs (TOC) $2384351816 $2331909536 $2364444218 $235681037146 $2341063213 $236445324106
Coal and sorbent handling ($x1000) $52286 $52286 $53154 $52896 $52378 $53073
Coal and sorbent prep amp feed ($x1000) $24983 $24983 $25398 $25274 $25027 $25359
Feedwater amp misc BOP systems ($x1000) $112150 $112150 $114013 $113457 $112348 $113838
PC boiler ($x1000) $400793 $400793 $407450 $405465 $401502 $406825
Flue gas cleanup ($x1000) $197475 $148691 $151161 $150424 $148954 $150929
CO2 removal ($x1000) $533757 $533757 $542622 $543241 $544054 $545052 935327377984728
CO2 compression amp drying ($x1000) $98381 $98381 $100015 $99528 $98555 $99862
Heat and power integration ($x1000) $0 $0 $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45027 $45775 $45552 $45107 $45705
Steam turbine generaor ($x1000) $178176 $178176 $181135 $180253 $178491 $180858
Cooling water system ($x1000) $62254 $62254 $63288 $62980 $62364 $63191
Ashspent sorbent handling system ($x1000) $19028 $19028 $19344 $19250 $19062 $19314
Accessory electric plant ($x1000) $93584 $93584 $95138 $94675 $93749 $94993
Instrumentation amp control ($x1000) $31654 $31654 $32180 $32023 $31710 $32130
Improvements to site ($x1000) $18063 $18063 $18363 $18274 $18095 $18335
Buildings amp structures ($x1000) $71531 $71531 $72719 $72365 $71657 $72608
TPC without PCC ($x1000) $1307004 $1258220 $1279119 $1272887 $1260445 $1277157
PCC cost ($x1000) $632138 $632138 $642638 $642769 $642609 $644914
COE ($MWh wo TampS) $13320 $13686 $13368 $13305 $13185 $13279
COE ($MWh w TampS) $14280 $14646 $14353 $14282 $14149 $14262
Fuel Costs ($MWh) $3090 $3084 $3165 $3139 $3095 $3139
Variable Costs ($MWh) $1470 $2023 $1511 $1500 $1478 $1474
Fixed Costs ($MWh) $1540 $1517 $1532 $1529 $1523 $1529
Capital Costs ($MWh) $7220 $7062 $7160 $7137 $7089 $7136
Cost of CO2 Captured ($ton wo TampS) $5262 $7069 $6497 $6472 $6414 $6440
Cost of CO2 Captured ($MT wo TampS) $5800 $6413 $5894 $5872 $5818 $5842
Cost of CO2 Captured ($MT w TampS) $6901 $7514 $6995 $6972 $6919 $6943
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $46312929 $47467476 $47122241 $46435398 $47358727
CO2 TSM Cost ($MWh) $960 $960 $985 $977 $963 $984
Coal handling amp conveying (kWe) 480 480 492 488 481 491
Pulverizers 3370 3370 3454 3429 3379 3446
Sorbent handling amp reagent preparation (kWe) 1070 1070 1097 1089 1073 1094
Ash handling (kWe) 780 780 799 794 782 798
Primary air fans (kWe) 1670 1670 1712 1699 1674 1708
Forced draft fans (kWe) 2130 2130 2183 2167 2136 2178
Induced draft fans (kWe) 8350 8350 8558 8496 8372 8539
SCR (kWe) 60 60 61 61 60 61
Activated carbon injection (kWe) 27 27 28 27 27 28
Dry sorbent injection (kWe) 108 108 111 110 108 110
Baghouse (kWe) 110 110 113 112 110 112
Wet FGD (kWe) 3550 3550 3638 3612 3559 3630
PCC plant auxiliaries (kWe) 16000 16000 16399 27280 18682 30361 14000 2640
CO2 compression (kWe) 35690 35690 36580 36314 35784 36496
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400 400 400
Condensate pumps (kWe) 640 640 656 651 642 654
Circulating water pumps (kWe) 7750 7750 7943 7885 7770 7925
Ground water pumps (kWe) 710 710 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010 4010 4010
Transformer losses (kWe) 2380 2380 2439 2422 2386 2434
Total auxiliaries (kWe) 91285 91285 93383 103756 94148 107186
Net plant heat rate (BTUkWh) 10498 10498 10775 10686 10535 10755
Condenser cooling duty (GJhr) 1867 1867 1914 1900 1872 1909
Limestone sorbent flowrate (kghr) 22213 22213 22767 22601 22272 22715
Raw water withdrawal (m3min) 30 30 30 30 30 30
Raw water consumption (m3min) 23 23 24 24 23 24
NOx (MTyear) 1517 1517 1555 1544 1521 1551
Particulates (MTyear) 195 195 200 198 196 199
Hg (kgyear) 6 6 6 6 6 6
SO2 (MTyear) 0 0 0 0 0 0
COE Reduction (w TampS) 256 051 002 -092 -012
COE Reduction (wo TampS) 275 036 -011 -101 -031
Cost of CO2 Reduction (wo TampS) 1057 162 123 032 073
Cost of CO2 Reduction (w TampS) 888 136 104 027 061
PCC Plant Cost Reduction 000 -166 -168 -166 -202
Method Amine emissions (kg aminetonne CO2 Aerosol particle concentration range where adequate (particlescm3)
Baghouse 0009 0 to 1E+7 0 10000000
Dry bed operation (no BH) lt03 0 to 1E+6 0 1000000
Absorber operating conditions (no BH) lt03 0 to 1E+7 0 10000000
Pre-treatment solutions (no BH) lt03 0 to 1E+9 0 1000000000
Page 19: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Methods

10E7 particlescm3 reported literature maximum
Abbott aerosol data showing gt10E7 particlescm3 compared to other flue gases
Abbott (reheater off no dryer)
Abbott (42 reheater w dryer)
NCCC after baghouse (WUSL measurements)
NCCC before baghouse (Southern Research measurements)
NCCC after baghouse (Southern Research measurements)
NCCC before baghouse (University of Texas at Austin measurements)
Residual fluidized catalytic cracker (Technology Centre Mongstad measurements)

Methods

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) at which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pre-treatment

TEA

Technology proposed in this work
Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Base case Case 1 Case 2 Case 3 Case 4 Case 5
DOE Case B12B Reference w baghouse wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system wo baghouse (breakeven)
Cost Basis Year 2011$ 2011$ 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4416576 4530755 4497804 4432245 4516307 45154043379888
Thermal input (kWt) (HHV) 1694366 1694366 1736605 1723975 1698847 1732627
Coal flowrate (kghr) 224791 224791 230395 228719 225385 229867 11478458479996
Total steam turbine power (kWe) 642000 642000 643332 654224 644359 656869
Gross Power (MWe) 6420 6420 6433 6542 6444 6569 96690 9669 3
Auxiliary Power (MWe) 913 913 934 1038 941 1072 9969
Net Power (MWe) 551 551 550 550 550 550
PCC Reboiler Duty (MW) 3311 3311 4106 3372 3323 3386
Specific Duty (MJkg CO2) 248 248 300 248 248 248 4405686
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal 450395408921933 982680892193308 445482004460967
Fuel Unit Cost ($ton) 6854 6854 6854 6854 6854 6854 440778425101536 440864946116186
Power Plant Efficiency () (HHV) 32500 32500 31668 31930 32387 31725
Boiler Efficiency () (HHV) 89100 89100 89100 89100 89100 89100
CO2 Produced (MThr) 480 480 492 489 482 491
CO2 Produced (lbhr) 1058945 1058945 1085344 1077450 1061745 1082857 4415000
CO2 Produced (MTyear) 4207729 4207729 4312625 4281259 4218856 4302745 443224546416968
CO2 Captured () 90 90 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085 085 085
Variable Cost $60366961 $82839499 $61871865 $61421865 $60526594 $60429346
Fixed Cost $63094548 $62118858 $62746820 $62624815 $62372778 $62753124
Fuel Cost $126458921 $126458921 $12961144817 $12866877277 $12679332619 $12931450746
Total Overnight Cost $2384351816 $2331909536 $2364444218 $2356810371 $2341063213 $2364453241 $2364444218
Total Plant Cost $1939142000 $1890358000 $1921756120 $1915655869 $1903054023 $1922071279
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $38782850 $37807160 $38435122 $38313117 $38061080 $38441426
Maintenance Material Cost $18097725 $18097725 $1854888787 $1841398019 $1814558223 $18145582
Consumables Cost $36775427 $59247965 $3769221114 $3741807239 $3687267513 $36775427
Waste Disposal Cost $5493809 $5493809 $563076559 $558981254 $550833671 $5508337
By-Products Cost $0 $0 $0 $0 $0 $0
Preproduction Costs (x1000) $59957 $60854 $59820 $59635 $59257 $59691
Inventory Capital (x1000) $41125 452270951087832 418250410605904 $4155922 410280350765301 $4159189
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0 $0 $0
Land (x1000) $900 $877 $892 $889 $883 $892
Other Owners Costs (x1000) $290871 $283554 $288263 $287348 $285458 $288311
Financing Costs (x1000) $52357 $51040 $51887 $51723 $51382 $51896
Total Overnight Costs (TOC) $2384351816 $2331909536 $2364444218 $235681037146 $2341063213 $236445324106
Coal and sorbent handling ($x1000) $52286 $52286 $53154 $52896 $52378 $53073
Coal and sorbent prep amp feed ($x1000) $24983 $24983 $25398 $25274 $25027 $25359
Feedwater amp misc BOP systems ($x1000) $112150 $112150 $114013 $113457 $112348 $113838
PC boiler ($x1000) $400793 $400793 $407450 $405465 $401502 $406825
Flue gas cleanup ($x1000) $197475 $148691 $151161 $150424 $148954 $150929
CO2 removal ($x1000) $533757 $533757 $542622 $543241 $544054 $545052 935327377984728
CO2 compression amp drying ($x1000) $98381 $98381 $100015 $99528 $98555 $99862
Heat and power integration ($x1000) $0 $0 $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45027 $45775 $45552 $45107 $45705
Steam turbine generaor ($x1000) $178176 $178176 $181135 $180253 $178491 $180858
Cooling water system ($x1000) $62254 $62254 $63288 $62980 $62364 $63191
Ashspent sorbent handling system ($x1000) $19028 $19028 $19344 $19250 $19062 $19314
Accessory electric plant ($x1000) $93584 $93584 $95138 $94675 $93749 $94993
Instrumentation amp control ($x1000) $31654 $31654 $32180 $32023 $31710 $32130
Improvements to site ($x1000) $18063 $18063 $18363 $18274 $18095 $18335
Buildings amp structures ($x1000) $71531 $71531 $72719 $72365 $71657 $72608
TPC without PCC ($x1000) $1307004 $1258220 $1279119 $1272887 $1260445 $1277157
PCC cost ($x1000) $632138 $632138 $642638 $642769 $642609 $644914
COE ($MWh wo TampS) $13320 $13686 $13368 $13305 $13185 $13279
COE ($MWh w TampS) $14280 $14646 $14353 $14282 $14149 $14262
Fuel Costs ($MWh) $3090 $3084 $3165 $3139 $3095 $3139
Variable Costs ($MWh) $1470 $2023 $1511 $1500 $1478 $1474
Fixed Costs ($MWh) $1540 $1517 $1532 $1529 $1523 $1529
Capital Costs ($MWh) $7220 $7062 $7160 $7137 $7089 $7136
Cost of CO2 Captured ($ton wo TampS) $5262 $7069 $6497 $6472 $6414 $6440
Cost of CO2 Captured ($MT wo TampS) $5800 $6413 $5894 $5872 $5818 $5842
Cost of CO2 Captured ($MT w TampS) $6901 $7514 $6995 $6972 $6919 $6943
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $46312929 $47467476 $47122241 $46435398 $47358727
CO2 TSM Cost ($MWh) $960 $960 $985 $977 $963 $984
Coal handling amp conveying (kWe) 480 480 492 488 481 491
Pulverizers 3370 3370 3454 3429 3379 3446
Sorbent handling amp reagent preparation (kWe) 1070 1070 1097 1089 1073 1094
Ash handling (kWe) 780 780 799 794 782 798
Primary air fans (kWe) 1670 1670 1712 1699 1674 1708
Forced draft fans (kWe) 2130 2130 2183 2167 2136 2178
Induced draft fans (kWe) 8350 8350 8558 8496 8372 8539
SCR (kWe) 60 60 61 61 60 61
Activated carbon injection (kWe) 27 27 28 27 27 28
Dry sorbent injection (kWe) 108 108 111 110 108 110
Baghouse (kWe) 110 110 113 112 110 112
Wet FGD (kWe) 3550 3550 3638 3612 3559 3630
PCC plant auxiliaries (kWe) 16000 16000 16399 27280 18682 30361 14000 2640
CO2 compression (kWe) 35690 35690 36580 36314 35784 36496
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400 400 400
Condensate pumps (kWe) 640 640 656 651 642 654
Circulating water pumps (kWe) 7750 7750 7943 7885 7770 7925
Ground water pumps (kWe) 710 710 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010 4010 4010
Transformer losses (kWe) 2380 2380 2439 2422 2386 2434
Total auxiliaries (kWe) 91285 91285 93383 103756 94148 107186
Net plant heat rate (BTUkWh) 10498 10498 10775 10686 10535 10755
Condenser cooling duty (GJhr) 1867 1867 1914 1900 1872 1909
Limestone sorbent flowrate (kghr) 22213 22213 22767 22601 22272 22715
Raw water withdrawal (m3min) 30 30 30 30 30 30
Raw water consumption (m3min) 23 23 24 24 23 24
NOx (MTyear) 1517 1517 1555 1544 1521 1551
Particulates (MTyear) 195 195 200 198 196 199
Hg (kgyear) 6 6 6 6 6 6
SO2 (MTyear) 0 0 0 0 0 0
COE Reduction (w TampS) 256 051 002 -092 -012
COE Reduction (wo TampS) 275 036 -011 -101 -031
Cost of CO2 Reduction (wo TampS) 1057 162 123 032 073
Cost of CO2 Reduction (w TampS) 888 136 104 027 061
PCC Plant Cost Reduction 000 -166 -168 -166 -202
Method Amine emissions (kg aminetonne CO2 Aerosol particle concentration range where adequate (particlescm3)
Baghouse 0009 0 to 1E+7 0 10000000
Dry bed operation (no BH) lt03 0 to 1E+6 0 1000000
Absorber operating conditions (no BH) lt03 0 to 1E+7 0 10000000
Pre-treatment solutions (no BH) lt03 0 to 1E+9 0 1000000000
Page 20: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Methods

Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) at which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pre-treatment

TEA

Technology proposed in this work
Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Base case Case 1 Case 2 Case 3 Case 4 Case 5
DOE Case B12B Reference w baghouse wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system wo baghouse (breakeven)
Cost Basis Year 2011$ 2011$ 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4416576 4530755 4497804 4432245 4516307 45154043379888
Thermal input (kWt) (HHV) 1694366 1694366 1736605 1723975 1698847 1732627
Coal flowrate (kghr) 224791 224791 230395 228719 225385 229867 11478458479996
Total steam turbine power (kWe) 642000 642000 643332 654224 644359 656869
Gross Power (MWe) 6420 6420 6433 6542 6444 6569 96690 9669 3
Auxiliary Power (MWe) 913 913 934 1038 941 1072 9969
Net Power (MWe) 551 551 550 550 550 550
PCC Reboiler Duty (MW) 3311 3311 4106 3372 3323 3386
Specific Duty (MJkg CO2) 248 248 300 248 248 248 4405686
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal 450395408921933 982680892193308 445482004460967
Fuel Unit Cost ($ton) 6854 6854 6854 6854 6854 6854 440778425101536 440864946116186
Power Plant Efficiency () (HHV) 32500 32500 31668 31930 32387 31725
Boiler Efficiency () (HHV) 89100 89100 89100 89100 89100 89100
CO2 Produced (MThr) 480 480 492 489 482 491
CO2 Produced (lbhr) 1058945 1058945 1085344 1077450 1061745 1082857 4415000
CO2 Produced (MTyear) 4207729 4207729 4312625 4281259 4218856 4302745 443224546416968
CO2 Captured () 90 90 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085 085 085
Variable Cost $60366961 $82839499 $61871865 $61421865 $60526594 $60429346
Fixed Cost $63094548 $62118858 $62746820 $62624815 $62372778 $62753124
Fuel Cost $126458921 $126458921 $12961144817 $12866877277 $12679332619 $12931450746
Total Overnight Cost $2384351816 $2331909536 $2364444218 $2356810371 $2341063213 $2364453241 $2364444218
Total Plant Cost $1939142000 $1890358000 $1921756120 $1915655869 $1903054023 $1922071279
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $38782850 $37807160 $38435122 $38313117 $38061080 $38441426
Maintenance Material Cost $18097725 $18097725 $1854888787 $1841398019 $1814558223 $18145582
Consumables Cost $36775427 $59247965 $3769221114 $3741807239 $3687267513 $36775427
Waste Disposal Cost $5493809 $5493809 $563076559 $558981254 $550833671 $5508337
By-Products Cost $0 $0 $0 $0 $0 $0
Preproduction Costs (x1000) $59957 $60854 $59820 $59635 $59257 $59691
Inventory Capital (x1000) $41125 452270951087832 418250410605904 $4155922 410280350765301 $4159189
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0 $0 $0
Land (x1000) $900 $877 $892 $889 $883 $892
Other Owners Costs (x1000) $290871 $283554 $288263 $287348 $285458 $288311
Financing Costs (x1000) $52357 $51040 $51887 $51723 $51382 $51896
Total Overnight Costs (TOC) $2384351816 $2331909536 $2364444218 $235681037146 $2341063213 $236445324106
Coal and sorbent handling ($x1000) $52286 $52286 $53154 $52896 $52378 $53073
Coal and sorbent prep amp feed ($x1000) $24983 $24983 $25398 $25274 $25027 $25359
Feedwater amp misc BOP systems ($x1000) $112150 $112150 $114013 $113457 $112348 $113838
PC boiler ($x1000) $400793 $400793 $407450 $405465 $401502 $406825
Flue gas cleanup ($x1000) $197475 $148691 $151161 $150424 $148954 $150929
CO2 removal ($x1000) $533757 $533757 $542622 $543241 $544054 $545052 935327377984728
CO2 compression amp drying ($x1000) $98381 $98381 $100015 $99528 $98555 $99862
Heat and power integration ($x1000) $0 $0 $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45027 $45775 $45552 $45107 $45705
Steam turbine generaor ($x1000) $178176 $178176 $181135 $180253 $178491 $180858
Cooling water system ($x1000) $62254 $62254 $63288 $62980 $62364 $63191
Ashspent sorbent handling system ($x1000) $19028 $19028 $19344 $19250 $19062 $19314
Accessory electric plant ($x1000) $93584 $93584 $95138 $94675 $93749 $94993
Instrumentation amp control ($x1000) $31654 $31654 $32180 $32023 $31710 $32130
Improvements to site ($x1000) $18063 $18063 $18363 $18274 $18095 $18335
Buildings amp structures ($x1000) $71531 $71531 $72719 $72365 $71657 $72608
TPC without PCC ($x1000) $1307004 $1258220 $1279119 $1272887 $1260445 $1277157
PCC cost ($x1000) $632138 $632138 $642638 $642769 $642609 $644914
COE ($MWh wo TampS) $13320 $13686 $13368 $13305 $13185 $13279
COE ($MWh w TampS) $14280 $14646 $14353 $14282 $14149 $14262
Fuel Costs ($MWh) $3090 $3084 $3165 $3139 $3095 $3139
Variable Costs ($MWh) $1470 $2023 $1511 $1500 $1478 $1474
Fixed Costs ($MWh) $1540 $1517 $1532 $1529 $1523 $1529
Capital Costs ($MWh) $7220 $7062 $7160 $7137 $7089 $7136
Cost of CO2 Captured ($ton wo TampS) $5262 $7069 $6497 $6472 $6414 $6440
Cost of CO2 Captured ($MT wo TampS) $5800 $6413 $5894 $5872 $5818 $5842
Cost of CO2 Captured ($MT w TampS) $6901 $7514 $6995 $6972 $6919 $6943
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $46312929 $47467476 $47122241 $46435398 $47358727
CO2 TSM Cost ($MWh) $960 $960 $985 $977 $963 $984
Coal handling amp conveying (kWe) 480 480 492 488 481 491
Pulverizers 3370 3370 3454 3429 3379 3446
Sorbent handling amp reagent preparation (kWe) 1070 1070 1097 1089 1073 1094
Ash handling (kWe) 780 780 799 794 782 798
Primary air fans (kWe) 1670 1670 1712 1699 1674 1708
Forced draft fans (kWe) 2130 2130 2183 2167 2136 2178
Induced draft fans (kWe) 8350 8350 8558 8496 8372 8539
SCR (kWe) 60 60 61 61 60 61
Activated carbon injection (kWe) 27 27 28 27 27 28
Dry sorbent injection (kWe) 108 108 111 110 108 110
Baghouse (kWe) 110 110 113 112 110 112
Wet FGD (kWe) 3550 3550 3638 3612 3559 3630
PCC plant auxiliaries (kWe) 16000 16000 16399 27280 18682 30361 14000 2640
CO2 compression (kWe) 35690 35690 36580 36314 35784 36496
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400 400 400
Condensate pumps (kWe) 640 640 656 651 642 654
Circulating water pumps (kWe) 7750 7750 7943 7885 7770 7925
Ground water pumps (kWe) 710 710 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010 4010 4010
Transformer losses (kWe) 2380 2380 2439 2422 2386 2434
Total auxiliaries (kWe) 91285 91285 93383 103756 94148 107186
Net plant heat rate (BTUkWh) 10498 10498 10775 10686 10535 10755
Condenser cooling duty (GJhr) 1867 1867 1914 1900 1872 1909
Limestone sorbent flowrate (kghr) 22213 22213 22767 22601 22272 22715
Raw water withdrawal (m3min) 30 30 30 30 30 30
Raw water consumption (m3min) 23 23 24 24 23 24
NOx (MTyear) 1517 1517 1555 1544 1521 1551
Particulates (MTyear) 195 195 200 198 196 199
Hg (kgyear) 6 6 6 6 6 6
SO2 (MTyear) 0 0 0 0 0 0
COE Reduction (w TampS) 256 051 002 -092 -012
COE Reduction (wo TampS) 275 036 -011 -101 -031
Cost of CO2 Reduction (wo TampS) 1057 162 123 032 073
Cost of CO2 Reduction (w TampS) 888 136 104 027 061
PCC Plant Cost Reduction 000 -166 -168 -166 -202
Page 21: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

TEA

Technology proposed in this work
Baghouse Dry bed operation (no BH) Absorber operating conditions (no BH) Pre-treatment solutions (no BH)
Amine Losses (kg aminetonne CO2)
Inlet flue gas aerosol particle concentration range (particlescm3) for which technology can adequately remove particles
Baghouse
Dry bed operation (no BH)
Absorber operating conditions (no BH)
Flue gas pretreatment

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Base case Case 1 Case 2 Case 3 Case 4 Case 5
DOE Case B12B Reference w baghouse wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system wo baghouse (breakeven)
Cost Basis Year 2011$ 2011$ 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4416576 4530755 4497804 4432245 4516307 45154043379888
Thermal input (kWt) (HHV) 1694366 1694366 1736605 1723975 1698847 1732627
Coal flowrate (kghr) 224791 224791 230395 228719 225385 229867 11478458479996
Total steam turbine power (kWe) 642000 642000 643332 654224 644359 656869
Gross Power (MWe) 6420 6420 6433 6542 6444 6569 96690 9669 3
Auxiliary Power (MWe) 913 913 934 1038 941 1072 9969
Net Power (MWe) 551 551 550 550 550 550
PCC Reboiler Duty (MW) 3311 3311 4106 3372 3323 3386
Specific Duty (MJkg CO2) 248 248 300 248 248 248 4405686
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal 450395408921933 982680892193308 445482004460967
Fuel Unit Cost ($ton) 6854 6854 6854 6854 6854 6854 440778425101536 440864946116186
Power Plant Efficiency () (HHV) 32500 32500 31668 31930 32387 31725
Boiler Efficiency () (HHV) 89100 89100 89100 89100 89100 89100
CO2 Produced (MThr) 480 480 492 489 482 491
CO2 Produced (lbhr) 1058945 1058945 1085344 1077450 1061745 1082857 4415000
CO2 Produced (MTyear) 4207729 4207729 4312625 4281259 4218856 4302745 443224546416968
CO2 Captured () 90 90 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085 085 085
Variable Cost $60366961 $82839499 $61871865 $61421865 $60526594 $60429346
Fixed Cost $63094548 $62118858 $62746820 $62624815 $62372778 $62753124
Fuel Cost $126458921 $126458921 $12961144817 $12866877277 $12679332619 $12931450746
Total Overnight Cost $2384351816 $2331909536 $2364444218 $2356810371 $2341063213 $2364453241 $2364444218
Total Plant Cost $1939142000 $1890358000 $1921756120 $1915655869 $1903054023 $1922071279
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $38782850 $37807160 $38435122 $38313117 $38061080 $38441426
Maintenance Material Cost $18097725 $18097725 $1854888787 $1841398019 $1814558223 $18145582
Consumables Cost $36775427 $59247965 $3769221114 $3741807239 $3687267513 $36775427
Waste Disposal Cost $5493809 $5493809 $563076559 $558981254 $550833671 $5508337
By-Products Cost $0 $0 $0 $0 $0 $0
Preproduction Costs (x1000) $59957 $60854 $59820 $59635 $59257 $59691
Inventory Capital (x1000) $41125 452270951087832 418250410605904 $4155922 410280350765301 $4159189
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0 $0 $0
Land (x1000) $900 $877 $892 $889 $883 $892
Other Owners Costs (x1000) $290871 $283554 $288263 $287348 $285458 $288311
Financing Costs (x1000) $52357 $51040 $51887 $51723 $51382 $51896
Total Overnight Costs (TOC) $2384351816 $2331909536 $2364444218 $235681037146 $2341063213 $236445324106
Coal and sorbent handling ($x1000) $52286 $52286 $53154 $52896 $52378 $53073
Coal and sorbent prep amp feed ($x1000) $24983 $24983 $25398 $25274 $25027 $25359
Feedwater amp misc BOP systems ($x1000) $112150 $112150 $114013 $113457 $112348 $113838
PC boiler ($x1000) $400793 $400793 $407450 $405465 $401502 $406825
Flue gas cleanup ($x1000) $197475 $148691 $151161 $150424 $148954 $150929
CO2 removal ($x1000) $533757 $533757 $542622 $543241 $544054 $545052 935327377984728
CO2 compression amp drying ($x1000) $98381 $98381 $100015 $99528 $98555 $99862
Heat and power integration ($x1000) $0 $0 $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45027 $45775 $45552 $45107 $45705
Steam turbine generaor ($x1000) $178176 $178176 $181135 $180253 $178491 $180858
Cooling water system ($x1000) $62254 $62254 $63288 $62980 $62364 $63191
Ashspent sorbent handling system ($x1000) $19028 $19028 $19344 $19250 $19062 $19314
Accessory electric plant ($x1000) $93584 $93584 $95138 $94675 $93749 $94993
Instrumentation amp control ($x1000) $31654 $31654 $32180 $32023 $31710 $32130
Improvements to site ($x1000) $18063 $18063 $18363 $18274 $18095 $18335
Buildings amp structures ($x1000) $71531 $71531 $72719 $72365 $71657 $72608
TPC without PCC ($x1000) $1307004 $1258220 $1279119 $1272887 $1260445 $1277157
PCC cost ($x1000) $632138 $632138 $642638 $642769 $642609 $644914
COE ($MWh wo TampS) $13320 $13686 $13368 $13305 $13185 $13279
COE ($MWh w TampS) $14280 $14646 $14353 $14282 $14149 $14262
Fuel Costs ($MWh) $3090 $3084 $3165 $3139 $3095 $3139
Variable Costs ($MWh) $1470 $2023 $1511 $1500 $1478 $1474
Fixed Costs ($MWh) $1540 $1517 $1532 $1529 $1523 $1529
Capital Costs ($MWh) $7220 $7062 $7160 $7137 $7089 $7136
Cost of CO2 Captured ($ton wo TampS) $5262 $7069 $6497 $6472 $6414 $6440
Cost of CO2 Captured ($MT wo TampS) $5800 $6413 $5894 $5872 $5818 $5842
Cost of CO2 Captured ($MT w TampS) $6901 $7514 $6995 $6972 $6919 $6943
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $46312929 $47467476 $47122241 $46435398 $47358727
CO2 TSM Cost ($MWh) $960 $960 $985 $977 $963 $984
Coal handling amp conveying (kWe) 480 480 492 488 481 491
Pulverizers 3370 3370 3454 3429 3379 3446
Sorbent handling amp reagent preparation (kWe) 1070 1070 1097 1089 1073 1094
Ash handling (kWe) 780 780 799 794 782 798
Primary air fans (kWe) 1670 1670 1712 1699 1674 1708
Forced draft fans (kWe) 2130 2130 2183 2167 2136 2178
Induced draft fans (kWe) 8350 8350 8558 8496 8372 8539
SCR (kWe) 60 60 61 61 60 61
Activated carbon injection (kWe) 27 27 28 27 27 28
Dry sorbent injection (kWe) 108 108 111 110 108 110
Baghouse (kWe) 110 110 113 112 110 112
Wet FGD (kWe) 3550 3550 3638 3612 3559 3630
PCC plant auxiliaries (kWe) 16000 16000 16399 27280 18682 30361 14000 2640
CO2 compression (kWe) 35690 35690 36580 36314 35784 36496
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400 400 400
Condensate pumps (kWe) 640 640 656 651 642 654
Circulating water pumps (kWe) 7750 7750 7943 7885 7770 7925
Ground water pumps (kWe) 710 710 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010 4010 4010
Transformer losses (kWe) 2380 2380 2439 2422 2386 2434
Total auxiliaries (kWe) 91285 91285 93383 103756 94148 107186
Net plant heat rate (BTUkWh) 10498 10498 10775 10686 10535 10755
Condenser cooling duty (GJhr) 1867 1867 1914 1900 1872 1909
Limestone sorbent flowrate (kghr) 22213 22213 22767 22601 22272 22715
Raw water withdrawal (m3min) 30 30 30 30 30 30
Raw water consumption (m3min) 23 23 24 24 23 24
NOx (MTyear) 1517 1517 1555 1544 1521 1551
Particulates (MTyear) 195 195 200 198 196 199
Hg (kgyear) 6 6 6 6 6 6
SO2 (MTyear) 0 0 0 0 0 0
COE Reduction (w TampS) 256 051 002 -092 -012
COE Reduction (wo TampS) 275 036 -011 -101 -031
Cost of CO2 Reduction (wo TampS) 1057 162 123 032 073
Cost of CO2 Reduction (w TampS) 888 136 104 027 061
PCC Plant Cost Reduction 000 -166 -168 -166 -202
Page 22: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Targets

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Concentration (cm3)
Particle Size (nm) Before After Removal eff () Average removal eff ()
71 441263461538462 533704666666667 999879050791 997335936184
737 39593576923077 398905 999899250073
764 294517500 272716000 999907402446
791 235586538461539 224988666666667 999904498505
82 219594615384616 175139333333333 99992024425
851 183537307692308 137377666666667 999925150004
882 132950384615385 1185743 99991081312
914 991526923076924 90165700 999909063791
947 723884615384616 95869666666667 999867562227
982 49395000 866524 999824572528
1018 329623653846154 79995933333333 999757311308
1055 232231346153846 855652 999631551892
1094 170568076923077 82140833 999518427863
1134 114283076923077 81683533333333 999285252589
1176 851232692307693 71270166666667 999162741665
1219 558684615384616 67286033333333 998795634756
1263 425857115384616 75311933333333 998231521076
131 320039230769231 71270066666667 997773083428
1358 224643461538462 670295 997016182909
1407 204812115384616 612828 997007852788
1459 133968461538462 60685066666667 99547019754
1512 120355384615385 64353 994653085094
1568 1114950 575052 994842351675
1625 892715384615385 53995533333333 993951539957
1685 75693076923077 56581733333333 99252484697
1747 734100000000001 50526966666667 993117154793
1811 732648076923078 52087233333333 992890552098
1877 530092307692308 390656 992630415603
1946 609534615384616 40069366666667 993426236073
2017 491257692307693 42029366666667 991444537699
2091 391936346153846
2167 427556153846154
2247 528136538461539
2329 538875
2414 484882692307693
2503 523173076923077
2595 532400
269 391983653846154
2788 39818576923077
289 390621538461539
2996 282454038461539
3106 301689807692308
322 392116538461539
3338 262214807692308
346 300040192307693
3587 327144807692308
3718 291944038461539
3854 410772307692308
3995 438539038461539
542 810536808 89545 -104761672958
583 882899298 10021 -135010529819
626 884130018 11057 -25060791681
673 848442984 12158 -432977846394
723 79158372 12433 -570648774838
Page 23: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Test Matrix

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
8 weeks of testing for each system 1 day testing per week at each condition 2nd part of 5th day includes data analysis and recap May vary cooling temperature depending on test results Flue gas flow and recirculation flow may vary depending on initial test results
ACM 1 High-velocity water spray injection (1 or more different nozzle designs and 1 or more perforated tray designs will be tested depending on early results) ACM 2 Novel ESP (voltage and current ranges chosen may vary depending on early test results)
Test Week Test Day Each Week Test Parameters Test Week Test Day Each Week Test Parameters
Flue gas flow (scfm) Recirculation flow (gpm) LG ratio Flue gas impurities filter (SOx NOx etc) onoff (optional) Cooling onoff Water spray temperature (deg F) Flue gas flow (scfm) ESP Voltage (kV) ESP Current (mA) Flue gas impurities filter (SOx NOx etc) onoff (optional)
Week 1nozzle 1 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 2nozzle 2 perforated tray 1Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 1No ESP dryerEffect of ESP voltage at max flue gas flow w filterWeek 2No ESP dryerEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off 100
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on 100
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Week 3nozzle 1 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filterWeek 4nozzle 2 perforated tray 1Effect of LG ratio at min gas flow w and wo cooling and filter 1 500 100 214 off off Determined by process Week 3No ESP dryerEffect of ESP voltage at 75 flue gas flow w filterWeek 4No ESP dryerEffect of ESP voltage at 75 flue gas flow w filter (different voltage and current range) 1 750 7 14 off
1 500 300 641 off off Determined by process 1 750 8 13 off
2 500 100 214 on off Determined by process 2 750 9 11 on
2 500 300 641 on off Determined by process 2 750 10 10 on
3 500 100 214 off on 95 3 750 11 9 off
3 500 300 641 off on 95 3 750 12 8 off
4 500 100 214 on on 95 4 750 13 8 on
4 500 300 641 on on 95 4 750 15 7 on
5 (repeat 1st) 500 100 214 off off Determined by process 5 (repeat 1st) 750 7 14 off
Week 5nozzle 1 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filterWeek 6nozzle 2 perforated tray 1Effect of LG ratio at min and 50 max circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 5No ESP dryerEffect of ESP voltage at 50 flue gas flow w filterWeek 6No ESP dryerEffect of ESP voltage at 50 flue gas flow w filter (different voltage and current range) 1 500 7 14 off
1 1000 200 214 off off Determined by process 1 500 8 13 off
2 1000 100 107 on off Determined by process 2 500 9 11 on
2 1000 200 214 on off Determined by process 2 500 10 10 on
3 1000 100 107 off on 95 3 500 11 9 off
3 1000 200 214 off on 95 3 500 12 8 off
4 1000 100 107 on on 95 4 500 13 8 on
4 1000 200 214 on on 95 4 500 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 500 7 14 off
Week 7nozzle 1 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filterWeek 8nozzle 2 perforated tray 2Effect of LG ratio at max and min circulation flow w and wo cooling and filter 1 1000 100 107 off off Determined by process Week 7ESP dryer usedEffect of ESP voltage at max flue gas flow w filterWeek 8ESP dryer usedEffect of ESP voltage at max flue gas flow w filter (different voltage and current range) 1 1000 7 14 off
1 1000 300 321 off off Determined by process 1 1000 8 13 off
2 1000 100 107 on off Determined by process 2 1000 9 11 on
2 1000 300 321 on off Determined by process 2 1000 10 10 on
3 1000 100 107 off on 95 3 1000 11 9 off
3 1000 300 321 off on 95 3 1000 12 8 off
4 1000 100 107 on on 95 4 1000 13 8 on
4 1000 300 321 on on 95 4 1000 15 7 on
5 (repeat 1st) 1000 100 107 off off Determined by process 5 (repeat 1st) 1000 7 14 off
Page 24: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Sheet3

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Case 1 Case 2 Case 3 Case 4
wo baghouse and high solvent makeup (4x) Varying absorber conditions and same solvent makeup wo baghouse using water spray pretreatment system wo baghouse using ESP pretreatment system
Cost Basis Year 2011$ 2011$ 2011$ 2011$
PC Boiler Steam Flow (lbhr) 4416576 4530755 4497804 4416576
Thermal input (kWt) (HHV) 1694366 1736605 1723975 1692236
Coal flowrate (kghr) 224791 230395 228719 224508
Total steam turbine power (kWe) 642000 643332 654224 642000
Gross Power (MWe) 6420 6433 6542 6420
Auxiliary Power (MWe) 913 934 1038 913
Net Power (MWe) 551 550 550 551
PCC Reboiler Duty (MW) 3311 4106 3372 3310
Specific Duty (MJkg CO2) 248 300 248 248
Fuel Type Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal Illinois No 6 Coal
Fuel Unit Cost ($ton) 6854 6854 6854 6854
Power Plant Efficiency () (HHV) 32500 31668 31930 32387
Boiler Efficiency () (HHV) 89100 89100 89100 89100
CO2 Produced (MThr) 480 492 489 480
CO2 Produced (lbhr) 1058945 1085344 1077450 1057614
CO2 Produced (MTyear) 4207729 4312625 4281259 4202441
CO2 Captured () 90 90 90 90
Capacity Factor (Fraction) 085 085 085 085
Variable Cost $82839499 $61871865 $61421865 $60526594
Fixed Cost $62118858 $62746820 $62624815 $62372778
Fuel Cost $126458921 $12961144817 $12866877277 $12679332619
Total Overnight Cost $2331909536 $2364444218 $2356810371 $2341063213
Total Plant Cost $1890358000 $1921756120 $1915655869 $1903054023
Annual Operating Labor Cost $7384208 $7384208 $7384208 $7384208
Maintenance Labor Cost $12065150 $12065150 $12065150 $12065150
Administrative amp Labor Support $4862340 $4862340 $4862340 $4862340
Property Taxes and Insurance $37807160 $38435122 $38313117 $37822131
Maintenance Material Cost $18097725 $1854888787 $1841398019 $1807497942
Consumables Cost $59247965 $3769221114 $3741807239 $3672920691
Waste Disposal Cost $5493809 $563076559 $558981254 $548690427
By-Products Cost $0 $0 $0 $0
Preproduction Costs (x1000) $60854 $59820 $59635 $58985
Inventory Capital (x1000) 452270951087832 418250410605904 $4155922 408451435817063
Initial Cost for Catalyst and Chemicals (x1000) $0 $0 $0 $0
Land (x1000) $877 $892 $889 $878
Other Owners Costs (x1000) $283554 $288263 $287348 $283666
Financing Costs (x1000) $51040 $51887 $51723 $51060
Total Overnight Costs (TOC) $2331909536 $2364444218 $235681037146 $2326540582
Coal and sorbent handling ($x1000) $52286 $53154 $52896 $52242
Coal and sorbent prep amp feed ($x1000) $24983 $25398 $25274 $24962
Feedwater amp misc BOP systems ($x1000) $112150 $114013 $113457 $112056
PC boiler ($x1000) $400793 $407450 $405465 $400456
Flue gas cleanup ($x1000) $148691 $151161 $150424 $148566
CO2 removal ($x1000) $533757 $542622 $543241 $535646
CO2 compression amp drying ($x1000) $98381 $100015 $99528 $98298
Heat and power integration ($x1000) $0 $0 $0 $0
Combustion turbineaccessories ($x1000) $0 $0 $0 $0
HRSG ducting amp stack ($x1000) $45027 $45775 $45552 $44989
Steam turbine generaor ($x1000) $178176 $181135 $180253 $178026
Cooling water system ($x1000) $62254 $63288 $62980 $62202
Ashspent sorbent handling system ($x1000) $19028 $19344 $19250 $19012
Accessory electric plant ($x1000) $93584 $95138 $94675 $93505
Instrumentation amp control ($x1000) $31654 $32180 $32023 $31627
Improvements to site ($x1000) $18063 $18363 $18274 $18048
Buildings amp structures ($x1000) $71531 $72719 $72365 $71471
TPC without PCC ($x1000) $1258220 $1279119 $1272887 $1257162
PCC cost ($x1000) $632138 $642638 $642769 $633945
COE ($MWh wo TampS) $13686 $13330 $13279 $11848
COE ($MWh w TampS) $14646 $14316 $14256 $12807
Fuel Costs ($MWh) $3084 $3165 $3139 $3048
Variable Costs ($MWh) $2023 $1474 $1474 $1461
Fixed Costs ($MWh) $1517 $1532 $1529 $1372
Capital Costs ($MWh) $7062 $7159 $7136 $5967
Cost of CO2 Captured ($ton wo TampS) $7069 $6450 $6440 $4804
Cost of CO2 Captured ($MT wo TampS) $6413 $5851 $5842 $4358
Cost of CO2 Captured ($MT w TampS) $7514 $6952 $6943 $5458
CO2 TSM Cost ($MT) $1101 $1101 $1101 $1101
CO2 TSM Cost ($) $46312929 $47467476 $47122241 $46254722
CO2 TSM Cost ($MWh) $960 $985 $977 $959
Coal handling amp conveying (kWe) 480 492 488 479
Pulverizers 3370 3454 3429 3366
Sorbent handling amp reagent preparation (kWe) 1070 1097 1089 1069
Ash handling (kWe) 780 799 794 779
Primary air fans (kWe) 1670 1712 1699 1668
Forced draft fans (kWe) 2130 2183 2167 2127
Induced draft fans (kWe) 8350 8558 8496 8340
SCR (kWe) 60 61 61 60
Activated carbon injection (kWe) 27 28 27 27
Dry sorbent injection (kWe) 108 111 110 108
Baghouse (kWe) 110 113 112 110
Wet FGD (kWe) 3550 3638 3612 3546
PCC plant auxiliaries (kWe) 16000 16399 27280 16090
CO2 compression (kWe) 35690 36580 36314 35645
Miscellaneous balance of plant (kWe) 2000 2000 2000 2000
Steam turbine auxiliaries (kWe) 400 400 400 400
Condensate pumps (kWe) 640 656 651 639
Circulating water pumps (kWe) 7750 7943 7885 7740
Ground water pumps (kWe) 710 710 710 710
Cooling tower fans (kWe) 4010 4010 4010 4010
Transformer losses (kWe) 2380 2439 2422 2377
Total auxiliaries (kWe) 91285 93383 103756 91289
Net plant heat rate (BTUkWh) 10498 10775 10686 10485
Condenser cooling duty (GJhr) 1867 1914 1900 1865
Limestone sorbent flowrate (kghr) 22213 22767 22601 22185
Raw water withdrawal (m3min) 30 30 30 30
Raw water consumption (m3min) 23 24 24 23
NOx (MTyear) 1517 1555 1544 1515
Particulates (MTyear) 195 200 198 195
Hg (kgyear) 6 6 6 6
SO2 (MTyear) 0 0 0 0
COE Reduction (w TampS) 256 025 -017 -1031
COE Reduction (wo TampS) 275 008 -031 -1105
Cost of CO2 Reduction (wo TampS) 1057 088 073 -2487
Cost of CO2 Reduction (w TampS) 888 074 061 -2090
PCC Plant Cost Reduction 000 -166 -168 -029
Page 25: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Figure 11

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Item Unit Value Results for 2 boilers at Abbott
Temperature deg F 200
Pressure (gauge) psig 075
Gas composition
Moisture vol 192
CO2 vol (dry) 92
O2 vol (dry) 735
SO2 ppmv (wet) 177
NOx ppmv (wet) 211
Page 26: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant

Mechanism of actionWater circulates in loop at high velocity and contacts aerosol particles using a spray nozzle comprised of very small holes Contacting spray causes condensation and growth of particles that are then captured in loop and removed from vapor phase

PerformanceHigh velocity spray-based pretreatment reduced amine losses ~15-18 times during testing at 045 MWe PCC pilot in Niederaussum that began in 20091

16

1) P Moser G Vorberg T Stoffregen et A The wet electrostatic precipitator as a cause of mist formation ndash Results from the amine-based post-combustion capture pilot plant at Niederaussem International Journal of Greenhouse Gas Control 41 (2015) 229ndash238

Typical inlet flue gas conditions ~160 degF ~1 bara~12 mol CO2 (wet)

TestsPlanned tests will evaluate new nozzle amp perforated tray designs and the impact of several operating conditions (flows temperatures etc) on performance

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Page 27: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample

17

Mechanism of actionESP applies high voltage between plate and wire that ionizes flue gas aerosols Ionized particles are diverted towards collecting plates for removal WUSTLrsquos system will incorporate a patented photo-ionizer technology that enhances particle capture efficiency

PerformanceBased on flue gas testing at the Linde-BASF 15 MWe pilot at NCCC in 2016 WUSTLrsquos ESP is expected to provide 98-99 removal efficiency for 1000 scfm gas flow and a specific collection area (SCA) of 95 m2(m3s) which can be increased to remove more particles in the size range of 10-500 nm1

TestsPlanned tests will evaluate voltage amp current effects and the impact of the photo-ionizer on ESP performance

1) Y Wang Z Li P Biswas Aerosol Measurements in Coal Combustor Exhaust Gas on 15 MWe Advanced Aqueous Amine-Based PCC Pilot Plant in Wilsonville AL Washington University in St Louis August 8 2016

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Page 28: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Economic amp technical advantages and potential challenges of each technology

18

Scenario DOE-NETL Case B12B PP w 90 CO2

capture

Case 1 PP w 90 CO2 capture high-velocity spray aerosol

pretreatment

Case 2 PP w90 CO2 capture novel ESP aerosol pretreatment

Baghouse Yes No No

Added CAPEX w aerosol pretreatment ($)

NA $3261720 $2338318

Added energy consumption w aerosol pretreatment (MW)

NA 11 132

Total Overnight Cost ($) $2384351816 $2356810371 $2328373523

PCC plant specific energy consumption (MJkg CO2)

248 248 248

Cost of electricity wo TampS (COE $MWh)

$13320 $13305 $13131

Key advantages NA Manageable footprint amp high performance low CAPEX can easily be integrated into direct

contact cooler of PCC plant

Very small footprint amp high performance

low CAPEX amp OPEX

Potential challenges NA Higher energy consumption could lead to decreased power plant

efficiency

High voltage equipment can pose a safety concern scale-up of novel components may present issues

PP 550 MWe supercritical power plant with high flue gas aerosol concentrations leading to very high amine losses for an integrated PCC plant with no aerosol mitigation usedBaghouses require significant footprint area and power plant retrofit costs including shutdown periods baghouses also produce a pressure drop so flue gas fan power must be increased the costs associated with these factors are not included

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Page 29: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Technical ApproachHost Site Setup Innovation Targets Success Criteria amp Project Risks and Mitigation Strategies

19

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Page 30: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Pilot host site Abbott Power Plant at UIUC in Champaign IL

20

Abbott plant schematic and tie-in points to pilot skid

Abbott chosen as optimal host site for testing since aerosol concentrations were measured to be among the highest in scientific literature

Abbott plant aerial view

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Page 31: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Preliminary Pilot Skid Layout at Abbott Host Site

21

Inlet to Abbott Power Plant Stack

WUSTL ESP pretreatment

8 flue gas slipstream inlet piping

Flue gas supply conditions for

slipstreamP 075 psig

T 200degFF 500-1000 scfm

Flue gas flowmeter temperature meter pressure meter gas

composition analysis

Blower filter

Process Isolation

Valve

Linde high-velocity water

spray pretreatment

Upstream aerosol

measurement

Downstream blower pulls flue

gas due to pressure drop

Blower speed is varied to control flue gas flowrate

Optional sorbent-based SOx and NOx removal

8 flue gas slipstream

outlet piping

Process Isolation

Valve

Process Isolation

Valve

Flue gas outlet

isolation valve

Process Isolation

Valve

Downstream aerosol

measurement

Control system and gas

composition analysis

WUSL ESP control

computer

Electric Conduit Supply

Cooling Water

Supply and Return

Service Water Supply

Process condensate discharge to storage

tank

Batch condensate sampling for

analysis at UIUC

Flue gas inlet

isolation valve

Linde

WUSTL

OSBL

ISBL

COLOR KEY

Linde + WUSTL

Condensate treatment

and disposal

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Page 32: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Pilot Testing Innovation Targets

22

Parameter Rationale Expected target

Particle removal efficiency for 500-1000 scfm flue gas slipstream ()

Flue gas aerosol particles in size range 70-200 nm lead to amine losses in the treated gas of amine-based PCC plants

gt98

Cost competitiveness (COE = cost of electricity)

Reduced capital and operating costs are required for commercial application of enabling technologies for PCC

COE lt $13320MWh and cost of CO2 captured lt $58tonne when compared to DOE-NETL reference case B12B

Energy efficiency Low electricity consumption reduces parasitic load for enabling technologies

Energy consumption lt 14 MWe (threshold above which energy consumption greatly impacts COE and cost of CO2captured)

Environmental sustainability when integrated with PCC technology for supercritical coal-fired power plants without a baghouse

Minimal environmental impact is required to meet process safety amp regulatory requirements for customers

Process condensate adequately removed amp treated as needed ESP solids removed and treated as needed

Particle removal efficiency = (Particle concentration before aerosol pretreatment (cm3) - Particle concentration after aerosol pretreatment (cm3) )(Particle concentration before aerosol pretreatment (cm3) ) 100

when integrated with PCC technology for a 550 MWe supercritical coal-fired power plant without a baghouse

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Page 33: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Decision Points and Success Criteria

23

Decision Point Date Success Criteria

Equipment procurement and fabrication of both aerosol pretreatment systems and components for installation

11302018 bull Successful completion of designs HAZOPsafety reviews and engineering documents that have been accepted by host site and reviewed by NETL

bull Update of costs based on vendor quotes and cost proposal within budget

bull Preliminary parametric test matrix in accordance with FOA guidelines and agreement with NETL

Installation of aerosol pretreatment systems on site

08302019 bull Host site is prepared and ready to receive aerosol pretreatment systems for installation

Handover to testing team 11292019 bull Successful completion of commissioning activities

bull Close-out of action items related to construction and installation from HAZOPS and safety reviews

Start of testing phase 12022019 bull Finalization of a test matrix for the parametric testing campaign with minimal changes from preliminary test plan and agreement with NETL

bull Coal flue gas availability from host site Project closeout 11302020 bull Successful demonstration of test objectives

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Page 34: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Technical Project Risks and Mitigation Strategies

24

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Technical Risks

Material Compatibility Low Medium

bull Flue gas composition and analysis will be used as part of the design basis Material compatibility with corrosive contaminants in the flue gas can be addressed by host site and Linde Engineering experience with flue gas handling

Waste Handling Low Medium

bull Batch analysis of flue gas condensate and other liquid waste streams for regulatory compliance before disposal

bull Treated flue gas will be sent back to the Abbott power plant stack for monitoring before exhaust

bull Solid waste (flue gas particles) is expected to be low

Flue gas aerosol variability Medium Mediumbull The aerosol control methods being tested are expected to

work over wide ranges of aerosol particle concentrations and size distributions

Plugging process equipment Low Medium

bull The aerosol particle concentration in the Abbott flue gas has been measured The design and operation of all equipment components for each aerosol control module will be sufficient to prevent plugging based on these measurements and Linde Engineering experience with similar systems

Flue gas condition variability affecting aerosol measurements Low Medium

bull Online flue gas analysis (temperature composition pressure humidity etc) during testing team experience handling various flue gas qualities

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Page 35: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Resource amp Project Management Risks and Mitigation Strategies

25

Description of Risk Probability Impact Risk Management Mitigation and Response Strategies

Resource Risks

Flue gas and utility non-availability from power plant Medium High

bull Availability of required utilities will be confirmed with the host site and will be included as part of the design basis Power plant schedule will be confirmed prior to installation decision

Unavailability of operators and key individuals with experience and know-how Low Medium

bull Commitment from all participants to make project successful

bull Management of all team membersrsquo availability and schedule through resource planning

bull Team members have overlapping skills and knowledge and substitutions are possible

Project cost overruns Low Highbull Clear scope definition and specifications sent to vendors

and subcontractors for pricing suitable scope management and limit change orders

Equipmentmodule fabrication delay Low Medium

bull Project schedule includes contingency for delays in procurement or fabrication

bull Team will select reputable suppliers and obtain firm commitments during purchase order process

Project Management RisksPoor communication among team members Low Medium bull Maintain communication on a regular basis to align team

on decision making

Conflicts among team members Low Mediumbull Team members have existing relationships from

participation in prior projects and have worked well together in the past

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Page 36: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Progress and Current Project Status

Budget Period 1

26

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Page 37: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

27

Project Progress Status of Key Project Milestones (Budget Period 1)

Budget Period 1 (June 1 2018 ndash November 30 2018)

Completed

mdash Submit updated project management plan (06292018) radic

mdash Conduct kick-off meeting with DOE-NETL (07272018) radic

In Progress (planned completion by 11302018)

mdash Review and modeling effort of aerosol-driven amine loss mechanisms

mdash Design engineering and cost analysis for pilot skid

mdash Preliminary test plan drafted

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Page 38: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

Budget Period 2 (December 2018 ndash November 2019)

mdash Complete fabrication and procurement of aerosol pretreatment systems and components for installation (08302019)

mdash Complete site installation and commissioning of aerosol pretreatment systems ensure both systems are ready for testing (11292019)

Budget Period 3 (December 2019 ndash November 2020)

mdash Complete parametric testing of both aerosol pretreatment systems (05012020)

mdash Complete technology benchmarking and analysis close-out report based on test results (11302020) complete comparison against innovation targets and other state-of-the-art aerosol mitigation technologies found in literature (11302020)

mdash Dismantling and removal of test equipment and platform (11302020)

28

Key Project Milestones (Budget Periods 2 and 3) amp Future Plans

Future plans

Further scale-up of optimized aerosol pretreatment systems to be integrated with large-scale or demonstration PCC plants amp economic analysis to accurately understand cost implications when incorporated with PCC technology

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29
Page 39: Flue Gas Aerosol Pretreatment Technologies to …...2018/08/16  · 1 Flue Gas Aerosol Pretreatment Technologies to Minimize Post-Combustion CO 2 Capture (PCC) Solvent Losses DOE funding

29

Thank you for your attention

Project DE-FE00315922018 NETL CO2 Capture Technology MeetingDevin Bostick Linde LLCAugust 16 2018Pittsburgh PA

  • Slide Number 1
  • Acknowledgement and Disclaimer
  • ProjectOverview
  • Overview of The Linde Group
  • Linde has extensive experience in CO2 capture amp handling
  • Project Objectives
  • Project Scope Timeline amp Milestones
  • Project Participants
  • Project Budget DOE Funding and Cost Share
  • Technology Development
  • Rationale reducing aerosol-driven amine losses from solvent-based PCC technology enables its broader commercial deployment
  • Aerosol particle formation during coal combustion
  • Theory and mechanisms for aerosol-driven amine losses from PCC plant absorbers1
  • Benefits of aerosol particle reduction
  • Methods to reduce aerosol-driven solvent losses Flue gas aerosol pretreatment provides optimum solution1
  • High velocity water spray-based aerosol pretreatment technologyDeveloped by RWE amp tested in Niederaussem Germany at lignite-fired coal power plant
  • Advanced ESP-based aerosol pretreatment technologyDeveloped by Washington University in St Louis (WUSTL) and tested at NCCC in Wilsonville AL on 65 slpm flue gas sample
  • Economic amp technical advantages and potential challenges of each technology
  • Technical Approach
  • Pilot host site Abbott Power Plant at UIUC in Champaign IL
  • Preliminary Pilot Skid Layout at Abbott Host Site
  • Pilot Testing Innovation Targets
  • Decision Points and Success Criteria
  • Technical Project Risks and Mitigation Strategies
  • Resource amp Project Management Risks and Mitigation Strategies
  • Progress and Current Project Status
  • Project Progress Status of Key Project Milestones (Budget Period 1)
  • Key Project Milestones (Budget Periods 2 and 3) amp Future Plans
  • Slide Number 29

Recommended