+ All Categories
Home > Documents > Foreword - NASA

Foreword - NASA

Date post: 30-Jan-2022
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
48
Transcript

—I—

NASA’s mission to pave the future of space exploration through

innovations in science and technology is reflected in a balanced

technology development and maturation program supported by

all NASA Mission Directorates. Stimulating technology innovation

through Small Business Innovation Research (SBIR)/Small Business

Technology Transfer (STTR) programs, NASA has empowered U.S.

small businesses to make significant contributions to the future of

space exploration.

This technology investment portfolio highlights SBIR Phases I and

II investments in antenna technology development for the Space

Operations Mission Directorate (SOMD)/Human Exploration and

Operations Mission Directorate (HEOMD) from 2005 to 2012. This

report summarizes technology challenges addressed and advances

made by the SBIR community in antenna technology. The goal of

this document is to encourage program and project managers,

stakeholders, and prime contractors to take advantage of these

technology advancements to leverage their own efforts and to help

facilitate infusion of technology advancements into future NASA

projects. A description of NASA’s SBIR Program can be found at

www.sbir.nasa.gov.

Foreword

—II—

Small BuSineSS innovation reSearch

—III—

The Small Business Innovation Research (SBIR) Program provides opportunities for

small high-technology companies to participate in Government-sponsored research and

development efforts in key technology areas of interest to NASA. The SBIR Program

provides significant sources of seed funding to foster technology innovation. The SBIR

Phase I contracts are awarded for 6 months with funding up to $125,000; Phase II

contracts are awarded for 24 months with funding up to $750,000.

—IV—

human exploration

—V—

The Human Exploration and Operations Mission Directorate (HEOMD) is chartered with

the development of core transportation elements, key systems, and enabling technologies

required for beyond-low-Earth-orbit (LEO) human exploration that will provide the foundation

for the next half-century of American leadership in space exploration.

This new space exploration era starts with increasingly challenging test missions in cislunar

space, including flights to the Lagrange points, followed by human missions to near-Earth

asteroids (NEAs), Moon, the moons of Mars, and Mars as part of a sustained journey of

exploration in the inner solar system. HEOMD was formed in 2011 by combining the Space

Operations Mission Directorate (SOMD) and the Exploration Systems Mission Directorate

(ESMD) to optimize the elements, systems, and technologies of the precursor directorates

to the maximum extent possible.

HEOMD mission goals include key technology developments in Space Communications

and Navigation, Space Transportation, Human Research and Health Maintenance, Radiation

Protection, Life Support and Habitation, High-Efficiency Space Power Systems, and Ground

Processing/ISS Utilization.

HEOMD looks forward to incorporating SBIR-developed technologies into current and

future systems to contribute to the expansion of humanity across the solar system while

providing continued cost-effective space access and operations for its customers, with a

high standard of safety, reliability, and affordability.

andoperationS miSSion directorate

—VI—

Scan: Keeping theSCaN NotioNal iNtegrated Network arChiteCture

—VII—

univerSe connectedProgram aNd teChNology develoPmeNt overview

The Space Communications and Navigation (SCaN) Program resides within HEOMD and is responsible for the

development of technologies and capabilities to support all current and future NASA missions. The SCaN Program

provides the communication, navigation, and mission science data transfer services that are vital to the successful

operation of NASA space flight missions. To accomplish this, SCaN operates three networks: the Deep Space

Network (DSN), the Near Earth Network (NEN), and the Space Network (SN). Combined together, the services and

network assets provide capabilities that enable space exploration for over 100 NASA and non-NASA missions.

SCaN also provides scheduling services to new missions through Network Integration Management Office (NIMO)

and Deep Space Network Commitment Office (DSNO).

To accomplish the above, the SCaN Program’s vision is to build and maintain a scalable, integrated, mission support

infrastructure that can evolve to accommodate new and changing technologies, while providing comprehensive,

robust, cost-effective, and exponentially higher data rate services to enable NASA’s science and exploration

missions. Today, NASA communication and navigation capabilities using radiofrequency technology can support

spacecraft to the fringes of the solar system and beyond. The anticipated new missions for science and exploration

of the universe are expected to challenge the current data rates of 300 Mbps in LEO and of 6 Mbps at Mars to rise

significantly. The SCaN Program aims to

• DevelopaSCaNnetworkinfrastructurecapableofmeetingbothroboticandhumanexplorationmissionneeds.

• Evolveinfrastructuretoprovidethehighestdataratesfeasible.

• Developinternationallyinteroperabledatacommunicationsprotocolsforspacemissions.

• OffercommunicationsandnavigationinfrastructureforlunarandMarssurfaces.

• OffercommunicationsandnavigationservicestoenablelunarandMarshumanmissions.

SCaN technology development interests include optical communications, advanced antenna technology and Earth

stations, cognitive networks, access links, reprogrammable communications systems, spacecraft positioning,

navigation, and timing (PNT), and communications in support of launch services. Innovative solutions to operational

issues are needed in all of the areas. Emphasis is placed on size, weight, and power improvements. All SBIR

technologies developed under SCaN Topic area are aligned with the SCaN Program technical directions.

This document catalogs SCaN SBIR investments in Antenna Technology development from 2005 to 2012.

—VIII—

SBir phaSe i awardS

—IX—

CoNteNtSAntenna Technology Developments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Antenna TechnologySBIR Phase I Awards(2005to2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

NovelDeployableHigh-FrequencyAntennasUsingCompositeElectrotextiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4Infoscitex Corporation (2005)

APrintableSiliconNano-FieldEffectTransistorWithHighOperatingFrequencyforLarge-AreaDeployableActivePhased-ArrayAntennas......................................................... 5Omega Optics, Inc. (2005)

15-to25-KStatic-HeliumRegenerator/DoublePulseTubeCoolerforReceivingArrays . . . . . . . . . . . . . . . . . . . . . . . . . 6Beck Engineering, Inc. (2005)

High-Gain,VeryLowArealDensity,ScalableSpace-BasedRadiofrequencyAperturesEnabledbyMembraneApertureShellTechnology(MAST) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Mevicon, Inc. (2006)

Self-ErectingCommunicationsInfrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8Cornerstone Research Group, Inc. (2006)

LightweightSelf-CorrectingInflatable/RigidizableSpaceAntennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9L’Garde, Inc. (2006)

SurfaceOptimizationTechniquesforDeployableReflectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Composite Technology Development, Inc. (2007)

PrintableNano-FieldEffectTransistorsCombinedWithCarbon-Nanotube-BasedPrintableInterconnectWiresforLarge-AreaDeployableActivePhased-ArrayAntennas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Omega Optics, Inc. (2007)

FoamedAntennaSupportforVeryLargeApertures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12Adherent Technologies, Inc. (2007)

ConformalSpacesuitAntennaDevelopmentforEnhancedExtravehicularActivityCommunicationsandWearableComputerApplications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13Applied EM, Inc. (2007)

Phase-ArrayAntennaWithAdaptiveDigitalSignalProcessorBeamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Nokomis, Inc. (2008)

EfficientWearableAntennasforAstronautExtravehicularActivityCommunications . . . . . . . . . . . . . . . . . . . . . . . . . . 15Pharad, LLC (2008)

Stress-MatchedRadiofrequencyandThermalControlCoatingsforMembraneAntennas . . . . . . . . . . . . . . . . . . . . . . . 16Surface Optics Corporation (2009)

AffordableUnfurlableFan-FoldWrapableReflectorforSmallandLargeApertures. . . . . . . . . . . . . . . . . . . . . . . . . . . 17Deployable Space Systems, Inc. (2009)

AMultibandPhotonicPhased-ArrayAntennaforHigh-Data-RateCommunication . . . . . . . . . . . . . . . . . . . . . . . . . . . 18Crystal Research, Inc. (2009)

OptoelectronicInfrastructureforRadiofrequency/OpticalPhasedArrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19ODIS, Inc. (2010)

ElectronicallySteerableAntennasWithPanoramicScanFieldofView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20Freeform Wave Technologies, LLC (2010)

—X—

SBir phaSe ii awardS

—XI—

CoNteNtS (CoNtiNued)Antenna Technology Develpments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Antenna TechnologySBIR Phase II Awards(2005to2012) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

NovelDeployableHigh-FrequencyAntennasUsingCompositeElectrotextiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22Infoscitex Corporation (2005)

SurfaceOptimizationTechniquesforDeployableReflectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23Composite Technology Development, Inc. (2007)

FullyPrintedFlexible4-BitTwo-Dimensional(4x4)16-ElementPhased-ArrayAntennaforLunarSurfaceCommunications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Omega Optics, Inc. (2007)

FoamedAntennaSupportforVeryLargeApertures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25Adherent Technologies, Inc. (2007)

ConformalSpacesuitAntennaDevelopmentforEnhancedExtravehicularActivityCommunicationsandWearableComputerApplications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Applied EM, Inc. (2007)

Stress-MatchedRadiofrequencyandThermalControlCoatingsforMembraneAntennas . . . . . . . . . . . . . . . . . . . . . . . 27Surface Optics Corporation (2009)

AMultibandPhotonicPhased-ArrayAntennaforHigh-Data-RateCommunication . . . . . . . . . . . . . . . . . . . . . . . . . . . 28Crystal Research, Inc. (2009)

OptoelectronicInfrastructureforRadiofrequency/OpticalPhasedArrays. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29ODIS, Inc. (2010)

Company Names. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

SBIR Points of Contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

—XII—

antenna technology

—1—

NASA seeks advanced antenna systems and technologies to enable communications for future space operations,

space science, Earth science, and solar system exploration missions. These areas have been supported by the

NASA SBIR Program. The requirements are summarized below.

Smartantennas,reconfigurableinfrequency,polarization,andradiationpattern,areofinterestforspaceandplanetaryexplorationmissions.Inparticular,antennadesignsandproofofconceptsleadingtothereductionofthenumberofantennasneededtomeetthecommunicationrequirementsassociatedwithrovers,pressurizedsurfacevehicles,habitats,etc.,arehighlydesired.Inadditiontotheaforementionedreconfigurabilityrequirements,specificantennafeaturesincludemultibeamoperationtosupportconnectivitytodifferentcommunicationnodesonplanetarysurfaces,orinsupportofcommunicationlinksforsatelliterelaysaroundplanetaryorbits.Innovativereceiverfrontendsortechnologiesthatallowforthedigitalsignalprocessor(DSP)tomoveclosertotheantennaterminalfurtheringtheimpactoftheaforementionedrevolutionary“game-changing”antennatechnologyconceptsarehighlydesirable.

NASA is considering arrays of ground-based antennas to increase capacity and system flexibility, reduce reliance on largeantennasandhighoperatingcosts,andeliminatesinglepointoffailureoflargeantennas.Alargenumberofsmallerantennasarrayedtogetherresultsinascalable,evolvablesystem,whichenablesaflexiblescheduleandsupportformoresimultaneousmissions.Asignificantchallengeistheimplementationofanarrayfortransmitting(uplinking),whichmayormaynotusethesameantennasthatareusedforreceiving.ArrayingconceptsthatcanenabletechnologystandardizationacrosseachNASAnetwork(i.e.,DeepSpaceNetwork(DSN),NearEarthNetwork(NEN),andSpaceNetwork(SN),withintheframeworkofthenewlyenvisionedNASAintegratednetworkarchitecture,atKa-bandfrequenciesandabove,arehighlydesired.

High-performancephased-arrayantennas,thatis,withefficienciesatleast3xthatofstate-of-practiceMonolithicMicrowaveIntegratedCircuit(MMIC)-basedphasedarrays,areneededforhigh-data-ratecommunicationatKa-bandfrequenciesandaboveaswellasforremotesensingapplications.Communicationsapplicationsincludeplanetaryexploration,landers,probes,rovers,extravehicularactivities(EVAs),suborbitalvehicles,soundingrockets,balloons,unmannedaerialvehicles(UAVs),TrackingandDataRelaySatelliteSystem (TDRSS) communication, andexpendable launch vehicles (ELVs).Alsoof interest aremultibandphased-arrayantennas(e.g.,X-andKa-band)andradiofrequency(RF)/opticalsharedaperturedual-useantennas,whichcandynamicallyreconfigureactiveelementsinordertooperateineitherbandasrequiredtomaximizeflexibilityandefficiencyandminimizethemassofhardwaredeliveredtospace.Phased-arrayantennasforspace-basedrangeapplicationstoaccommodatedynamicmaneuversarealsoofinterest.Thearraysarerequiredtobeaerodynamicorconformalinshapeforsoundingrockets,UAVs,andexpendableplatformsandmustbeabletowithstandthelaunchenvironment.Potentialremotesensingapplicationsincluderadiometers,passiveradarinterferometerplatforms,andsyntheticapertureradar(SAR)platformsforplanetaryscience.

Largeaperturedeployableantennaswithsurfaceroot-mean-square(rms)qualitybetterthanλ/40atKa-bandfrequenciesandabovearedesired.Inaddition,theseantennasshouldsignificantlyreducestowagevolume(packagingefficienciesashighas50:1),providehighdeploymentreliability,andsignificantlyreducedmassdensity(i.e.,<1kg/m2).TheselargeGossamer-likeantennasare required toprovidehigh-capacitycommunication linkswith low fabricationcosts fromdeepspace (Marsandbeyond).Conceptsaddressingantennaadaptivebeamcorrectionwithpointingcontrolarealsoofinterest.

Typically, thePhase Ideliverablesarebasedon research to identifyandevaluatecandidate telecommunications technologyapplicationstodemonstratethetechnicalfeasibilityandtoshowapathtowardsahardware/softwaredemonstration.Bench-orlab-leveldemonstrationsaredesirable.

For the Phase II deliverables, emphasis is placed on developing and demonstrating the technology under simulated flightconditions.Theeffortshouldoutlineapathshowinghowthetechnologycouldbedevelopedintospaceworthysystems.TheSBIRcontractshoulddeliverademonstrationunitforfunctionalandenvironmentaltestingatthecompletionofthePhaseIIperiodofperformance.

—2—

—3—

antenna technologySBir phaSe i awardS 2005 to 2012

—4—

Novel dePloyable high-FrequeNCy aNteNNaS uSiNg ComPoSite eleCtrotextileS

InfoscitexCorporation

2005PhaseIO1.04-7826

Identification and Significance of Innovation• NASAandtheAirForceneednew

deployabletechnologiesthatcanmeettheKa-bandcommunicationneedsofthenext-generationspacevehicles

• InfoscitexCorporation’s(IST’s)newelectrotextilecompositeapproachhasthepotentialtosignificantlyreducetheweightofantennaandthenecessarybackupstructure

• Lightweightcompositedeployablestructureswithnovelinvolutebackingstructurecanprovideanewapproachtoreachingtheantennaarealweightgoalof1kg/m2

Technical Objectives

• Developprocesstoproduceandweaveorknitcoatedfibersintohigh-accuracytight-spacingmesh

• Producesamplemeshprototypeswithtwoormorethermoplasticmeshlockingapproachesinpreparationforpassiveintermodulation(PIM)testing

• Evaluatethestructural,reflectivity,andPIMcharacteristicsoftheprototypemeshesanddownselectbestperformingmeshforPhaseIIantennaprototype

• DesigninvoluteshapebackingstructuregiventhedownselectedmeshpropertiesandcriteriaforKa-bandoperatingfrequency(conductorspacing,maximumacceptablesurfacedeviationfromidealparabola,signalgain,etc.)

NASA and Non-NASA Applications

• Ultralightweight,multifunctionaldurablespacecraftantennastructures

• Flexiblelightweightdurableantennasforwirelesstechnologieslikecellularphones,GlobalPositioningSystem(GPS),Bluetooth,andWiFi

—5—

a PriNtable SiliCoN NaNo-Field eFFeCt traNSiStor with high oPeratiNg FrequeNCy For large-area dePloyable aCtive

PhaSed-array aNteNNaS

OmegaOptics,Inc.

2005PhaseIO1.04-7905

Identification and Significance of InnovationFlexibleelectroniccircuitsarehighlydesiredinNASA’s space radar systemsdue to theireasy integration with large-area inflatableantennas.Existingflexibleelectronicshaveanintrinsiclowswitchingfrequencyduetotheirlow carriermobility.The proposed researchaimstodevelopaprintablesiliconnano-FETwithhighcarriermobilityofover400cm2/(V·s),which allows us to achieve multi-gigahertzoperatingfrequency.Successfullydevelopingtheproposedresearchisexpectedtoprovideanenablingtechnologyforhigh-speedflexibleelectronicsthatcanbeintegratedwithlarge-area, inflatable radar antennas and providedistributedsystemcontrol,signalprocessing,anddynamicantennasubarraying,andgainpatternreconfigurationfunctions.

Technical Objectives

• Developandcharacterizetheprintablesiliconnano-fieldeffecttransistor(nano-FET)

• Developapreliminarydigitalphaseshifterforactivephased-arrayantennas(PAAs)

• Demonstratethemonolithicintegrationofflexibleelectronicswithlarge-areaanddeployableactivePAA

NASA Applications

• L-bandactivePAA

• Smartantennaforadaptiveandreliableradiofrequency(RF)communication

• MultibandfrequencyagileRFradarsystems

Non-NASA Applications

• RFidentificationtags,electronicpaper

• Smartcards

• Large-areaflatpaneldisplays

—6—

15- to 25-k StatiC-helium regeNerator/double PulSe tube Cooler For reCeiviNg arrayS

BeckEngineering,Inc.

2005PhaseIO1.05-9818

Technical Objectives

• Projectthesize,mass,andperformanceofa15to25KSHR/DPTC

NASA Applications

• Coolersforreceivingarraysofground-basedantennas

• CoolersfortheNextGenerationTelescope(NGST)andtheTerrestrialPlanetFinder(TPF)missions

• Coolersforthestructureandevolutionoftheuniversetheme

• Coolerstoliquefyand/orstorecryogensforhumanandroboticmissionstoMars

Non-NASA Applications

• AirForcecoolersforHighEnergyLaser(HEL)systems

• AirForcecoolersforverylongwavelengthinfrared(VLWIR)focalplanes

Identification and Significance of InnovationNASA needs a cryogenic refrigerator forthe15to25Krangeforreceivingarraysofground-basedantennasthatwillservethe telecommunications needs of futurespaceexploration.

Weproposetodevelopa15to25KStatic-Helium Regenerator (SHR)/Double PulseTubeCooler (DPTC) that uses two of ourtechnologiestoenableefficientoperationatcoldtemperatures:

• SHRcanstoremoreheatatcoldtemperaturesthanregeneratorsmadefromsolidmaterials(e.g.,Er50Pr50orstainlesssteel)

• DPTCtechnologyusesarecuperator,whichcanoperateefficientlyatcoldtemperatures

—7—

high-gaiN, very low areal deNSity, SCalable SPaCe-baSed radioFrequeNCy aPertureS eNabled by membraNe aPerture

Shell teChNology (maSt)

Mevicon,Inc.

2006PhaseIO1.04-9426

Technical Objectives• Establishtargetapplication,operationalscenarios,andsystem

architectureapproach• Demonstrateshellsegmentfabricationandradiofrequency(RF)

performance• Demonstrate,withhardware,thatsuitablestowageanddeployment

scalabilitypathsexist• Evaluatestowage,launch,andoperationalenvironmentsurvivalmargins• Developpointdesignandadvancedocumentedtechnologyreadiness

level(TRL)

NASA and Non-NASA ApplicationsRFcommunications• RFcommunicationsrelayorbitalassets• Militaryandcommercialspacetelecomapertures• High-gainplanetarylinks,point-to-point,long-haulwireless,ground

stationuplink,anddirecttoEarth(backup)• Terrestrial:transportableemergency/remotelocationvery-small-

apertureterminal(VSAT)aperturesandcompacttestrangesubreflectors• SynergiestoSpaceScienceApplications• Largeapertures(RF,mmwave,IR(far,middle,near)science)• Precisionapertures(incoherentcoherentLIDAR,spectroscopy,and

visible)

Other Exploration/Operational Applications• Solarconcentratorsforpower(solardynamic),propulsion(SOTVand

STP)• Sunshields(largeRFtodeepspaceIRtelescopes),occulters,solarsail.

Note:Allapplicationareasaredual/multiuse,supportingpotentialNASA,DepartmentofDefense(DoD),andcommercialspaceapplications.

Identification and Significance of InnovationTheproposedinnovationisthedevelopment/demonstration of methods to scale ofMembrane Aperture Shell Technology(MAST) to provide path for 10- to 20-mdiameterspace-basedRFcommunicationsapertures. Advantages/significance of thetechnologyinclude

• Compactlystowable,passivelyself-deploying,selfrigidizing,andgoodsurfacefiguresegments(shouldsupportKa+bands)

• Abilitytofabricatehexagonsprovidesmanyscalabilitypathstolargeouterdiameter(OD)

• Basedonspace-qualifiedmaterial/coatingthinfilms

• DemonstratedRFreflectivity

• Structuralstiffnessderivedfrompermanentcurvature

• Largeraperturesprovideincreasedgain,bettercommunicationsbandwidth,longerrange,and/orreducedpowerusage

• Lowerarealdensityandthuslessmass/inertialoading

—8—

SelF-ereCtiNg CommuNiCatioNS iNFraStruCture

CornerstoneResearchGroup,Inc.

2006PhaseIO1.04-9591

Identification and Significance of Innovation• Large-scale,reconfigurablecomposite

structures

• Low-massandvolumepackaging

• Self-erecting,payload-liftingcompositetower

• Large-areacoverage

– Increasespoint-to-pointrange

– Reducespowerrequirements

– Minimizesnumberofnodes

Technical Objectives

• Identifybestreconfigurablebeamdesign

• Demonstratemechanicalbeamreconfigurationsystem

• Developfirst-generationtowerdesign

NASA Applications

• Enhancednetworkedcommunicationperformance

• Basicself-erectinginfrastructure

• Low-packingvolumebasicstructuresforshipping

Non-NASA Applications

• Disasterreliefemergencyinfrastructure

• Affordablelaborlesscellulartelephonetowers

• Self-erectingbridges

—9—

lightweight SelF-CorreCtiNg iNFlatable/rigidizable SPaCe aNteNNaS

L’Garde,Inc.

2006PhaseIO1.04-9843

Identification and Significance of Innovation• lnflatable-rigidizablelargeapertures

inspaceofferlow-weightandlow-costalternativestorigidmechanicaldeployables—nomakeupgasnecessary

• Antennasurfacedistortionson-orbittobecompensatedforbyareal-timeRFdistortion-compensationusingphased-arrayfeedsystem

• 20-m-classaperturediameterorgreatereasilyachievablewithtechnology

Technical Objectives

• Carryoutconceptdesignofaccurate,long-livedlightweightinflatable-rigidizablespaceantenna

• Calculateresultingshapesof“distorted”antennareflectorsurfaceduetomanufacturingandon-orbiterrorsources

• Identify,assess,andquantityfeasibilityofapplyingspecificcandidatedistortion-compensationmechanisms/algorithmstoinflatable-rigidizableantennastoincreaseoperatingfrequency

• Usethe”distorted”antennareflectorshapesandapplythecompensationsystemtopredictantennaperformance

• PlanPhaseIIradiofrequency(RF)testandvalidationonasubscaleinflatable-rigidizableantennareflector

NASA Applications

• NASAspacesciencemissionsandcommunicationsfromouterplanetstoNASAterrestrialfacilitiesand/orEarthorbits

Non-NASA Applications

• Highdatathroughputapplicationswheneaseandcostoftransportinglargeaperturesisofprimeimportancesuchasduringnaturalormanmadedisastersinacombattheater

—10—

SurFaCe oPtimizatioN teChNiqueS For dePloyable reFleCtorS

CompositeTechnologyDevelopment,Inc.

2007PhaseIO1.04-8808

Identification and Significance of Innovation• Developmethodsforoptimizingthe

surfacecontourofsolid-surfacedeployablereflectors

• Developmentofbuilt-intuningadjustors

• Enablesdeployablereflectorsthatarecapableofbothhigh-gain(duetolargeaperture)andhigh-frequency(duetoprecisionsolid-surface)operation

• Compositesolid-surfacereflectorlow-costandnear-zerocoefficientofthermalexpansion(CTE)

Technical Objectives

• Identifybaselinereflectorapplicationanddefinetuningrequirements

• Designengineeringunitwithtuningadjustorsandvalidatetuninginfluencewithstructuralanalysis

• Fabricateengineeringunitwithexistingsolidsurfacedeployablereflectorshell

• Demonstratesurfaceoptimizationusingtuningadjustors

NASA and Non-NASA Applications

• NextGenerationDSN/TDRS

• HarrisCorp.:20MMarsCommSystem

• Boeing:LunarTDRS/DSN

• Radar/radiofrequency(RF)payloadforDepartmentofDefense(DoD)TacSats

• Commercialcommunicationpayloads

—11—

PriNtable NaNo-Field eFFeCt traNSiStorS CombiNed with CarboN-NaNotube-baSed PriNtable iNterCoNNeCt wireS For

large-area dePloyable aCtive PhaSed-array aNteNNaS

OmegaOptics,Inc.

2007PhaseIO1.04-8886

Identification and Significance of InnovationFlexible electronic circuits are highlydesired in NASA’s space radar systemsdue to their easy integration with largearea inflatable antennas. Existing flexibleelectronicshaveanintrinsiclowswitchingfrequencyduetotheirlowcarriermobility.The proposed research aims to develop aprintablesiliconnano-FETwithhighcarriermobilityofover400cm2/(V·s),whichallowsus to achieve multi-gigahertz operatingfrequency.Wealsoproposetheprintingofconductinginterconnectwiresusingcarbonnanotubes. Based on our past experienceonprintablesiliconnano-FETandprintablecarbon nanotube wires, the high-speedflexible electronics are expected to beintegratedwithlarge-area,inflatableradarantennas and achieve smart antennasystemsforhighperformanceandreliablespaceoperations.

Technical Objectives

• Developandcharacterizetheprintablesiliconnano-fieldeffecttransistor(nano-FET)

• Developandcharacterizetheprintablecarbonnanotubeinterconnectwires

• Demonstratetheintegratedprintablenano-FETnetworkforactivephased-arrayantenna

NASA Applications

• Active,multibandphased-arrayradarsystems

• Advancednavigationandcommunication,includingbasicmissionsupportandhighbandwidthdemand,toimplementthevisionofgoingbacktoMoonby2020

Non-NASA Applications

• Radiofrequency(RF)identificationtagsandelectronicpaper

• Smartcards

• Large-areaflatpaneldisplays

—12—

Foamed aNteNNa SuPPort For very large aPertureS

AdherentTechnologies,Inc.

2007PhaseIO1.04-9130

Identification and Significance of Innovation• Verylargeapertureantennasrequire

lowarealweightsupport

• Wiremeshtooheavyandmembranewithinflatedsupportnotdamagetolerantandsubjecttoshapefluctuations

• Newsupportstructureneeded

Solution:rigidizedinflatablewithfoamcoreforstabilityanddamagetolerance

Technical Objectives

• Developrigidizedinflatableasmoldforcore

• Demonstratefoamcanbeusedtofillmoldforantennastabilization

NASA Applications

• Largeapertureantennasfordeepspacecommunication

Non-NASA Applications

• Allcommercialandmilitarycommunicationsatellites

—13—

CoNFormal SPaCeSuit aNteNNa develoPmeNt For eNhaNCed extravehiCular aCtivity CommuNiCatioNS aNd wearable

ComPuter aPPliCatioNS

AppliedEM,Inc.

2007PhaseIO1.04-9232

Identification and Significance of InnovationAsNASAprepares for futurespacemissionsand return to theMoon by 2020, astronautswillberequiredtospendmoretimeexposedto the hazards of EVA. Providing reliablecommunications during EVA operations isimperative not only to relay progress butalso tomonitor the health and ability of theastronaut. In order to improve space-to-space communications, Applied EM, Inc., isdeveloping conformal, body-worn antennasthatwillbeintegratedintospacesuitdesignstoenhanceEVAoperations.Includedinthesedevelopments are wireless antennas forwearablecomputers.

Technical Objectives

• Designanddevelopconformalspacesuit(body-worn)antennasforenhancedcommunicationsduringextravehicularactivity(EVA)

• Developfabricationmethodsforbody-wornantennasthatuseconductivetextile,polymercoatings,andwiringmethods

• Developmethodstointegratebody-wornantennasintothe11pliesofthecurrentspacesuitdesigns

• Provideelectromagnetic(EM)simulationsandperformanceofantennadesigns

NASA Applications

• Conformalastronaut(body-worn)antennasforspacesuitEVAoperations

• Antennasforwirelessaccesspointsforwearablecomputerdesignsforastronauts

• Newspacesuitdesignsusingnovelintegratedantennasystems

Non-NASA Applications

• Body-wornantennasforWarfighterDepartmentofDefense(DoD)applications

• Commercialapplicationsusingbody-wornantennasfornewsuitanduniformdesignsrequiringcommunications

—14—

PhaSe-array aNteNNa with adaPtive digital SigNal ProCeSSor beamFormiNg

Nokomis,Inc.

2008PhaseIO1.02-8858

Identification and Significance of Innovation• Digitalsignalprocessor(DSP)

beamformingforcommercialcellularapplicationshasimprovedsignal-to-noiseratiobypointingthemainbeamtowardthesignalofinterest.Toextendthisadvantagetowidebandcommunicationsystems,conformaladaptivebeamformingantennasareneeded.

• TheneedforanadaptiveantennaarrayinspaceforvaryingtemperatureandvibrationcanalsobemetwithDSPcontrol.

• Efficiencyandsensitivityareimprovedbyintegrationofelectronicsandthesimplificationofantennafeedsystemleadingtomorefocusonconformalantennaarrayoptimization.

• Anadaptivearrayisnecessaryforbeamformingoveranextendedfrequencyband.

Technical Objectives

• Highgainandlowrelativesidelobelevelforasmallarray

• Upto500MHzbandwidthforanS-bandarrayforcommunicationsanddatasystems

• Selfcalibratingforphasedriftduetocablemovementandtemperatureshift

• Widefieldofviewtoaccommodatemobilityofsmallspacevehicles

NASA Applications

• Radiofrequency(RF)communications

• Architecturesandnetworks

• Guidance,navigation,andcontrol

• Telemetry,tracking,andcontrol

• Airportinfrastructureandsafety

Non-NASA Applications

• Cellularbasestations

• Airlinercellularbasestations

• WiFiremoteaccess

• Satellitetelephones

—15—

eFFiCieNt wearable aNteNNaS For aStroNaut extravehiCular aCtivity CommuNiCatioNS

Pharad,LLC

2008PhaseIO1.02-9948

Identification and Significance of Innovation• Wearecreatinganewclassofsmall,

highlyefficientbody-wearableantennaplatformsthatcanbeintegrateddirectlyintoastronautEMUsuitsforRFcommunications.

• Ourtechniquecombinesnewsmalluniplanarantennasbasedonslowwaveengineering(SWE)techniquesandelectricallysmallelectromagneticbandgap(EBG)structureswithdiversityschemestoyieldcompact,efficientradiatingsolutions.

• Theinnovationwillprovideanunobtrusivehigh-performanceradiatingplatformthatwillgreatlyimproveastronautEVAcommunications.

Technical Objectives

• Theoverallobjectiveistocreateanunobtrusivebody-wearableantennaplatformforastronautradiofrequency(RF)communications.

• Throughoutthisproject,proof-of-conceptversionsofthenewconceptswillbedevelopedandtested.

NASA and Non-NASA Applications

• ImprovedperformanceofspaceRFcommunicationsystemsoperatingintheultrahighfrequency(UHF)bandaswellasotherhigherfrequencies

• AstronautExtravehicularMobilityUnit(EMU)suitswithdirectlyintegratedsmall,highlyefficientbody-wearableradiators

• Body-wornantennasforU.S.Armysoldiers

• Hands-free,unobtrusivecommunicationsystemsforfirstresponders,firefighters,andemergencypersonnel

• Multifunctionbody-wearableradiatorsforcommercialwirelesscommunications(UHF,GlobalPositioningSystem(GPS),WLAN)

—16—

Identification and Significance of InnovationPolymermembranetechnologiesofferthegreatestpromiseofmeeting future largeantennarequirements,whilesignificantlyreducingsystemmassandlaunchvolume.Recentadvancesinpolymerfilmmaterialsmust be matched by advances in thecoatingsthatprovidetheRFandthermalperformance in a space environment.Surface Optics Corporation (SOC) willdevelopacoatingprocess that results ina membrane/coating material with zerocoefficient of thermal expansion (CTE).Results in thermally stable membraneantennae.

Technical Objectives

• EmploystresstuningdepositiontechniquestodepositAl/Si02coatings

• Tailorcoating/membranepropertiestoachievezeroCTE

NASA and Non-NASA Applications

• Commercial,NASA,andDepartmentofDefense(DoD)RFcommunicationantennae

• NASAinstrumentsforEarthandspacescience

StreSS-matChed radioFrequeNCy aNd thermal CoNtrol CoatiNgS For membraNe aNteNNaS

SurfaceOpticsCorporation

2009PhaseIO1.02-8188

—17—

Identification and Significance of InnovationMission-enablingcomparedtocurrentstateoftheart• Ultralightweight(projected<0.32kg/rn2

arealmass)

• Compactstowagevolume(>53:1compactionratio)

• High-heritage/reliabledeploymentmechanization

• Functionaldeploymentcapabilityin1g

• Lowthermaldistortion

• Highstiffness

• Expandabletolargeapertures(3mto50m+diameter)

• Affordable

• RFperformanceoverwidefrequency(L,X,Ku,andKa)

Technical Objectives

• Establishconceptfeasibilityofanoptimizedfan-fold-wrapreflectortechnologyanddemonstratetechnologyreadinesslevel(TRL)3/4

• EstablishconceptfeasibilityandTRL3/4throughrequirementsdefinition,detaileddesignanddevelopmentefforts,analyticalmodelingactivities(includingstructural,thermal,massproperties,andsurfaceaccuracy),andproof-of-concepthardware

NASA and Non-NASA Applications

• TechnologyinfusionidentifiedformanyNASAandnon-NASAmissions

• Applicableopportunities:geostationaryorbit(GEO),lowEarthorbit(LEO),andmediumEarthorbit(MEO),interplanetary,andlunar/planetarysurfacelandercommunicationsmissions

• TechnologyviabletoallDepartmentofDefense(DoD),NASA,civilian,andprimecontractorendusersasadirectreplacementforcurrentstate-of-the-artreflectortechnologiesusedinmarketplace

• Nonspaceapplicationsincludefixed,mobile,anddeployableground-basedcommunicationsoropticalreflectorstosupportrenewableenergyphotovoltaicconcentratorsystems

aFFordable uNFurlable FaN-Fold wraPable reFleCtor For Small aNd large aPertureS

DeployableSpaceSystems,Inc.

2009PhaseIO1.02-8308

—18—

Identification and Significance of InnovationCrystal Research, Inc., proposesto develop a multiband photonic-antenna-based on a high-speedoptical true-time-delay beamformer,capable of simultaneously steeringmultiple independent radiofrequency(RF)beamsinlessthan300ns.Sucha high steering speed is 3 ordersof magnitude faster than any otherexisting optical beamformers. Unlikeother approaches, the proposedtechnology uses a single controllingdevice per operation band, whicheliminates the need for massiveoptical switches, laser diodes, andfiberBragggratings.

Technical Objectives

TheobjectiveoftheproposedPhaseIworkistodemonstratethefeasibilityandadvantagesofamulti-bandphotonicphasedarrayantennausinganinnovativehigh-speedelectro-opticbeamformer.

NASA and Non-NASA Applications

Themulti-bandphotonicphasedarrayantennacanbeused forNASA(1)high-dataratecommunicationand(2)remotesensingapplications.Potential communications applications include lunar and planetaryexploration and Lunar Relay Satellites. Potential remote sensingapplications include: synthetic aperture radar (SAR) platforms forplanetary science. It is also an important step towards continuedcommercializationoflowcostphasedarrayantennasformobilesatellitecommunicationsapplications.

a multibaNd PhotoNiC PhaSed-array aNteNNa For high-data-rate CommuNiCatioN

CrystalResearch,Inc.

2009PhaseIO1.02-9839

—19—

Identification and Significance of Innovation• Optoelectronicintegrationenables

co-locationofRFandopticallyemittingdevices

• CompactVerticalCavitySurfaceEmittingLaser(VCSEL)structureenablescoherentbeamsandphasemodulatorsenablebeamsteering

• OpticaldistributionofRFandopticalbeamcontrol

• IntegratedtruetimedelayforRFbeamcontrol

Technical Objectives

• Demonstratefeasibilityofcombiningradiofrequency(RF)andopticalemissionfromasingleaperture

• DemonstratefeasibilityofopticalcontrolofRFpowerandbeamdirection

• Demonstratetwo-dimensionalopticalbeamemissionandphasemodulatorsforbeamsteering

NASA Applications

• SatellitesensorsintheKa-andKu-bandforsurfaceobjectcharacterization

• POETcircuitsforlaserandRFcommunications,internalsatellitenetworking,RFphotonicsandADconversion,andhigh-speedsystems

• POETimagingdevicesforlongwaveinfrared(LWIR)THz

Non-NASA Applications

• Datacomm,FTTH,LANS,activeopticalcables,andhigh-speedservers

• Digitalsignalprocessors(DSPs)andFPAs

oPtoeleCtroNiC iNFraStruCture For radioFrequeNCy/oPtiCal PhaSed arrayS

ODIS,Inc.

2010PhaseIO1.01-9727

—20—

Identification and Significance of InnovationElectronically steerable antennas (ESAs)arekey toeffective radio transmissionatmillimeter-wave frequencies. To enablecommunication with rovers, robots,extravehicular activity (EVA) astronauts,and other mobile surface assets inplanetary explorations, ESAs must becapableof360-degreeazimuthscan,andin some cases, multiple independentlysteerable beams. The proposed researchaimstodevelopapassiveESAtechnologywith thesecapabilities toaddressNASA’scommunication and navigation needs atK and Ka frequency bands. Compared tophased arrays, the proposed approachleads to dramatically smaller and lighterESAsolutionsthatareidealforlow-powermobileanddeployableradioplatforms.

Technical Objectives

• Design,characterize,andoptimizeminiaturepassivebeamformingnetworksbasedonmetamaterialtechniques

• Investigateswitchtechnologies

• Investigategeneralizationsoftheproposedmethodfortwo-dimensionalbeamsteering

NASA Applications

• Rovers,robots,mobilehabitats,andscienceinstruments

• Lunarcommunicationterminal(s)andbasestations

• EVAsuit(helmet)

• Radarnavigationforhighlymaneuverableplatforms

Non-NASA Applications

• HelicopterlandingaidDepartmentofDefense(DoD)

• Automotiveradars

• 60-GHzcommunicationradios

eleCtroNiCally Steerable aNteNNaS with PaNoramiC SCaN Field oF view

FreeformWaveTechnologies,LLC

2010PhaseIO1.01-9815

—21—

antenna technologySBir phaSe ii awardS 2005 to 2012

—22—

Identification and Significance of Innovation• NASAandtheAirForceneednew

deployabletechnologiesthatcanmeettheKa-bandcommunicationneedsofthenext-generationspacevehicles

• InfoscitexCorporation’s(IST’s)newelectrotextilecompositeapproachhasthepotentialtosignificantlyreducetheweightofantennaandthenecessarybackupstructure

• Lightweightcompositedeployablestructureswithnovelinvolutebackingstructurecanprovideanewapproachtoreachingtheantennaarealweightgoalof1kg/m2

Technical Objectives

• Developprocesstoproduceandweaveorknitcoatedfibersintohigh-accuracytight-spacingmesh

• Producesamplemeshprototypeswithtwoormorethermoplasticmeshlockingapproachesinpreparationforpassiveintermodulation(PIM)testing

• Evaluatethestructural,reflectivity,andPIMcharacteristicsoftheprototypemeshesanddownselectbestperformingmeshforPhaseIIantennaprototype

• DesigninvoluteshapebackingstructuregiventhedownselectedmeshpropertiesandcriteriaforKa-bandoperatingfrequency(conductorspacing,maximumacceptablesurfacedeviationfromidealparabola,signalgain,etc.)

NASA and Non-NASA Applications

• Ultralightweight,multifunctionaldurablespacecraftantennastructures

• Flexiblelightweightdurableantennasforwirelesstechnologiessuchascellularphones,GlobalPositioningSystem(GPS),Bluetooth,andWiFi

Novel dePloyable high-FrequeNCy aNteNNaS uSiNg ComPoSite eleCtrotextileS

InfoscitexCorporation

2005PhaseIIO1.04-7826

—23—

Identification and Significance of InnovationShape memory composites enable next-generationdeployableantennatechnologies

• 4-to6-msolidsurfacedeployablereflectors

• Tunabletohigh-frequencydeployablecommunicationsandRADAR(>Kaband)

• Low-cost,low-risk,9-monthdelivery

Technical Objectives

• Assembled4-m-offset-shapedengineeringdesignunit(EDU)with

– Deployablebackingstructure

– Surfacetuninghardware

• Packagingandgravityoff-loadingandtuninghardwarevalidation

• System-leveltestingtobeperformedinJune/July

– RFtestingtoKa-band

– Stowage/deployment

Proposed Phase-2E Effort: Technology Readiness Levels (TRLs) 4 to 5

• System-leveldesignforAdvancedColloidsExperiment(ACE)mission(NASA/JetPropulsionLaboratory)

• UpgradeEDUtoflight-representative(i.e.,thermallystable)materials

• Validatethatsurfaceoptimizationismaintainedthroughsystem-levelthermaldistortiontesting

SurFaCe oPtimizatioN teChNiqueS For dePloyable reFleCtorS

CompositeTechnologyDevelopment,Inc.

2007PhaseIIO1.04-8808

—24—

Identification and Significance of InnovationNASA’sfutureexplorationmissionsfocusonthemannedexplorationoftheMoon,Mars,andbeyond,whichwillrelyheavilyonthedevelopmentofareliablecommunicationsinfrastructure from planetary surface-to-surface, surface-to-orbit, and backto Earth. Flexible antennas are highlydesiredinmanyscenarios.Existingflexibleelectronicshaveanintrinsiclowswitchingfrequencyduetotheirlowcarriermobility.The carbon nanotube (CNT) network insolution we used has carrier mobility ashigh as 46,770 cm2/ (V·s), and a largecurrent-densitycarryingcapacityof~1000mA/cm2,correspondingtoahighcarryingpower of over 2000 mW/cm2. Such highcarriermobilityandlargecurrentcarryingcapacity allow us to achieve high-speed(>100GHz),high-powerflexibleelectroniccircuitsandantennas.Aprototypeofafullyprinted 4-bit two-dimensional 16-elementphased-arrayantennaonflexiblesubstratesuch as Kapton, including field-effect-transistor- (FET-) based T/R module andphase shifters will be developed. Theprinting technology and high-speedelectronicswillenableactivephased-arrayantenna(PAA)deploymentforNASA’slunarmission, including pressurized rovers,pressurized habitats, surface navigation,extravehicularactivities(EVA),etc.

Technical Objectives

• Developfullyprintable4-bittwo-dimensional(4x4)16-elementPAAsatS-bandforlunarcommunications

• Developthefullyprintableintegratedcircuittechnologyandmulti-layerprintingandinterconnectiontechnologyonflexiblesubstrates

• DeveloptheT/Rmoduleincludingphaseshiftersandamplifiers

• DevelopaprototypeofthefullyprintedPAA,andperformreliabilitytests

NASA Applications

• Lunarlocalcommunicationnetworksatultrahighfrequency(UHF)/L/S/Cbands

• “Stick-on”spacesuitforhumanEVA

• LargeinflatablePAA

• High-powerelectronics/antenna

Non-NASA Applications

• RFidentificationtags,sensors

• Smartcards,electronicpaper

• Large-areaflatpaneldisplays

Fully PriNted Flexible 4-bit two-dimeNSioNal (4x4) 16-elemeNt PhaSed-array aNteNNa For luNar SurFaCe CommuNiCatioNS

OmegaOptics,Inc.

2007PhaseIIO1.04-8886

—25—

Identification and Significance of Innovation• Foaminginvacuumtechnology

• Enablesin-spaceproductionoflightweightfoamstostabilizeinflatablestructures

• Makes1-kg/m3arealdensitylargeapertureantennaspossible

Technical Objectives

To optimize the foam technology developed in Phase I to produce afunctional 3-m antenna for the Ka band.Towards this goal,AdherentTechnologies,Inc.,willteamwithILCDoverandAppliedEM.

NASA Applications

• Verylargeapertureantennasforinterplanetaryrelays

Non-NASA Applications

• Verylightweightsheltersforsemipermanentinstallationinbothemergencymanagementandmilitaryapplications

Foamed aNteNNa SuPPort For very large aPertureS

AdherentTechnologies,Inc.

2007PhaseIIO1.04-9130

—26—

Identification and Significance of InnovationAs NASA prepares for future spacemissions and to return to the Moon by2020, astronauts will be required tospendmoretimeexposedtothehazardsof extravehicular activity (EVA). Providingreliable communications during EVAoperations is imperativenotonly torelayprogress but also to monitor the healthand ability of the astronaut. In order toimprovespace-to-spacecommunications,Applied EM, Inc., will apply Phase Iconformal, body-worn antenna designs,which were evaluated during near-field tests to demonstrate applicabilityfor current Extravehicular Mobility Unit(EMU) and future Constellation spacesuitsystems.Includedinthesedevelopmentsare wireless antennas for wearablecomputers.

Technical Objectives

• ApplyPhaseIconformalspacesuit(body-worn)antennadesignsforenhancedcommunicationsduringEVA

• Developfabricationmethodsforconformalspacesuitantennasusingadvancedpolymerdielectricandconductivecoatingsandwiringmethods

• Developmethodstointegrateconformalbody-wornantennasintocurrentEMUspacesuitsandpossiblefutureConstellationspacesuitmissionapplications

• ProvideEMperformancesimulationsofantennadesigns

NASA Applications

• Conformalastronaut(body-worn)antennasforspacesuitEVAoperations

• Antennasforwirelessaccesspointsforwearablecomputerdesignsforastronauts

• Newspacesuitdesignsusingnovelintegratedantennasystems

Non-NASA Applications

• Body-wornantennasforWarfighterDepartmentofDefense(DoD)applications

• Commercialapplicationsusingbody-wornantennasforprotectiveclothingsuchaschem-bio,fireretardant,ballisticprotection,andathleticclothing

CoNFormal SPaCeSuit aNteNNa develoPmeNt For eNhaNCed extravehiCular aCtivity CommuNiCatioNS aNd wearable ComPuter aPPliCatioNS

AppliedEM,Inc.

2007PhaseIIO1.04-9232

—27—

Identification and Significance of InnovationDevelopment of multimeter diameter RFantennas isacurrentareaofresearchforNASA andDoD. In Phase I SurfaceOpticsCorporation investigated, in coordinationwith NeXolve, Al coatings (using stencil-type masking) on a variety of low CTEpolymeric materials for evaluation forelectrical deflection, low stress, low solarabsorption, and high emissivity. The newcoatings exhibited significant positiveresultsinthepreliminarytesting.

Technical Objectives

• Developcoatingthatcloselymatchesstresswithcoefficientofthermalexpansion(CTE)ofselectedpolymer;goodadhesion;andthermallystableinspace

NASA and Non-NASA Applications

• NASAradiofrequency(RF)communicationantennasforspaceapplications

• DepartmentofDefense(DoD)programsusinglargeareapolymericantennas

StreSS-matChed radioFrequeNCy aNd thermal CoNtrol CoatiNgS For membraNe aNteNNaS

SurfaceOpticsCorporation

2009PhaseIIO1.02-8188

—28—

Identification and Significance of InnovationCrystalResearch,Inc.,proposestodevelopamultibandphotonicantennabasedonahigh-speedopticaltrue-time-delaybeamformer,capableofsimultaneouslysteeringmultipleindependentradiofrequency(RF)beamsinless than 1000 ns. Such a high steeringspeedis3ordersofmagnitudefasterthanany other existing optical beamformers.Unlike other approaches, the proposedtechnologyusesasinglecontrollingdeviceper operation band, which eliminates theneed for massive optical switches, laserdiodes,andfiberBragggratings.

Technical Objectives

Theprimaryobjectiveistofabricateamultibandphotonicphased-arrayantenna,whichcanbetransitionedintoNASAapplications.

NASA and Non-NASA Applications

Themultiband photonic phased-array antenna can be used for NASA(1)high-dataratecommunicationand(2)remotesensingapplications.Potential communications applications include lunar and planetaryexplorationandlunarrelaysatellites.Potentialremotesensingapplicationsincludesyntheticapertureradar(SAR)platformsforplanetaryscience.It is also an important step towards continued commercialization oflow-cost phased-array antennas for mobile satellite communicationsapplications.

a multibaNd PhotoNiC PhaSed-array aNteNNa For high-data-rate CommuNiCatioN

CrystalResearch,Inc.

2009PhaseIIO1.02-9839

—29—

Identification and Significance of Innovation• Optoelectronicintegrationenables

co-locationofRFandopticallyemittingdevicesinarrayformats

• PlanarVerticalCavitySurfaceEmittingLaser(VCSEL)structureenablesantiguidingtoproducecoherentopticalbeams

• BeamsteeringofsupermodesbycurrentcontrolinX-Yarray

• OpticaldistributionofRFbyphotodetectorconversion

• RFgenerationbyoptoelectronicoscillatorinaPLLwithRFphotonicfilteringofrequiredharmonic

• Opticalremotingofreturnsignal

• TruetimedelaybydifferentialgroupdelayforRFbeamsteering

• POETisabroadintegrationplatformformultipleNASAapplications

Technical Objectives

• Demonstratefeasibilityofcombiningradiofrequency(RF)andopticalemissionfromasingleaperture

• DemonstrategenerationoflowphasenoiseRFusinganoptoelectronicoscillator

• DemonstratetruetimedelayRFarraysteeringusingmicro-resonatorstoproducedifferentialgroupdelay

• DemonstratefeasibilityofopticaldistributionofRFpowerandoptoelectroniccontrolofbeamdirection

• Demonstratetwo-dimensionalopticalbeamsteeringfromcoherentarraybycurrentcontrol

• ProveviabilityofoptoelectronicarchitectureforRF/opticalcell

NASA Applications

• SatellitesensorsintheKa-andKu-bandforsurfaceobjectcharacterization

• POETcircuitsforlaserandRFcommunications,internalsatellitenetworking,RFphotonicsandADconversion,andhigh-speedsystems

• POETimagingdevicesforlongwaveinfrared(LWIR)THz

Non-NASA Applications

• Datacomm,FTTH,LANS,activeopticalcables,andhigh-speedservers

• Digitalsignalprocessors(DSPs)andFPAs

oPtoeleCtroNiC iNFraStruCture For radioFrequeNCy/oPtiCal PhaSed arrayS

ODIS,Inc.

2010PhaseIIO1.01-9727

—30—

—31—

Adherent Technologies, Inc., Albuquerque, NM . . . . . . . . . . . . . . . . . . . 12, 25

Applied EM, Inc., Hampton, VA . . . . . . . . . . . . . . . . . . . . . . . . . . . 13, 26

Beck Engineering, Inc., Gig Harbor, WA . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Composite Technology Development, Inc., Lafayette, CO. . . . . . . . . . . . . . . 10, 23

Cornerstone Research Group, Inc., Dayton, OH . . . . . . . . . . . . . . . . . . . . . . 8

Crystal Research, Inc., Fremont, CA . . . . . . . . . . . . . . . . . . . . . . . . 18, 28

Deployable Space Systems, Inc., Solvang, CA . . . . . . . . . . . . . . . . . . . . . . 17

Freeform Wave Technologies, LLC, Scottsdale, AZ . . . . . . . . . . . . . . . . . . . . 20

Infoscitex Corporation, Waltham, MA . . . . . . . . . . . . . . . . . . . . . . . . . 4, 22

L’Garde, Inc., Tustin, CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Mevicon, Inc., Palo Alto, CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Nokomis, Inc., Charleroi, PA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

ODIS, Inc., Mansfield, CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19, 29

Omega Optics, Inc., Austin, TX . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 11, 24

Pharad, LLC, Glen Burnie, MD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Surface Optics Corporation, San Diego, CA . . . . . . . . . . . . . . . . . . . . . 16, 27

company nameS

JamesD.StegemanTechnologyManagerSpaceCommunicationsandNavigationProgramNASAGlennResearchCenterM.S.142–2Cleveland,Ohio44135Telephone:216–433–3389E-mail:[email protected]

AfrozJ.ZamanNASAGlennResearchCenterM.S.54–1Cleveland,Ohio44135Telephone:216–433–3415E-mail:[email protected]

PS–01210–0414

SBirpointS oF contact

—32—


Recommended