+ All Categories
Home > Documents > fMRI Multiple Comparisons Problem

fMRI Multiple Comparisons Problem

Date post: 02-Jan-2016
Category:
Upload: quinn-terrell
View: 44 times
Download: 3 times
Share this document with a friend
Description:
The False Discovery Rate A New Approach to the Multiple Comparisons Problem Thomas Nichols Department of Biostatistics University of Michigan. fMRI Multiple Comparisons Problem. 4-Dimensional Data 1,000 multivariate observations, each with 100,000 elements - PowerPoint PPT Presentation
Popular Tags:
22
The False Discovery Rate A New Approach to the Multiple Comparisons Problem Thomas Nichols Department of Biostatistics University of Michigan
Transcript
Page 1: fMRI Multiple Comparisons Problem

The False Discovery Rate

A New Approach to the Multiple Comparisons Problem

Thomas NicholsDepartment of Biostatistics

University of Michigan

The False Discovery Rate

A New Approach to the Multiple Comparisons Problem

Thomas NicholsDepartment of Biostatistics

University of Michigan

Page 2: fMRI Multiple Comparisons Problem

fMRI Multiple Comparisons ProblemfMRI Multiple Comparisons Problem

• 4-Dimensional Data– 1,000 multivariate observations,

each with 100,000 elements– 100,000 time series, each

with 1,000 observations

• Massively UnivariateApproach– 100,000 hypothesis

tests

• Massive MCP!

• 4-Dimensional Data– 1,000 multivariate observations,

each with 100,000 elements– 100,000 time series, each

with 1,000 observations

• Massively UnivariateApproach– 100,000 hypothesis

tests

• Massive MCP!

1,000

1

2

3

. . .

Page 3: fMRI Multiple Comparisons Problem

Solutions forMultiple Comparison Problem

Solutions forMultiple Comparison Problem

• A MCP Solution Must Control False Positives– How to measure multiple false positives?

• Familywise Error Rate (FWER)– Chance of any false positives– Controlled by Bonferroni & Random Field Methods

• False Discovery Rate (FDR)– Proportion of false positives among rejected tests

• A MCP Solution Must Control False Positives– How to measure multiple false positives?

• Familywise Error Rate (FWER)– Chance of any false positives– Controlled by Bonferroni & Random Field Methods

• False Discovery Rate (FDR)– Proportion of false positives among rejected tests

Page 4: fMRI Multiple Comparisons Problem

False Discovery RateIllustration:

False Discovery RateIllustration:

Signal

Signal+Noise

Noise

Page 5: fMRI Multiple Comparisons Problem

FWE

6.7% 10.4% 14.9% 9.3% 16.2% 13.8% 14.0% 10.5% 12.2% 8.7%

Control of Familywise Error Rate at 10%

11.3% 11.3% 12.5% 10.8% 11.5% 10.0% 10.7% 11.2% 10.2% 9.5%

Control of Per Comparison Rate at 10%

Percentage of Null Pixels that are False Positives

Control of False Discovery Rate at 10%

Occurrence of Familywise Error

Percentage of Activated Pixels that are False Positives

Page 6: fMRI Multiple Comparisons Problem

Benjamini & Hochberg ProcedureBenjamini & Hochberg Procedure

• Select desired limit q on E(FDR)• Order p-values, p(1) p(2) ... p(V)

• Let r be largest i such that

• Reject all hypotheses corresponding to p(1), ... , p(r).

• Select desired limit q on E(FDR)• Order p-values, p(1) p(2) ... p(V)

• Let r be largest i such that

• Reject all hypotheses corresponding to p(1), ... , p(r).

p(i) i/V q/c(V)

p(i)

i/V

i/V q/c(V)p-

valu

e0 1

01

JRSS-B (1995) 57:289-300

Page 7: fMRI Multiple Comparisons Problem

Benjamini & Hochberg ProcedureBenjamini & Hochberg Procedure

• c(V) = 1– Positive Regression Dependency on Subsets

• Technical condition, special cases include

– Independent data

– Multivariate Normal with all positive correlations• Result by Benjamini & Yekutieli.

• c(V) = i=1,...,V 1/i log(V)+0.5772

– Arbitrary covariance structure

• c(V) = 1– Positive Regression Dependency on Subsets

• Technical condition, special cases include

– Independent data

– Multivariate Normal with all positive correlations• Result by Benjamini & Yekutieli.

• c(V) = i=1,...,V 1/i log(V)+0.5772

– Arbitrary covariance structure

Page 8: fMRI Multiple Comparisons Problem

Benjamini & Hochberg:Varying Signal Extent

Benjamini & Hochberg:Varying Signal Extent

Signal Intensity 3.0 Signal Extent 1.0 Noise Smoothness 3.0

p = z =

1

Page 9: fMRI Multiple Comparisons Problem

Benjamini & Hochberg:Varying Signal Extent

Benjamini & Hochberg:Varying Signal Extent

Signal Intensity 3.0 Signal Extent 2.0 Noise Smoothness 3.0

p = z =

2

Page 10: fMRI Multiple Comparisons Problem

Benjamini & Hochberg:Varying Signal Extent

Benjamini & Hochberg:Varying Signal Extent

Signal Intensity 3.0 Signal Extent 3.0 Noise Smoothness 3.0

p = z =

3

Page 11: fMRI Multiple Comparisons Problem

Benjamini & Hochberg:Varying Signal Extent

Benjamini & Hochberg:Varying Signal Extent

Signal Intensity 3.0 Signal Extent 5.0 Noise Smoothness 3.0

p = 0.000252 z = 3.48

4

Page 12: fMRI Multiple Comparisons Problem

Benjamini & Hochberg:Varying Signal Extent

Benjamini & Hochberg:Varying Signal Extent

Signal Intensity 3.0 Signal Extent 9.5 Noise Smoothness 3.0

p = 0.001628 z = 2.94

5

Page 13: fMRI Multiple Comparisons Problem

Benjamini & Hochberg:Varying Signal Extent

Benjamini & Hochberg:Varying Signal Extent

Signal Intensity 3.0 Signal Extent 16.5 Noise Smoothness 3.0

p = 0.007157 z = 2.45

6

Page 14: fMRI Multiple Comparisons Problem

Benjamini & Hochberg:Varying Signal Extent

Benjamini & Hochberg:Varying Signal Extent

Signal Intensity 3.0 Signal Extent 25.0 Noise Smoothness 3.0

p = 0.019274 z = 2.07

7

Page 15: fMRI Multiple Comparisons Problem

Benjamini & Hochberg: PropertiesBenjamini & Hochberg: Properties

• Adaptive– Larger the signal, the lower the threshold– Larger the signal, the more false positives

• False positives constant as fraction of rejected tests

• Not a problem with imaging’s sparse signals

• Smoothness OK– Smoothing introduces positive correlations

• Adaptive– Larger the signal, the lower the threshold– Larger the signal, the more false positives

• False positives constant as fraction of rejected tests

• Not a problem with imaging’s sparse signals

• Smoothness OK– Smoothing introduces positive correlations

Page 16: fMRI Multiple Comparisons Problem

FDR: ExampleFDR: Example

• Verbal fluency data

• 14 42-second blocks • ABABAB...

• A: Two syllable words presented aurally

• B: Silence

• Imaging parameters– 2Tesla scanner, TR = 7 sec– 84 64x64x64 images of 3 x 3 x 3 mm voxels

• Verbal fluency data

• 14 42-second blocks • ABABAB...

• A: Two syllable words presented aurally

• B: Silence

• Imaging parameters– 2Tesla scanner, TR = 7 sec– 84 64x64x64 images of 3 x 3 x 3 mm voxels

Page 17: fMRI Multiple Comparisons Problem

FDR Example:Plot of FDR Inequality

FDR Example:Plot of FDR Inequality

p(i) ( i/V ) ( q/c(V) )

Page 18: fMRI Multiple Comparisons Problem

FDR: ExampleFDR: Example

FDR 0.05Indep/PRDSt0 = 3.8119

FWER 0.05Bonferronit0 = 5.485

FDR 0.05Arbitrary Cov.

t0 = 5.0747

Page 19: fMRI Multiple Comparisons Problem

FDR Software for SPMFDR Software for SPM

http://www.sph.umich.edu/~nichols/FDR

Page 20: fMRI Multiple Comparisons Problem

FDR: ConclusionsFDR: Conclusions

• False Discovery Rate– A new false positive metric

• Benjamini & Hochberg FDR Method– Straightforward solution to fNI MCP– Just one way of controlling FDR

• New methods under developmente.g. C. Genovese or J. Storey

• Limitations– Arbitrary dependence result less sensitive

• False Discovery Rate– A new false positive metric

• Benjamini & Hochberg FDR Method– Straightforward solution to fNI MCP– Just one way of controlling FDR

• New methods under developmente.g. C. Genovese or J. Storey

• Limitations– Arbitrary dependence result less sensitive

http://www.sph.umich.edu/~nichols/FDR Prop

Ill

Start

Page 21: fMRI Multiple Comparisons Problem

ReferencesReferences

• Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57:289--300.

• Benjamini, Y, Yekutieli D (2002). The control of the false discovery rate under dependence. Annals of Statistics. To appear.

• Genovese CR, Lazar N, Nichols TE (2002). Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate. NeuroImage, 15:870-878.

• Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B, 57:289--300.

• Benjamini, Y, Yekutieli D (2002). The control of the false discovery rate under dependence. Annals of Statistics. To appear.

• Genovese CR, Lazar N, Nichols TE (2002). Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate. NeuroImage, 15:870-878.

Page 22: fMRI Multiple Comparisons Problem

Positive Regression DependencyPositive Regression Dependency

• Does fMRI data exhibit total positive correlation?• Example

– 160 scan experiment

– Spatialautocorrelationof residuals

– Single voxelwith all others

• Negative correlationexists!

• Does fMRI data exhibit total positive correlation?• Example

– 160 scan experiment

– Spatialautocorrelationof residuals

– Single voxelwith all others

• Negative correlationexists!


Recommended