+ All Categories
Home > Documents > Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon,...

Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon,...

Date post: 25-Oct-2019
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
26
S1 Supporting Information Fluorenylporphyrins functionnalized by Electrochromic Ruthenium Units as Redox-triggered Fluorescence Switches Xu Zhang, Seifallah Abid, Limiao Shi, J. A. Gareth Williams, Mark A. Fox, * Fabien Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth, * Contents: 1. 1 H NMR, 31 P{ 1 H } NMR spectra and HRMS of 2 p. S2 2. UV-Visible absorption and emission spectra of 1-4 p. S6 3. Cyclic voltammograms of 1 and 2 p. S8 4. Spectroelectrochemistry of 1 and 2 p. S9 5. UV-Vis absorption spectra of 1 and 2 vs. those of the model compounds 3-6 p. S11 6. DFT and TD-DFT Calculations using the B3LYP functional p. S12 7. DFT and TD-DFT Calculations using the CAM-B3LYP functional p. S15 8. Electrofluorochromism of 1 and 2 p. S24 9. Rehm-Weller/Marcus analysis for A n+ and B n+ systems (n =0, 1) p. S26 Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2019
Transcript
Page 1: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S1

Supporting Information

Fluorenylporphyrins functionnalized by Electrochromic Ruthenium Units as

Redox-triggered Fluorescence Switches

Xu Zhang, Seifallah Abid, Limiao Shi, J. A. Gareth Williams, Mark A. Fox,* Fabien

Miomandre,* Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul,*

Christine O. Paul-Roth,*

Contents:

1. 1H NMR,

31P{

1H } NMR spectra and HRMS of 2 p. S2

2. UV-Visible absorption and emission spectra of 1-4 p. S6

3. Cyclic voltammograms of 1 and 2 p. S8

4. Spectroelectrochemistry of 1 and 2 p. S9

5. UV-Vis absorption spectra of 1 and 2 vs. those of the model compounds 3-6 p. S11

6. DFT and TD-DFT Calculations using the B3LYP functional p. S12

7. DFT and TD-DFT Calculations using the CAM-B3LYP functional p. S15

8. Electrofluorochromism of 1 and 2 p. S24

9. Rehm-Weller/Marcus analysis for An+

and B n+

systems (n =0, 1) p. S26

Electronic Supplementary Material (ESI) for Dalton Transactions.This journal is © The Royal Society of Chemistry 2019

Page 2: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S2

1. 1H NMR,

31P{

1H } NMR spectra and HRMS of 2

Figure S1. Detailed 400 MHz 1H NMR spectra of 2 and 3 in CDCl3 at 298 K (solvents in

CDCl3 are indicated by asterisks).

1H NMR Assignement. When comparing the 1H NMR spectrum of the ruthenium complex 2

with that of the pure organic precursor 3 in Figure S1, each resonance can be easily assigned

except for the new peaks appearing at 7.5-7.4 ppm, where H6, H7 and H8 of the fluorenyl units

overlap with several protons of the dppe ligands. Between 6.5 and 8.5 ppm, the multiplets

arise from the protons of fluorenyl arms and the phenyl groups of the dppe in the ruthenium

complex. The peaks from 2.4 to 3.8 ppm arise from the methylene protons of the dppe

ligands. The eight β-pyrrolic protons are visible at around 9.0 ppm, the protons of n-butyl

chains are found in the 0.4 to 2.4 ppm region and the NH protons are identified at –2.6 ppm.

The peak assignments for 2 are aided by comparison with the recently reported1 complex

Ru(dppe)2(C≡CFlu)Cl (4) in Figure 4 (Flu = 2-(9,9-dibutyl)fluorenyl).

1 F. Malvolti, C. Rouxel, A. Triadon, G. Grelaud, N. Richy, O. Mongin, M. Blanchard-Desce, L. Toupet, F. I.

Abdul Razak, R. Stranger, M. Samoc, X. Yang, G. Wang, A. Barlow, M. P. Cifuentes, M. G. Humphrey and F. Paul, Organometallics, 2015, 34, 5418-5437.

*

*

*

*

*

*

CHCl3

Page 3: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S3

Figure S2. 160 MHz 31P{1H} NMR spectra of 2 in CDCl3 at 298 K.

Page 4: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S4

Figure S3. (a) ESI-MS spectrum of 2 in CH2Cl2 (positive mode). Measured (b) and simulated

(c) molecular [M+•] ion. Measured (d) and simulated (e) molecular [M++] ion.

(a)

(b)

(c)

(d)

(e)

Page 5: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S5

Figure S4. (a) MALDI-MS spectrum of 2 in DTCB. (b) Molecular [(M+1)+•] ion.

(a)

(b)

Page 6: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S6

2. UV-Visible absorption and emission spectra of 1-4

Figure S5. UV-visible absorption spectra of 2 and 3 (solid blue and red lines respectively) and the emission spectrum of 3 (dashed red line, λex = 470 nm) in toluene solution at 298±3 K.

Table S1: UV-Visible-NIR data for 1 and 2 and their oxidized species in parentheses

obtained by spectroelectrochemistry (SEC) in 0.1 M [Bu4N][PF6] / DCM at 298 K.

λmax / nm

(ε / 103 M–1cm–1)

1 1+ 2 2

+

UV band(s) 261 (133) 262 (117) 262 (122),

310 (82),

365 (73)

271 (76),

310 (52),

349 (42)

“Soret bands” 423 (478) 424 (404) 427 (416) 427 (377),

“Q bands” 520 (22),

560 (19),

593 (12),

653 (10)

520 (20),

559 (18),

594 (9),

650 (7)

520 (21),

559 (21),

593 (14),

649 (8)

520 (23),

559 (19),

593 (13),

649 (8)

NIR bands 842 (4),

1234 (3)

892 (6),

1176 (3)

Page 7: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S7

Figure S6. Normalized emission spectrum of 1 and 2 in CH2Cl2 and of 3 and 6 (dashed lines)

in toluene solution at 298 ± 3 K.

Page 8: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S8

3. Cyclic voltammograms of 1 and 2

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

-10

-5

0

5

10

15

20

Curr

en

t (µ

A)

Potential (V)

Figure S7. Cyclic voltammograms for 1 (a) and 2 (b) in CH2Cl2. The traces show that the first

two oxidation and first reduction potential waves are reversible. The third oxidation process is

chemically irreversible. The potentials are referenced to the ferrocenium/ferrocene couple at 0

V.

(a)

(b)

Ru(II/III)

Por(0/+)

Por(-/0)

Ru(II/III)

Por(0/+)

Por(-/0)

Page 9: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S9

4. Spectroelectrochemistry of 1 and 2

Figure S8. Progression in the UV-Vis-NIR absorption spectra on oxidation of 2 to the first

oxidation species 2+ in 0.1 M [Bu4N][PF6]/CH2Cl2 using a SEC cell.

Table S2: NIR and IR absorption data for 1, 2 and their monocations obtained by

spectroelectrochemistry (SEC) in 0.1 M [Bu4N][PF6]/CH2Cl2 at 298 K.

λmax / cm-1

(ε / 103 M–1cm–1)

1 1+ 2 2

+

NIR bands 11880 (4),

8100 (3)

11210 (5),

8500 (2)

v(C≡C) stretch bands 2068 1910 2064 1916

Page 10: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S10

Figure S9. IR absorption spectra for 2 and the first oxidation species in 0.1 M [Bu4N][PF6]/

CH2Cl2 using a SEC cell. The 1600 cm-1 peak in neutral 2 is assumed to be the aromatic ring

stretch which, on oxidation, disappears and two bands appear at 1577 and 1545 cm-1. The

intense 1577 cm-1 peak is a characteristic feature of monocations of arylethynyl-ruthenium

complexes.2

2 (a) A. Klein, O. Lavastre and J. Fiedler, Organometallics, 2006, 25, 635-643; (b) S. Marques-Gonzalez, M.

Parthey, D. S. Yufit, J. A. K. Howard, M. Kaupp and P. J. Low, Organometallics, 2014, 33, 4947-4963; (c) E. Wuttke, F. Pevny, Y.-M. Hervault, L. Norel, M. Drescher, R. F. Winter and S. Rigaut, Inorg. Chem., 2012, 51, 1902-1915; (d) M. A. Fox, B. Le Guennic, R. L. Roberts, D. A. Brue, D. S. Yufit, J. A. K. Howard, G. Manca, J.-F. Halet, F. Hartl and P. J. Low, J. Am Chem. Soc., 2011, 133, 18433-18446; (e) M. A. Fox, R. L. Roberts, W. M. Khairul, F. Hartl and P. J. Low, J. Organomet. Chem., 2007, 692, 3277-3290; (f) M. Parthey, J. B. G. Gluyas, M. A. Fox, P. J. Low and M. Kaupp, Chem. Eur. J., 2014, 20, 6895-6908; (g) J.-L. Xia, W. Y. Man, X. Zhu, C. Zhang, G.-J. Jin, P. A. Schauer, M. A. Fox, J. Yin, G.-A. Yu, P. J. Low and S. H. Liu, Organometallics, 2012, 31, 5321-5333; (h) W. M. Khairul, M. A. Fox, P. Schauer, D. S. Yufit, D. Albesa-Jové, J. A. K. Howard and P. J. Low, J. Chem. Soc., Dalton Trans., 2010, 39, 11605-11615; (i) W. M. Khairul, M. A. Fox, P. A. Schauer, D. Albesa-Jové, D. S. Yufit, J. A. K. Howard and P. J. Low, Inorg. Chim. Acta, 2011, 374, 461-471.

Page 11: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S11

5. UV-Vis absorption spectra of 1 and 2 vs. those of the model compounds 3-6

Figure S10a-b. Comparison of the UV-Vis spectra of (a) the compounds 2, 3 and 4 and of (b)

the compounds 2+, 3 and 4+ in CH2Cl2.

Figure S11a-b. Comparison of the UV-Vis spectra of (a) the compounds 1, 6 and 5 and of (b)

the compounds 1+, 6 and 5+ in CH2Cl2.

Figure S12. Comparison of the UV-Vis spectra of the compounds 12+, 6+ and 5+.

(a) (b)

(a) (b)

Page 12: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S12

6. DFT and TD-DFT Calculations using the B3LYP functional

Table S3: Orbital energies and % atom/group contributions for model complexes 1’ (Ar = 1,4-C6H4) and 2’ (Ar = 2,7-Flu) at B3LYP/3-21G*.

MO eV Ru Cl Cα Cβ Ar dppe porp Fl1 Fl2 Fl3

1′

485 L+8 -0,52 1 0 0 0 0 98 0 0 0 0

484 L+7 -0,56 4 1 0 0 0 94 0 0 0 0

483 L+6 -0,61 1 0 0 0 1 98 0 0 0 0

482 L+5 -0,80 0 0 0 0 0 0 5 55 2 39

481 L+4 -0,80 0 0 0 0 0 0 4 5 72 19

480 L+3 -0,82 24 0 0 0 0 76 0 0 0 0

479 L+2 -0,88 0 0 0 0 1 0 16 32 17 34

478 L+1 -2,11 0 0 0 0 3 0 93 1 3 1

477 LUMO -2,12 0 0 0 0 0 0 93 3 0 3

476 HOMO -4,61 26 4 7 14 17 3 26 1 1 1

475 H-1 -4,86 40 12 4 17 2 4 19 1 1 1

474 H-2 -4,91 23 6 4 11 5 3 42 2 2 2

473 H-3 -5,22 0 0 0 0 1 0 98 0 0 0

472 H-4 -5,72 8 36 8 3 10 31 2 0 0 1

471 H-5 -5,82 2 35 8 9 2 44 0 0 0 0

470 H-6 -5,91 0 0 0 0 0 0 4 31 63 2

469 H-7 -5,93 0 0 0 0 0 0 5 29 6 60

Page 13: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S13

MO eV Ru Cl Cα Cβ Ar dppe porp Fl1 Fl2 Fl3

2′

508 L+8 -0.56 4 0 0 0 1 94 0 0 0 0

507 L+7 -0.61 1 0 0 0 3 94 1 0 0 0

506 L+6 -0.73 2 0 6 0 68 7 5 2 8 1

505 L+5 -0.80 0 0 0 0 0 0 5 41 0 54

504 L+4 -0.81 23 0 0 0 0 76 0 0 1 0

503 L+3 -0.82 0 0 0 0 2 1 4 19 63 11

502 L+2 -0.89 0 0 0 0 5 0 17 30 21 26

501 L+1 -2.14 0 0 0 0 3 0 93 1 3 1

500 LUMO -2.14 0 0 0 0 0 0 94 3 1 3

499 HOMO -4.57 29 4 10 17 31 4 5 0 0 0

498 H-1 -4.85 32 9 4 14 2 3 33 1 1 1

497 H-2 -4.88 21 6 3 10 3 2 49 2 2 2

496 H-3 -5.25 0 0 0 0 1 0 98 0 0 1

495 H-4 -5.61 17 33 5 0 25 18 1 0 0 0

494 H-5 -5.82 2 34 8 10 2 45 0 0 0 0

493 H-6 -5.93 0 0 0 0 0 0 4 35 59 2

492 H-7 -5.93 0 0 0 0 0 0 5 23 5 68

491 H-8 -5.99 0 0 0 0 1 1 14 33 28 22

Page 14: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S14

Table S4: Singlet state transitions of 1′ and 2′ from TD-DFT computations at B3LYP.

λ (nm) a

[f]a S0 →Sn Major MO contributions Nature of the transition

1′

640[649] 0.12 S1 HOMO→LUMO (48%) RuC≡C/π(Ar/porp) → π(porp)*

615[560] 0.22 S2 HOMO→L+1 (62%) RuC≡C/π(Ar/porp) → π(porp)*

555 0.03 S4 H-1→L+1 (25%) RuC≡C/π(porp) → π(porp)*

426[423] 1.32 S9 H-3→L+1 (33%) π(porp) → π(porp)*

415[423] 1.72 S11 H-3→LUMO (30%) π(porp) → π(porp)*

403 0.03 S14 H-4→LUMO (55%) ClRuC≡C/π(dppe/porp) → π(porp)*

399 0.08 S16 H-6→LUMO (29%) π(porp) → π(porp)*

398 0.06 S17 H-7→LUMO (53%) π(porp) → π(porp)*

393 0.09 S20 H-8→LUMO (28%) π(porp) → π(porp)*

383 0.03 S27 HOMO→L+5 (39%) RuC≡C → π(Flu)*

368

0.19 S33 H-12→L+1, H-2→L+2, H-1→L+2 (3×23%)

RuC≡C → π(Flu)*

366 0.28 S36 H-12→L+1 (28%) RuC≡C → π(Flu)*

366 0.42 S37 H-12->→LUMO (35%) RuC≡C → π(Flu)*

2′

632[649] 0.12 S1 HOMO→LUMO (33%) RuC≡C/π(Ar/porp) → π(porp)*

617[559] 0.10 S2 HOMO→L+1 (58%) RuC≡C/π(Ar/porp) → π(porp)*

568 0.06 S4 H-2→L+1 (22%) RuC≡C/π(porp) → π(porp)*

427[427] 1.74 S9 H-3→LUMO (30%) π(porp) → π(porp)*

420 0.89 S11 H-4→L+1 (37%) ClRuC≡C/π(dppe/porp) → π(porp)*

413 0.97 S13 H-4→L+1 (37%) ClRuC≡C/π(dppe/porp) → π(porp)*

400 0.16 S17 H-8→LUMO (27%) π(porp) → π(porp)*

397 0.07 S19 H-6→LUMO (20%) RuC≡C/π(Ar/porp) → π(porp)*

396 0.04 S20 H-8→LUMO (19%) RuC≡C/π(Ar/porp) → π(dppe/porp)*

389 0.04 S23 H-8→L+1 (31%) RuC≡C/π(porp) → π(Ar/porp)*

386 0.03 S24 H-5→L+1 (28%) ClRuC≡C/π(Ar/porp) → π(porp)*

380 0.22 S28 HOMO→L+3 (14%) RuC≡C/π(Ar/porp) → π(porp/dppe)*

377 0.13 S31 HOMO→L+3 (27%) RuC≡C/π(Ar/porp) → π(Flu)*

371 0.22 S35 H-13→LUMO (23%) RuC≡C/π(Ar/porp) → π(porp/Flu)*

371 0.05 S36 H-11→L+1 (26%) RuC≡C/π(Ar/porp) → π(porp/Flu)* a Calculated[Experimentally observed]. b Oscillator Strength (only transitions with f ≥ 0.03 were considered for 1′ and 2′).

Page 15: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S15

350 400 450 500 550 600 650 700 7500

100

200

300

400

500

Wavelength (nm)

1'

2'

Figure S13. Simulated absorption spectra of 1′ and 2′ at B3LYP/3-21G* using half-height

width of 0.08 eV for calculated bands and 240000 times the calculated oscillator strength (f)

for the extinction coefficient (ε) values.

7. DFT and TD-DFT Calculations using the CAM-B3LYP functional

The hybrid-DFT CAM-B3LYP functional, was also applied to model molecules of 1′ and 2′

here. Geometry optimizations on 1′ and 2′ were repeated and their electronic structures were

computed (Figures S14-S15 and Tables S5-S6). In marked contrast to the B3LYP calculations,

the porphyrin character in the high energy occupied orbitals is dominant with CAM-B3LYP.

This result is counter-intuitive based on cyclic voltammetry data (Table 1) where the

ruthenium center is oxidized first. The accuracy of electronic structure (MO) calculations on

these dyads with the CAM-B3LYP functional must therefore be treated with caution. The

HOMOs for 1′ and 2′ have 83% and 78% porphyrin character, respectively. The highest

occupied orbitals with considerable ruthenium-alkynyl redox unit character are HOMO-2 in 1′

and HOMO-1 in 2′, while HOMO-3s in both 1′ and 2′ are exclusively located at the

ruthenium units. As a result of both HOMO and LUMO being located at the porphyrin when

using the CAM-B3LYP, the lowest energy absorption bands of both 1′ and 2′ would be

interpreted as local porphyrin transfers (π(porp) → π(porp)*) from the TD-DFT data using

CAM-B3LYP (Table S7 and Figure S16).

Page 16: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S16

Figure S14. Important molecular orbitals for optimized model geometry of 1′ at CAM-

B3LYP/3-21G*. The ratios correspond to % orbital contributions on the porphyrin and

[C6H4C≡CRu(dppe)2Cl] fragments.

Page 17: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S17

Figure S15. Pertinent molecular orbitals for optimized model geometry of 2′ at CAM-

B3LYP/3-21G*. The ratios correspond to % orbital contributions on the porphyrin and

[C13H8C≡CRu(dppe)2Cl] fragments.

Page 18: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S18

Table S5: Molecular orbital contributions in % for 1′ at CAM-B3LYP/3-21G*.

MO eV Ru Cl Cα Cβ C6H4 dppe porp Fl1 Fl2 Fl3

507 L+30 2.05 29 3 3 1 1 63 0 0 0 0

506 L+29 1.91 2 0 0 0 7 91 0 0 0 0

505 L+28 1.79 6 1 0 0 37 55 1 0 0 0

504 L+27 1.72 2 0 0 0 47 48 1 0 1 1

503 L+26 1.68 0 0 0 0 1 0 1 12 86 0

502 L+25 1.67 0 0 0 0 0 0 1 46 8 45

501 L+24 1.66 1 0 0 0 0 47 1 24 2 25

500 L+23 1.66 1 0 0 0 1 50 1 18 2 27

499 L+22 1.56 2 0 0 0 0 98 0 0 0 0

498 L+21 1.40 1 0 0 0 1 98 0 0 0 0

497 L+20 1.33 1 0 0 0 2 97 0 0 0 0

496 L+19 1.30 3 0 0 0 0 97 0 0 0 0

495 L+18 1.22 2 0 7 1 36 30 17 6 0 1

494 L+17 1.19 1 0 1 0 8 82 4 3 0 1

493 L+16 1.17 0 0 0 0 0 0 1 7 91 1

492 L+15 1.15 0 0 0 0 2 2 2 18 5 71

491 L+14 1.15 0 0 0 0 2 2 1 65 3 27

490 L+13 1.13 3 1 0 0 0 96 0 0 0 0

489 L+12 1.08 3 0 1 0 4 87 4 1 0 0

488 L+11 1.00 7 1 1 0 1 88 2 0 0 0

487 L+10 0.89 1 0 0 0 1 90 7 0 1 0

486 L+9 0.86 2 0 3 0 15 19 49 3 5 4

485 L+8 0.82 1 0 0 0 2 94 3 0 0 0

484 L+7 0.78 3 0 0 0 1 95 1 0 0 0

483 L+6 0.71 1 0 0 0 1 98 0 0 0 0

482 L+5 0.53 20 0 0 0 0 80 0 0 0 0

481 L+4 0.46 0 0 0 0 0 0 4 51 0 45

Page 19: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S19

480 L+3 0.45 0 0 0 0 0 0 4 9 73 14

479 L+2 0.36 0 0 0 0 1 0 15 33 18 33

478 L+1 -1.26 0 0 0 0 2 0 96 0 2 0

477 LUMO -1.27 0 0 0 0 0 0 95 2 1 2

476 HOMO -5.73 4 0 2 3 7 1 76 2 3 2

475 H-1 -6.16 9 2 3 5 5 1 73 1 0 1

474 H-2 -6.19 23 4 6 13 11 3 39 0 1 0

473 H-3 -6.40 48 16 7 22 2 5 0 0 0 0

472 H-4 -7.11 9 30 5 3 7 44 1 0 0 1

471 H-5 -7.22 3 23 5 7 2 60 0 0 0 0

470 H-6 -7.26 0 0 0 0 0 0 4 33 61 2

469 H-7 -7.27 0 0 0 0 0 0 4 27 7 62

468 H-8 -7.36 0 0 0 0 0 1 9 35 25 30

467 H-9 -7.61 68 3 0 0 0 29 0 0 0 0

466 H-10 -7.68 12 19 3 3 1 62 0 0 0 0

465 H-11 -7.70 0 0 0 0 1 1 98 0 0 0

464 H-12 -7.76 6 11 3 1 9 59 11 0 0 0

463 H-13 -7.85 0 2 0 0 3 6 83 2 2 2

462 H-14 -7.93 7 1 3 2 2 85 0 0 0 0

461 H-15 -7.98 2 4 1 1 1 90 1 0 0 0

460 H-16 -8.05 1 0 0 0 3 96 0 0 0 0

459 H-17 -8.10 5 3 1 0 25 63 1 1 1 0

458 H-18 -8.13 3 1 1 0 44 33 3 0 15 0

457 H-19 -8.15 0 0 0 0 10 5 3 3 78 1

456 H-20 -8.15 0 0 0 0 1 1 2 54 4 38

455 H-21 -8.17 0 0 0 0 0 1 2 38 0 59

454 H-22 -8.19 4 2 1 0 3 87 1 2 0 0

453 H-23 -8.29 3 2 1 0 5 89 0 0 0 0

452 H-24 -8.32 3 3 1 1 2 90 0 0 0 0

451 H-25 -8.36 5 52 8 1 1 33 0 0 0 0

450 H-26 -8.38 6 10 1 1 9 61 6 3 1 2

449 H-27 -8.39 5 6 1 1 4 76 3 2 0 2

448 H-28 -8.43 0 0 0 0 1 2 6 1 74 16

447 H-29 -8.44 1 1 0 0 1 8 9 54 12 14

446 H-30 -8.45 1 4 1 0 1 87 2 1 0 3

445 H-31 -8.46 0 0 0 0 0 1 4 30 9 56

444 H-32 -8.48 1 5 0 0 1 93 0 0 0 0

443 H-33 -8.50 0 0 0 0 0 8 88 1 1 2

442 H-34 -8.52 1 5 1 1 2 88 2 0 0 0

441 H-35 -8.52 0 0 0 0 0 5 95 0 0 0

Page 20: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S20

Table S6: Molecular orbital contributions in % for 2′ at CAM-B3LYP/3-21G*.

MO eV Ru Cl Cα Cβ FlRu dppe porp Fl1 Fl2 Fl3

531 L+31 2.04 29 3 3 1 1 63 0 0 0 0

530 L+30 1.95 0 0 1 0 73 25 1 0 0 0

529 L+29 1.88 4 0 0 0 20 76 0 0 0 0

528 L+28 1.75 6 1 0 0 3 90 0 0 0 0

527 L+27 1.68 0 0 0 0 0 0 1 27 37 35

526 L+26 1.67 0 0 0 0 0 0 1 0 49 50

525 L+25 1.67 2 0 0 0 0 98 0 0 0 0

524 L+24 1.66 0 0 0 0 0 0 1 71 14 14

523 L+23 1.56 2 0 0 0 0 98 0 0 0 0

522 L+22 1.40 1 0 0 0 15 84 0 0 0 0

521 L+21 1.36 0 0 0 0 60 39 1 0 0 0

520 L+20 1.31 1 0 0 0 23 76 0 0 0 0

519 L+19 1.29 2 0 0 0 0 98 0 0 0 0

518 L+18 1.20 1 0 0 0 0 99 0 0 0 0

517 L+17 1.16 0 0 0 0 0 0 1 27 28 44

516 L+16 1.16 0 0 0 0 0 0 1 0 59 40

515 L+15 1.15 0 0 0 0 0 0 1 73 11 15

514 L+14 1.14 4 1 0 0 0 95 0 0 0 0

513 L+13 1.10 3 0 0 0 2 1 0 0 0 0

512 L+12 1.00 7 1 1 0 1 90 0 0 0 0

511 L+11 0.94 0 0 0 0 4 1 83 4 4 4

510 L+10 0.88 2 0 0 0 0 98 0 0 0 0

509 L+9 0.83 1 0 0 0 0 99 0 0 0 0

508 L+8 0.78 3 0 0 0 1 96 0 0 0 0

507 L+7 0.71 1 0 0 0 1 98 0 0 0 0

506 L+6 0.54 20 0 0 0 1 79 0 0 0 0

505 L+5 0.46 1 0 4 0 45 3 4 1 41 1

Page 21: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S21

504 L+4 0.46 0 0 0 0 2 0 4 39 0 55

503 L+3 0.43 0 0 2 0 18 1 3 28 31 17

502 L+2 0.35 0 0 1 0 16 0 16 25 20 22

501 L+1 -1.28 0 0 0 0 2 0 94 1 2 1

500 LUMO -1.29 0 0 0 0 1 0 94 2 1 2

499 HOMO -5.78 4 0 2 3 12 1 72 2 2 2

498 H-1 -6.00 23 3 10 15 26 3 17 1 1 1

497 H-2 -6.19 0 0 0 0 0 0 100 0 0 0

496 H-3 -6.38 49 15 7 22 2 5 0 0 0 0

495 H-4 -7.02 19 32 3 0 19 26 1 0 0 0

494 H-5 -7.20 3 20 5 7 2 63 0 0 0 0

493 H-6 -7.26 0 0 0 0 0 0 4 40 55 1

492 H-7 -7.27 0 0 0 0 0 0 4 19 9 68

491 H-8 -7.35 0 0 0 0 1 2 8 36 29 24

490 H-9 -7.53 10 0 0 3 27 53 4 1 1 1

489 H-10 -7.61 68 2 0 1 2 27 0 0 0 0

488 H-11 -7.68 8 22 3 3 1 63 0 0 0 0

487 H-12 -7.72 0 0 0 0 1 0 99 0 0 0

486 H-13 -7.85 0 1 0 0 24 5 66 1 1 2

485 H-14 -7.88 2 6 2 1 45 33 11 0 0 0

484 H-15 -7.93 5 7 2 2 31 40 11 1 1 0

483 H-16 -7.96 4 8 2 2 10 71 3 0 0 0

482 H-17 -8.01 2 7 2 2 7 78 2 0 0 0

481 H-18 -8.05 1 2 0 0 1 96 0 0 0 0

480 H-19 -8.13 5 2 2 1 1 88 0 1 0 0

479 H-20 -8.15 0 0 0 0 0 1 2 27 3 67

478 H-21 -8.16 0 0 0 0 1 1 2 0 93 3

477 H-22 -8.17 0 0 0 0 0 1 3 68 0 28

476 H-23 -8.19 1 1 1 1 3 91 1 1 0 0

475 H-24 -8.26 1 0 0 0 57 38 3 0 1 0

474 H-25 -8.30 1 2 1 0 32 63 1 0 0 0

473 H-26 -8.33 2 3 2 1 5 87 0 0 0 0

472 H-27 -8.36 6 52 9 1 0 32 0 0 0 0

471 H-28 -8.39 1 1 0 0 1 97 0 0 0 0

470 H-29 -8.43 0 0 0 0 1 0 7 14 26 52

469 H-30 -8.44 0 0 0 0 0 1 6 40 50 3

468 H-31 -8.45 1 5 1 0 0 93 0 0 0 0

467 H-32 -8.46 0 0 0 0 1 0 3 39 18 39

466 H-33 -8.49 0 3 0 0 1 95 1 0 0 0

465 H-34 -8.51 2 3 1 0 1 88 5 0 0 0

464 H-35 -8.52 1 3 0 0 1 56 39 0 0 0

463 H-36 -8.52 1 3 0 0 0 40 54 0 1 1

462 H-37 -8.54 0 0 0 0 0 0 100 0 0 0

461 H-38 -8.60 1 5 0 0 1 90 3 0 0 0

460 H-39 -8.61 3 2 1 0 3 16 72 1 1 1

Page 22: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S22

Table S7: Singlet state transitions of 1′ and 2′ from TD-DFT computations at CAM-B3LYP /3-21G*.

λ (nm) a

[f]a S0 →Sn Major MO contributions Nature of the transition

1’ 674[653] 0.12 S1 HOMO→LUMO (48%) π(porp) → π(porp)*

607[560] 0.22 S2 HOMO→L+1 (62%) π(porp) → π(porp)*

430[423] 2.08 S4 H-1→LUMO (40%) π(porp) → π(porp)*

418[423] 1.83 S5 HOMO→LUMO (33%) π(porp) → π(porp)*

396 0.22 S7 H-2→L+1 (40%) RuC≡C/π(Ar/porp) → π(porp)*

384 0.15 S9 H-2→LUMO (65%) RuC≡C/π(Ar/porp) → π(porp)*

352 0.86 S14 H-13→L+1 (30%) π(porp) → π(porp)*

334 0.06 S18 H-35→L+1 (45%) π(porp) → π(porp)*

332 0.07 S20 H-6→L+1 (17%) π(porp) → π(porp)*

316 0.10 S27 H-7→L+1 (7%) Ru/π(porp) → π(dppe/porp)*

314 0.08 S28 H-8→LUMO (14%) Ru/π(porp) → π(porp/Ar/dppe)*

313 0.12 S29 H-8→LUMO (20%) Ru/π(porp) → π(porp/dppe)*

311 0.05 S30 HOMO→L+3 (71%) π(porp) → π(porp)*

309 0.10 S31 HOMO→L+4 (71%) π(porp) → π(porp)*

309 0.03 S32 H-8→L+1 (53%) π(porp) → π(porp)*

300 0.10 S40 H-4→L+1 (29%) dppe/Cl→ π(porp)*

2’ 671[649] 0.04 S1 HOMO→L+1 (44%) π(porp) → π(porp)*

604[559] 0.08 S2 HOMO→LUMO (44%) π(porp) → π(porp)*

426[427] 2.30 S4 H-2→LUMO (54%) π(porp) → π(porp)*

416[427] 2.11 S5 H-2→L+1 (54%) π(porp) → π(porp)*

415 0.08 S6 H-3→L+6 (28%) ClRuC≡C → π(dppe)*

391 0.09 S8 H-1→L+1 (65%) RuC≡C/π(Ar/porp) → π(porp)*

382 0.04 S9 H-1→LUMO (64%) RuC≡C/π(Ar/porp) → π(porp)*

354[356] 1.20 S13 H-13→L+1 (31%) π(Ar) → π(porp)*

346[356] 0.28 S14 H-1→L+5 (23%) Ru/π(porp) → π(Flu)*

334 0.05 S18 H-37→L+1 (71%) π(porp) → π(porp)*

332 0.09 S19 H-7→LUMO (27%) π(Flu) → π(porp)*

309[310] 0.06 S30 H-8→L+1 (39%) π(Flu) → π(porp)*

306 0.06 S32 HOMO→L+3 (58%) π(porp) → π(Flu)*

305 0.15 S33 HOMO→L+4 (67%) π(porp) → π(Flu)* a Calculated[Experimentally observed]. b Oscillator Strength (only transitions with f ≥ 0.03 were considered for 1’ and 2’).

Page 23: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S23

300 350 400 450 500 550 600 650 700 7500

100

200

300

400

500

600kε

Wavelength (nm)

1'

2'

Figure S16. Simulated absorption spectra of 1′ and 2′ at CAM-B3LYP/3-21G* using half-

height width of 0.08 eV for calculated bands and 240000 times the calculated oscillator

strength (f) for the extinction coefficient (ε) values.

Page 24: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S24

8. Electrofluorochromism of 1 and 2

Figure S17a-c. (a) Cyclic voltammogram of 1 in CH2Cl2/[NBu4][PF6] (0.1 M) solution and

switching potentials applied vs. Ag/Ag+. The poorly resolved redox waves (compare with

Figure S7a) are labelled for clarity. Emission spectra of 1 (b) and 2 (c) and quasi-reversible

evolution upon switching at 1V in CH2Cl2/[NBu4][PF6] (homemade cell, microscope,

excitation at 447 nm).

IF / a

.u.

Figure S18. Comparison between the electrofluorochromic behaviors of 1 in CH2Cl2 / -

[NBu4][PF6] (0.1 M) when the potential is stepped from 0 V to 0.5 V (green curve), from 0 V

to 1.0 V (red curve) and from 0 V to 1.5 V (purple curve). Excitation wavelength : 447 nm.

Emission is recorded at 729 nm.

(a) (b) (c)

Por(0/+)

Ru(II/III)

Page 25: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S25

-0,25

-0,2

-0,15

-0,1

-0,05

0

0,05

300 400 500 600 700 800

ZX66 ds DCM

0.2 V0.4 V0.5 V0.6 V0.7 V0.8 V0.9 V1.0 V1.1 V1.2 V1.3 V

De

lta

Abs

wavelength /nm

Figure S19. Differential UV-vis spectroelectrochemistry of 1 (10-4 M) in CH2Cl2 /

[NBu4][PF6] (0.1 M) solution. Baseline is measured at open circuit potential.

Figure S20a-b. Comparison (a) of the emission spectrum of the compound 3 (dotted line) and

of the UV-Vis absorption spectra of compounds 4, 4+ in CH2Cl2 (the corresponding

absorption spectrum of 3 is also shown for comparison) and (b) of the emission spectrum of

the model compound 6 (dotted line) and of the UV-Vis absorption spectra of the model

compounds 5 and 5+ in CH2Cl2 (the corresponding absorption spectrum of 6 is also shown for

comparison).

(a) (b)

1 in CH2Cl2

Page 26: Fluorenylporphyrins functionnalized by Electrochromic ... · Miomandre, * Clarisse Tourbillon, Jean-Frédéric Audibert, Olivier Mongin, Frédéric Paul, * Christine O. Paul-Roth,

S26

9. Rehm-Weller/Marcus analysis for An+

and B n+

systems (n =0, 1)

Table S8: Thermodynamic figures derived for the reductive trapping of the emissive state of

A or B in the lowest charge transfer (CS) state (Rehm-Weller).

E°M(II)

a E°Por a ∆E° b dM-P(Å) c ∆GCS

d λQ(nm) e ∆GeT f λR(eV) g ∆G≠ h

A 0.02 -1.93 1.95 7.0 1.86 595 -0.22 0.6 0.061

B -0.32 -1.84i 1.52 8.1 1.33 550 -0.93 0.9 0.0002 a All E° values given for redox couples are in V vs. FcH+/Fc in ethanol (εR = 24.5) for A and CH2Cl2 (εR = 8.93) for B. b Difference between previous potentials. c Estimated M(II)-porphyrin distance. d Computed (in eV) according to eq. 1 (see text). e Wavelength of the lowest Q band. f Driving force (in eV) for the electron transfer step. g Reorganization energy considered. h Activation energy (in eV) for the electron-transfer step (eq. 2). i Value estimated from the CV of the Zn(II) model porphyrin measured.3

Table S9: Thermodynamic figures derived for the reductive trapping of the emissive state

of A+ or B+ in the lowest charge transfer (CT) state (Rehm-Weller).

E°M(II) a E°Por

a ∆E° b ∆GCT c λQ(nm) d ∆GeT

e λR(eV) f ∆G≠ g

A+ 0.02 0.34 0.32 0.32 595 -1.76 0.6 0.564

B+ -0.32 0.54 0.86 0.86 550 -1.39 0.9 0.068

a All E° values given for redox couples are in V vs. FcH+/Fc in ethanol (εR = 24.5) for A+ and CH2Cl2 (εR = 8.93) for B+. b Difference between previous potentials. c Computed (in eV) according to eq. 3 (see text). d Wavelength of the lowest Q band. e Driving force (in eV) for the electron transfer step. f Reorganization energy considered. g Activation energy (in eV) for the electron-transfer step (eq. 2).

3 See: C.-Y. Lin, L.-C. Chuang, Y.-F. Yang, C.-L. Lin, H.-C. Kao, W.-J. Wang, Dalton Trans. 2004, 456-462 and N. G. Connelly and W. E. Geiger, Chem. Rev., 1996, 96, 877-910.


Recommended