+ All Categories
Home > Documents > Fluorogenic task-specific ionic liquid probes for heavy ...€¦ · Photoinduced Process Electron...

Fluorogenic task-specific ionic liquid probes for heavy ...€¦ · Photoinduced Process Electron...

Date post: 20-Oct-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
29
ANR Sustainable Chemistry Conference « FLUOSENSIL » Fluorogenic task-specific ionic liquid probes for heavy metal titration in water FLUOSENSIL Isabelle Leray, PPSM-ENS-Cachan [email protected] ANR-08-CP2D-11-01 FLUOSENSIL
Transcript
  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Fluorogenic task-specific ionic liquid probes for heavy metal titration in water FLUOSENSIL

    Isabelle Leray, PPSM-ENS-Cachan

    [email protected]

    ANR-08-CP2D-11-01 FLUOSENSIL

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    M.A.C : Maximum Acceptable Concentration

    Introduction

    2

    Cations Provenance Toxicity M.A.C.

    (2003)

    M.A.C.

    (2015)

    Pb2+

    pumbing, painting, automobile pollution, metallurgy

    digestive, neurological, cardiac and mental troubles, highly toxic for children

    25 ppb 7.2 ppb

    Hg2+

    Volcans,coal combustion, gold panning, metallurgy

    Kidney, neurological and blood troubles

    1 ppb 0.07 ppb

    Cd2+

    Volcans,metallurgy, fertilizer, battery Kidney, lung, heart

    5 ppb 0.2 ppb

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Analytical methods of detection

    Sensibility

    Selectivity

    High spatial and temporal resolution

    Low cost

    Used Methods :

    – Atomic Absorption

    – Atomic Emission

    – Mass Spectroscopy

    – Electrochemistry

    – Fluorescence

    Fluorescence

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Detection of heavy metal ions in water

    Design and synthesis of selective and sensitive fluorescent molecular sensors

    Concentration of the heavy metal ion

    Realization of a microdevice

    cation

    Fluorophore

    Mineralisation module

    Microextractor

    Detection module

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    A. P. de Silva, Chem. Rev. 97 (1997) 1515; B. Valeur and I. Leray, Coord. Chem. Rev. 205 ( 2000) 3–40.

    I. Leray, B. Valeur, Eur. J. Inorg. Chem. 24 (2009) 3525-3535

    Fluorescent Sensor for cation : fluoroionophore

    Changes of the fluorescence properties of the fluorophore

    cation

    Fluorophore Fluorophore

    Ionophore : Recognition moiety

    Fluorophore moiety

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Fluorescent Sensor for cation : fluoroionophore

    Perturbation by the bound cation

    cation

    Fluorophore Fluorophore

    Ionophore : Recognition moiety

    Fluorophore moiety

    Photoinduced Process

    Electron transfer (PET)

    Charge transfer (PCT)

    Energy Transfer (EET)

    Excimer Formation

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    PSPO (24 nM)

    PSPS (9 nM)

    Hg2+

    P P

    S S

    ORRO

    RO OR

    DPPS

    O

    O

    3

    P P

    X OR

    OR

    S

    2

    2

    PSPS : X = S

    PSPO : X = OR =

    I. Leray et. al, Org. Lett. 2007, 9, 1133

    I. Leray et al., Org. & Bio. Chem. 2009, 7 ,1665

    Y.-B. Jiang et al, Org. Lett. 2005, 7, 19, 4217

    Detection limit DPPS (3.8 nM)

    N

    O

    PO

    N

    O O

    ORRO

    P

    Se

    OR

    Fluorescent molecular sensors for

    Detection limit (0.1 µM)

    N

    OP

    S

    OOctyl

    N

    OO

    N+

    NTf2-

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Hg2+

    5

    4

    3

    2

    1

    0

    I F (

    U.A

    .)

    3.02.52.01.51.00.50.0[Hg

    2+] (µmol.L

    -1)

    1.0

    0.8

    0.6

    0.4

    I F (

    U.A

    .)

    16012080400[Hg

    2+] (nmol.L

    -1)

    Detection limit: 0.92 nM

    Response time : 10 mn

    I. Samb , J. Bell, P. Y. Toullec, V. Michelet and I. Leray, Org. Lett. , 2011, 13 (5), 1182–1185

    5

    4

    3

    2

    1

    0

    I F (

    U.A

    .)

    600550500450400350

    (nm)

    2.5

    2.0

    1.5

    1.0

    0.5

    0.0

    I F (

    A.U

    .)

    8006004002000

    Time (s)

    PSe3Oc

    PSe3Oc + Hg 2+

    Fluorescent molecular sensor for

    ORRO

    P

    Se

    OR

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    hydroxyquinoline derivatives

    Hg2+ Fluorescent molecular sensor for

    1.4

    1.2

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    I F (

    A.U

    .)

    650600550500450400

    (nm)

    (CH3CN, exc = 350 nm)

    Emission spectra with Hg2+

    Hg2+

    8HQ-4St-PS

    N

    OH

    O

    N

    OPSPh2

    O

    N

    O

    On-C8H17

    PS

    Ph Ph

    NaH, THF, 0°C

    ClPSPh2

    76 %

    OnC8H17Ph3P

    Br

    NaH, 18-crown-6,THF

    40°C then I2 / CH2Cl2 53 %

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    8.5

    8.0

    7.5

    7.0

    6.5

    6.0

    5.5

    5.0

    I F (

    A.U

    .)

    109876543210

    [Hg2+

    ] (nmol.L-1

    )

    Fluorescent molecular sensor for

    |DΦF| = 0,049 |DΦF| = 0,001

    CH3CN/H2O pH 3

    0.5 nM

    Detection Limit : 0.075 nM= 15ppt

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    I F (

    A.U

    .)

    750700650600550500450

    (nm)

    2.52.01.51.00.50.0

    [Hg2+

    ] (10-5

    .mol.L-1

    )

    IF @ 565 nm

    Hg2+

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Fluorescent molecular sensor for Pb2+

    0

    0.5

    1

    1.5

    2

    400 500 600 700 800

    I F (

    u.a

    .)

    (nm)

    log K = 10,0

    L

    M2L3

    ML

    log K = 33,5 O N ON

    SO2O2S

    NMe2 NMe2

    O OOO

    ONH

    O2S

    Me2N

    ON

    SO2

    NMe2

    Pb2+

    -

    O NH OHNSO2O2S

    NMe2 NMe2

    O OOO

    ONH

    O2S

    Me2N

    OHN

    SO2

    NMe2

    • Pb2+ complexation

    – deprotonation of the sulfonamide groups

    – Time-resolved fluorescence measurements. Determination of the number of fluorophore implied in the complexation

    0.5

    1

    1.5

    0 1 2 3

    I F 5

    15nm

    / I

    F 5

    65nm

    [Pb2+] (M)

    - Detection limit = 20 nM= 4 ppb (CMA = 7.2 ppb en 2013)

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Fluorescent molecular sensor for Cd2+

    DPP G. Cockrell et al. J. Am. Chem. Soc. 2008, 130, 1420-1430

    DPPMSt

    Styryl fluorophore

    logb (ML2)

    [(DPP)2-Cd]2+ 12,2 l

    og b

    Ca2+

    Mn2+

    Ni+

    Zn2+

    Cd2+

    Pb2+

    2,9

    12,2

    N N

    N NCd2+

    N N

    NOOctyl

    N

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Fluorescent molecular sensor for

    0.10

    0.08

    0.06

    0.04

    0.02

    0.00

    Ab

    so

    rba

    nce

    500450400350300250

    (nm)

    3210

    [Cd2+

    ] (µmol.L-1

    )

    Abs @ 337 nm

    Abs @ 401 nm

    5

    4

    3

    2

    1

    0

    I F (

    U.A

    .)

    750700650600550500450

    (nm)

    43210

    [Cd2+

    ] (µmol.L-1

    )

    IF @ 570 nm 4.9

    4.8

    4.7

    4.6

    4.5

    4.4

    4.3

    I F (

    U.A

    .)

    1.00.80.60.40.20.0

    [Cd2+

    ] (nmol.L-1

    )

    (CH3CN/H2O 50/50; v/v, pH = 2,95, CL = 3,7 µM, exc = 400 nm)

    logb (ML2) logb (ML) logb (M2L) ΦF

    DPPMSt - - - 0,008

    [DPPMSt-H]+ - 3,08 - 0,071

    [DPPMSt-H2]2+ - - 5,06 0,013

    [DPPMSt-Cd]2+ 14,7 7,3 - 0,001

    0.5 nM

    Cd2+

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Fluorescent molecular sensors

    Cation

    Fluorescent molecular sensor

    8HQ-4St-PS Calix-DANS4 DPPMSt

    Detection limit

    0.015 ppb 4 ppb 0.05 ppb

    European Standard 2015

    0.070 ppb

    0.35 nM

    7.2 ppb

    20 nM

    0.2 ppb

    1.8 nM

    Hg2+ Pb2+ Cd2+

    N N

    NOOctyl

    N

    O NH OHNSO2O2S

    NMe2 NMe2

    O OOO

    ONH

    O2S

    Me2N

    OHN

    SO2

    NMe2

    N

    OP

    S

    OOctyl

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Concentrating extraction using ionic liquid

    [18a] = 10-4M [Hg(ClO4)2] = 2,5 10-6M

    M. Blanchard-Desce et al. Angew. Chem. Int. Ed. 2010, 49, 424-427.

    Detection limit : 60 ppb

    5000 ppb

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Extraction properties

    LITS-DPPO-N+

    LITS-8HQ-4St-PS-N+

    N+ N+

    N+ N+

    N+

    E = 85 %

    E > 60 % Extraction of Hg2+ (1 nM )

    LITS-Calix-DANS4

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Complete analyser Flow Pattern

    Mineralization module

    Microconcentrator

    Detection module

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Mineralization Module in collaboration with the LGC (Laboratoire de Génie Chimique)

    Degradation : 98 % of organic matter

    (25 mg/L)

    t = 10 minutes

    I = 350 mA

    Electrolyte : HNO3 0,5 M

    Patent pending for

    « Electrolysis Cell inserted in an on-

    line heavy metal analysis system »

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Micro-concentrator

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Optical module

    • Experimental bench

    0,5 mm

    Silicium

    Pyrex

    Excitation

    Emission

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    detector

    Diode

    CEA-LETI Chip

    dichroic mirror

    Optical module

    Hg2+ Detection limit < 1nM 0.2 ppb

    26

    24

    22

    20

    18

    S (

    mV

    )

    150100500

    time (s)

    pH = 3 10-9

    10-8

    10-6

    10-5

    10-7

    8HQ-PS-N+

    Test on homogeneous conditions

    (CH3CN/H2O pH 2.3)

    Hg2+

    Hg2+

    Hg2+

    Hg2+

    Hg2+

    DEL 365 nm

    2mW, 10°

    P.B. 365nm

    P.H. 416nm

    Silica lenses

    M.D. 380 nm

    PM

    Hamamatsu R928

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Optical module & extraction measurements

    LITS-8HQ-4St-PS-N+

    pH variation in the water phase Mercury extraction

    50

    40

    30

    20

    10

    0

    Sig

    na

    l (m

    V)

    140120100806040200

    Time (s)

    pH 5 pH 5

    pH 3

    100

    90

    80

    70

    60

    50

    40

    S (

    mV

    )

    300250200150100500

    time (s)

    pH = 3

    pH = 5

    500 ppb

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Complete analyser Flow Pattern

    DEL

    concentrator BDD

    Anode

    Ionic liquid

    sewer sewer

    photomultiplier

    pH modification

    cell

    filtrated sample

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Electronic Card OPML (Optic Heavy Metal)

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Man-Machine Interface

    => Fluosensil software in construction

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Industrial Testing Model

    Electronical box

    Optical box

    Black SAO

    Hydraulic system

    Mineralization

    module

    Chemical supply

    MMI

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Conclusion

    Design, synthesis and photophysical properties of efficient fluorescent molecular sensor

    Possible extraction using ionic liquid

    Efficient mineralisation and optical module

    Perspectives … for the remaining time of this project, and later for further projects: Accomplish the complete set-up : automatisation, electronic .. Measurements in real sample For further developments Increase the efficiency of the preconcentration set-up : change the configuration of the microextractor Detection of other cations :

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Publications, presentations, … Publications

    patents

    Oral presentation

    • M. H. Ha-Thi, M. Penhoat, V. Michelet, I. Leray, Org. Biomol. Chem. 2009, 7, 1665-1673.

    • F. Loe-Mie, G. Marchand, J. Berthier, N. Sarrut, M. Pucheault, M. Blanchard-Desce, F. Vinet, M. Vaultier, Angew. Chem. Int. Ed. 2010, 49, 424-427.

    • V. Alain-Rizzo, D. Drouin-Kucma, C. Rouxel, I. Samb, J. Bell, P. Y. Toullec, V. Michelet, I. Leray, M. Blanchard-Desce, Chem. Asian J. 2011, 6, 1080-1091.

    • I. Samb, J. Bell, P. Y. Toullec, V. Michelet, I. Leray, Org. Lett. 2011, 13, 1182-1185. • J. Bell, I. Samb, P. Y. Toullec,O. Mongin, M. Blanchard-Desce, V. Michelet, I. Leray,

    2012, submitted

    1 patent (CEA LETI) , 1 pending + 1 in preparation

    4 oral presentations in international or domestic meetings (including 2 plenary or invited presentations)

  • ANR Sustainable Chemistry Conference « FLUOSENSIL »

    Acknowledgements

    J. Bell V. Alain J.P. Lefevre I. Leray

    V. Michelet P. Toullec I. Samb

    M. Blanchard-Desce Y. Chandrasekaran O. Mongin M. Pucheault M. Vaultier

    F. Ricoul A. Jacquart C. Vauchier

    O. Mauvais A. Ruffien Ciszak M. Freyssinier


Recommended