+ All Categories
Home > Documents > Fluid Flow

Fluid Flow

Date post: 01-May-2017
Category:
Upload: jaffna
View: 233 times
Download: 2 times
Share this document with a friend
76
Chapter 1: Fluid Flow Rules of Thumb for Chemical Engineers, 5th Edition by Stephen Hall This Excel workbook includes Visual Basic for Application function subroutines. Macros must be enabled for them to work. The following Text Boxes contain the syntax for the functions. Copy them to the worksheet where you want to use the functions for ready reference. Function Subroutines in SI Units ChemEng Software sells an Excel template called PIPESIZE. www.chemengsoftware.com Function NReSI(W, mu, d, Optional ro, Optional Tin, Optional Mw, Optional p) ' W = Flowrate in kg/h ' mu = Viscosity in mPa-s ' d = PipeID in mm ' ro = density in kg/m3 (required for liquid) ' Tin = temperature, deg C (required for gas) - default 20 deg C ' Mw = molecular weight (required for gas) - default 29 ' p = pressure, kPa (required for gas) - default 1000 kPa Function FrictionSI(epsilon, NRe, d) ' epsilon = Surface roughness is in units m ' d = PipeID is in units mm Function PDSI(W, Pin, Pout, d, L, f, Optional Density, Optional Tin, Optional Mw, Optional Gamma, Optional Isothermal) ' Pressure Drop due to friction in a round pipe (adiabatic for compressible flow) ' with the following arguments ' Specify two of the following three; function will compute the third ' W = mass flow rate, kg/h ' Pin = inlet, or upstream, pressure, kPa ' Pout = outlet, or downstream pressure, kPa ' Pipe properties ' d = pipe diameter, mm ' L = pipe length, m ' f = Darcy friction factor ' Fluid properties ' Density (optional) -- specify for liquids, kg/m3 ' Tin (optional) -- specify for gas, inlet temperature, deg C (default to 20) ' Mw (optional) -- specify for gas, molecular weight (default to 29 for air) ' Gamma (optional) -- specify for gas, ratio of Cp/Cv (default to 1.4) ' Isothermal (optional) -- any value results in isothermal compressible calc, if missing then adiabatic calc
Transcript
Page 1: Fluid Flow

Chapter 1: Fluid Flow

Rules of Thumb for Chemical Engineers, 5th Edition

by Stephen Hall

This Excel workbook includes Visual Basic for Application function subroutines.

Macros must be enabled for them to work.

The following Text Boxes contain the syntax for the functions.

Copy them to the worksheet where you want to use the functions for ready reference.

Function Subroutines in SI Units

ChemEng Software sells an Excel template called PIPESIZE.

www.chemengsoftware.com

Function NReSI(W, mu, d, Optional ro, Optional Tin, Optional Mw, Optional p) ' W = Flowrate in kg/h ' mu = Viscosity in mPa-s ' d = PipeID in mm ' ro = density in kg/m3 (required for liquid) ' Tin = temperature, deg C (required for gas) - default 20 deg C ' Mw = molecular weight (required for gas) - default 29 ' p = pressure, kPa (required for gas) - default 1000 kPa

Function FrictionSI(epsilon, NRe, d) ' epsilon = Surface roughness is in units m ' d = PipeID is in units mm

Function PDSI(W, Pin, Pout, d, L, f, Optional Density, Optional Tin, Optional Mw, Optional Gamma, Optional Isothermal) ' Pressure Drop due to friction in a round pipe (adiabatic for compressible flow) ' with the following arguments ' Specify two of the following three; function will compute the third ' W = mass flow rate, kg/h ' Pin = inlet, or upstream, pressure, kPa ' Pout = outlet, or downstream pressure, kPa ' Pipe properties ' d = pipe diameter, mm ' L = pipe length, m ' f = Darcy friction factor ' Fluid properties ' Density (optional) -- specify for liquids, kg/m3 ' Tin (optional) -- specify for gas, inlet temperature, deg C (default to 20) ' Mw (optional) -- specify for gas, molecular weight (default to 29 for air) ' Gamma (optional) -- specify for gas, ratio of Cp/Cv (default to 1.4) ' Isothermal (optional) -- any value results in isothermal compressible calc, if missing then adiabatic calc

Function NReUS' W = Flowrate in lb/h' mu = Viscosity in cP' d = PipeID in inches' ro = density in lb/ft3 (required for liquid)' Tin = temperature, deg F (required for gas) ' Mw = molecular weight (required for gas) ' p = pressure, psia (required for gas)

Function FrictionUS' epsilon = Surface roughness is in units feet' d = PipeID is in units inches

Function PDUS' Pressure Drop due to friction in a round pipe (adiabatic or isothermal for compressible flow)' with the following arguments' Specify two of the following three; function will compute the third' W = mass flow rate, lb/hr' Pin = inlet, or upstream, pressure, psia' Pout = outlet, or downstream pressure, psia' Pipe properties' d = pipe diameter, inches' L = pipe length, feet' f = Darcy friction factor' Fluid properties' Density (optional) ' Tin (optional) ' Mw (optional) ' Gamma (optional) ' Isothermal (optional)

Page 2: Fluid Flow

PIPESIZE sizes pipes for gases and liquids. It includes a database of properties for piping materials, fluids,

roughness values, and recommended velocities. Order on-line or by telephone, 24-h/d; credit cards accepted.

Page 3: Fluid Flow

Function Subroutines in US Units

Function NReUS(W, mu, d, Optional ro, Optional Tin, Optional Mw, Optional p) ' W = Flowrate in lb/h ' mu = Viscosity in cP ' d = PipeID in inches ' ro = density in lb/ft3 (required for liquid) ' Tin = temperature, deg F (required for gas) - default 60 ' Mw = molecular weight (required for gas) - default 29 ' p = pressure, psia (required for gas) - default 115

Function FrictionUS(epsilon, NRe, d) ' epsilon = Surface roughness is in units feet ' d = PipeID is in units inches

Function PDUS(W, Pin, Pout, d, L, f, Optional Density, Optional Tin, Optional Mw, Optional Gamma, Optional Isothermal)' Pressure Drop due to friction in a round pipe (adiabatic or isothermal for compressible flow) ' with the following arguments ' Specify two of the following three; function will compute the third ' W = mass flow rate, lb/hr ' Pin = inlet, or upstream, pressure, psia ' Pout = outlet, or downstream pressure, psia ' Pipe properties ' d = pipe diameter, inches ' L = pipe length, feet ' f = Darcy friction factor ' Fluid properties ' Density (optional) -- specify for liquids, lb/ft3 ' Tin (optional) -- specify for gas, inlet temperature, deg F (default to 60) ' Mw (optional) -- specify for gas, molecular weight (default to 29 for air) ' Gamma (optional) -- specify for gas, ratio of Cp/Cv (default to 1.4) ' Isothermal (optional) -- any value results in isothermal compressible calc, if missing then adiabatic calc

Page 4: Fluid Flow
Page 5: Fluid Flow

(W, Pin, Pout, d, L, f, Optional Density, Optional Tin, Optional Mw, Optional Gamma, Optional Isothermal)

Page 6: Fluid Flow

SI Units US Units

Inputs

Flow Rate kg/h 10,000.0 lb/h 22,000.0

Viscosity mPa-s 1.2 cP 1.2

Pipe Diameter mm 38.1 in 1.5

Density kg/m3 961.5 lb/ft3 60.0

Output

Delta P Bar/100 m 1.83 psi/100 ft 8.09

Problem Statement: Calculate pressure drop per 100 m or 100 ft using the

Page 7: Fluid Flow

Inputs Liquid Gas

Parameter Units Example 1 Example 2

Mass Flow Rate kg/h 10,000.0 1,200.0

Viscosity mPa-s 1.2 0.011

Pipe Diameter mm 38.1 26.6

Density kg/m3 961.0

Temperature C 40.0

Molecular Weight kg/kgmol 16.04

Pressure kPa, absolute 2,200.0

Output

Reynolds Number dimensionless 77,357.3 1,450,489

Problem Statement: Calculate Reynolds Number using VBA function call.

=NReSI(D8,D9,D10,D11) =NReSI(E8,E9,E10,,E12,E13,E14)

Page 8: Fluid Flow

US Customary Units Liquid Gas

Units Example 1a Example 2a

lb/h 22,000.0 2,645.0

cP 1.2 0.011

in 1.5 1.047

lb/ft3 60.0

F 104.0

lb/lbmol 16.04

psia 319.0

77,197.9 1,450,580

=NReUS(I8,I9,I10,I11) =NReUS(J8,J9,J10,,J12,J13,J14)

Page 9: Fluid Flow

Inputs Liquid

Parameter Units Example 3

Mass Flow Rate kg/h 290.0

Viscosity mPa-s 1.2

Pipe Diameter mm 38.1

Density kg/m3 961.0

Temperature C

Molecular Weight kg/kgmol

Pressure kPa, absolute

Pipe Roughness m 0.0000457

Output

Reynolds Number dimensionless 2,243

Darcy Friction Factor dimensionless 0.0302

Problem Statement: Calculate Darcy Friction Factor using VBA function call.

=FrictionSI(D16,D19,D10)

Page 10: Fluid Flow

US Customary Units Liquid

Units Example 3a

lb/h 22,000.0

cP 1.2

in 1.5

lb/ft3 60.0

F

lb/lbmol

psia

ft 0.00015

77,198

0.0236

=FrictionUS(I16,I19,I10)

Page 11: Fluid Flow

Inputs Liquid Gas

Parameter Units Example 4 Example 5

Mass Flow Rate kg/h 10,000.0 1,200.0

Pressure in (upsteam) kPa, absolute 700.0 2,200.0

Viscosity mPa-s 1.2 0.011

Pipe Diameter mm 38.1 26.6

Equivalent Length of Pipe m 40.0 60.0

Density kg/m3 961.0

Temperature C 40.0

Molecular Weight kg/kgmol 16.04

Cp/Cv 1.35

Pipe Roughness m 0.0000457 0.0000457

Output

Reynolds Number dimensionless 77,357 1,450,489

Darcy Friction Factor dimensionless 0.0236 0.0227

Pressure Out, given Mass Flow and Pressure in 623.6 1,246.3

Problem Statement: Calculate Pressure Drop due to Friction

=PDSI(D8,D9,,D12,D13,D24,D14)

=PDSI(E8,E9,,E12,E13,E24,,E15,E16,E17)

Page 12: Fluid Flow

US Customary Units Liquid Gas

Units Example 4a Example 5a

lb/h 22,000.0 3,080.0

psia 101.5 319.0

cP 1.2 0.011

in 1.5 1.047

ft 131.0 197.0

lb/ft3 60.0

F 104.0

lb/lbmol 16.04

1.35

ft 0.00015 0.00015

77,197.9 1,689,145

0.0236 0.0227

90.5 171.3

=PDUS(I8,I9,,I12,I13,I24,I14)

=PDUS(J8,J9,,J12,J13,J24,,J15,J16,J17)

Page 13: Fluid Flow

Inputs Gas

Parameter Units Example 5

GUESS Mass Flow Rate kg/h 1200

Pressure in (upsteam) kPa, absolute 2200

Pressure out (downstream) 1340

Viscosity mPa-s 0.011

Pipe Diameter mm 26.6

Equivalent Length of Pipe m 60

Temperature C 40

Molecular Weight kg/kgmol 16.04

Cp/Cv 1.35

Pipe Roughness m 0.0000457

Output

Reynolds Number dimensionless 1,450,489

Darcy Friction Factor dimensionless 0.0227

Mass Flow, given Pressure in and out 1,152.5

Difference between GUESS and calculated rate, E8-E26 47.5

Problem Statement: Calculate Flow Rate given upstream and downstream pressures

=PDSI( ,E9,E10,E12,E13,E24,E14,E15,E16,E17)

Use Goal Seek to find a value for the Guessed flow rate (Cell E8) that equals the calculated flow rate (Cell E26). Notice that Reynolds Number is calculated using the Guess.

Page 14: Fluid Flow

US Customary Units Gas

Units Example 5a

lb/h 3,080.4

psia 319.0

psia 116

cP 0.011

in 1.047

ft 197.0

F 104.0

lb/lbmol 16.04

1.35

ft 0.00015

1,689,382

0.0227

3,015.6

64.8

Use Goal Seek to find a value for the Guessed flow rate (Cell E8) that equals the calculated flow rate (Cell E26). Notice that Reynolds Number is calculated using the Guess.

=PDUS( ,L9,L10,L12,L13,L24,,L15,L16,L17)

Page 15: Fluid Flow

Inputs Liquid Gas

Parameter Units Example 4 Example 5

Mass Flow Rate kg/h 10,000.0 1,200.0

Pressure in (upsteam) kPa, absolute 700.0 2,200.0

Viscosity mPa-s 12.0 0.011

Pipe Diameter mm 50.0 26.6

Length of Pipe m 38.1 60.0

Density kg/m3 961.0 13.6

Temperature C 40.0

Molecular Weight kg/kgmol 16.04

Cp/Cv 1.35

Pipe Roughness m 0.0000457 0.0000457

Fittings Quantity

90 deg, welded r/D = 1 6

TEE, through branch (as elbow) 2

Plug valve, straight 2

Swing check, Vmin = 35 ro^0.5 1

Output

Reynolds Number dimensionless 5,895 1,450,489

Darcy Friction Factor dimensionless 0.0373 0.0227

Pressure Drop, given Mass Flow and Pressure in 29.6 953.7

Equivalent length of fittings m 14.80 7.87

Pressure Drop, equiv length method 41.08 1,018.93

Mass flux kg/m2-s 1,414.71 599.83

Velocity m/s 1.47 44.25

Fitting pressure loss kg/m2 937.50 59,320.48

kPa 9.19 581.34

Pressure Drop, 3-K method 38.77 1,535.02

Pressure Drop, Crane method 35.51 1,029.16

Problem Statement: Compare pressure drop calculations using equivalent length and K-value methods for fittings.

Page 16: Fluid Flow

Eq L 3-K Method

total Kf

Ex 4 Ex 5

(L/D)eq Km Ki Kd Total L/D

20 800 0.091 4 120 3.14 24.00

20 800 0.28 4 40 2.66 8.00

18 300 0.084 3.9 36 0.80 7.80

100 1500 0.46 4 100 2.22 4.00

296 8.82 43.80

Pressure Drop, Pa

Flow Regime Equiv L Crane K 3-K

50 Laminar 0.060 0.043 0.051

100 Laminar 0.120 0.087 0.102

500 Laminar 0.598 0.446 0.525

1000 Laminar 1.196 0.921 1.089

2000 Laminar 2.392 1.960 2.331

10000 Turbulent 41.079 35.508 38.774

30000 Turbulent 284.129 257.934 278.315

50000 Turbulent 716.261 663.917 715.526

70000 Turbulent 1,328.928 1,247.301 1,344.249

Page 17: Fluid Flow

US Customary UnitsLiquid

Units Example 4a

lb/h 63,000.0

psia 101.5

cP 10.0

in 3.1 3 nominal size

ft 31.5

lb/ft3 112.5

F 127.0

lb/lbmol

Crane

ft Crane K ft 0.00015

0.019213 2.31

0.019213 0.77 12,970.0

0.019213 0.69

0.019213 1.92 0.03003

5.69

Delta P, pipe 0.413

Velocity 3.03

f, full turbulence 0.01731498

Leq Crane K 3-K

90 Ell 2 10.23 0.692599 0.828956

Branch tee 1 5.11 0.3463 1.147211

Swing check 1 25.57 1.731498 1.899022

Plug valve 1 4.60 0.31167 0.342748

3 x 1 reducer 1 822.68 57.92 57.92

868.19 61.00 62.14

Delta P, comparison 11.78 7.22 7.34

0.61 (0.02) 1

Page 18: Fluid Flow

Inputs Liquid

Parameter Units Example 6

Mass Flow Rate kg/h 10,000.0

P0 Pressure in (upsteam) kPa, absolute 700.0

Viscosity mPa-s 1.2

Pipe Diameter mm 38.1

Equivalent Length of Pipe m 60.0

Density kg/m3 961.0

Temperature C

Molecular Weight kg/kgmol

Cp/Cv

Pipe Roughness m 0.0000457

Orifice Diameter mm 19.1

Output

Reynolds Number dimensionless 77,357

Darcy Friction Factor dimensionless 0.0236

P1 Pressure out (downstream) kPa, absolute 585.4

V1 Velocity through orifice m/s 10.1

Sonic velocity m/s

β Orifice diameter ratio dimensionless 0.5

C Orifice Coefficient of Discharge dimensionless 0.61

r

Y Expansion factor dimensionless 1.0

P2 Orifice discharge pressure kPa, absolute 452.6

P3 Permanent Loss kPa, absolute 485.8

DeltaP P1-P3 kPa 99.61

K flow coefficient dimensionless 29.46

Equivalent Length m 56.12

Compare equivalent length ratio to pressure drop ratio

Pipe L / Orifice L 1.07

Pipe Pressure Drop / Orifice Pressure Drop 1.15

Problem Statement: Calculate Permanent Pressure Drop Through Orifice

Pipe Header at 700 kPa absolute

60 m, 38.1 mm ID

P0

Result

Close enough, although not perfect

Page 19: Fluid Flow

60 m, 38.1 mm ID

RO

P1

P2

P3

Close enough, although not perfect

Page 20: Fluid Flow

Inputs Steam-Water at Saturated Conditions Water

Total Mass Flux kg/m2-s 1,356.0

Quality Mass Fraction Vapor 0.5

Inlet Pressure Bar 1.01

Pipe Diameter mm 5.0

Equivalent Length of Pipe m 1.0

Pipe Roughness m 0.0000015 (Smooth Tube = 0.0000015 m)

Calculations / Property Lookup

Parameter Units Total as Liq Vapor Props Mixture

Cross-sectional area m2 1.9635E-05

Total Mass Flow Rate kg/h 95.8

Inlet Pressure kPa 101.0

Temperature C 97.4

Viscosity mPa-s 0.28 0.012 0.023

Molecular Weight kg/kgmol 18.0

Density kg/m3 998.7 0.6 1.2

Cp/Cv 1.31

Output

Reynolds Number dimensionless 24,014 294,943

Darcy Friction Factor dimensionless 0.0255 0.0171

Pressure Drop, given Mass Flow and Pressure in 4.69 2,664.10

Liquid PD Multiplier phi 23.83

phi^2 567.65

Pressure Drop, 2-Phase Flow kPA 2,664.10

0.2

0.3

0.6

0.8

Problem Statement: Calculate Pressure Drop due to Friction for Water-Steam Mixture

1000

10000

1.01 Bar

Page 21: Fluid Flow

1

Quality

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1

10

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1.01 Bar

6.89 Bar

34.4 Bar

68.9 Bar

103 Bar

138 Bar

172 Bar

207 Bar

221.2 Bar

100

150

200

250

G=339

G=1356

G=5424

Page 22: Fluid Flow

Quality

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

50

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5

10

15

20

25

Awad

Janssen

Page 23: Fluid Flow

Property Correlations for all correlations, t = deg C

Vapor Pressure: log(mm Hg) = A - B / (t+C) Liquid Viscosity: ln(cP) = A + B / (C+t)

A B C

R12 6.99 918.17 253.38

R22 7.04 850.10 245.18

Water 8.31 1,986.50 268.74

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Page 24: Fluid Flow

Reference: IPC2004-721

Comparison Case

R12

2,000.0

0.9

6.00

50.0

1.0

(Smooth Tube = 0.0000015 m) 0.0000015 (Smooth Tube = 0.0000015 m)

Total as Liq Vapor Props Mixture

0.001963495

14,137.2

600.0

22.0

0.20 0.013 0.015

120.9

1,325.3 29.6 32.8

1.17

488,377 6,864,651

0.0136 0.0103

0.41

5.55

30.75

12.63

Phi^2

Quality 1.01

0 1

0.03 46.41645292

0.05 73.3322877

0.08 111.1844284

0.11 147.185195

0.15 193.407243

0.2 249.3652528

0.3 357.7600186

0.6 670.8147204

0.8 875.2441564

User inputs are in RED Temperature, viscosity, and density are determined from correlation parameters in lookup table (down at the bottom of the worksheet). These are affected by the inlet pressure variable. It is assumed that the temperature is the saturation temperature at the pressure. Calculations for Re, f, and pressure drop are performed in VBA subroutines -- subroutines are correct. Clicking on the "Remacro that runs the calculation on various combinations of inputs, based on the charts in IPC2004 It seems like the only way to get a straight line (per the reference) for Figure 7 (Row 123) is to do the friction factor calculations once, then recalculate phi for a range of qualities (0 to 1) without recomputing the mixture viscosity and density for each quality.

Page 25: Fluid Flow

1 1078.089605

Phi^2

Quality 339

0 1

0.1 21.65342509

0.2 38.38506949

0.3 53.69737283

0.4 68.23836666

0.5 82.28544802

0.6 95.98612791

0.7 109.4292805

0.8 122.6730181

0.9 135.7576073

1 148.7121853

Page 26: Fluid Flow

Phi^2

Quality 2278

0 1

0.1 3.225019566

0.2 5.336625128

0.3 7.386603283

0.4 9.398360896

0.5 11.38436636

0.6 13.35199619

0.7 15.30594741

0.8 17.24937895

0.9 19.1845074

1 21.11294176

Page 27: Fluid Flow

Liquid Viscosity: ln(cP) = A + B / (C+t) Vapor Viscosity: ln(cP) = A + B / (C+t) Density: kg/m3 = m t + b

A B C

(8.77) 5,134.3 693.01 (9.00) (4,611.86) (1,008.87)

20.79 46,143.5 (2,064.89) (3.47) (278.74) 286.66

4.34 6,927.32 (1,332.33) (4.92) (200.49) (502.57)

Page 28: Fluid Flow

6.89 34.4 68.9 103 138 172 207 221.2

1 1 1 1 1 1 1 1

8.224628681 2.48118952 1.724209 1.471297363 1.341214662 1.26543664 1.21338118 1.196944

12.64834922 3.42330677 2.1931 1.779418297 1.565753054 1.44090455 1.35493938 1.327755

18.93805921 4.78780781 2.879825 2.233848908 1.898624121 1.70203456 1.56627859 1.52327

24.95216539 6.10832883 3.550296 2.68027314 2.22725028 1.96085338 1.77647153 1.717971

32.68889358 7.81877575 4.424186 3.265040944 2.659601824 2.302653 2.05503895 1.976355

42.05776424 9.89799524 5.491334 3.982109516 3.191936121 2.72512011 2.40069759 2.297472

60.18602161 13.9265317 7.565445 5.380827356 4.23461845 3.55633082 3.08428571 2.933941

112.3770188 25.4933944 13.52198 9.405154978 7.245188894 5.96923649 5.08469657 4.804169

146.3711257 32.9985878 17.37767 12.00665506 9.191022614 7.53131397 6.38577582 6.024389

User inputs are in RED

Temperature, viscosity, and density are determined from correlation parameters in lookup table (down at the bottom of the worksheet). These are affected by the inlet pressure variable. It is assumed that the temperature is the saturation temperature at the pressure.

Calculations for Re, f, and pressure drop are performed in VBA subroutines -- other worksheets in this workbook verify that those subroutines are correct.

Clicking on the "Re-Run All Inputs" button at cell L35 runs a macro that runs the calculation on various combinations of inputs, based on the charts in IPC2004-721.

It seems like the only way to get a straight line (per the reference) for Figure 7 (Row 123) is to do the friction factor calculations once, then recalculate phi for a range of qualities (0 to 1) without recomputing the mixture viscosity and density for each quality.

Page 29: Fluid Flow

180.0619704 40.4208391 21.18376 14.57066284 11.10631356 9.06799534 7.66705922 7.227597

Sonic Velocity

489.498723 m/s

Pipe flow area 1.9635E-05 m2

Velocity, m/s

1356 5424 Mass Flux Density 339 1356 5424 kg/m2-s

1 1 998.66 0.34 1.36 5.43

22.97164511 24.5221439 5.87 57.75 231.02 924.06 YELLOW = > Mach 0.3

42.05776424 46.4192905 2.94 115.17 460.67 1,842.69 RED > Mach 1

60.18602161 67.8640232 1.96 172.58 690.33 2,761.33

77.83538138 89.1071994 1.47 230.00 919.99 3,679.96

95.19986265 110.239906 1.18 287.41 1,149.65 4,598.59

112.3770188 131.304262 0.98 344.83 1,379.30 5,517.22

129.4225584 152.322783 0.84 402.24 1,608.96 6,435.85

146.3711257 173.308745 0.74 459.66 1,838.62 7,354.48

163.2456352 194.270555 0.66 517.07 2,068.28 8,273.11

180.0619704 215.213833 0.59 574.48 2,297.94 9,191.74

M

TRZU

max

Page 30: Fluid Flow

Mass Flux

1

3

5.5

7

8

9.5

11.5

Page 31: Fluid Flow

Density: kg/m3 = m t + b Density: lb/ft3 = m t + b Molecular Cp/Cv

m b m b Weight

(3.09) 1,393.40 (0.19) 86.99 120.91 1.170

(3.20) 1,279.33 (0.20) 79.87 86.48 1.250

(1.56) 1,150.42 (0.06) 64.24 18.00 1.310

Page 32: Fluid Flow
Page 33: Fluid Flow

YELLOW = > Mach 0.3

RED > Mach 1

Page 34: Fluid Flow

Inputs Steam-Water at Saturated Conditions R12

Total Mass Flux kg/m2-s 100.0

Quality Mass Fraction Vapor 0.5

Inlet Pressure Bar 9.40

Pipe Diameter mm 10.0

Equivalent Length of Pipe m 1.0

Pipe Roughness m 0.0000015 (Smooth Tube = 0.0000015 m)

Calculations / Property Lookup

Parameter Units Liquid Vapor

Cross-sectional area m2 7.85398E-05

Total Mass Flow Rate kg/h 14.1 14.1

Inlet Pressure kPa 940.0 940.0

Temperature C 39.2 39.16

Viscosity mPa-s 0.17 0.014

Molecular Weight kg/kgmol 120.9 120.9

Density kg/m3 1,272.5 43.8

Cp/Cv 1.17

Velocity (assuming avg density) m/s 1.18

Critical Velocity m/s 158.70

Output

Reynolds Number dimensionless 2,888 34,868

Darcy Friction Factor dimensionless 0.0424 0.0231

Pressure Drop, given Mass Flow and Pressure in 0.004 0.07

Lower Bound 0.13

Upper Bound 0.34

Average kPa 0.23

= Pa 231.83

Problem Statement: Calculate Pressure Drop due to Friction for R12 at Saturation

100

1,000

10,000

100,000

fric

tio

na

l p

ressu

re g

rad

ien

t (P

a/m

)

Page 35: Fluid Flow

1

10

10 100 1000

fric

tio

na

l p

ressu

re g

rad

ien

t (P

a/m

)

mass flux (kg/m2-s)

Page 36: Fluid Flow

Reference: IMECE2005-81493

Comparison Case

R12

2,000.0

0.9

6.00

50.0

1.0

(Smooth Tube = 0.0000015 m) 0.0000015 (Smooth Tube = 0.0000015 m)

Liquid Vapor

0.001963495

1,413.7 12,723.5

600.0 600.0

22.0 22.05

0.20 0.013

120.9 120.9

1,325.3 29.6

1.31

61.05

163.26

48,838 6,815,813

0.0210 0.0103

0.006 15.49

7.67

12.94

10.30

Quality 0.5

Mass Flux Lower

20 8

80 86

200 425

400 1,431

600 2,909

1000 7,112

Page 37: Fluid Flow
Page 38: Fluid Flow

Sonic 158.7016

Average Upper Density Velocity, m/s

14 20 84.6277 0.236329

157 228 0.945317

780 1,134 2.363292

2,623 3,815 4.726585

5,333 7,756 7.089877

13,037 18,962 11.81646

Page 39: Fluid Flow

Inputs Steam-Water at Saturated Conditions R12

Total Mass Flux kg/m2-s 100.0

Quality Mass Fraction Vapor 0.5

Inlet Pressure Bar 9.40

Pipe Diameter mm 10.0

Equivalent Length of Pipe m 1.0

Pipe Roughness m 0.0000015 (Smooth Tube = 0.0000015 m)

Calculations / Property Lookup

Parameter Units Liquid Vapor

Cross-sectional area m2 7.85398E-05

Total Mass Flow Rate kg/h 14.1 14.1

Inlet Pressure kPa 940.0 940.0

Temperature C 39.2 39.16

Viscosity mPa-s 0.17 0.014

Molecular Weight kg/kgmol 120.9 120.9

Density kg/m3 1,272.5 43.8

Cp/Cv 1.17

Output

Reynolds Number dimensionless 2,888 34,868

Darcy Friction Factor dimensionless 0.0424 0.0231

Pressure Drop, given Mass Flow and Pressure in 0.00416 0.0710

dp/dz Pa/m 4.16273 65.8781

Fitting parameter p 0.8

Total pressure drop kPa/m 75.038706

Problem Statement: Calculate Pressure Drop due to Friction for R12 at Saturation

Page 40: Fluid Flow

Reference: IMECE2004-61410

water

Comparison Case Reference article, Figure 1

R12 Water-Air

2,000.0 591.0

0.9 0.035

6.00 1.30

50.0 27.0

1.0 1.0

(Smooth Tube = 0.0000015 m) 0.0000015 (Smooth Tube = 0.0000015 m) 0.0000015 (Smooth Tube = 0.0000015 m)

Liquid Vapor Liquid Vapor

0.001963495 0.00057256

1,413.7 12,723.5 1,197.6 20.6

600.0 600.0 130.0 130.0

22.0 22.05 20.0 20.00

0.20 0.013 0.39 0.020

120.9 120.9 18.0 29.0

1,325.3 29.6 1,119.3 1.55

1.31 1.40

48,838 ######## 39,913 13,500

0.0210 0.0103 0.0221 0.0287

0.006 15.49 0.123 0.04

kPa/m 0.00634 11.3444 0.11882 0.1460

0.3 This method depends on fitting parameter, p 0.25 This method depends on fitting parameter, p

15.86 2.11

2,110.16

Page 41: Fluid Flow

Reference article, Figure 1

(Smooth Tube = 0.0000015 m)

This method depends on fitting parameter, p

Page 42: Fluid Flow

Inputs Steam-Water at Saturated Conditions water

Total Mass Flux kg/m2-s 110.6

Quality Mass Fraction Vapor 0.1

Inlet Pressure Bar 14.83

Pipe Diameter mm 38.1

Equivalent Length of Pipe m 30.5

Pipe Roughness m 0.0000457

Calculations / Property Lookup

Parameter Units Liquid Vapor

Cross-sectional area m2 0.001140092

Total Mass Flow Rate kg/h 392.7 61.3

Inlet Pressure kPa 1,482.8 1,482.8

Temperature C 197.7 197.70

Viscosity mPa-s 0.17 0.014

Molecular Weight kg/kgmol 18.0 18.0

Density kg/m3 842.4 6.8

Cp/Cv 1.40

Output

Reynolds Number dimensionless 21,198 40,346

Darcy Friction Factor dimensionless 0.0282 0.0255

Pressure Drop, given Mass Flow and Pressure in 0.123 0.33

Lockhart and Martinelli Method

X dimensionless 0.61

Phi-liquid dimensionless 29.38

Total Pressure Drop, 2-phase kPa 3.61

psi/100 ft 0.52 Branan: 0.49 psi/100 ft

Rukan: 0.28 psi/100 ft

100

100

100

100

Problem Statement: Calculate Pressure Drop due to Friction for Water-Steam Mixture

0.08

0.09

0.10

Comparison of Two-Phase Models R12, 6 Bar pressure, 100 kg/m2-s in 50 mm smooth pipe

Page 43: Fluid Flow

100

100

10

50

100

200

300

400

500

600

700

800

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

1000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

2000

5000

5000

5000

5000

5000

5000

5000

5000

5000

5000

5000

-

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pre

ssu

re D

rop

, kP

a p

er

m

Quality

-

20

40

60

80

100

120

140

160

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Pre

ssu

re D

rop

, kP

a p

er

m

Quality

Comparison of Two-Phase Models R12, 6 Bar pressure, 5000 kg/m2-s in 50 mm smooth pipe

Page 44: Fluid Flow
Page 45: Fluid Flow
Page 46: Fluid Flow

Reference: Branan, Rules of Thumb, 4th Edition

Comparison Case Wallis

R12

2,000.0

0.9

6.00

50.0

1.0

0.0000015

Liquid Vapor

0.001963495

1,413.7 12,723.5

600.0 600.0

22.0 22.05

0.20 0.013

120.9 120.9

1,325.3 29.6

1.31

48,838 6,815,813

0.0210 0.0103

0.006 11.34

0.02 Phi^2, lo 20.893051

3,771.04 Phi, lo 4.5708917

23.91 0.13

Mass Flux Quality Velocity Homog Split

100 0 0.075 0.00 0.00

100 0.1 0.406 0.01 0.01

100 0.2 0.737 0.01 0.02

100 0.3 1.068 0.02 0.03

100 0.4 1.399 0.02 0.03

100 0.5 1.729 0.03 0.04

100 0.6 2.060 0.03 0.05

100 0.7 2.391 0.04 0.05

100 0.8 2.722 0.04 0.05

Page 47: Fluid Flow

100 0.9 3.052 0.04 0.05

100 1 3.383 0.05

10 0.5 0.159 0.003 0.005

50 0.5 0.795 0.051 0.084

100 0.5 1.590 0.176 0.284

200 0.5 3.179 0.613 0.954

300 0.5 4.769 1.285 1.940

400 0.5 6.359 2.184 3.209

500 0.5 7.948 3.304 4.742

600 0.5 9.538 4.641 6.524

700 0.5 11.128 6.194 8.545

800 0.5 12.717 7.961 10.794

1000 0.5 15.897 12.133 15.951

1000 0 0.755 0 0

1000 0.1 4.062 1 1

1000 0.2 7.370 1 1

1000 0.3 10.678 1 2

1000 0.4 13.986 2 2

1000 0.5 17.294 2 2

1000 0.6 20.601 2 3

1000 0.7 23.909 3 3

1000 0.8 27.217 3 3

1000 0.9 30.525 3 3

1000 1 33.833 4

2000 0 1.509 0 0

2000 0.1 8.125 2 2

2000 0.2 14.740 3 4

2000 0.3 21.356 5 5

2000 0.4 27.972 6 6

2000 0.5 34.587 7 8

2000 0.6 41.203 9 9

2000 0.7 47.818 10 10

2000 0.8 54.434 11 10

2000 0.9 61.050 13 10

2000 1 67.665 14

5000 0 3.773 2 2

5000 0.1 20.312 11 11

5000 0.2 36.851 19 18

5000 0.3 53.390 28 25

5000 0.4 69.929 36 32

5000 0.5 86.468 44 38

5000 0.6 103.007 52 43

5000 0.7 119.546 60 48

5000 0.8 136.085 68 51

5000 0.9 152.624 76 51

5000 1 169.163

0.9 1

Homogeneous

Split

Asymptotic

Lockhart

0.9 1

Homogeneous

Split

Asymptotic

Lockhart

Page 48: Fluid Flow
Page 49: Fluid Flow
Page 50: Fluid Flow

Asymp Lockhart Fluid Inlet PressurePipe DiameterEquivalent Length of PipePipe Roughness

R12 6.00 50.0 1.0 0.0000015

0.01 0.02 R12 6.00 50.0 1.0 0.0000015

0.02 0.03 R12 6.00 50.0 1.0 0.0000015

0.03 0.04 R12 6.00 50.0 1.0 0.0000015

0.03 0.05 R12 6.00 50.0 1.0 0.0000015

0.04 0.06 R12 6.00 50.0 1.0 0.0000015

0.05 0.07 R12 6.00 50.0 1.0 0.0000015

0.05 0.08 R12 6.00 50.0 1.0 0.0000015

0.06 0.09 R12 6.00 50.0 1.0 0.0000015

Page 51: Fluid Flow

0.06 0.08 R12 6.00 50.0 1.0 0.0000015

R12 6.00 50.0 1.0 0.0000015

0.007 0.011 R22 9.10 10.0 1.0 0.0000015

0.076 0.124 R22 9.10 10.0 1.0 0.0000015

0.272 0.443 R22 9.10 10.0 1.0 0.0000015

0.940 1.527 R22 9.10 10.0 1.0 0.0000015

1.945 3.157 R22 9.10 10.0 1.0 0.0000015

3.273 5.311 R22 9.10 10.0 1.0 0.0000015

4.913 7.969 R22 9.10 10.0 1.0 0.0000015

6.859 11.123 R22 9.10 10.0 1.0 0.0000015

9.105 14.762 R22 9.10 10.0 1.0 0.0000015

11.648 18.882 R22 9.10 10.0 1.0 0.0000015

17.613 28.542 R22 9.10 10.0 1.0 0.0000015

R12 6.00 50.0 1.0 0.0000015

1 1 R12 6.00 50.0 1.0 0.0000015

1 2 R12 6.00 50.0 1.0 0.0000015

2 3 R12 6.00 50.0 1.0 0.0000015

2 4 R12 6.00 50.0 1.0 0.0000015

3 4 R12 6.00 50.0 1.0 0.0000015

3 5 R12 6.00 50.0 1.0 0.0000015

4 6 R12 6.00 50.0 1.0 0.0000015

4 6 R12 6.00 50.0 1.0 0.0000015

4 6 R12 6.00 50.0 1.0 0.0000015

R12 6.00 50.0 1.0 0.0000015

R12 6.00 50.0 1.0 0.0000015

2 4 R12 6.00 50.0 1.0 0.0000015

4 7 R12 6.00 50.0 1.0 0.0000015

6 10 R12 6.00 50.0 1.0 0.0000015

8 13 R12 6.00 50.0 1.0 0.0000015

10 16 R12 6.00 50.0 1.0 0.0000015

12 19 R12 6.00 50.0 1.0 0.0000015

14 22 R12 6.00 50.0 1.0 0.0000015

15 24 R12 6.00 50.0 1.0 0.0000015

16 24 R12 6.00 50.0 1.0 0.0000015

R12 6.00 50.0 1.0 0.0000015

R12 6.00 50.0 1.0 0.0000015

14 25 R12 6.00 50.0 1.0 0.0000015

24 41 R12 6.00 50.0 1.0 0.0000015

35 58 R12 6.00 50.0 1.0 0.0000015

46 76 R12 6.00 50.0 1.0 0.0000015

58 93 R12 6.00 50.0 1.0 0.0000015

69 111 R12 6.00 50.0 1.0 0.0000015

79 126 R12 6.00 50.0 1.0 0.0000015

88 138 R12 6.00 50.0 1.0 0.0000015

94 141 R12 6.00 50.0 1.0 0.0000015

R12 6.00 50.0 1.0 0.0000015

Page 52: Fluid Flow
Page 53: Fluid Flow
Page 54: Fluid Flow

Pipe Roughness

Page 55: Fluid Flow

Hashizume's Data

90 0.1

120 0.23

185 0.4

250 1

4

5

6

7

Fri

cti

on

al

Pre

ss

ure

Dro

p,

kP

a p

er

m

Comparison of TwoR12, 6 Bar pressure, 1000 kg/m2

Page 56: Fluid Flow

-

1

2

3

0 0.1 0.2 0.3

Fri

cti

on

al

Pre

ss

ure

Dro

p,

kP

a p

er

m

1.000

10.000

100.000

Pre

ss

ure

Dro

p,

kP

a p

er

m

Comparison of TwoR22, 9.1 Bar pressure, 0.5 Quality in 10 mm smooth tube

Page 57: Fluid Flow

0.001

0.010

0.100

1.000

10

Pre

ss

ure

Dro

p,

kP

a p

er

m

Page 58: Fluid Flow
Page 59: Fluid Flow

Comparison of Two-Phase Models R12, 6 Bar pressure, 1000 kg/m2-s in 50 mm smooth pipe

Page 60: Fluid Flow

0.4 0.5 0.6 0.7 0.8 0.9

Quality

Comparison of Two-Phase Models R22, 9.1 Bar pressure, 0.5 Quality in 10 mm smooth tube

Page 61: Fluid Flow

100

Mass Flux, kg/m2-s

Page 62: Fluid Flow
Page 63: Fluid Flow

Lockhart

Asymptotic

Split

Page 64: Fluid Flow

0.9 1

Split

Homogeneous

Lockhart

Page 65: Fluid Flow

1000

Lockhart

Asymptotic

Split

Homogenous

Hashizume's Data

Page 66: Fluid Flow

Inputs Steam-Water at Saturated Conditions Water

Total Mass Flux kg/m2-s 1,356.0

Quality Mass Fraction Vapor 0.1

Inlet Pressure Bar 6.00

Pipe Diameter mm 50.0

Equivalent Length of Pipe m 1.0

Pipe Roughness m 0.0000015 (Smooth Tube = 0.0000015 m)

Calculations / Property Lookup

Parameter Units Total as Liq Vapor Props Mixture

Cross-sectional area m2 0.001963495

Total Mass Flow Rate kg/h 9,585.0

Inlet Pressure kPa 600.0

Temperature C 158.3

Viscosity mPa-s 0.21 0.013 0.084

Molecular Weight kg/kgmol 18.0

Density kg/m3 903.7 3.0 29.2

Cp/Cv

Output

Reynolds Number dimensionless 321,257 807,573

Darcy Friction Factor dimensionless 0.0146 0.0127

Pressure Drop, given Mass Flow and Pressure in 0.30

Liquid PD Multiplier phi 1.86

phi^2 3.47

Pressure Drop, 2-Phase Flow kPA 0.55

Sonic Velocity

475.6

Pipe flow area 0.001963495

Velocity, m/s

Quality Density 5424 kg/m2-s

0 903.75 6.00

0.01 226.40 23.96 YELLOW = > Mach 0.3

0.02 129.41 41.91 RED > Mach 1

0.03 90.60 59.87

Problem Statement: Calculate Pressure Drop Through an Elbow for Different Steam Qualities

M

TRZU

max

Page 67: Fluid Flow

0.04 69.69 77.83

0.05 56.63 95.78

0.06 47.69 113.74

0.07 41.19 131.69

0.08 36.24 149.65

0.09 32.36 167.61

0.1 29.23 185.56

0.11 26.65 203.52

0.12 24.49 221.47

0.13 22.65 239.43

0.14 21.07 257.39

0.15 19.70 275.34

0.16 18.49 293.30

0.17 17.43 311.25

0.18 16.48 329.21

0.19 15.62 347.17

0.2 14.86 365.12

0.21 14.16 383.08

0.22 13.53 401.03

0.23 12.95 418.99

0.24 12.41 436.95

0.25 11.92 454.90

0.26 11.47 472.86

0.27 11.05 490.81

0.28 10.66 508.77

0.29 10.30 526.73

0.3 9.96 544.68

0.31 9.64 562.64

0.32 9.34 580.59

0.33 9.06 598.55

Page 68: Fluid Flow

Property Correlations for all correlations, t = deg C

Vapor Pressure: log(mm Hg) = A - B / (t+C) Liquid Viscosity: ln(cP) = A + B / (C+t)

A B C

R12 6.99 918.17 253.38

R22 7.04 850.10 245.18

Water 8.31 1,986.50 268.74

Page 69: Fluid Flow

(Smooth Tube = 0.0000015 m)

Km Ki Kd

m/s 800 0.091 4

m2 K 0.39 elbow

6.33 kPa

25.28

44.23

63.19 700.00

Pressure Drop Through a DN Elbow

Page 70: Fluid Flow

82.14

101.09

120.04

138.99

157.94

176.89

195.84

214.79

233.74

252.69

271.64

290.59

309.54

328.49

347.44

366.39

385.34

404.29

423.24

442.19

461.14

480.09

499.04

517.99

536.94

555.89

574.84

593.79

612.75

631.70

-

100.00

200.00

300.00

400.00

500.00

600.00

700.00

0 0.05 0.1 0.15

Page 71: Fluid Flow

Liquid Viscosity: ln(cP) = A + B / (C+t) Vapor Viscosity: ln(cP) = A + B / (C+t) Density: kg/m3 = m t + b

A B C

(8.77) 5,134.3 693.01 (9.00) (4,611.86) (1,008.87)

20.79 46,143.5 (2,064.89) (3.47) (278.74) 286.66

4.34 6,927.32 (1,332.33) (4.92) (200.49) (502.57)

Page 72: Fluid Flow

Pressure Drop Through a DN Elbow

Page 73: Fluid Flow

0.2 0.25 0.3

Velocity

Page 74: Fluid Flow

Density: kg/m3 = m t + b Density: lb/ft3 = m t + b Molecular Cp/Cv

m b m b Weight

(3.09) 1,393.40 (0.19) 86.99 120.91 1.170

(3.20) 1,279.33 (0.20) 79.87 86.48 1.250

(1.56) 1,150.42 (0.06) 64.24 18.00

Page 75: Fluid Flow

Inputs SI Units Value US Units Value

Gas molecular weight 17.4 17.4

Temperature C 37.8 F 100

Pipe diameter mm 102 in 4.026

Pipe length km 32.2 miles 20

Inlet pressure kPa abs 13,700 psia 2,000

Outlet pressure kPa abs 10,300 psia 1,500

Elevation difference m 30.5 ft 100

Efficiency 1 1

Average compressibility factor 1 1

Constants

Base temperature C - F 60

Base pressure kPa abs 100 psia 14.7

Pipe roughness m 0.0000457 ft 0.00015

Calculations

Isothermal Gas Calculation

Reynolds Number 200,000 200,000

Friction factor 0.0187 0.0187

Flow Rate kg/h 8,982 lb/h 20,126

Standard volumetric rate MM m3/day 278 MM ft3/day 10,521

Intermediate Calcs

Gas specific gravity 0.60 0.60

Average temperature K 311 R 560

Average pressure kPa abs 12,080 psia 1,762

Head correction kPa 49 psi 7

Weymouth

Standard volumetric rate MM m3/day MM ft3/day 10,151

Panhandle A

Standard volumetric rate MM m3/day 402 MM ft3/day 15,110

Panhandle B

Standard volumetric rate MM m3/day 428 MM ft3/day 16,034

Problem Statement: Compare the Panhandle and Weymouth formulas with the Isothermal gas calculation

Page 76: Fluid Flow

Recommended