+ All Categories
Home > Documents > FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7,...

FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7,...

Date post: 24-Aug-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
89
FORUMAE FORUM on Aviation and Emissions FP7 Coordination Action – GA 605506 ‐ www.forumae.eu Partners: SN, AI, DLR, DLH, ECATS, FZAG, IFPEN, MMU, NLR, ON, RR, RRD, SENASA, ECTL, JRC, TM Climate Change Impact “Aviation impact on climate change – role of NO x emissions and contrail cirrus” WORKSHOP PROCEEDINGS Workshop held at DLR, Oberpfaffenhofen (Germany) on April 2 nd –3 rd , 2014 DLR‐Institute of Atmospheric Physics Hosted by DLR Deliverable D1.4
Transcript
Page 1: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

FORUM‐AE

FORUMonAviationandEmissions

FP7CoordinationAction–GA605506‐www.forum‐ae.eu

Partners:SN,AI,DLR,DLH,ECATS,FZAG,IFPEN,MMU,NLR,ON,RR,RRD,SENASA,ECTL,JRC,TM

ClimateChangeImpact

“Aviationimpactonclimatechange–roleofNOxemissionsandcontrailcirrus”

WORKSHOPPROCEEDINGS

WorkshopheldatDLR,Oberpfaffenhofen(Germany)onApril2nd–3rd,2014

DLR‐InstituteofAtmosphericPhysics

HostedbyDLR

DeliverableD1.4

Page 2: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 2 von 89 

Page 3: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 3 von 89 

Forum-AE Coordination & Support Action

FP7 – 605506

D1.4 Climate change impact workshop

proceedings Main authors: DLR  

With contributions from FORUM‐AE partners and invited experts 

Project title: Forum on Aviation and Emissions

Deliverable nature: Report

Dissemination level: (Confidentiality)

PP

Start date of the project 1st July 2013

Duration 48 months

Contractual delivery date:

30/11/2013

rescheduled in 2014

Actual delivery date: 28/02/2015

Status: Draft version

Contractual: Yes

Version: 1.7

Total number of pages: 89 pages (including Annexes with 62 pages)

Work-Package WP1 – Environmental impacts

Leader of WP: DLR & NLR

Lead Beneficiary of deliverable:

DLR

Comments: -

Keywords: Aviation climate impact, nitrogen oxides, ozone, contrail cirrus, climate metrics, mitigation strategies

Page 4: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 4 von 89 

Document Information

Project 

Number 

FP7 ‐ 605506  Acronym  FORUM‐AE 

Full Title  Forum on Aviation and Emissions 

Project URL  www.forum‐ae.eu 

EU Project Officer  Marco Brusati 

 

Deliverable  Number  D1.4  Title  Climate Change Impact Proceedings 

Work Package   Number  WP1  Title  Environmental Impact 

 

Date of Delivery  Contractual  M4  Actual  M19 

Status  Version 1.7  Final  

Nature1  R 

Dissemination level2  PU 

 

Author (Partner)  Sigrun Matthes (DLR), Klaus Gierens (DLR) 

Contributor (Partner) 

Olivier Penanhoat (SNECMA), Joseph Burguburu (SNECMA), Volker Grewe 

(DLR), Lisa Bock (DLR), Katrin Dahlmann (DLR), Sabine Brinkop (DLR), Ulrich 

Schumann  (DLR),  Greta  Stratmann  (DLR),  Simon  Unterstrasser  (DLR), 

Norman Görsch  (DLR), Rainer van Wrede  (Airbus), Peter Swann  (RR UK), 

Paul Madden (RR UK), Ling Lim (MMU), Agniezska Skowron (MMU), Xavier 

Vancassel (ONERA)  

Contributor (Invites) Daniel  Cariolle  (CERFACS),  Marianne  Lund  (CICERO),  Amund  Sovde 

(CICERO), Valery Shcherbakov (LaMP) 

Responsible Author (Partner leader of deliverable) 

Name  Sigrun Matthes  E‐mail  [email protected]  

Partner  DLR  Phone  +49 8153 28 2524 

 

 

Version Log 

Issue Date  Version  Author  Change 

21/01/2015  1.0  SM  First Draft version 

25/02/2015  1.6  KG, SM  Consolidated update 

27/02/2015  1.7  KG, SM  Final draft (including Annexes) 

       

       

       

 

 

                                                            1 R=Report, P=Prototype, D=Demonstrator, O=Other 2 PU=Public, PP=Restricted to other programme participants (including the EC), RE=Restricted to a group specified by the

Consortium (including the EC), CO=Confidential, only for members of the Consortium (including the EC)

Page 5: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 5 von 89 

Page 6: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 6 von 89 

CONTENT

 

SummaryFORUM‐AE ............................................................................................................................................... 1 

Document Information ............................................................................................................................ 4 

1  Introduction ..................................................................................................................................... 8 

2  Participants .................................................................................................................................... 11 

3  Agenda ........................................................................................................................................... 12 

4  Summary of presentations and associated discussions ................................................................ 14 

3.1 Session 1: Introduction and fundamentals of aviation climate impact of nitrous oxides ............... 14 

3.2 Session 2: Climate impact – Motivation, which metric to use? ...................................................... 15 

3.3 Session 3: Climate impact of nitrogen oxide emissions from aviation & observations .................. 16 

3.4 Session 4: Gaseous aviation emissions – discussion, summary, feedback ...................................... 17 

3.5 Session 5: Contrails  Introduction and fundamentals ................................................................... 17 

3.6 Session 6: Recent results from campaigns and modelling studies, climate impact of contrails ..... 18 

3.7 Session 7: Results from ongoing projects ........................................................................................ 20 

3.8 Session 8: Discussion, Questions and Answers, Open research issues, Conclusions ...................... 20 

5  Conclusions .................................................................................................................................... 22 

4.1  Key concluding statements ....................................................................................................... 22 

6  References ..................................................................................................................................... 25 

7  Annex  – WORKSHOP’s PRESENTATIONS ...................................................................................... 26 

7.1 Annex 1 –Climate impact of NOx emissions (presentations) ........................................................... 27 

7.2 Annex 2 – Climate impact of contrail and contrail‐cirrus (presentations) ...................................... 60 

 

Page 7: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 7 von 89 

Page 8: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 8 von 89 

1 Introduction 

Aviation contributes to climate change through emissions of carbon dioxide (CO2) and a number of 

non‐CO2 effects,  including nitrogen oxides  (NOx), aerosols and their precursors  (soot and sulphate), 

and  increased  cloudiness  in  the  form  of  persistent  linear  contrails  and  induced‐cirrus  cloudiness. 

Updated  values  of  aviation  radiative  forcing  (RF)  for  2005  (Lee  et  al,  2009),  show  an  increase  in 

traffic  of  22.5%,  fuel  use  of  8.4%  and  total  aviation  RF  of  14%  (excluding  induced‐cirrus 

enhancement) over  the period  2000–2005.  The  lack of physical process models  (up  to  2009)  and 

adequate observational data  (up  to present)  for aviation‐induced  cirrus effects  limit  confidence  in 

quantifying their RF contribution. Total aviation RF (excluding induced cirrus) in 2005 was 55 mW/m2 

(23–87mW/m2, 90% likelihood range), which was 3.5% (range 1.3–10%, 90% likelihood range) of total 

anthropogenic  forcing. Herein, a RF due  to NOx emissions  in  the order of 14mW/m2  (4‐18mW/m2, 

about half the RF due to CO2 emissions)  is  included.  Including estimates for aviation‐induced cirrus 

RF  increases  the  total  aviation RF  in  2005  to  78 mW/m2  (38–139 mW/m2,  90%  likelihood  range), 

which represents 4.9% of the total anthropogenic forcing (2–14%, 90%  likelihood range). Burkhardt 

and Kärcher  (2009, 2011) developed a model  for  following explicitly  contrail‐to‐cirrus  transition  in 

global climate models and obtained  the  first radiative  forcing value  for contrail‐cirrus  that was not 

based on “estimation”. They found contrail cirrus contributes about nine times more to RF than the 

linear  contrails  in  their model,  that  is, while  linear  contrails account  for a globally averaged RF of 

4.3 mW/m², contrail cirrus accounts for 37.5 mW/m². The model predicts a simultaneous decrease of 

the  RF  by  ‐7 mW/m²  induced  by  decreases  natural  cirrus’  coverage  and  optical  thickness  as  a 

consequence of  the competition between  these natural clouds and contrail‐cirrus  for  the available 

water vapour.  Lee et al  (2009) present  future  scenarios of aviation emissions  for 2050. These are 

consistent with IPCC SRES scenarios (IPCC Special Report on Emission Scenarios, 2000) and show an 

increase of fuel usage by factors of 2.7–3.9 over 2000. Simplified calculations of total aviation RF  in 

2050  indicate  increases  by  factors  of  3.0‐4.0  over  the  2000  value,  representing  4–4.7%  of  total 

anthropogenic RF (excluding induced cirrus). 

The  coordination action  FORUM‐AE aims at addressing main  issues and open questions  linked  to 

environmental impacts from aviation emissions. For this purpose a dedicated thematic workshop on 

‘Aviation  Climate  impact  by  NOx  emissions  and  contrails’  was  developed  supporting  programme 

objectives  by  providing  clear  visibility  on  the  current  knowledge,  the  recent  results,  the  on‐going 

scientific  programs,  the  open  questions,  and  the most  strategic  topics  which  should  be  further 

assessed  or  investigated  by  the  scientific  community,  as  well  as  the  priorities  which  should  be 

considered as mitigation solutions. The workshop was composed of two parts, (1) on the  impact of 

NOx emissions from aviation and (2) on climate impact of contrail cirrus. It took place 2‐3 April 2014 

at DLR‐Institute of Atmospheric Physics in Oberpfaffenhofen, Germany. 

A first part of this workshop was concerned with climate impact of NOx emissions. It  is understood 

that NOx has complex effects in the upper atmosphere (in the region of aviation cruise altitudes) with 

a  strong  non‐linearity  of  the NOx‐HOx‐O3  chemical  system  to NOx  emission  perturbations.  At  this 

current time, the bulk of evidence  is that aviation NOx emissions have a warming  influence and are 

still  very  much  on  the  climate  impacts  agenda.  The  science  of  NOx  chemistry  in  the  upper 

atmosphere is however complex, and there are contradictory results in the literature on the size and 

even  the  sign  of  the  climate  impact.  Research work  in  this  area  is  ongoing with  the  objective  of 

Page 9: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 9 von 89 

gaining a better understanding of these diverging results and of the overall  impacts of aviation NOx 

on  climate.  This  first day of  the workshop provided  an update  of  the most  recent  science of  the 

climate  impacts of NOx emissions  in order  to provide  sufficient understanding both  for mitigation 

solutions guidance and regulation discussion. 

A  second  part  of  this workshop was  dealing with  climate  impact  of  contrail  and  contrail  cirrus 

formation,  which  is  an  area  of  active  and  ongoing  research.  There  is  a  need  to  reduce  the 

uncertainties surrounding the effects of contrail and aviation induced cirrus as these currently have a 

low  level  of  scientific  understanding  (Lee  et  al,  2009).  This  second  part  of  this  workshop  was 

dedicated  to establishing  the outcomes of  recent  research  in  this area, and  in particular  research 

which aims to narrow the related uncertainties. 

The workshop schedule started with an overall introduction to the topic. The two days reflected the 

thematic split in two parts, focusing on (1) chemical impacts of e.g. NOx emissions, on the first day, 

and on  (2) contrail and contrail cirrus  issues on  the second day. The workshop also dealt with  the 

topic how to adequately measure climate impact. An update of the recent science of climate impact 

was given,  in order  to provide  sufficient understanding both  for mitigation  solutions guidance and 

regulatory discussion. These proceedings cover both days of FORUM‐AE workshop on Climate impact 

of aviation emissions. 

Forum‐AE Climate  Impact workshop was successfully hosted  in Oberpfaffenhofen on 2nd and 3rd of 

April 2014 by DLR within the Institute of Atmospheric Physics. The event was attended by more than 

25 participants, additionally providing webinar access to registered users. Altogether the FORUM‐AE 

workshop participants were a well‐balanced  representation of stakeholders,  ranging  from  research 

establishments  and  universities,  aero‐engine  and  airframe  manufacturers,  airline  operators,  air 

navigation service providers, and consultancy.  

This workshop was  one  in  a  series  of workshops  extending  up  to  2017 within  the  framework  of 

FORUM‐AE  (coordination  action,  FP7,  2013‐2017).  Focused  workshops  are  FORUM‐AE’s  main 

instrument to collect expertise from multi‐stakeholders and technical experts on aviation emissions 

& environmental  impact  issues, and to pursue FORUM‐AE’s general objectives. Besides offering the 

European  technical  forum  for  information  exchange  and  discussion,  FORUM‐AE pursues  a deeper 

understanding of the topical impacts, identifies mitigation solutions and provides recommendations 

on regulatory  issues. Moreover, the workshops contribute to the progress assessment of European 

RTD programs against ACARE goals, and its outcome will include recommendations in terms of future 

RTD priorities. 

The  focus  of  the  FORUM‐AE  Climate  Change  Impact  Workshop  was  to  provide  a  general 

understanding and  in‐depth  insight  in CO2 and  in particular non‐CO2 climate  impacts of aviation, by 

introducing  the  topic,  presenting  fundamental  concepts,  evaluating  metric  concepts,  but  also 

showing recent results from campaigns and modelling studies and providing opportunity to discuss 

and evaluate  climate  impact of aviation emissions.To  implement adequate mitigation  strategies  in 

order to gain environmental benefits of  future air traffic  is  important already  in the aircraft design 

phase. Thus  it  is essential  to have  a  clear understanding of what  are underlying mechanisms  and 

concepts, but also what  is achievable with an appropriate RTD strategy. In this spirit, the workshop 

was split in a series of topical sessions:  

Introduction and fundamental concepts 

Page 10: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 10 von 89 

Climate impact and which metric to use Climate impact of aviation emissions – modelling and observations Discussion on state-of-the-art knowledge and gaps in understanding

Addressing  these  topics  is  fully  in  the  scope  of  the  FORUM‐AE  coordination  action,  and  more 

particularly  of  the  project’s  workpackage  (WP1)  focused  on  improved  understanding  of 

environmental  impact  of  aviation  emission.  The  technical  organization  of  the  workshop  was 

coordinated by Sigrun Matthes (DLR), co‐leader of workpackage WP1.  

The  subsequent  chapters  in  the  current  document  of  workshop  proceedings  include  the  list  of 

workshop participants in Chapter 2, the FORUM‐AE workshop agenda in Chapter 3, and the summary 

of all the technical presentations of the workshops and of the discussion they motivated in Chapter 

4.  The  presentations  themselves  are  gathered  in  appendix.  Chapter  5  eventually  outlines  the 

conclusions based on the final discussion of the day. They are the main outcome of the workshop in 

addition to all the technical material made available. 

 

Page 11: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 11 von 89 

2 ParticipantsFollowing list includes all the people of the FORUM‐AE consortium who attended the workshop, as 

well as experts invited by FORUM‐AE or participants having stronger interest in FORUM‐AE. 

Name  Organisation  Email address 

Bock, Lisa   DLR   

Brinkop, Sabine   DLR   

Brok, Paul (DFN)  NLR   

Burbidge, Rachel   Eurocontrol   

Burguburu, Joseph   SNECMA   

Dahlmann, Katrin   DLR   

Doerr, Thomas  Rolls‐Royce   

Frerebeau, Pascal  DLR   

Gierens, Klaus   DLR   

Görsch, Norman   DLR   

Grewe, Volker  DLR   

Kousoulidou, Marina   JRC EC   

Lim, Ling   MMU   

Lund, Marianne   U Oslo   

Madden, Paul   Rolls‐Royce   

Matthes, Sigrun   DLR   

Montemayor, Victoria Mozo   Senasa   

Penanhoat, Olivier   SNECMA   

Ponater, Michael  DLR   

Saueressig, Gerd   DLH   

Schumann, Ulrich   DLR   

Skowron, Agnieszka (DFN)  MMU   

Stratmann, Greta  DLR   

Swann, Peter   Rolls‐Royce   

Unterstraßer, Simon  DLR   

Vancassel, Xavier   Onera   

von Wrede, Rainer   Airbus   

Ziereis, Helmut  DLR   

Invites & contributing experts     

Lund, Marianne  CICERO, Oslo   

Søvde, Amund  CICERO, Oslo   

Cariolle, Daniel  Cerfacs   

Shcherbakov, Valery  LaMP   

Among the participants listed above,  

Prof. Markus Rapp welcomed participants within DLR Institute of Atmospheric Physics 

Sigrun Matthes (DLR) as co‐lead of WP1 coordinated the overall workshop scope, and developed 

the scientific programme  in collaboration with Klaus Gierens and Volker Grewe  (DLR), acting as 

chair and rapporteur, respectively. 

Christiane Voigt (DLR) guided the visit of atmospheric research aircraft HALO. 

Susanne Flierl (DLR) supported meeting organization. 

Page 12: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 12 von 89 

3 Agenda 

Hereafter is the full agenda of the Climate Change Impact workshop, composed respectively of both 

parts: (1) Impact of NOx emissions on Day 2, and (2) Impact of contrail and contrail cirrus on Day 2.  

 

Day 1 – 2 Apr 2014 : Nitrogen oxides Climate impact of nitrogen oxides

INTRODUCTION AND FUNDAMENTALS

9.30-9.45am Climate workshop goals and introduction – Klaus Gierens and Sigrun Matthes (DLR)

9.45-10.15am Scientific Introduction: Climate impact what really matters – Ling Lim (MMU)

10.15-10.45am Status on current ACARE SRIA recommendations - Xavier Vancassel (ONERA), Olivier Penanhoat (Snecma)

10.45am Coffee Break

Climate impact – Motivation, which metric to use?

11.15-11.35am Manufacturers perspective on climate impact of aviation – Rainer von Wrede (Airbus)

11.35-12.00am Climate Metrics: Overview and new approaches – Marianne Lund CICERO

12.00-12.30pm Are climate metrics ambiguous? - Katrin Dahlmann, Volker Grewe, (DLR)

12.30pm Buffet Lunch Provided by DLR Visit of HALO

Climate impact of nitrogen oxide emissions from aviation & observations

2.00-2.25pm NOx impacts and altitude variations – Amund Sovde, Ling Lim, Sigrun Matthes (REACT4C FP7)

2.25-2.50pm Weather dependent impacts of NOx emissions – Sabine Brinkop, Volker Grewe (DLR-IPA)

2.50-3.15pm Global Warming Potential (GWP) of aviation NOx emissions - Agniezska Skowron (MMU)

3.15-3.45pm Coffee Break

3.45pm Atmospheric observations on scheduled flights:CARIBIC2 – Greta Stratmann, Helmut Ziereis (DLR)

4.15pm Observations, modelling and proof of evidence – Sigrun Matthes (DLR)

Gaseous aviation emissions – discussion, summary, feedback

4.45pm Discussion – Study results, programmes, gaps, strategic topics/priorities

5.15pm Wrap-up day 1 – Volker Grewe and Sigrun Matthes (DLR)

5.45pm End of Day 1

Page 13: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 13 von 89 

Day 2 – 3 Apr 2014: FORUM-AE Climate impact of contrail cirrus

Contrail and contrail cirrus: Introduction and fundamentals

9.00am Contrail cirrus - general remarks

9.10-9.30am Contrail formation: Physical basics – Klaus Gierens (DLR)

9.30-9.50am From contrail formation to contrail cirrus – Simon Unterstrasser (DLR)

9.50-10.10am MERMOSE project results: particles at engine exit – Olivier Penanhoat (Snecma)

10.10-10.30am Why is it important to know ice crystal number of a contrail cirrus? – Lisa Bock (DLR)

10.30-11.00am Coffee Break

Recent results from campaigns and modelling studies, climate impact of contrails

11.00-11.20am How do aircraft type and properties affect contrail evolution? – Norman Görsch (DLR)

11.20-11.40am Optical properties of contrails and contrail ice crystals- consequences on their climate impact – Valerie Shcherbakov (LaMP)

11.40-12.00am Aircraft and soot dependent radiative forcing by aviation induced cirrus - estimates from observations and model studies – Ulrich Schumann (DLR)

12.00am-1.00pm Buffet Lunch Provided by DLR

1.00-1.20pm Results of TC2 (Traînées de Condensation et Climat) project – Daniel Cariolle (CERFACS)

1.20-1.40pm On uncertainties regarding contrail and contrail cirrus climate impact – K. Gierens (DLR)

1.40-2.00pm Coffee Break

Discussion, Questions and Answers, Open research issues, Conclusion

2.00pm Questions and Answers – recommendations for proceedings

2.30pm Open research issues: Future work – research requirements, roadmap

3.30pm Conclusions (top 5 issues) Klaus Gierens and Sigrun Matthes (DLR)

4.00pm end of workshop

Page 14: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 14 von 89 

4 Summaryofpresentationsandassociateddiscussions

During the workshop a series of presentations was given in individual sessions. All presentations are 

gathered in Appendix A. In the following section we give a summary for each presentation.  

Note: Names of presenters are given behind the title of each presentation; co‐authors information is 

provided in the presentations themselves.  

3.1Session1:Introductionandfundamentalsofaviationclimateimpactofnitrousoxides

S1.1–Aviationclimateimpactandworkshopobjectives‐SigrunMatthes(DLR)Sigrun  Matthes  opens  the  workshop  and  welcomes  all  participants.  She  presents  objectives  of 

FORUM‐AE technical workshop Aviation Climate Change impact. The FORUM‐AE coordination action 

(CA,  FP7)  brings  together  technical  specialists  in  this  European  network  covering  all  relevant 

competencies,  including  academic  and  industrial  partners,  linked  to  key  environmental  technical 

issues on aviation emissions. In this scope, the activity includes the organization of such focused and 

high  quality  workshops.  This  allows monitoring major  European  R&T  programs,  by  invitation  of 

relevant experts.  

S1.2–ScientificIntroduction:Climateimpactwhatreallymatters–LingLim(MMU)Ling Lim gives an overview on a current update of the Lee et al. [2009] assessment of climate impact 

of aviation. It comprises estimates of two additional effects, compared to earlier assessments, which 

are  primary mode  ozone  (PMO)  and  H2O  from  CH4  reduction.  So‐called  primary mode  ozone  is 

caused  by  a  reduced  ozone  formation,  associated with  a  lower methane  concentration,  hence  it 

counteracts on a longer timescale warming effect of short‐term ozone. Estimates of future scenarios 

with different demands, technologies and operation efficiencies are undertaken. In this context, it is 

important  to  decide  and  develop  common  understanding  on  the  question,  which  species  are 

important  for  an  assessment  and  for  evaluating  and  comparing mitigation  options.  Here,  when 

calculating  radiative  transfer  in  the  atmosphere,  choice  of  background  concentrations  plays  an 

important  role  for  radiative  impact.  Finally,  evaluation  and  priorities  how  short‐term  effects  are 

assessed versus long term climate effects is crucial.  

S1.3–StatusoncurrentACARESRIArecommendations‐XavierVancassel(ONERA),OlivierPenanhoat(Snecma)Xavier Vancassel presents an overview on ACARE Strategic Research and  Innovation Agenda (SRIA), 

which indicates on time horizon 2050 to 2000 in detail changes per pax‐km.  ACARE has set the target 

to  reduce  passenger  kilometer  CO2  by  75%,  NOx  emission  by  90%,  noise  by  65%.  Additionally, 

stronger focus should be given to recyclable vehicles.  

Important  topics:  Knowledge,  Monitoring  air  vehicle  environment,  Aircraft‐Atmosphere 

interconnection, Environmental impact monitoring, Incentives. 

Page 15: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 15 von 89 

3.2Session2:Climateimpact–Motivation,whichmetrictouse?

S2.1–Manufacturersperspectiveonclimateimpactofaviation–RainervonWrede(Airbus)Rainer van Wrede gave an overview on AIRBUS objectives and open questions. AIRBUS was involved in the past in atmospheric research, such as the MOSAIC monitoring system. AIRBUS will continue this involvement, since it is also driver for future development. Motivation for their involvement, is the question what AIRBUS can do to reduce the air traffic impact on environment. The resulting question is, whether, they need to make changes to the aircraft design in order to mitigate climate change.   

Paul Madden, and Thomas Dörr, and Peter Swann provided an overview on Rolls‐Royce objectives. Their major intent is to improve engine fuel efficiency, while developing ultra low‐NOx engines. They ask the question, in particular for counteracting emission compounds, to know, which specie is more important to work on, i.e. to minimize, is it particulate matter or NOx emissions. For all these questions, one needs to keep in mind that development time‐scales (development and operation) are pretty long, in the order of decades. 

Joseph Burguburu from SNECMA  added that an important issue is to agree on regulatory issues, in particular regarding particulate matter indices, i.e. mass versus number density. 

Alternative fuels: 

Rainer van Wrede expects that alternative fuels will have a significant share in future. The question is if the certification needs to be adapted to low aromatic fuels. And what impacts would such fuels have on supply and operation? 

Paul Madden points out that nowadays a maximum of 50% blend is possible. However, overall life cycle assessment is difficult, and remains an issue. From a technical point of view, engine manufacturers can adapt to alternative fuels, if there is an overall society attitude to move onward in this direction. 

S2.2–ClimateMetrics:Overviewandnewapproaches–MarianneLundCICEROMarianne Lund gave an overview on metrics which allow to provide a quantitative measure of climate impact. Metric are as well used as an exchange rate to convert any impact to equivalent CO2 emissions. Taking a closer look at IPPC reports on this issue, show a change from fourth Assessement report (AR4) to Fifth Assessment report (AR5). While AR4 point out “GWP remains the recommended metric”  in the later AR5 report is noted “No single metric is adequately representing all climate impacts”.  

The first question is what the impact of interest is, when talking about changes and damages. Among those metrics commonly used, are GWP (global warming potential) and GTP (global temperature potential), but they are very different one from the other. When searching for an exchange rate between individual components, in particular non‐CO2 components, it is often proposed to use CO2 as exchange rate. However, this raises the question, if CO2 really is the right basis for the “exchange rate”. New approaches and recent development in metrics now consider regional effects instead of only providing global mean values or combine various impacts in one estimate. 

S2.3–Areclimatemetricsambiguous?‐KatrinDahlmann,VolkerGrewe,(DLR) Katrin Dahlmann provides an overview on how climate impact metrics needs to be designed in order to reflect underlying societal (or strategic) question. Katrin shows that different climate change aspects and different objectives lead to different combinations of emissions scenarios, metrics and time horizons. Uncertainties in the climate assessment of air traffic do not limit the assessment of new aircraft technologies with regards to more favorable (climate‐optimal) option, since many uncertainties are correlated and can be handled by Monte‐Carlo simulations. Such statistical approaches allow generating robust estimates of overall climate impact. 

Page 16: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 16 von 89 

3.3Session3:Climateimpactofnitrogenoxideemissionsfromaviation&observations

S3.1–NOximpactsandaltitudevariations–AmundSovde,LingLim,SigrunMatthesAmund Søvde presented results from the REACT4C project, where beside identification of climate‐

optimal routing strategies, an atmospheric multi‐model study on general changes of the air traffic 

cruise altitude was performed. This study [Sovde et al., 2014] provides a quantitative estimate how 

climate impact changes (i.e. mitigation potential) with regards to climate impact of NOx emissions 

when aircraft generally “flying lower” or “flying higher”.  

Main requirements for a coordinated multi‐model studies are: 

• All models include stratospheric and tropospheric chemistry 

• NOx changes are similar in all models, global aviation NOx emission ~0.7Tg[N]/a 

Climate impact of generally flying at different altitudes can be described as follows: 

• Flying higher/lower: Larger/smaller climate impact from NOx (O3+CH4) 

The set of models calculates for aircraft NOx emissions an associated radiative forcing RF (climate 

impact) from 0.8 to 8.0 mW/m2. Climate impact of NOx emissions originates from changes in 

atmospheric ozone and methane concentrations, associated changes in radiative balance. On a 

global scale, if aircraft generally fly lower, the climate impact of NOx emissions would decrease 

aviation climate impact, by about ‐2.8 to ‐0.8 mW/m2, while flying higher would increase it by about 

0.8 to 3.0 mW/m2. 

S3.2–WeatherdependentimpactsofNOxemissions–SabineBrinkop,VolkerGrewe(DLR)Volker Grewe shows results from the REACT4C project indicating the chemical impact of a locally 

confined emission on the chemical composition in a realistic weather situation. 

• Initial meteorology seems to control the fate of emitted species. 

Climate impact of aviation emissions depends on initial meteorology, offering an mitigation 

potential, when specifically taking into account atmospheric sensitivity of atmosphere, as undertaken 

in the collaborative project REACT4C (FP7). 

S3.3–GlobalWarmingPotential(GWP)ofaviationNOx‐AgniezskaSkowron(MMU)Agnieska Skowron presented results derived with the MOZART model and REACT4C emission data.  

• NOxGWP decreases with increasing NOx emissions. 

• Ozone production efficiency decreases with NOx emission increase 

• NOx‐O3‐CH4 nonlinearities different in different world regions 

S3.4–Atmosphericobservationsonscheduledflights:CARIBIC2–GretaStratmann(DLR)Greta Stratmann introduces the CARIBIC‐project. The CARIBIC project collects on‐board 

measurements of atmospheric trace compounds on scheduled aircraft. 

• Long time series available of measurements along aircraft tracks, 

• Analysis shows seasonal cycle in NOy concentrations, with lower stratosphere showing 

larger values than upper troposphere, which is an indication that many fresh plumes are 

measured. 

Page 17: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 17 von 89 

• Good comparison to EMAC model results 

S3.5–Observations,modellingandproofofevidence–SigrunMatthes(DLR)Sigrun Matthes introduces the model initiatives to support measurement campaigns within a DLR 

project WeCare, in order to investigate possibilities how to best measure atmospheric effects of 

aviation, e.g. increase of atmospheric ozone concentration. 

3.4Session4:Gaseousaviationemissions–discussion,summary,feedback

In  this discussion  session a  review results and implications takes place, which can be derived from

programmes, but also discuss on gaps within current understanding and strategic topics and priorities

on recommendations how aviation can further evolve in order to become sustainable. Governing 

questions in are the following: 

What are the current understanding and uncertainties associated with atmospheric composition 

changes and climate impacts due to aviation 

What are the metric(s) that can best capture impacts on different space and time‐scales? 

How will the climate impacts depend on changes in emissions and operations? 

What are the best approaches for climate impact analysis (for policy)? 

3.5Session5:ContrailsIntroductionandfundamentals

S5.1–Contrailformation:Physicalbasics–KlausGierens(DLR)Klaus Gierens presented a complete derivation of the Schmidt‐Appleman criterion in terms of basic 

physics, conservation laws of energy, momentum and mass applied to an aircraft and its engines. The 

motivation for such a talk is the surprise that engineers often show when it is stated that modern 

engines with higher overall propulsion efficiency, , produce more contrails than older engines with 

lower . He made the following statements: 

• Dynamic and thermodynamic aspects of contrail formation are very good understood, as 

these follow straightforward from basic physical conservation principles of mass, 

momentum and energy. 

• Microphysical details of contrail formation are less well understood, for instance what 

exactly happens on soot surfaces, how many soot particles contribute to ice formation, 

etc. However, initial number of ice crystals is known up to a factor of 2‐3.  

• Contrail formation and persistence conditions are fairly well known. 

• Contrail and contrail cirrus properties depend on initial conditions at formation and on 

many other ambient parameters. Large variability. 

This final large variability contributes potentially a large share to the overall large uncertainty 

in the global and annual average Radiative Forcing of contrails which gives them an IPCC rating of 

(very) low level of scientific understanding. 

S5.2–Fromcontrailformationtocontrailcirrus–SimonUnterstrasser(DLR)Simon Unterstrasser reviewed the evolution of contrails from formation to contrail‐cirrus under a 

modelling perspective. He introduced the three phases of contrail development and connected them 

to those physical processes that are important in the respective phase.  These processes determine 

Page 18: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 18 von 89 

essential contrail characteristics that later play a role for contrail lifetime and optical properties, i.e. 

local effect on the radiation field (individual RF). S.U. showed examples of simulations with cloud 

resolving numerical models, under a great variety of ambient situations. This again results in a large 

variability of contrail properties, as mentioned before. Finally, a simulation of a contrail cluster was 

shown, a complexity that is important, i.e. it occurs often and is relevant, when a statement from 

Burkhardt and Kärcher (2009) is true, viz. that contrail outbreaks (i.e. clusters in large ISSRs) 

contribute a large share to the global contrail coverage and RF. 

S5.3–MERMOSEprojectresults:particlesatengineexit–OlivierPenanhoat(Snecma)Next, Olivier Penanhoat reported on rig‐based measurements of particle emissions at engine exit in 

the framework of the MERMOSE project. MERMOSE aims to provide a modern aircraft engine 

emission dataset and to study ice nucleation on emitted soot particles. The project has the following 

goals: 

• Complete characterisation of fine particles behind a modern SaM146 turbofan from 

SNECMA and a tubular combustor representative of this turbofan combustor. 

• Fundamental characterisation of soot particles and their impact on ice crystal formation.  

• To provide valuable information for a future non‐volatile particulate matter international 

ICAO standard. 

O. P. showed results on particle morphology, structure, size distribution (dependent on power 

setting), emission mass and number concentrations (i.e. emission indices). Overall, the project was 

considered successful. 

S5.4–Whyisitimportanttoknowicecrystalnumberofacontrailcirrus?–LisaBock(DLR)Lisa Bock touched upon a modern topic, namely biofuels, showing how the probably reduced 

number of emitted soot particles (compared to engine burning kerosene) will lead to contrails with 

less ice crystals, thus less optical effects and lower lifetime. For this purpose she assumed in the 

framework of a global climate model that all contrails have initially 80% less ice crystals than in a 

corresponding contrail run (standard kerosene case).  The result of the “biofuel” experiment 

comprised reduced ice mass in contrails, larger crystals, and thus reduced optical thickness. While 

total (globally integrated) contrail coverage did not decrease, that of optically thicker contrails 

(>0.05, i.e. visible) did, sometimes dramatically. Thus, introduction of biofuels can potentially lead 

to a shift from visible to invisible contrails with correspondingly smaller radiative forcing on climate. 

However, the overall effect might be smaller than assumed in the model.  

3.6Session6:Recentresultsfromcampaignsandmodellingstudies,climateimpactofcontrails

S6.1–Howdoaircrafttypeandpropertiesaffectcontrailevolution?–NormanGörsch(DLR)Norman Görsch presented results from a modelling study of contrails from different aircraft within 

the same meteorological situation. Six different aircraft ranging from the small regional airliner 

Bombardier CRJ to the largest aircraft Airbus A380 have been considered. Differences in wake vortex 

properties and fuel flow lead to considerable variations in the early contrail geometric depth and ice 

crystal number. Larger aircraft produce contrails with more ice crystals than small aircraft. These 

initial differences are reduced in the first minutes, as the ice crystal loss during the vortex phase is 

stronger for larger aircraft. In supersaturated air, contrails of large aircraft are much deeper after 5 

Page 19: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 19 von 89 

min than those of small aircraft. It is important to know whether such initial differences have a long‐

lasting effect on the developing contrail‐cirrus. Quantitative differences between the contrail cirrus 

properties of the various aircraft remain over the total simulation period of 6 h. The total extinctions 

of A380‐produced contrails are about 1.5 to 2.5 times higher than those from contrails of a 

Bombardier CRJ, which translates approximately to a higher individual climate effect by the same 

factor. 

S6.2–Opticalpropertiesofcontrailsandcontrailicecrystals‐consequencesontheirclimateimpact–ValerieShcherbakov(LaMP)Valery Shcherbakov showed measurements of ice crystal scattering phase functions measured with 

the LaMP Polar Nephelometer. These measurements have been taken during the Concert 1 and 2 

airborne campaigns. Analysis of the huge number of available nephelometer measurements allow 

statistically robust statements to be made on typical crystal forms and optical properties  in young or 

old contrails, man‐made or natural ice clouds, or particles from mixed phase clouds and volcanic ash 

clouds. All these show distinct optical characteristics. Even crystal aging (growth) has a signature in 

the nephelometer measurements. He concluded stating that contrail optical‐characteristics depend 

on weather conditions, contrail age, aircraft engines, and so on, and so he made another statement 

on the large natural variability of contrails and their properties which renders it difficult to come up 

with a narrow uncertainty margin for the climate impact in IPCC like charts. However, the Polar 

Nephelometer is a powerful tool to provide statistically significant data which can be employed 

synergistically with particle‐counting probes, trace‐gas and aerosol measurements to narrow down 

the uncertainty ranges. 

S6.3–Aircraftandsootdependentradiativeforcingbyaviationinducedcirrus‐estimatesfromobservationsandmodelstudies–UlrichSchumann(DLR)Ulrich Schumann presented estimates from observations and CoCiP model studies on aircraft and 

soot dependent radiative forcing by aviation induced cirrus. He gave the following conclusions: 

• An increase in the number of ice particles in young contrails by a factor of 2 [which cannot be 

excluded from recent lab and field results] causes a  factor of 21/3 = 1.26 change of optical 

depth for fixed ice water path and fixed radiation extinction coefficient and correspondingly 

reduced effective radius (the Twomey effect). Further changes incur in relation to visible 

contrail cover, contrail lifetime, width and geometrical depth. All these changes contribute to 

the larger changes in RF compared to that of optical depth. Exact numbers depend on details 

in the used CoCiP model. 

• The relative radiative effect of two global hypothetical fleets of A380 or A319 aircraft has 

been studied with CoCiP. The global simulation with CoCiP shows a change in net RF by 

factors of 0.73 or 2.51, when the global fleet of aircraft is replaced by a fictive fleet in which 

all aircraft are either A319 or A380 aircraft, respectively. Hence, the RF is about a factor 3.5 

larger for an A380 than for an A319. This change results mainly from the larger aircraft mass 

(factor 8) and the larger fuel consumption (factor 6). In terms of RF per passenger seat or RF 

per passenger‐seat distance, the ratio between the simulation results for different aircraft is 

closer to unity or even smaller than one, i.e. a larger aircraft may have smaller climate impact 

per transport unit than a smaller aircraft. 

Page 20: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 20 von 89 

3.7Session7:Resultsfromongoingprojects

S7.1–ResultsofTC2(TraînéesdeCondensationetClimat)project–DanielCariolle(CERFACS)Danielle Cariolle reported on the TC2 project, a French project on Traînées de Condensation et Climat 

(Contrails and Climate). TC2 has the main objectives to reduce uncertainties in calculating the climate 

impact associated with contrails and induced cirrus. To this end it is engaged in development and 

improvement of numerical models of contrails and contrail‐cirrus, development of parameterizations 

of contrails and induced cirrus for GCMs, and aircraft in‐situ measurements of contrail and contrail‐

cirrus composition.  A main focus in developing the contrail model is on a proper representation of 

the background turbulent fluctuations.  

Next, Daniell Cariolle reported on a sister project, IMPACT (Impact of aircraft emissions on present 

and future climate). The goal of this project is similar to that of TC2, namely to contribute reducing 

uncertainties in calculating the climate impact of aircraft emissions and in particular those associated 

with contrails and induced cirrus but also to the NOx emissions (impact on methane and ozone) and 

particulates (sulfates, nitrates, soot). This goal will be achieved by development and improvement of 

numerical models of atmospheric composition and climate and studies of climate perturbation due 

to aircraft emissions by 2050 time horizon. A further goal is to suggest ways to develop emission 

inventories associated with future fleets and specify the needs of the climate modeling in terms of 

emission inventories. D.C. presented details of these developments, for instance how ice 

supersaturation is represented in the GCM. 

Both projects presented by Danielle Cariolle aim at reducing the uncertainty of contrail and contrail‐

cirrus RF estimates.  

S7.2–Onuncertaintiesregardingcontrailandcontrailcirrusclimateimpact–K.Gierens(DLR)Klaus Gierens devoted the final presentation of this workshop to a discussion of the sources of 

uncertainties of contrail and contrail‐cirrus RF estimates. He stressed the multi‐scale‐nature of the 

problem (i.e. many temporal and spatial orders of magnitude involved in the phenomenon, e.g. from 

nanometre to kilometre), and showed that all research modes (in‐situ and remote measurements, 

local to global models) cover only a small fraction of all the scales involved. He argued that much of 

the uncertainty is related to the enormous natural variability that originates from the multi‐scale‐

property and not necessarily to our inability to solve the problems. 

3.8Session8:Discussion,QuestionsandAnswers,Openresearchissues,ConclusionsKlaus Gierens led into the discussion by presenting a number of research questions: 

• How far is it possible to reduce the uncertainty in contrails’ RF significantly? 

• Is it possible to devise meaningful mitigation measures for individual contrails if there 

remains an irreducible RF for all contrails? 

• Can essential input data for mitigation strategies be predicted (forecast) such that contrail mitigation can be performed in flight planning phase? 

• Are model results or forecasts robust enough to base mitigation strategies upon them? If not, which parameters/parameter combinations are most important to be fixed? 

Page 21: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 21 von 89 

• Which approach to contrail mitigation is most promising to yield a substantial gain and least error‐prone in making a wrong decision? 

• climatology based mitigation 

• individual contrail impact assessment  

• avoid only those contrails that can safely predicted to have a significant warming impact 

 

Page 22: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 22 von 89 

5 ConclusionsThe two‐day FORUM‐AE workshop was concerned with climate impact of aviation from nitrous oxide 

emissions and contrails. The various sessions permitted to address each of the key topics which were 

identified, by  technical presentations  showing up‐to‐date  results and by  the discussion  it  induced.  

Key results or statements highlighted can be found in detail in technical presentations included in the 

annex, and one should refer directly to the presentation (in appendix) to take advantage of what was 

delivered to the audience. This available technical material and the discussions it induced constitute 

a part of the outcome of the workshop.  

At the end of the workshop a summary and main conclusions were drawn jointly in this expert group. 

These conclusions are noted hereafter, summarising common understanding and open issues.  

4.1 KeyconcludingstatementsMajor outcome of research on aviation and climate impact are quantitative estimates of aviation 

climate impact, as well as comprehensive understanding of major processes governing and 

influencing overall impact, while estimating benefit of mitigation measure on climate impact of 

future aviation. 

 

Objectives and relevant issues of our climate impact workshop 

1) to look at the historical and potential future trends in climate that may change quantification of 

aviation impacts; in this context, in particular non‐CO2 effects were of particular interest; 

2) to investigate impacts of engine cycle evolution on current and future contrail coverage 

calculations   

3) to provide an overview on uncertainty issues associated with aviation climate impact; and  

4) to estimate atmospheric measurements needs, while continuing to compare model results and 

methods applied with observations, and  

5) to provide sufficient understanding both for mitigation solutions guidance and regulation 

discussion. 

 

Quantitative estimates of climate impact of aviation emission rely on detailed emission 

inventories as input. These inventories play an important role as they strongly influence results. 

Not only amount, but also location (geographic position, altitude) are important. Assuming 

aircraft fly one level higher or lower, has the potential to change quantitative results in such a 

model study. This requires, quantitative estimate to which extent are sensitive to such variations 

in altitude. At the same time,  

Mitigation strategies by alternative flight routing offer one possibility to reduce aviation climate 

impact (operational measures). This mitigation potential exist, because of atmospheric  

sensitivity to aviation emissions depends on geographic position, altitude and time of flight 

(meteorological situation). Consequently, climate‐optimized flight‐trajectory planning can help to 

develop sustainable mobility.  

 

Conceptual studies on alternative flight routing use inventories, which follow a parametric 

approach by generally reducing or increasing flight altitude by 2000 ft, if technically feasible. 

Such conceptual studies conclude for climate impact of NOx emissions, that flying lower reduces 

climate impact (radiative forcing), while flying higher increased climate impact associated with 

Page 23: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 23 von 89 

nitrogen oxides emitted, via short‐lived and long‐lived ozone, change in methane concentration 

and change in stratospheric water vapour. New concepts for climate‐optimal routing were 

recently developed which consider individual weather situation offering an overall mitigation 

potential of climate impact (REACT4C).  

 

Similarly for assessments of future climate impact of aviation any assumption on future 

scenarios are important, i.e. which technology will be flown, how the economy will develop in 

the future, and how future mobility will look like. This requires, clear documentation of 

assumptions for future scenarios and investigation of sensitivity of results to these assumptions. 

However, estimates of future aviation climate impact is to a certain extent today’s motivation to 

work on mitigation of aviation climate impact. 

 

Different calculation methods exist for providing quantitative estimates of aviation climate 

impact. The approach can be Lagrangian or Eulerian, while the perturbation method or a tagging 

method can be used for source attribution of atmospheric concentrations and hence radiative 

impacts. Depending on the decision which should be supported by an environmental impact 

study, adequate approach needs to be selected. This requires, careful selection of applied 

approach and documentation of reason for individual choice. 

 

Aviation climate impact is measured by a climate impact metric which provide a quantitative 

estimate and which gives information on damage caused, and allows a comparison with other 

sectors. However, different metrics exist and are applied. Suitable metrics for estimating aviation 

climate impact, which are considered as providing meaningful estimates are the global warming 

potential, global temperature potential, but also an average temperature response. Depending 

on the context, absolute or normalized values can be used. Normalization often is done relative 

to the CO2 value. Finally, metrics rely on assumptions regarding emissions, which are in detail 

pulse, sustained or scenario emission (backward looking). This requires, selection of adequate 

metric design with regards to physical quantity, background values and emission assumptions. 

 

An outstanding problem related to the climate impact of aviation is the large uncertainties of the 

RF calculations and estimates. Unfortunately, the situation seems not to improve in the course of 

time, and, ironically, error bars get larger over time instead of reduced although most research 

projects aim at “reducing error bars”. Naturally the question arises how this is possible and what 

consequences should be drawn. This requires, to address uncertainty specifically, and to develop 

adequate ways to decide under uncertainty conditions. 

A first consequence that should be drawn is that the uncertainty itself must be analysed. There 

are several kinds of uncertainties and it is important to understand the essential differences of 

these uncertainties. In principle there are two kinds: uncertainties that can be reduced by further 

research, more measurements (lab and field), better models, improved statistical basis for data 

analyses, and so on. But there are also uncertainties that cannot be avoided and not be reduced, 

in particular those related to future scenarios. For the first, in principle reducible, kind of 

uncertainty, we must admit that progress is slow. Reasons for this have been discussed during 

the workshop, and there is not much that can be done to speed up progress. This means that 

planning for the future must be done taking into account present uncertainties.  

Regarding future research needs, a number of questions arise in this context: 

Page 24: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 24 von 89 

Assuming that the climate‐related uncertainty is essentially irreducible, what does this mean 

for a single flight? 

o Is it possible to devise meaningful mitigation measures for individual flights in spite 

of large RF uncertainty for ALL flights and associated contrails? 

o If yes, which strategies can be offered? 

o Can essential input data for mitigation strategies be predicted (forecast) such that 

mitigation of aviation climate impacts can be performed in flight planning phase? 

 

Model calculations allow computing the radiative forcing contribution of an individual flight 

(LES, CoCiP, Lagrangian) or of an ensemble of contrails (GCMs). Radiation, microphysics and 

atmospheric trace species measurements from aircraft measurement campaigns allow 

similar calculations to be performed.  

o How sensitive are the results to certain assumptions or parameter choices in the 

models and calculations? 

o Are the results robust enough to base mitigation strategies upon them? 

o If not, which parameters/parameter combinations are most important to be fixed?  

 

Which approach to aviation impact mitigation, e.g. contrail formation, ozone production, is 

most promising to yield a substantial gain and least error‐prone in making a wrong decision? 

o The mitigation approach based on climatological considerations: Considering, at the 

time of take‐off, only season, daytime, and synoptic situation, and defining the flight 

route bases on a statistical basis, e.g. for contrails: "For this weather situation, with 

80% probability, a contrail will form, and with 60% probability it will have a 

substantial warming impact", and for ozone: “ For this weather situation, we have an 

amount of ozone being formed, which is particularly high in this area”. 

o The mitigation approach based on individual synoptical conditions and impact 

assessment: Based on the actual weather forecast several flight routes are calculated 

before (or even after take‐off) and the one promising the smallest (or zero or 

cooling) impact is chosen. Based on a fundamentally different statistical basis, e.g.: "I 

know that with 75% probability my assessment will be correct within a +‐ 15% 

range". 

o Generalized avoidance strategy: Avoid on principle for contrails only those, say, 10% 

of contrails that can be robustly assessed to have a significant warming impact. "I 

know that this will avoid 70% of the total contrail climate impact due to high 

warming/cooling compensation or irrelevant effects for the neglected cases". Or 

avoid for nitrogen oxide and ozone only those regions where maximum ozone 

production efficiency prevails. 

We deem research into this kind of questions, which partly is already performed by ongoing and 

recently completed projects (e.g. REACT4C), will allow to find ways to a more environmentally 

friendly air traffic in spite of pertinacious problems and resulting uncertainties.   

Page 25: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 25 von 89 

6 References

http://www.forum‐ae.eu: EU FP7 Coordination Action FORUM‐AE project website 

http://iet.jrc.ec.europa.eu/about‐jec: JRC/EUCAR/CONCAWE methodologies

Page 26: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 26 von 89 

7 Annex–WORKSHOP’sPRESENTATIONS 

 

 

 

7.1Annex1–ClimateimpactofNOxemissions(presentations) 

(33 pages) 

 

7.2Annex2–Climateimpactofcontrailandcontrail‐cirrus(presentations)   

(29 pages) 

Page 27: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

1

FORUM-AE

FORUM-AE Workshop 2 – Climate ImpactDAY 1: Nitrogen oxides

DAY 2: Contrail and contrail cirrus

Sigrun Matthes (DLR)Klaus Gierens (DLR)FORUM-AE Second Workshop (v10)Oberpfaffenhofen, 2-3 Apr, 2014

1 / FORUM-AE

FORUM-AE FP7 - PROJECT CONTEXT

Proposal Title: FORUM on Aviation and Emissions

Acronym: FORUM-AE

Type of funding scheme: Coordination and Support Actions (Coordinating)

Duration: July 2013 – June 2017

The FORUM-AE coordination action will create a technical specialists europeannetwork with all relevant competencies, including academic and industrial partners, linked to key environmental technical issues on aviation emissions.

In this scope, the activity will consist in the organization of focused and high quality workshops and in the monitoring of major european R&T programs, both activities being carried out closely.

FORUM-AE WP1 Aviation Climate Impact Workshop (2-3 Apr 2014 - Oberpfaffenhofen)

2 / FORUM-AE

ENVIRONMENTAL IMPACTS - WP1 CONTEXT (SCIENTIFIC)

Environmental impacts workpackage aims at addressing main issues linked to environmental impacts from aviation emissions, in order to have clear visibility on the current knowledge, the recent results, the on-going scientific programs, the open questions, and the most strategic topics which should be further assessed or investigated by the scientific community, as well as the priorities which should be considered in the mitigation solutions of WP2.

Aviation climate impact workshop scheduled

FORUM-AE WP1 Aviation Climate Impact Workshop (2-3 Apr 2014 - Oberpfaffenhofen) 3 / FORUM-AE

ENVIRONMENTAL IMPACTS - WP1 WORKSHOP

Aviation climate impact workshop dedicated to establishing the outcomes of recent research on NOx emissions, contrail, and contrail-cirrus, and in particular research which aims to narrow the related uncertainties.

Climate impact – Motivation, which metric to use? Climate impact of nitrogen oxide emissions from aviation & observations Contrail and contrail cirrus: Introduction and fundamentals Recent results from campaigns and modelling studies, climate impact of

contrails

Workshop proceedings summarizing state of knowledge, findings and recommendations

FORUM-AE WP1 Aviation Climate Impact Workshop (2-3 Apr 2014 - Oberpfaffenhofen)

4 / FORUM-AE

WORKSHOP AGENDA – 2 APRIL 2014 (DAY 1)

Introduction and fundamentals 9.30-9.45am Climate workshop goals and introduction – Klaus Gierens and Sigrun Matthes (DLR) 9.45-10.15am Scientific Introduction: Climate impact what really matters – Ling Lim (MMU) 10.15-10.45am Status on current ACARE SRIA recommendations - Xavier Vancassel (ONERA), Olivier

Penanhoat (Snecma)10.45am Coffee Break

Climate impact – Motivation, which metric to use? 11.15-11.35am Manufacturers perspective on climate impact of aviation – Rainer von Wrede (Airbus) 11.35-12.00am Climate Metrics: Overview and new approaches – Marianne Lund CICERO 12.00-12.30pm Are climate metrics ambiguous? - Volker Grewe, Katrin Dahlmann (DLR)

12.30pm Buffet Lunch Provided by DLRVisit to Research Aircraft HALO

Climate impact of nitrogen oxide emissions from aviation & observations 2.00-2.25pm NOx impacts and altitude variations – Amund Sovde, Ling Lim, Sigrun Matthes (REACT4C FP7) 2.25-2.50pm Weather dependent impacts of NOx emissions – Sabine Brinkop, Volker Grewe (DLR-IPA) 2.50-3.15pm Global Warming Potential (GWP) of aviation NOx emissions - Agniezska Skowron (MMU)

3.15-3.45pm Coffee Break 3.45pm Atmospheric observations on scheduled flights:CARIBIC2 – Greta Stratmann, Helmut Ziereis (DLR) 4.15pm Observations and proof of evidenceGaseous aviation emissions – discussion, summary, feedback 4.45pm Discussion – Study results, programmes, gaps, strategic topics/priorities 5.15pm Wrap-up day 1 – Volker Grewe and Sigrun Matthes (DLR)

5.45pm End of Day 1

FORUM-AE WP1 Aviation Climate Impact Workshop (2-3 Apr 2014 - Oberpfaffenhofen) 5 / FORUM-AE

WORKSHOP AGENDA – 3 APRIL 2014 (DAY 2)

Contrail and contrail cirrus: Introduction and fundamentals 9.00am Contrail cirrus - general remarks 9.10-9.30am Contrail formation: Physical basics – Klaus Gierens (DLR) 9.30-9.50am From contrail formation to contrail cirrus – Simon Unterstrasser (DLR) 9.50-10.10am MERMOSE project results: particles at engine exit – Olivier Penanhoat (Snecma) 10.10-10.30am Why is it important to know ice crystal number of a contrail cirrus? – Lisa Bock (DLR)

10.30-11.00am Coffee BreakRecent results from campaigns and modelling studies, climate impact of contrails 11.00-11.20am How do aircraft type and properties affect contrail evolution? – Norman Görsch (DLR) 11.20-11.40am Optical properties of contrails and contrail ice crystals- consequences on their climate

impact – Valerie Shcherbakov (LaMP) 11.40-12.00am Aircraft and soot dependent radiative forcing by aviation induced cirrus - estimates from

observations and model studies – Ulrich Schumann (DLR)12.00am-1.00pm Buffet Lunch Provided by DLR

1.00-1.20pm Results of TC2 (Traînées de Condensation et Climat) project – Daniel Cariolle (CERFACS) 1.20-1.40pm On uncertainties regarding contrail and contrail cirrus climate impact – K. Gierens (DLR)

1.40-2.00pm Coffee Break

Discussion, Questions and Answers, Open research issues, Conclusion 2.00pm Questions and Answers – recommendations for proceedings 2.30pm Open research issues: Future work – research requirements, roadmap 3.30pm Conclusions (top 5 issues) Klaus Gierens and Sigrun Matthes (DLR)

4.00pm end of workshop

FORUM-AE WP1 Aviation Climate Impact Workshop (2-3 Apr 2014 - Oberpfaffenhofen)

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 27 of 89

Page 28: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

2

6 / FORUM-AE

GOVERNING QUESTIONS

1) What are the current understanding and uncertainties associated with atmospheric composition changes and climate impacts due to aviation

2) What are the metric(s) that can best capture impacts on different space and time-scales?

3) How will the climate impacts depend on changes in emissions and operations?

4) What are the best approaches for climate impact analysis (for policy)?

Background

State of knowledge

Findings and Recommendations

FORUM-AE WP1 Aviation Climate Impact Workshop (2-3 Apr 2014 - Oberpfaffenhofen) 7 / FORUM-AE

WORKSHOP PROCEEDINGS

1) What are the current understanding and uncertainties associated with atmospheric composition changes and climate impacts due to aviation

2) What are the metric(s) that can best capture impacts on different space and time-scales?

3) How will the climate impacts depend on changes in emissions and operations?

4) What are the best approaches for climate impact analysis (for policy)?

Workshop Agenda, participants

Editorial team: Klaus Gierens, Sigrun Matthes, Rainer von Wrede, Paul Madden, Xavier Vancassel

Climate impact, metrics, uncertainties, policy

FORUM-AE WP1 Aviation Climate Impact Workshop (2-3 Apr 2014 - Oberpfaffenhofen)

8 / FORUM-AE

ENVIRONMENTAL IMPACTS - WP1 CONTEXT (SCIENTIFIC)

Objectives and relevant issues of our 2-day Climate impact workshop

Particular areas of focus in the field of contrail research could be:

1) to examine the non-CO2 effects of alternative aviation fuels and

2) to investigate impacts of engine cycle evolution on current and future contrail coverage calculations

3) to look at the historical and potential future trends in climate that may change quantification of aviation impacts; and

4) to continue to address the uncertainty questions raised contrail coverage and cirrus radiative forcing; and

5) to estimate atmospheric measurements needs

Particular areas of focus in the field of nitrogen oxide research could be:

1) to provide an update of the most recent science of the climate impacts of NOx

emissions in order to provide sufficient understanding both for mitigation solutions guidance and regulation discussion.

FORUM-AE WP1 Aviation Climate Impact Workshop (2-3 Apr 2014 - Oberpfaffenhofen)

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 28 of 89

Page 29: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

1

1

Climate changeWhat really matters?

Ling Lim1, Bethan Owen1, David S. Lee1,Ruben Rodriguez de Leon1, Agnieszka Skowron1, Ulrike Burkhardt2,

David Fahey3, Joyce Penner4, Laura Wilcox5, Robert Sausen2

1Manchester Metropolitan University, UK; 2DLR, Germany3NOAA, US; 4University of Michigan, US

5University of Reading, UK

FORUM-AE, Oberpfaffenhofen, 2nd April 2014

What really matters?• What emission species matter most?

– Present day

– Future

• What matters when doing an impact assessment?– Inventory

– Background

– Meteorology

– Model

– Short-term vs long-term

– …

Monday, February 02, 2015 2FORUM-AE, April 2014

Aviation RF 2005 (Lee et al., 2009)

Monday, February 02, 2015 3FORUM-AE, April 2014

Updated assessment• Need updated assessment to see what species

matters most in present-day and future

• What’s new since Lee et al., 2009:– Updated traffic for base year 2010

– Revised 2050 traffic scenarios with emphasis on mitigation potential

– Updated background scenarios

– Science updates and improved methodologies

Monday, February 02, 2015 4FORUM-AE, April 2014

Data update – Air traffic 2010

Monday, February 02, 2015 5FORUM-AE, April 2014

Growth over 2005:

RPK: 28%; ASK: 23%

PLF: 4%; Fuel: 3%

Data updates – Future air traffic• ICAO/CAEP global fuel up to 2036 (CAEP9 forecast),

extrapolated to 2050

• High/central/low growth projections (demand)

• CAEP Mitigation Scenario potentials (technology and operations):– S2 ‘Low aircraft technology and moderate operational

improvement’

– S3 ‘Moderate aircraft technology and operational improvement’

– S4 ‘Advanced technology and operational improvement’

– S5 ‘Optimistic technology and operational improvement’Monday, February 02, 2015 6FORUM-AE, April 2014

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 29 of 89

Page 30: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

2

Data that matters – Future air traffic

Monday, February 02, 2015 7FORUM-AE, April 2014

The ‘bands’ cover the

range of mitigation

potential for each growth

scenario

S2

S5

Distance distribution (2050/2006)

Monday, February 02, 2015 8FORUM-AE, April 2014

Lim et al., in prep

The importance of background CO2CO2 measured concentrations up to 2010 and RCP concentrations up to 2050

Monday, February 02, 2015 9FORUM-AE, April 2014

Background NOx, etc. matters tooNOx, CO, VOC emissions and CH4 concentrations from IPCC AR5 for 2006 and RCP scenarios for 2050

Monday, February 02, 2015 10FORUM-AE, April 2014

Science updates• NOx impacts:

– Stratospheric adjustment

– Long-term O3 and stratospheric H2O from CH4 changes

– Scaling from other CTMs and experiments

• Contrail-cirrus:– Scaling from Burkhardt and Kärcher (2011) which

includes young contrails and natural clouds feedback estimate

– Use distance above 500 hPa as scaling proxy instead of fuel

– Considered contrail-cirrus saturationMonday, February 02, 2015 11FORUM-AE, April 2014

RF 2010 draft results

Monday, February 02, 2015 12FORUM-AE, April 2014

Note: uncertainties

not yet calculated

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 30 of 89

Page 31: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

3

Monday, February 02, 2015 13FORUM-AE, April 2014

RF 2010 vs 2005

Note: uncertainties not yet calculated

Stratospheric adjusted

New terms

Aviation induced

clouds and contrails

Monday, February 02, 2015 14FORUM-AE, April 2014

RF 2010 vs 2005

CO2 aviation RF at 2050, all RCPs

Monday, February 02, 2015 15FORUM-AE, April 2014

Indicative aviation RFs, 2050

Monday, February 02, 2015 16FORUM-AE, April 2014

Note: these are not

uncertainties but indicate

ranges of scenario

results

Summary and open questions• We know the estimated impacts in 2010 and potential

impacts in 2050

• Improvements on science and data

• What are the impact of inventories on NOx, contrails/contrail-cirrus?

• How much do particles influence the chemical composition?

• What do we know about soot-cirrus?

• Potential climate impacts from mitigation options?

• Which climate metric? Short vs long term? …

Monday, February 02, 2015 17FORUM-AE, April 2014

Thank you for your attention

18

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 31 of 89

Page 32: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

4

Why is aviation special?• Direct and indirect emissions that affect climate and

atmospheric composition– CO2

– H2O (Contrails/Contrail-cirrus)

– NOx (O3, CH4)

– Particles (Soot/Sulphate/Soot-cirrus)

• Emissions from ground level up to stratosphere

• International emissions

• Historical and projected strong growth

Monday, February 02, 2015 19FORUM-AE, April 2014

Air traffic 1950-2010

Monday, February 02, 2015 20FORUM-AE, April 2014

Distance 2006

Monday, February 02, 2015 21FORUM-AE, April 2014

Lim et al., in prep

Distance 2050

Monday, February 02, 2015 22FORUM-AE, April 2014

Lim et al., in prep

NOx 2006

Monday, February 02, 2015 23FORUM-AE, April 2014

NOx 2050

Monday, February 02, 2015 24FORUM-AE, April 2014

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 32 of 89

Page 33: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

5

NOx 2006

Monday, February 02, 2015 25FORUM-AE, April 2014

NOx 2050

Monday, February 02, 2015 26FORUM-AE, April 2014

Inventory sensitivity: NOx

Monday, February 02, 2015 27FORUM-AE, April 2014

Skowron et al. 2013

Inventory sensitivity: NOx

Monday, February 02, 2015 28FORUM-AE, April 2014

Skowron et al. 2013

Inventory

Radiative forcings

Short-term O3

CH4-induced O3

CH4 SWV Net NOx

AEDT 14.3 (20.5) −3.0 (−4.3) −6.7 (−9.5) −1.0 (−1.4) 3.6 (5.2)

AEM 13.8 (19.7) −3.0 (−4.2) −6.8 (−9.7) −1.0 (−1.5) 3.0 (4.2)

AERO2K 11.5 (16.5) −3.1 (−4.5) −7.1 (−10.4) −1.1 (−1.5) 0.2 (0.3)

REACT4C 13.4 (19.2) −3.1 (−4.4) −7.0 (−10.0) −1.1 (−1.5) 2.3 (3.3)

QUANTIFY 12.8 (18.3) −3.1 (−4.4) −7.0 (−10.0) −1.1 (−1.5) 1.7 (2.4)

TRADEOFF 13.1 (18.7) −3.1 (−4.5) −7.1 (−10.2) −1.1 (−1.5) 1.8 (2.6)

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 33 of 89

Page 34: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

1

FORUM-AE

ACARE WG3.4Atmospheric Impact Science

Olivier Penanhoat (SN)Xavier Vancassel (ON)FORUM-AE CC workshopMünchen – 2-3 April 2014

1 / FORUM-AE

ACARE FRAME

FLIGHTPATH 2050 published in 2011

Europe’s Vision for Aviation Several goals to be achieved Challenge 3 : Protecting the Environment and The Energy

Supply

STRATEGIC RESEARCH & INNOVATION AGENDA (SRIA)

Roadmap for aviation research, development and innovation SRIA Vol. 1 published in Sept 2012 SRIA Vol. 2 nearly finalised Now available on line with search and sort facility:

http://www.acare4europe.org

FORUM-AE Climate Change Workshop – Munchen 2-3 April 2014 (O. Penanhoat-X. Vancassel)

2 / FORUM-AE

ACARE FLIGHTPATH 2050 ENVIRONMENTAL GOALS

•By 2050, per passenger kilometre:

•CO2

•Relative •to 2000

•Noise •NOx

•75% •65% •90%

Optimise air operations and traffic management

Improve airport noise and air quality

Provide affordable and sustainable alternative fuels

Atmospheric Research

FORUM-AE Climate Change Workshop – Munchen 2-3 April 2014 (O. Penanhoat-X. Vancassel) 3 / FORUM-AE

ACARE WG3.4: ATMOSPHERIC IMPACT SCIENCE SUB-GROUP

FORUM-AE Climate Change Workshop – Munchen 2-3 April 2014 (O. Penanhoat-X. Vancassel)

WG3.4 sub-group activities are relevant both for Climate Change and Air Quality

Work left in stand-by most of year 2013 ; SRIA-Vol 2 recommendations are neverthelessrather well consolidated

The WG3.4 small team relies today mainly on FORUM-AE analysis

Current SRIA-Vol 2 may be completed/consolidated in 2014 ; conclusions of thisWS may contribute to an up-date.

4 / FORUM-AE

ENABLER 1: KNOWLEDGE AND UNDERSTANDING OF AIRCRAFT EMISSIONS

FORUM-AE Climate Change Workshop – Munchen 2-3 April 2014 (O. Penanhoat-X. Vancassel) 5 / FORUM-AE

ENABLER 2: MONITORING THE AIR VEHICLE ENVIRONMENT IN FLIGHT

FORUM-AE Climate Change Workshop – Munchen 2-3 April 2014 (O. Penanhoat-X. Vancassel)

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 34 of 89

Page 35: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

2

6 / FORUM-AE

ENABLER 3: UNDERSTANDING OF THE AIRCRAFT-ATMOSPHERE INTERACTION

FORUM-AE Climate Change Workshop – Munchen 2-3 April 2014 (O. Penanhoat-X. Vancassel) 7 / FORUM-AE

ENABLER 4: ENVIRONMENTAL IMPACT MONITORING INFRASTRUCTURE & PROCESSESENABLER 5: ORGANISING INCENTIVES

FORUM-AE Climate Change Workshop – Munchen 2-3 April 2014 (O. Penanhoat-X. Vancassel)

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 35 of 89

Page 36: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.2, December 2014, FORUM‐AE (FP7)

Metrics: Overview and newapproaches

Marianne T. Lund, CICERO

FORUM-AE, 2-3 April 2014

Thanks to Jan Fuglestvedt for use of slides

METRICS

Tools for aggregating informationand placing emissions of different gases on a common scale, i.e. provide "exchange rate".

iAGTPiAGTP

AGWPAGWP

AGTPAGTP

GWPGWP

GTPGTPRTP (?)RTP (?)

Common scale: CO2‐eq. = Metric x emission

AbsoluteNormalized by reference (CO2)

ARTPARTP

AtmosphericConcentrations

Radiative Forcing

Climate Change

Impacts

Emissions

METRICSMeasures to quantify impact of emissions

Development of mitigation strategies, including mitigation

costs, damage costs, discount rates

Increasingpolicy relevance Increasing

uncertainty

"Metrics do not define goals and policy – they are tools that enableevaluation and implementation of multi‐component policies" (IPCC 2014)

IPCC WGI (2014)

“Although it has several known shortcomings, a multi‐gas strategy using GWPs is very likely to have advantages over a CO2‐only strategy (O’Neill, 2003). Thus, GWPs remain the recommended metric to compare future climate impacts of emissions of long‐lived climate gases.”

Statement on GWP in IPCC AR4 

… The most appropriate metric and time horizon will depend on which aspects of climate change are considered most important to a particular application. No single metric can accurately compare all consequences of different missions, and all have limitations and uncertainties… Updated values are provided in this Report. {8.7}

Summary for poliymakers IPCC AR5 

Choices when using emission metrics

Time frames‐ backward looking‐ forward looking (pulse, sustained or scenario emissions)‐ level or rate‐ integrated to a given point or instaneous‐ discounting of future

Type of effectRadiative forcing, temperature change, sea level rise, socioeconomic, other?

Spatial dimensionEqual mass emissions of SLCFs in different regions can give varying global‐mean responses.

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 36 of 89

Page 37: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.2, December 2014, FORUM‐AE (FP7)

GWP and GTP

GWPTime integrated RF due to a pulse emission relative to that of an equal CO2

pulse. 

GTP The global‐mean surface temperatureresponse to an emission pulse relative to that of CO2. 

IPCC WGI (2014)

Dependence on the reference gas

After 50 years: variation in GWP only due to CO2

Slide by Jan Fuglestvedt (CICERO)

CH4 BC

Variation in GWP purelydue to CO2

Uncertainties

Scientific:‐ Lifetimes and radiative efficiency‐ CO2 impulse response function‐ Ocean heat uptake‐ Climate sensitivity and efficacies‐ Inclusion of indirect effects and 

feedbacks

Structural, e.g.: ‐ Time horizon‐ Impact (RF, temperature)‐ Absolute or relative

Oliviè and Peters (2013)

Joos et al. (2013)

Climate-carbon feedbacksInconsistent treatment: 

SAR and TAR  no coupling of carbon and climate model

AR4  carbon‐climate feedbacks included for CO2, not for non‐CO2. 

AR5

IPCC WGI (2014)

New approaches/focus

Modifications to better represent: CO2 from bioenergyRegional variabilityPeak temperature limits

Alternative multi‐componentand multi‐target approaches

Addition of economic dimensions

UNFCCC: AvoidDAI&Use

multi‐gas

Single‐basket

Multi‐basket

Gas‐by‐gas

Application to aviation

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 37 of 89

Page 38: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.2, December 2014, FORUM‐AE (FP7)

Khodayari et al. (2013, in prep)

Radiative forcing Temperature response

Temperature response Aviation GWP and GTP

Based on aviation RF from Khodayari et al. (2013, in prep)

Accumulated RF Instantaneous ΔT

Specific climate impact as a function of load

Borken‐Kleefeld et al. 2013, ES&T

Metrics and regional impacts

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 38 of 89

Page 39: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.2, December 2014, FORUM‐AE (FP7)

Aviation: heterogeneity from emissions to responses

Gilmore et al. 2013

Accounting for regionality in metrics?

1) Capture information on spatial patternof responses in global metrics usingnonlinear damage functions (e.g. Shine et al. (2005); Lund et al. (2012))

2) Metrics on sub‐global scale, e.g. ARTP (Shindell (2012); Collins et al. (2013)).

Burkhardt&Kärcher 2011

Hoor et al. 2009

Regional temperature change coefficients (RTP): response per W m‐2 forcing in a region relative to global sensitivity

Shindell (2012)

Preliminary results – do not cite or distribute!

ARTP aviation aerosols

Aviation aerosol RF data from GISS ModelE, courtesy of N. Unger. 

ACCRI Global climate study: a project funded by FAA/Volpe Center

Normalizing by CO2 = RTP

Spatial pattern of reference gas

Preliminary results – do not cite or distribute!

RTP aviation aerosols

RTPir = ARTPi

r / ARTPCO2r

Metrics and biofuels

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 39 of 89

Page 40: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.2, December 2014, FORUM‐AE (FP7)

Assessing the climate impact of bioenergy

Time

CO2flux

Assume no time dimension (or less than a year)

Based on slide from Glen Peters, CICERO

Ab

ove

gro

und

ca

rbon

sto

ck

Y C

O2

in

Atmosphere"Carbon neutral"

Traditional LCA: ‐ GWP100‐ Long‐lived greenhouse gases‐ Carbon neutrality

In the atmosphere

“Carbon Neutral”, GWP=0

“Fossil Fuel”, GWP=1

Glen Peters (CICERO), adopted from Cherubini et al. 2011

Short rotation period: smallerclimate impactIncreasing impact with longer rotation period.

Considering time dimension

GWPbio = AGWPbio_CO2/AGWPfossil_CO2

Simplified biofuel cases: 

1) 20% of global aviation fuelreplaced by biofuels, and assuming high, medium and low CO2 LCA efficiency

2) Global aviation fuel replaced100% by biofuel, assumingcarbon neutrality

Considering non-CO2 and activity growth

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

0 10 20 30 40 50 60 70 80

(°C)

Years

Global‐mean temperature response to global aviation emissions in a 1%per year increase scenario

dT net dT net 20% bio + high eff. dT net 20% bio + medium eff. dT net 20% bio + low eff. dT net 100% bio + C‐neutral

Preliminary results – do not cite or distribute!

Krammer et al. (2013): "widespread use of biofuels may lead to (…) flat or decreasingcarbon emissions, but increasing total climate impact"

Thank you!

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 40 of 89

Page 41: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

FORUM-AE Workshop, Climate Impact – 2th Apr 2014, Oberpfaffenhofen, Germany

Folie 1

FORUM-AE Workshop, Climate impact

Are climate metrics ambiguous?

Can we derive robust climate change estimates?

Katrin Dahlmann & Volker Grewe DLR – Institut für Physik der Atmosphäre

2th April 2014, Oberpfaffenhofen

FORUM-AE Workshop, Climate Impact – 2th Apr 2014, Oberpfaffenhofen, Germany

The way from the emission to climate change

METRICSsimple measures to quantify impacts of emissions

Fuglestvedt et al., 2003.,

FORUM-AE Workshop, Climate Impact – 2th Apr 2014, Oberpfaffenhofen, Germany

How to measure „climate change“?

• Amount of emissions, kg per year?

• Radiative forcing induced by the change in composition resulting from theemission?

• Global warming potential?

• Global temperature potential?

• Temperature change in the year 2100?

• Average temperature response (ATR) = Mean temperature change in thenext, e.g., 100 years?

FORUM-AE Workshop, Climate Impact – 2th Apr 2014, Oberpfaffenhofen, Germany

How ambigious are climate metrics? Metrics

Don‘t be mistaken! It is not the metric, which makes this all uncertain, but the wording „climate change“

FORUM-AE Workshop, Climate Impact – 2th Apr 2014, Oberpfaffenhofen, Germany

Different aspects of climate change lead todifferent metrics!

• What we have to understand is:• Different metrics relate to different aspects of climate change!• The wording „climate change“ is not well-defined, somehow fuzzy!

• We have to go back and consider the right questions, the appropriate objective, to which individual metrics provide an answer.

FORUM-AE Workshop, Climate Impact – 2th Apr 2014, Oberpfaffenhofen, Germany

Climate change questions: „What is the climate impact of traffic?“

How large is the contribution of the

climate change ?

current traffic sector to irreversible 

past traffic emissions to

current

past traffic emissions to

future

today’s emissions to 

future 

implementationof a new

technology to

Todays CO2

emission 

GWPGTP

RadiativeForcing

Temperature change

Emission scenario + temperturechange 

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 41 of 89

Page 42: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

FORUM-AE Workshop, Climate Impact – 2th Apr 2014, Oberpfaffenhofen, Germany

Consequences of a specific question:

Define theobjective and

climate changeaspect

EmissionScenario

AppropriateMetric

Consequence

FORUM-AE Workshop, Climate Impact – 2th Apr 2014, Oberpfaffenhofen, Germany

How reliable is the climate impact assessment?

• All metrics use RF!

• We know that there are large uncertainties!

• How robust are the findings with respect toclimate change?

Monte-Carlo simulation using 4 emissioninventories with different spacial pattern

Lee et al., 2009

FORUM-AE Workshop, Climate Impact – 2th Apr 2014, Oberpfaffenhofen, Germany

Monte Carlo simulation

• 4 different emission invetories

• Scaled to same fuel, NOx and flowndistances

• Different emission distribution

• 10.000 repetions of the simulation withrandom values for uncertainty paramters(τ, RF, λ)

FORUM-AE Workshop, Climate Impact – 2th Apr 2014, Oberpfaffenhofen, Germany

Climate impact difference

Uncertainty in air traffic climate impact

MinMeanMax

Can we derive robust climate change estimates forthe difference between scenarios?

Dahlmann et al., 2014

Uncertainty of absolute

climate impact of air

traffic is large!

• Relative differences for each repetition:

Stat. significant changes detected!

Answer:  

Yes!

Per

cent

age

diffe

renc

e [%

]

FORUM-AE Workshop, Climate Impact – 2th Apr 2014, Oberpfaffenhofen, Germany

Summary

• Any climate change assessment needs a thourough consideration of thebasic objective.

• This defines the underlying scenario and metric to be used!

• Quantification of climate impact of air traffic has large uncertainties.

• Uncertainties affect both the base case scenario and the mitigationscenario. Uncertainties are correlated! Significant changes can be identified with a Monte Carlo

simulation!

The still existing large uncertainties requires adequate statisticalmethods and hence do not limit the application

FORUM-AE Workshop, Climate Impact – 2th Apr 2014, Oberpfaffenhofen, Germany

Thank you for your attention!

Questions?

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 42 of 89

Page 43: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

FORUM-AE Workshop, Climate Impact – 2th Apr 2014, Oberpfaffenhofen, Germany

Soil / Ozean

Atmosphere

What is Radiative Forcing? (simplified)

Perturbed situation

RF > 0    T

Steady‐State

RF = 0 

Soil / Ozean

Atmosphere

RF

FORUM-AE Workshop, Climate Impact – 2th Apr 2014, Oberpfaffenhofen, Germany

Are the results model dependent?

• Yes, of course!

• But the qualitative picture is largely model independent!

• Method: - Tradeoff Scenarios: General change in flight altitude-6 kft, -4 kft, -2 kft, +2 kft

- Intercomparison of 3 models change in RF (%) relative to base case

Grewe & Dahlmann 2012

FORUM-AE Workshop, Climate Impact – 2th Apr 2014, Oberpfaffenhofen, Germany

How reliable is the climate impact assessment?

• All metrics use RF!

• We know that there are large uncertainties!

• How robust are the findings with respect toclimate change?

Tests performed:

1) Monte-Carlo simulation using 4 emissiondatasets with different spacial pattern Stat. significant changes detected!

2) Intercomparison of AirClim with LEEA-Airbus results (GB: Uni Cambride/Reading) Small model dependency

Lee et al., 2009

FORUM-AE Workshop, Climate Impact – 2th Apr 2014, Oberpfaffenhofen, Germany

FORUM-AE Workshop, Climate Impact – 2th Apr 2014, Oberpfaffenhofen, Germany

Climate Response Model AirClim

∆C RF(t) ∆T(t)

Emission(t)

Precalculated data

RF ΔT

∆O3

Lifetime

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 43 of 89

Page 44: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

NOx impact of flying higher/lower

higher – bad :: lower – good

Ole Amund Søvde1

Sigrun Matthes2, Agnieszka Skowron3, Daniela Iachetti4, Ling Lim3, Bethan Owen3, Øivind Hodnebrog1, Glauco Di Genova4, Gianni Pitari4, David S. Lee3, Gunnar Myhre1, Ivar S. A. Isaksen1,51 Center for International Climate and Environmental Research – Oslo (CICERO)2 Institut für Physik der Atmosph, DLR3 Dalton Research Institute, Manchester Metropolitan University4 University of L'Aquila5 University of Oslo

FORUM‐AE Workshop 2 – 2. April 2014

Ole Amund SøvdeFORUM‐AE Workshop 2 – 2. April 2014

REACT4C simplified mitigation studies

Model studyAtmospheric models ← aircra  NOx emissions inventoriesTrop. & strat. chemistry

Two objectives• Impact of NOx from aircraft• Impact of NOx when flying higher/lower

MOZART‐3EMACULAQ‐CTMOslo CTM3Oslo CTM2

Chemical consequence• NOx changes O3 (short lifetime)• NOx changes OH (short)

→ OH changes CH4 (long life me) → changes O3 (long life me)

Radiative forcings (RF)• O3 shortlived• CH4 (longlived)• O3 longlived (as for CH4)• Stratospheric H2O (decomposition of CH4)

Ole Amund SøvdeFORUM‐AE Workshop 2 – 2. April 2014

Emission inventory based on 2006 aircraft movements (FAST model)

Ole Amund SøvdeFORUM‐AE Workshop 2 – 2. April 2014

BASE case / PLUS 2000ft / MINUS 2000ft

FUEL

NOx

0.710Tg(N) 0.716Tg(N) 0.710Tg(N)

Ole Amund SøvdeFORUM‐AE Workshop 2 – 2. April 2014

Δ(NO+NO2) – BASE case vs no aircraft

MOZART‐3EMACULAQ‐CTMOslo CTM3Oslo CTM2

Ole Amund SøvdeFORUM‐AE Workshop 2 – 2. April 2014

Δ(NO+NO2) – BASE case vs no aircraft

JJA: ‐2 ppb to 117 ppbDJF: ‐23 ppb to 70 ppb

Background change

June‐July‐August averages

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 44 of 89

Page 45: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Ole Amund SøvdeFORUM‐AE Workshop 2 – 2. April 2014

Δ(NO+NO2) – PLUS vs BASE case

JJA: ‐10 ppb to 47 ppbDJF: ‐9 ppb to 32 ppb

June‐July‐August averagesFlying higher

Ole Amund SøvdeFORUM‐AE Workshop 2 – 2. April 2014

Δ(NO+NO2) – MINUS vs BASE case

JJA: ‐42 ppb to 8 ppbDJF: ‐30 ppb to 11 ppb

June‐July‐August averagesFlying lower

Ole Amund SøvdeFORUM‐AE Workshop 2 – 2. April 2014

ΔO3 – BASE case vs no aircraft

JJA: up to 8.8 ppbDJF: up to 4.4 ppb

June‐July‐August averages

Ole Amund SøvdeFORUM‐AE Workshop 2 – 2. April 2014

ΔO3 – PLUS vs BASE case

JJA: ‐1.9 ppb to 2.0 ppbDJF: ‐1.0 ppb to 1.2 ppb

June‐July‐August averagesFlying higher

Ole Amund SøvdeFORUM‐AE Workshop 2 – 2. April 2014

ΔO3 – MINUS vs BASE case

JJA: ‐2.1 ppb to 0.9 ppbDJF: ‐1.0 ppb to 0.7 ppb

June‐July‐August averagesFlying lower

Ole Amund SøvdeFORUM‐AE Workshop 2 – 2. April 2014

Radiative forcing (RF)

BASE case vs no aircraft:RF(O3 short): 16.4 to 23.5 mW/m2

RF(CH4): ‐7.1 to ‐10.7 mW/m2 (calculated from CH4 lifetime change)RF(O3 long):  ‐3.6 to ‐5.4 mW/m2 (50% of RF(CH4)RF(strat H2O): ‐1.1 to ‐1.6 mW/m2 (15% of RF(CH4)

Total range 0.8 to 8 mW/m2

PLUS vs BASE case:RF(O3 short): 0.5 to 2.9 mW/m2

RF(CH4): 0.0 to 0.2 mW/m2

RF(O3 long):  0.0 to 0.1 mW/m2

RF(strat H2O): 0.0 to 0.03 mW/m2

Total range 0.75 to 3.0 mW/m2

MINUS vs BASE case:RF(O3 short): ‐2.4 to ‐0.4 mW/m2

RF(CH4): ‐0.4 to ‐0.1 mW/m2

RF(O3 long):  ‐0.2 to ‐0.06 mW/m2

RF(strat H2O): ‐0.06 to ‐0.01 mW/m2

Total range ‐2.6 to ‐0.8 mW/m2

• Short term O3 is most important.• Long wave radiation more important than short wave.

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 45 of 89

Page 46: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Ole Amund SøvdeFORUM‐AE Workshop 2 – 2. April 2014

Conclusions

Considering only aircraft NOx• BASE vs no aircraft compares well with other studies.• Long wave & short term RF(O3) most important.• Flying higher increase O3 and RF.• Flying lower reduce O3 and RF.

Need to address other effects• Taking NOx + contrails + particles + ... into account• Study impact of changing routes horizontally, 

weather dependent (ongoing REACT4C study).

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 46 of 89

Page 47: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Weather dependent impacts of NOx emissions

Volker Grewe and the REACT4C TEAMSigrun Matthes, Christine Frömming, Sabine Brinkop, Lucia Halscheidt

DLR-Oberpfaffenhofen

Amund Søvde, CICERO

Emma Irvine, University Reading

DLR.de • Chart 1 > ForumAE workshop> Volker Grewe• > 2 April 2014

A B

What happens if an aircraft emits NOx at location A compared to location B?

Different weather situations: Evolution of aircraft NOx

DLR.de • Chart 2 > ForumAE workshop> Volker Grewe• > 2 April 2014

EMAC‐Symposium 14.‐16. Februar 2012

Evolution of O3 [ppt] following a NOx pulse

A: 250hPa, 40°N, 60°W, 12 UTC B: 250hPa, 40°N, 30°W, 12 UTC

Pre

ssu

re [

hP

a]

Change in NOx and Ozone mass

DLR.de • Chart 3 > ForumAE workshop> Volker Grewe• > 2 April 2014

Modelling overview: Grids and processes

Grewe et al., GMD, 2014

• Climate-Chemistry Model • Locally confined emissions • Transport calculation with

trajectories• NMHC chemistry • Calculation of effects of

NOx emissions on • Ozone• Methane• Primary mode ozone

• Calculation of the change in climate metrics

DLR.de • Chart 4 > ForumAE workshop> Volker Grewe• > 2 April 2014

Evolution of atmospheric changes for emissions at the time-region grid points

Each coloured line is the mean over 50 trajectories started at one time-region grid point. 504 grid points

White lines are monthly mean results from Stevenson et al., 2004

Grewe et al., GMD, 2014

DLR.de • Chart 5 > ForumAE workshop> Volker Grewe• > 2 April 2014

Impact of a NOx pulse on ozone and methane:One specific case for an emission at 60°W; 35°N; 250 hPa

High ozone  regimeO3  + hv O(1D) + O2

O(1D) + H2O  OH

High NOx regimeNO + HO2 OH + NO2

Two regimes:NOx increases O3 and OH O3 increases OH

Effects very dependent on location and season

DLR.de • Chart 6 > ForumAE workshop> Volker Grewe• > 2 April 2014

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 47 of 89

Page 48: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Four different winter situations: NOx ATR20> REACT4C Stakeholder Event > Volker Grewe• > 20 November 2013DLR.de • Chart 7

Zonal+Strong Tilted+Strong

Jet characteristics: (Position/wind speed) – classification according to Irvine et al., 2013

Tilted+Weak Confined+Strong

Irvi

ne

et a

l., 2

013

Correlation between - local meteorology at the time of NOx emission and- climate impact caused by chemical changes

Summary

• Impact of a locally confined NOx emission on ozone and methane shows large variability

• First NOx and then ozone regime for air traffic induced OH increase and methane reduction

• Effect largely dependent on weather pattern

• Here North Atlantic and Winter, only.

• Large dataset, which provides a good basis to better understand NOx-O3-CH4 effects

DLR.de • Chart 8 > ForumAE workshop> Volker Grewe• > 2 April 2014

Outlook

• Data (in addition to contrails, CO2, H2O) used to optimise trans-Atlantic air traffic

• More analysis will be performed within the DLR project WeCare

Thank you for your attention

Thank you for your attention

Weather situation at cruise levelsStrong jet stream, basically in West-East direction

DLR.de • Chart 10

Low

Jet stream

65 m/s

65 m/s = 230 km/h = 120 kn

Geopotential heights Wind velocity

> REACT4C ECATS Conference > Volker Grewe• > 20 November 2013

Climate cost functions at 200 hPa for 12:00 UTC

Contrails complex:Depending on- Lifetime- Solar angle day/night- Transport- Loss processes

Chemistry:Ozone / NOx pattern- Follows meteorology- Jet: Large values- Low pressure:

Smaller values

Grewe et al., in prep, 2013

DLR.de • Chart 11 > REACT4C ECATS Conference > Volker Grewe• > 20 November 2013

Contrail-Cirrus Ozone

Methane Total NOx

Climate cost function: WP1- WP3, ATR20, 200 hPa, 12:00

REACT4C First Progress Meeting, 17-18 Jan 2011WP 2 ,Volker Grewe, DLR

WP1 WP2 WP3

Contrails

NOx

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 48 of 89

Page 49: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Five (4 shown) different winter situations: NOx ATR20

Zonal+Strong Tilted+Strong

Jet charactersitics: (Position/wind speed)

Tilted+Weak Confined+Weak

DLR.de • Chart 13 > ForumAE workshop> Volker Grewe• > 2 April 2014

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 49 of 89

Page 50: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

…unique aviation NOx GWP - does it exist?

Agnieszka Skowron & David S. Lee,

Dalton Research Institute

Manchester Metropolitan University

FORUM-AE Workshop, Oberpfaffenhofen, 2-3 April 2014

Monday, February 02, 2015 1FORUM-AE Worrkshop Climate Impact

Non-linear and heterogeneous system + global concept = disparity and confusion

Monday, February 02, 2015 FORUM-AE Worrkshop Climate Impact 2

This study

Monday, February 02, 2015 FORUM-AE Worrkshop Climate Impact 3

• All work undertaken with MOZART v3,

coupled trop/strat CTM with REACT4C emissions

• A series of aircraft NOx

emission rates - global and regional

• Fuglestvedt et al. (2010) methodology

- ‘transient approach’- ‘steady-state approach’

Uncertainties of NOx estimates might arise from different:

Monday, February 02, 2015 FORUM-AE Worrkshop Climate Impact 4

Still, wide range of aviation NOx GWPs

– change of sign in GWP (29 to -4)

– models (chemical, transport schemes)– emissions (surface, lightning, aircraft)– dynamical data

– models (chemical, transport schemes)– emissions (surface, lightning, aircraft)– dynamical data

unique

Outlook

• Evidence – non-linearity and aircraft NOx GWPs

• Implication – biased regional aircraft NOx GWPs

• Remedy – reduced variance of aircraft NOx GWPs

Monday, February 02, 2015 5FORUM-AE Worrkshop Climate Impact

Non-linearity

Monday, February 02, 2015 FORUM-AE Worrkshop Climate Impact 6

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 50 of 89

Page 51: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Monday, February 02, 2015 FORUM-AE Worrkshop Climate Impact 7

Non-linearity One model, one inventory,

one experimental approach,

12 different emission rates,

12 different values of GWP

Monday, February 02, 2015 FORUM-AE Worrkshop Climate Impact 8

Linear NOx regime

Monday, February 02, 2015 FORUM-AE Worrkshop Climate Impact 9

– decreasing efficiencies of O3 production and CH4 reduction

Intrinsic characteristics of NOx chemistry

Monday, February 02, 2015 FORUM-AE Worrkshop Climate Impact 10

– counterbalancing roles of O3 and CH4 vs GWP

GWP – ‘artificial’ memory of short-lived effects

Monday, February 02, 2015 FORUM-AE Worrkshop Climate Impact 11

– alternative metric concepts Non-linearities and the balance of local NOx–O3–CH4 system

Monday, February 02, 2015 FORUM-AE Worrkshop Climate Impact 12

– the biased values of regional aircraft NOx GWPs

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 51 of 89

Page 52: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Monday, February 02, 2015 FORUM-AE Worrkshop Climate Impact 13

Regional aircraft NOx non-linearities Regional aircraft NOx GWP estimates

Monday, February 02, 2015 FORUM-AE Worrkshop Climate Impact 14

– different approaches, different ranges

The variance of the reported global aviation NOx GWPs can be reduced when…

Monday, February 02, 2015 FORUM-AE Worrkshop Climate Impact 15 Monday, February 02, 2015 FORUM-AE Workshop Climate Impact 16

…the linear regime is taken into account– transient approach

Negotiations on aviation climate impacts of CO2 are complicated enough…

• there is no unique number for an aviation NOx GWP

• the GWP increases with the emission decrease

Monday, February 02, 2015 FORUM-AE Worrkshop Climate Impact 17

Now, try to imagine the incorporation of aviation NOx into climate agreements given that:

Thank you!

Monday, February 02, 2015 FORUM-AE Worrkshop Climate Impact 18

Any questions either now or [email protected]

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 52 of 89

Page 53: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

extras

Monday, February 02, 2015 FORUM-AE Worrkshop Climate Impact 19 Monday, February 02, 2015 FORUM-AE Worrkshop Climate Impact 20

Monday, February 02, 2015 FORUM-AE Worrkshop Climate Impact 21

…the linear regime is taken into account– steady-state approach

Monday, February 02, 2015 FORUM-AE Worrkshop Climate Impact 22

linear regime -CH4/O3 and GWP

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 53 of 89

Page 54: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Nitrogen Oxide Measurements with IAGOS‐CARIBIC

www.DLR.de • Chart 1 > FORUM-AE Worshop > G. Stratmann • Nitrogen Oxide Measurements with IAGOS-CARIBIC > 02.04.2014

G. Stratmann, H. Ziereis, C. A. M. Brenninkmeijer,  P. Stock, H. Schlager

CARIBIC - fully automatedairfreight container

CARIBIC - Civil Aircraft for the regular investigation of the atmosphere based on an instrument container

The CARIBIC-Project

Lufthansa

Airbus     

A 340‐600

The CARIBIC project is integrated in IAGOS

> FORUM-AE Worshop > G. Stratmann • Nitrogen Oxide Measurements with IAGOS-CARIBIC > 02.04.2014

CARIBIC IAGOS-CARIBIC

> Vortrag > Autor • Dokumentname > Datumwww.DLR.de • Folie 3

The CARIBIC container in its position

Slide: C.A.M. Brenninkmeijer

coordination: MPI for chemistry Mainz

The CARIBIC-Project - Partner> FORUM-AE Worshop > G. Stratmann • Nitrogen Oxide Measurements with IAGOS-CARIBIC > 02.04.2014

CARIBIC I and CARIBIC II

CARIBIC I

• 1997 – 2002

• 84 flights

CARIBIC II

• since Dec 2004 until today

• ~ 360 flights

> FORUM-AE Worshop > G. Stratmann • Nitrogen Oxide Measurements with IAGOS-CARIBIC > 02.04.2014

The CARIBIC-Project - Flightroutes> FORUM-AE Worshop > G. Stratmann • Nitrogen Oxide Measurements with IAGOS-CARIBIC > 02.04.2014

CARIBIC 1

CARIBIC 2

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 54 of 89

Page 55: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

• NO• NOy

• NO2

• CO • O3

• aerosol (size distribution, particle concentration)

• acetone, acetonitrile• hydrocarbons• greenhouse gases (CH4, CO2,

N2O)• H2O• wind speed • temperature •... Inlet

air and aerosols

The CARIBIC-Project – measured parameters> FORUM-AE Worshop > G. Stratmann • Nitrogen Oxide Measurements with IAGOS-CARIBIC > 02.04.2014

Container

www.DLR.de • Folie 8

IAGOS is a European infrastructure for systematic monitoring the UTLS withmany aircrafts, several airlines, including CARIBIC

Slide: C.A.M. Brenninkmeijer

IAGOS‐CARIBICIAGOS‐CORE: instrumentation for atmospheric chemical species (O3, CO, CO2, NOy, NOx, H2O), aerosols and cloud particles for sustainable operation 

> FORUM-AE Worshop > G. Stratmann • Nitrogen Oxide Measurements with IAGOS-CARIBIC > 02.04.2014

Why using Passenger Air Crafts?

• Passenger aircrafts fly regularly all over the globe over large distances.

• Passenger aircrafts close the gap between satellite observations and specific research measurement campaigns.

• Central and fundamental requirements for determining future mitigation strategies are reliable predictions of the future climate using climate models. Therefore a comprehensive trace gas dataset is needed

Iagos.fr; caribic-atmospheric.com

> FORUM-AE Worshop > G. Stratmann • Nitrogen Oxide Measurements with IAGOS-CARIBIC > 02.04.2014

CARIBIC Data Set and Quality

Data available (CARIBIC 2) from 2005 to March 2014 360 missions

More than 2.4 mio flight km

More than 2700 flight hours

in general high quality

no data during ascent / few data during descend

> FORUM-AE Worshop > G. Stratmann • Nitrogen Oxide Measurements with IAGOS-CARIBIC > 02.04.2014

Nitrogen Oxide Measurements: Motivation

“[…] current NOx climatologies are assembled from campaigns of opportunity and do not have the necessary statistics or coverage to adequately test the models.“

Holmes et al., 2011

www.DLR.de • Folie 11 > FORUM-AE Worshop > G. Stratmann • Nitrogen Oxide Measurements with IAGOS-CARIBIC > 02.04.2014

NOy Seasonal Cycles in the UTLS

www.DLR.de • Folie 12

0,0

0,5

1,0

1,5

2,0

2,5

0 5 10 15 20 25 30 35 40 45

NOy / (nmol/mol)

Region, Season

0,0

1,0

2,0

3,0

4,0

0 5 10 15 20 25 30 35 40 45

NOy / (nmol/mol)

Region, Season

Europe North Asia

South Asia

Africa

North Atlantik South

Atlantik

North America South

America

UT

LS

> FORUM-AE Worshop > G. Stratmann • Nitrogen Oxide Measurements with IAGOS-CARIBIC > 02.04.2014

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 55 of 89

Page 56: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

NOy mixing ratios over Europe (12 °W - 28 °E & 65 °N - 35 °N)

www.DLR.de • Folie 13

TroposphereStratosphere

> FORUM-AE Worshop > G. Stratmann • Nitrogen Oxide Measurements with IAGOS-CARIBIC > 02.04.2014

num

ber

ofpo

ints

Noy

/(nm

ol/m

ol)

CARIBIC NOy vs. MOZAIC NOy in Europe

www.DLR.de • Folie 14

UT

LS

- CARIBIC 2005-2012:- ca. 53800 10 s data points

- MOZAIC 2002 - 2005:- ca. 110700 1 min data points

- Only data with hPa > 500

> FORUM-AE Worshop > G. Stratmann • Nitrogen Oxide Measurements with IAGOS-CARIBIC > 02.04.2014

Observation of Small Scale Signatures of Air-Traffic emissions

www.DLR.de • Folie 15

NO and NOy mixing ratiosFlight Frankfurt  Denver July 2008

> FORUM-AE Worshop > G. Stratmann • Nitrogen Oxide Measurements with IAGOS-CARIBIC > 02.04.2014

Europe, St

DJF MAM JJA SON CARIBIC & EMAC (n=16/30/2/6) (mean/std/minmax) & (5, 25, 50, 75, 95%)

0.5

1.0

1.5

2.0

2.5

3.0

NO

y [p

pb]

Europe, Tr

DJF MAM JJA SON CARIBIC & EMAC (n=29/12/14/24) (mean/std/minmax) & (5, 25, 50, 75, 95%)

0.0

0.5

1.0

1.5

2.0

2.5

NO

y [p

pb]

Comparison with Model Results (EMAC2): Seasonal Cycle in Europe (12 °W - 28 °E & 65 °N - 35 °N)

CARIBICEMAC

K. Gottschaldt

> FORUM-AE Worshop > G. Stratmann • Nitrogen Oxide Measurements with IAGOS-CARIBIC > 02.04.2014

Summary

www.DLR.de • Folie 17

• Passenger aircrafts are excellent suited for large scale and long term observations of trace gases and particles in the upper troposphere/lower stratosphere

• 1998 – 2002: CARIBIC 1 ~ 80 flights

• Since 2005: CARIBIC 2 ~ 360 flights

• Today: CARIBIC 2 IAGOS-CARIBIC

• A Comprehensive nitrogen oxide dataset for the UTLS has been acquired since the last 9 years

• Small scale signatures of air traffic emissions are detected in the data

• The CARIBIC NOy mixing ratios are in accordance (5 – 26 %) with a complete independent dataset (MOZAIC NOy)

• The CARIBIC NOy mixing ratios are in accordance with the results of models (EMAC2)

> FORUM-AE Worshop > G. Stratmann • Nitrogen Oxide Measurements with IAGOS-CARIBIC > 02.04.2014

Seasonal cycle of NO and NOy

www.DLR.de • Folie 18

Europe (12 °W ‐ 28 °E &  65 °N ‐ 35 °N)

Tropospheric NOyStratospheric NOy

North Asia (30 °E – 142 °E & 70 °N – 35 °N)

> CARIBIC Meeting 2013 > G. Stratmann • The large scale Nitrogen Oxide Distribution in the UTLS > 28.11.2013

Tropospheric NOyStratospheric NOy

Tropospheric NOStratospheric NO

Tropospheric NOStratospheric NO

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 56 of 89

Page 57: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Seasonal cycle of NO and Noy

www.DLR.de • Folie 19

North Atlantic (12W ‐ 53W 65N ‐ 35N)

North America (125W ‐ 55W 80N ‐ 25N)

> CARIBIC Meeting 2013 > G. Stratmann • The large scale Nitrogen Oxide Distribution in the UTLS > 28.11.2013

Tropospheric NOyStratospheric NOy

Tropospheric NOyStratospheric NOy

Tropospheric NOStratospheric NO

www.DLR.de • Folie 20

NO2 + OH + M HNO3 + MNO2 + R(O)O2 PAN

Nitrogen Oxide Chemistry

NO2 + hv NO+OO+O2 + M O3+M

NO + O3           NO2+O2Photostationary state

Conversion to NOy

• NOx : NO, NO2

• NOy: NOx + HNO3 + PAN + HONO + N2O5 + HO2NO2 + NO3 + . . .

Net O3 Production Efficiency

Grooß et al., 1998

> FORUM-AE Worshop > G. Stratmann • Nitrogen Oxide Measurements with IAGOS-CARIBIC > 02.04.2014

www.DLR.de • Folie 21

Sources of Nitrogene Oxides and their Regional Distribution

South America• Biomass burning• thunderstorms (lightning)

North America• combustion

(Industry, traffic, ships)• Biomass burning

Atlantic Ocean• stratosphere• thunderstorms

(lightning)• aviation

Europe• combustion (Industry

traffic, ships)• aviation

ground based sources &tropopause-near sources

Asia• combustion (Industry , traffic, ships)• thunderstorms (lightning)• Biomass burning

> FORUM-AE Worshop > G. Stratmann • Nitrogen Oxide Measurements with IAGOS-CARIBIC > 02.04.2014

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 57 of 89

Page 58: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Aircraft measurement support by atmospheric modelling

Sigrun Matthes, Patrick Jöckel

Helmut Ziereis, Doreen SeiderPart of DLR Project WeCare (coordinated by Volker Grewe)

www.DLR.de • Chart 1 > Sigrun Matthes, Patrick Jöckel > Observation & Modelling > FORUM-AE, 2-3 April 2014 - Oberpfaffenhofen

Motivation Air traffic and climate change• High air traffic growth rates of 3 – 5 %

per year.

• Measures required to reduce aviation climate impact to counteract this development

Climate impact mitigation options, e.g.• Use of alternative fuels• Novel engine concepts• Modification of aircraft design• Alternative routing (operations)• etc.

Impact of aviation emissions varies withgeographic position and altitude, as well astime of flight (meteorology) Atmospheric observations are

required for in-situ data and evaluation

Model studies allow to understand mechanisms and processes providing quantitative estimates

Lee et al., 2010

> Sigrun Matthes, Patrick Jöckel > Observation & Modelling > FORUM-AE, 2-3 April 2014 - Oberpfaffenhofenwww.DLR.de • Chart 2

Aviation climate impactCO2 and non-CO2 effects

• Climate impact of non-CO2 emissions depends on

• time and position of aircraft• actual weather conditions (processes,

transport pathways, temperature, humidity)• background concentrations

Climate impact of aviation emissions (direct & indirect effects)

• CO2, black carbon (soot) - direct• NOx (O3, CH4)• H2O (contrail cirrus)• soot (AIC, aviation induced cloudiness)

Lee et al., 2010 (IPCC)

> Sigrun Matthes, Patrick Jöckel > Observation & Modelling > FORUM-AE, 2-3 April 2014 - Oberpfaffenhofenwww.DLR.de • Chart 3

Modell-based measurement campaign and scheduled aircraft Motivation

• Aircraft-based measurements determine atmospheric concentrations

• A detailed investigation of the formation and the corresponding key atmospheric processes is possible in numerical models

• For this purpose models are requires – which under consideration of actual meteorological conditions investigates such species and processes in detail

• Under the light to provide a proof of concept for the detection of the aviation signal in the atmosphere within the project WeCare a dedicated atmospheric modelling is performed

www.DLR.de • Chart 4 > Sigrun Matthes, Patrick Jöckel > Observation & Modelling > FORUM-AE, 2-3 April 2014 - Oberpfaffenhofen

MECO(n): MESSy-fied ECHAM and COSMO models n-times nested

- 1-way on-line nested global-regionalatmospheric model system

ECHAM5

COSMO 1 COSMO 2

COSMO 2‐1

COSMO 2‐1‐2

COSMO 2‐1‐1

COSMO 3

COSMO 3‐1

- multiple instances possibledue to client – serverarchitecture of MMD ...

Kerkweg & Jöckel, GMD, 2012a,bHofmann et al., GMDD, 2012

www.DLR.de • Chart 5 > Sigrun Matthes, Patrick Jöckel > Observation & Modelling > FORUM-AE, 2-3 April 2014 - Oberpfaffenhofen

AP 4300 Prozessmodell der SimulationsketteSoftware-Infrastruktur

• Angepasste Setups und Module je nach Fragestellung

• Globale Simulationen und regionale Nest möglich

• EMAC2 und COSMO-CLM

www.DLR.de • Chart 6

Jöckel und Matthes

• Simulations-umgebung RCE

• Datentransfer

• Operationelles System

netCDF

> Sigrun Matthes, Patrick Jöckel > Observation & Modelling > FORUM-AE, 2-3 April 2014 - Oberpfaffenhofen

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 58 of 89

Page 59: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

AP 4300 Modell-System und Software-Infrastrukturwww.DLR.de • Chart 7

ECMWF MeteorologyMARS archivStart script

DLR HPC pa1Receive data

SourceData archive

Target Input data directory

File transfer (access)

Nudging data/aw formatScript:

Input format

SourceGRIB2 (ECMWF)

Target netCDF Format

Pre-processing

EMAC simulationInput: netCDF dataDirectory:

Output: netCDF dataDirectory

SourceInput data (netCDF)

TargetOutput data (netCDF)

Atmospheric modelling

Boundary conditionsRegion, season, time, focus

Namelist (setup)

SourceExp design

Target nml file

Namelist generation

WebService / LASEMAC output data WebService

Archive

SourcenetCDF format

Target IEEE, ASCII

Pre-processing

Data storage/scratch/Afterburner, cdo

/work/archive

SourceOutput data

Target Archive data

Data archive

Mission Support ToolWebServicearchive

ASCII, smallformat, jpg

SourcenetCDF format

Target data sequence

Hindcast data

EMAC CustomizingModel setup

Regional nestsBoundary data

Preparatory work(outside of RCE)

RCE Infrastructure (Middleware)

Data

Access

> Sigrun Matthes, Patrick Jöckel > Observation & Modelling > FORUM-AE, 2-3 April 2014 - Oberpfaffenhofen

Campaign supporting modelling

Global atmospheric model simulation and data analysis foridentification of concept how to directly measure aviationatmospheric impact in cruise altitude

• Using measurements on scheduled aircraft (CARIBIC, MOZAIC)

• Analysis of proof of concept ofaviation impact via CARIBIC und MOZAIC measurements

• Sensitivity studies with global atmospheric model EMAC for scenarios and emissions

• EMAC & MECO(n) simulationenvironment operational available

• Employ modelling for selectedmeasurement campaigns, e.g. DC3

www.DLR.de • Chart 8

CARIBIC-2 MOZAIC

> Sigrun Matthes, Patrick Jöckel > Observation & Modelling > FORUM-AE, 2-3 April 2014 - Oberpfaffenhofen

Campaign supporting modelling

• The global-regional model MECO(n) combines via nesting the regional model COSMO with the global model EMAC (linked with MESSy)

• Particular strength is that due to the modular concept in MESSystudies can be individually design to serve the study purpose,, e.g. compare different convection schemes.

• Specification can be found in: Kerkweg and Jöckel, (2012), The 1-way on-line coupled atmospheric chemistry model system MECO(n) Part 1: Description of the limited-area atmospheric chemistry model COSMO/MESSy, Geoscientific Model Development, 5, 87-110. DOI: 10.5194/gmd-5-87-2012

www.DLR.de • Chart 9

CARIBIC

Jöckel, Matthes, Ziereis

> Sigrun Matthes, Patrick Jöckel > Observation & Modelling > FORUM-AE, 2-3 April 2014 - Oberpfaffenhofen

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 1 - Page 59 of 89

Page 60: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Institut für Physik der Atmosphäre

Physical fundamentals of contrail formation the Schmidt-Appleman criterion

and the role of particles

Klaus Gierens

Institut für Physik der Atmosphäre, DLR Oberpfaffenhofen

Institut für Physik der Atmosphäre

Motivation

Schumann et al., 2000

Institut für Physik der Atmosphäre

Contents

• Derivation of the Schmidt-Appleman criterion in terms of water vapour and enthalpy budgets

• The role of particles

• Contrails from biofuels

Institut für Physik der Atmosphäre

Simple explanation

Contrail formation is like breathing on cold air; the condensation that becomes visible is due to isobaric mixing of two air masses of different temperature and different moisture content.

Mixing of air masses can lead to condensation because the saturation pressure of water vapour decreases almost exponentially with decreasing temperature. Isobaric mixing thus can end up in a supersaturated state even if none of the two mixed air masses was saturated before.

This mixing trajectory and the saturation pressure curves of water vapour are displayed in a Schmidt-Appleman diagram. Isobaric mixing is represented by a straight line in such a diagram (pressure vs. temperature).

Institut für Physik der Atmosphäre

Schmidt-Appleman diagram

Isobaric mixing of hot exhaust gases of high absolute humidity with cold ambient air of low absolute humidity.

Schmidt (1941), Appleman (1953), Schumann (1996)

Institut für Physik der Atmosphäre

Derivation of the Schmidt-Appleman theory in terms of engine mass and enthalpy flows (1)

The slope G of the mixing trajectory is simply

Index E: Environment

Index P: Plume at engine exit, i.e. engine and fuel dependent

e is water vapour partial pressure, T is static temperature

It is practical to use mass mixing ratio q instead of partial pressure./

p is air pressure, ε 0.622(ratio of molar masses of water and air).

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 60 of 89

Page 61: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Institut für Physik der Atmosphäre

Derivation of the Schmidt-Appleman theory (2):Water mass budget

the water vapour mixing ratio at engine exit is determined from the mixing ratios in the air streams and the water vapour from burning the fuel. Instantaneous mixing of core and bypass streams gives

with : emission index for water vapour

(1.25 for kerosene, higher values for methane and liquid hydrogen)

The nominator in the slope factor G is thus

Institut für Physik der Atmosphäre

Derivation of the Schmidt-Appleman theory (3):Overall propulsion efficiency

The continuous loss of momentum due to drag and friction dP/dt

has to be replaced by the thrust F of the engines:

Thus, work has to be applied with a rate FVwhich has to be taken from the fuels chemical energy, that is

Q:lower heat value of fuel, :overall propulsion efficiency

V:aircraft speed

Institut für Physik der Atmosphäre

Derivation of the Schmidt-Appleman theory (4):Conservation of momentum

Momentum conservation (actio=reactio) requires that the airstreams get the same momentum in the opposite direction:

, , ,

here is the velocity of the airstream relative to the ground at engine exit

Institut für Physik der Atmosphäre

Derivation of the Schmidt-Appleman theory (5):Conservation of energy

Energy conservation (reference frame fixed to the ground):

the chemical energy of the fuel is converted into work against drag, into kinetic energy and thermal energy of the exhaust

2 , 2 , 2 , ,

, , ,

Note: , the rest is thus 1 .

Note: kinetic energy is 104 J/kg ,thermal energy is 107 J/kg .

Thus thermal energy 1 .

Institut für Physik der Atmosphäre

Derivation of the Schmidt-Appleman theory (6):Enthalpy budget

Assuming again instantaneous mixing of core and bypass air at engine exit we arrive at the following enthalpy

, ,

which can be rewritten using the energy conservation from above as

1

thus the denominator of G is1

Institut für Physik der Atmosphäre

Derivation of the Schmidt-Appleman theory (7)Slope factor

The slope G of the mixing trajectory is simply

nominator from water budget:

denominator from enthalpy budget:1

Note: ≫ , 1 ≫ , thus

1, q.e.d.

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 61 of 89

Page 62: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Institut für Physik der Atmosphäre

The role of particles

• Note that particles are not even mentioned in the Schmidt-Appleman theory.

• However, particles are necessary for droplet and crystal formation as nucleation centres.

• How does this fit together?

• Without any particles, neither in the air nor in the exhaust, the SAC would not work at all, because then nucleation would need several 100% of supersaturation to commence.

• If soot were perfect ice nuclei, ice saturation would probably suffice instead of water saturation for contrail formation.

• Sulfuric acid covered soot is bad ice nuclei, but there are plenty of these particles such that contrail formation is never constrained by lack of nucleation sites. Therefore particles need not to be mentioned in the SAC.

Institut für Physik der Atmosphäre

Contrail properties depend on particle emission, contrail formation does not

soot emission index by number

ice

crys

tal n

umbe

r co

ncen

trat

ion

Kerosene

Fischer-Tropsch blends

results of AAFEX campaignsand calculations by Kärcher and Yu, 2009

Institut für Physik der Atmosphäre

Conclusion

• Dynamic and thermodynamic aspects of contrail formation are very good understood, as these follow straightforward from basic physical conservation principles of mass, momentum and energy.

• Microphysical details of contrail formation are less well understood, for instance what excactly happens on soot surfaces, how many soot particles contribute to ice formation, etc. However, initial number of ice crystals is known up to a factor of 2-3.

• Contrail formation and persistence conditions are fairly well known.

• Contrail and contrail cirrus properties depend on initial conditions at formation and on many other ambient parameters. Large variability.

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 62 of 89

Page 63: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

www.DLR.de • Chart 1 S. Unterstrasser

From contrail formation to contrail-cirrusA modeling perspectiveSimon Unterstraßer

Motivation – Temporal evolution of a Contrail (1/4)

The contrail evolution can be divided into 3 temporal phases:

Vortex

Phase

Dispersion

Phase

5 - 10s

2 - 4

minutes Minutes to hours

Jet

Phase

www.DLR.de • Chart 2

Motivation – Temporal evolution of a Contrail:Jet Phase (2/4)

Vortex

Phase

Dispersion

Phase

Jet

Phase

www.DLR.de • Chart 3

Motivation – Temporal evolution of a Contrail: Vortex Phase (3/4)

Vortex phase (2 - 4min):

Main feature is the descent of the

vortex pair (200m-600m)

→ crystal loss due to adiabatic

warming

Dispersion

Phase

Jet

Phase

Vortex

Phase

www.DLR.de • Chart 4

Motivation – Temporal evolution of a Contrail: Dispersion Phase (4/4)

Dispersion phase (minutes to

hours):

spreading of contrails by turbulent

mixing and vertical wind shear

Atmospheric conditions

Sedimentation and radiation

become important

Jet

Phase

Vortex

Phase

Dispersion

Phase

www.DLR.de • Chart 5 www.DLR.de • Chart 6

Jet phase

Important questions:

How many ice particles form?

How much exhaust is entrained into the wake vortex?

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 63 of 89

Page 64: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

www.DLR.de • Chart 7

Jet phase

How many ice particles form?

Boxmodel simulation withdetailed microphysicsKärcher & Yu, GRL, 2009

Depends on EI_soot andtemperature

Soot-poor regime: Ambientliquid particles serve as icenuclei

www.DLR.de • Chart 8

Jet phase

How much exhaust is entrained intothe wake vortex?

LES with compressible code NTMIX.Paoli et al, PhyFluids, 2013

Detailed 3D-simulation of jet/vortexinteractionSimplified ice activation

www.DLR.de • Chart 9

Jet phase

How much exhaust is entrained intothe wake vortex?

Results for 2-Engine and 4-Engine aircraft

Initialization for vortex phasesimulations

Paoli et al, PhyFluids, 2013

2-Engine 4-Engine

www.DLR.de • Chart 10

Vortex phase

Important questions:

How many ice particles survive?

What are the contrail dimensions, esp. contrail depth, after vortex break-up?

- affects later crystal size -> optical properties, sedimentation, contrail dissolution, life cycle

- shear induced contrail spreading -> deeper iseventually broader

www.DLR.de • Chart 11

Vortex phase

Simulation of wake vortex evolution (descent and break-up) and contrail icemicrophysicsEULAG-LCM: 3D-LES with Lagrangian ice microphysics

3D simulation with 80e6 grid pointsand 160e6 SIPs

covers first 5 minutes behind aircraft

Vortex phaseContrail depth and ice crystal loss

Relative humidity RHi Temperature TAircraft type: Γ0, b0,

water vapor emission,

EIsoot

Thermal stratification

NBV

Ambient turbulence

intensity EDR ε

Initial ice crystal size

distribution

Number of ice crystals

Vertical wind shear

1. Contrail depth

2. Number of surviving

ice crystals fn

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 64 of 89

Page 65: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

www.DLR.de • Chart 13

Vortex phase – Dimension of Exhaust Plume

Unterstrasser et al., ACP, 2014

Variation of parameters that affect wake vortex properties and evolution:Stratification, Turbulence, Vertical wind shear, Aircraft mass

Two independent LES modelsEULAG-LCM (solid), NTMIX (dotted)

Strong stratification, weak turbulence

Stronger turbulence

Weaker stratification

www.DLR.de • Chart 14

Vortex phase – Dimension of Exhaust Plume

Unterstrasser et al., ACP, 2014

Variation of parameters that affect wake vortex properties and evolution:Stratification, Turbulence, Vertical wind shear, Aircraft mass

Plume dimensionsfor type B777/A340 aircraftafter vortex break-up (t = 5min)

Weak stratification

www.DLR.de • Chart 15

Vortex phase – Contrail depth

Unterstrasser, in review JGR

Sensitivity to relative humidity RHi

Vertical profiles of ice mass

Contrails are deeper compared to previous 2D-simulation results (Unterstrasser et al, MZ, 2008, Unterstrasser & Sölch, ACP, 2010)

www.DLR.de • Chart 16

Vortex phase – Ice crystal loss

Unterstrasser, in review JGR

Sensitivity to relative humidity Rhi and temperature

Fraction of surviving ice crystals

Survival rates of previous 2D-estimates (Unterstrasser & Sölch, ACP, 2010) areconfirmed

www.DLR.de • Chart 17

Vortex phase – Ice crystal loss

Unterstrasser, in review JGR

Sensitivity to number of initially formed ice crystals

Fra

ctio

nof

ice

crys

tals

Before vortex phase

Aft

er v

ort

exp

has

e

www.DLR.de • Chart 18

Vortex phase

Results so far for type B777/A340 aircraft

Extension to various aircraft types: see talk by N. Görsch

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 65 of 89

Page 66: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

www.DLR.de • Chart 19

Dispersion phase – Contrail to cirrus transition

Evolution depends on a multitude of parameters:

relative humidity wind shear temperature radiation depth of supersaturated layer contrail properties after vortex

phase interaction with natural cirrus interaction with other contrails

Partly answered in Unterstrasser & Gierens, ACP, 2010a & b, Jensen et al, JGR,1998

www.DLR.de • Chart 20

Dispersion Phase – Contrail to cirrus transition

- EULAG-LCM can serve as benchmark model for simplied model CoCiP- Both models simulate individual contrails- Compare models for a multitude of atmospheric scenarios

Validation along model chain: EULAG-LCM -> CoCip -> GCM

Individual contrailsLarge scale

EULAG-LCM CoCiP

Model purpose:EULAG-LCM: high resolution simulations for selected cases with detailed dynamics and ice microphysicsCoCiP: coarser simulations for global scale applications

Dispersion phase – Contrail cluster formation

Evolution of eight contrails in a supersaturated layer with background vertical wind shear over 4 hours.

www.DLR.de • Chart 21

Dispersion phase – Contrail cluster formation

Formation of contrail cluster: Saturation effects in regions with dense air traffic

Non-linear scaling of contrail climate with air traffic density

color: shear s=red 0.002 s-1

green 0.004 s-1

blue 0.006 s-1

linestyle: wsyn=solid 1 cm/sdotted 2 cm/sdashed 20 cm/s

www.DLR.de • Chart 22

The end.

Thanks to K. Graf and U. Schumann for CoCipcomparison runs

www.DLR.de • Chart 23

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 66 of 89

Page 67: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

1 Mermose & cruise particles – FORUM‐AE CC Workshop – 2&3 April 2014

MERMOSE Campaign Results and Cruise Particles

O. Penanhoat*(Snecma ; presenting), D. Delhaye (Onera), D.Ferry (CINaM‐CNRS); F.‐X. Ouf (IRSN), C.Focsa

(PhLAM‐CNRS); X.Vancassel (Onera); J. Burguburu (Snecma); N. Harivel (Snecma); D.Gaffié (Onera)

[email protected]

FORUM‐AE Climate Change Workshop 

DLR – OberPfaffenHofen 2&3 April 2014

2 Mermose & cruise particles – FORUM‐AE CC Workshop – 2&3 April 2014

Mermose project

Impact of aviation on global warming is a major concern. In this context, theFrench DGAC is funding four projects in order to provide a betterunderstanding of contrail formation, a better evaluation of their impact onclimate, and new detection and avoidance management means.

MERMOSE, the first of these projects, led by ONERA, and with SNECMA aspartner, aims to provide a modern aircraft engine emission dataset and tostudy ice nucleation on emitted soot particles.

The project is 2 folds: one part with complete characterisation of fine particlesbehind a modern SaM146 turbofan from SNECMA and a tubular combustorrepresentative of this turbofan combustor ; a second part with fundamentalcharacterisation of soot particles and their impact on ice crystals formation.

In parallel to its scientific objective, this project provides valuable informationin the frame of the current work to propose a future nvPM (non volatileparticles matter) international ICAO standard.

3 Mermose & cruise particles – FORUM‐AE CC Workshop – 2&3 April 2014

Engine Campaign / Tested engine

The campaign was performed on a SaM146‐1S17 engine (PowerJet).

This engine developed by SNECMA in collaboration with NPO Saturn wascertified by Snecma in June 2010.

It is a modern mixed flow Turbo‐fan with an optimised RQL single annularcombustor ; For ‐1S17: OPR = 21,9 & BPR = 4,42 & F00 = 69.21kN

This engine equips the Russian regional jet Sukhoi Superjet 100.

4 Mermose & cruise particles – FORUM‐AE CC Workshop – 2&3 April 2014

Engine Campaign / General data

The campaign was performed at Snecma Villaroche.

The measurements were performed in June 2014 with Onera, IRSN, CNRS andSnecma teams.

The engine tested was an un‐mixed flow configuration, in the same way it wasfor the pollution certification of SaM146 (it enables to realize representativesampling in the primary nozzle exit).

The sampling system was the one used for the SaM146 pollution certification:it is a single orifice probe moved by a robot.

2 chains were used: the Snecma gaseous pollutant chain which was fullycompliant to ICAO Annex 16 Vol. 2, and the Onera fine particles chain whichwas partially compliant to SAE‐E31 AIR6241.

5 Mermose & cruise particles – FORUM‐AE CC Workshop – 2&3 April 2014

Engine Campaign / Test bench

Snecma/gaseous pollutants

Chain

Onera/fine particles

Chain

P2

Mermose & cruise particles – FORUM-AE CC Workshop – 2&3 April 2014

Engine campaign / set-up

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 67 of 89

Page 68: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Mermose & cruise particles – FORUM-AE CC Workshop – 2&3 April 2014

Results / Morphology & structure

Mermose & cruise particles – FORUM-AE CC Workshop – 2&3 April 2014

0 5 10 15 20 25 30 35 40 45 50 55 600

1

2

3

4

5

6

7

8

9

10

11

12

13

fre

que

ncy

(%)

primary particles diameter dp (nm)

lognormal distribution (r2=0.992)

dpg= 13.8 +/- 0.1 nm

g=1.531

0

10

20

30

40

50

60

70

80

90

100

cum

ula

tive

fre

quen

cy (

%)

Primary particles mean diameter around 15nm at 85% take-off thrust

Results / Morphology & structure

Mermose & cruise particles – FORUM-AE CC Workshop – 2&3 April 2014

SMPS & DMS500 results

– Size distribution evolution with engine rating: 85% profile higher than 100% profile

– For a given engine rating,  minor variation of size distribution in the exit section

SMPS (with dilution correction)DMS500

Results / Size distribution

Mermose & cruise particles – FORUM-AE CC Workshop – 2&3 April 2014

0,00E+00

5,00E-01

1,00E+00

1,50E+00

2,00E+00

2,50E+00

3,00E+00

3,50E+00

4,00E+00

4,50E+00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

point

Pa

rtic

le m

ass

[m

g/m

3]

Results / Mass concentrations = f(point)85%LTO

Pegasor Filter THE

Mas

s de

nsity

Point 11

Mermose & cruise particles – FORUM-AE CC Workshop – 2&3 April 2014

Results / Number concentrations = f(point)85%LTO

0,00E+00

5,00E+06

1,00E+07

1,50E+07

2,00E+07

2,50E+07

3,00E+07

3,50E+07

4,00E+07

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

point

Par

tic

les

nu

mb

er

[par

t./c

m3

]

DMS 500

CPCPegasor

SMPS+C

Num

ber

dens

ity

Point 11

Mermose & cruise particles – FORUM-AE CC Workshop – 2&3 April 2014

Results / Emissions indices gradients

Emission indices are derived from particles concentrations and xCO2

0,00E+00

5,00E‐01

1,00E+00

1,50E+00

2,00E+00

2,50E+00

3,00E+00

3,50E+00

4,00E+00

4,50E+00

5,00E+00

50 70 90 110 130 150 170 190 210 230

xCO2 (%

)

Radius

Traverse measurements at 85% (JetA1) ‐ xCO2

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 68 of 89

Page 69: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Mermose & cruise particles – FORUM-AE CC Workshop – 2&3 April 2014

Results / Emissions indices gradients

Number & Mass emission indices at 85%: 

– CPC concentration values exploited for number

– Pegasor concentration values exploited

– up to ~25% variation observed both for number and mass

– Fine radial measurement shows smooth evolution for number (not performed for mass)

y = ‐1E‐05x2 + 0,0022x + 0,8886

7,00E‐01

7,50E‐01

8,00E‐01

8,50E‐01

9,00E‐01

9,50E‐01

1,00E+00

1,05E+00

50 100 150 200 250

Ein (136°)

EIn traverse (45°)

Ein traverse (135°)

Ein traverse (‐135°)

Ein traverse (‐45°)

Check

Traverse and fine radial measurements  at 85% ‐ EIn (adim)

EIn (#/kg) ‐adim

7,00E‐01

7,50E‐01

8,00E‐01

8,50E‐01

9,00E‐01

9,50E‐01

1,00E+00

1,05E+00

50 70 90 110 130 150 170 190 210 230

EIn traverse (45°)

Ein traverse (135°)

Ein traverse (‐135°)

Ein traverse (‐45°)

Check

Traverse and fine radial measurements  at 85% ‐ EIm(adim)

EIm (g/kg) ‐adim

radiusRadius (mm) (mm)

Mermose & cruise particles – FORUM-AE CC Workshop – 2&3 April 2014

Results / Emissions indices

Average emission indices in mass and in number were obtained for all engine powers except 7%.

Values are of the same order as those observed recently on CFM56 (A‐PRIDE5)

Maximum values are achieved around 85% LTO.

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

0% 20% 40% 60% 80% 100% 120%

Eim (g/kg) ad

im

% régime

EIm (from Pegasor) ‐ adim

0,00

0,10

0,20

0,30

0,40

0,50

0,60

0,70

0,80

0,90

0% 20% 40% 60% 80% 100% 120%

EIn (n/kg) adim

% régime

EIn (from CPC) ‐ adim

Mermose & cruise particles – FORUM-AE CC Workshop – 2&3 April 2014

Cruise particles estimations?

What is the need?– EI in mass?

– EI in number?

– Size distribution?

– Reactivity?

– …

What is the origin and the uncertainty of the values currently used in inventories?

Mermose & cruise particles – FORUM-AE CC Workshop – 2&3 April 2014

Cruise particles estimations?

Emission Indices on the ground:– Direct measurements: few results become available (APEX, AFEX, A-

PRIDE5, Mermose…)o It is observed that EI may vary (up to 10% 20%?) at the core nozzle exit

section

– Correlation to Smoke Number:o Only proposed for EI in mass

o What is correlated is the particles mass concentration, and a second steppermits to derive the EI

o Some uncertainties attached to the SN (measurement effects, ambianteffect, jet A1 fuel effect, engine configuration effect: TF or MTF)

o Uncertainties linked to the correlation: such a correlation is insenstive to thesize distribution ; the FOA1 SN/particles concentration correlation wasmainly used up to now ; alternative has been recently proposed by Stettler &al (2013) which induces a non negligible increase.

FOA FOX

Mermose & cruise particles – FORUM-AE CC Workshop – 2&3 April 2014

Cruise particles estimations?

Emission Indices in cruise:– Direct measurements: chasing aircrafts (DLR campaigns, TC2…)

o Uncertainties?

– Combustor test rig measurements: o at the exit of the combustor in a test rig with actual cruise conditions in terms

of P3, T3, FAR (Mermose)

– Engine altitude test cell measurements: fully representative cruise conditions ;

o no exemple

– Correlation to ground values: o Stettler et al (2013) recent analysis, propose an interesting correlation of the

cruise particles concentrations to the ground concentration.

o This correlation is established for conventional combustor technology

o This analysis and its conclusions seem important material to consider.

Mermose & cruise particles – FORUM-AE CC Workshop – 2&3 April 2014

Conclusion 18/15

A successful engine campaign: 

‐ Very good cooperation between all project members (ind, res. centers, ac. )

‐ Nearly 7 hours of engine run (on 4 days) providing effective nvPM measurements

‐ High experience gained and key points still investigated (inputs to AIR6241)

‐ CAER (french DGAC funded pgm): Alternative fuel also tested (30‐85‐100% LTO)

Results:

‐ First time traverse measurements of nvPMs are performed behind a turbofan engine

‐ Complete particles data for 30% to 100% T/O thrust: real‐time and laboratory ;

‐ First set of representative results of SaM146 mass and number particle emissionsindices (EIs). Focus is put here on EIs, but a huge scientific work was also performed(Onera, IRSN, CNRS) to fully characterise particles (morphology, chemistry, reactivity)and will be published.

Next steps

‐ Combustion chamber campaign at Onera M1

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 69 of 89

Page 70: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Mermose & cruise particles – FORUM-AE CC Workshop – 2&3 April 2014

http://mermose.onera.fr/

Thank you

Mermose & cruise particles – FORUM-AE CC Workshop – 2&3 April 2014

Combustor Campaign (back-up)

Simulate precisely the cruise (P3, T3, FAR) condition 

– Combined with engine measurements, should permit to extrapolate engine cruise particles emissions

Compare measurements with those at the engine exit for LTO ratings

Assess potential evolution of particles between the combustor exit and the engine exit

Perform sensitivity analysis at LTO conditions and  cruise conditions

– Potential useful input for the future particles standard:

o To address correction to reference conditions

o To make recommendation on the measurement protocol  

Input for numerical simulation to better predict particles emissions

Mermose & cruise particles – FORUM-AE CC Workshop – 2&3 April 2014

Combustor campaign (back-up)

Main challenge: keep particle concentrations within management of the Pressure drop (from 15‐20 bars to atmosphere) 

Particles measurement campaign:

– With a tubular combustor representative of SaM146 annular combustor (same injection system, same air flow distribution)

– Delivery of the combustor: march‐april 2014

– Test of the impact of pressure drop on particle signal: may‐june 2014 

– Campaign: may‐september 2014

Targeted power: 

– 7%, 30%, 70% (ground conditions), cruise (real conditions), 85%, 100%. 

Sensitivity analysis:

– On P3, T3, FAR

Particles:‐ 2 phases: real‐time measurements / Laboratory sampling‐ Updates from SaM 146 engine campaign  (some items 

closer to AIR) but same core 

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 70 of 89

Page 71: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

The impact of reduced contrail ice crystal number on contrail cirrus in a global climate model

Lisa Bock,Ulrike Burkhardt, Bernd Kärcher

FORUM-AE Workshop, Climate Impact, 03.04.2014

Lisa Bock • FORUM-AE 03.04.2014

FAIRPast: One-moment-scheme representing ice water content

Folie 2

Characterization of contrails in the climate model

Lisa Bock • FORUM-AE 03.04.2014

many small particles

decreased sedimentation increased ice water contentRF larger

increased life time RF larger increased albedo RF smaller

Two-moment-scheme: ice water content

+ ice particle number density

few big particles

radiative forcing

mean ice particle size

LW

SW

warming

fixed IWP

0

Lisa Bock • FORUM-AE 03.04.2014Folie 3

ice particle number density [cm-3] ice water content [mg/m3]

mean ice particle size [µm] optical depth

coverage [%]

radiative forcing

Contrail cirrus simulation with ECHAM5

maxima in tropical regions

maxima in main flight regions

maxima in tropical regions and main flight regions

maxima over Europe and U.S.

240 hPa

Volatile particles– H2SO4, soluble organics, ion‐cluster

Ambient aerosols– mainly H2SO4

and soluble organics

Formation of ice crystals in an aircraft plume

non volatile particles ‐ soot

ambient liquid aerosols

exhaust plume

ambient air

Dilution and cooling of jet plume

Ice nucleation

dropletformation

liquid droplets

contrail iceparticles

Folie 4 Lisa Bock • FORUM-AE 03.04.2014

• Use of alternative aviation fuels may reduce soot emissions bymass and number

• Reduction in soot number emission index, EIsoot reduction in initial ice particle number concentration, nice

• Dependency of initial ice particle number on emissions, aircraft/engine parameters, and ambient conditionsis not yet parameterized

Reducing soot emissions

Folie 5 Lisa Bock • FORUM-AE 03.04.2014

log ( EIsoot )

log ( nice )volatile plumeparticles

ambient particlescurrent emissions

contrail ice formation controlled by soot emissions

alternative fuel impact

First step in climate model ECHAM5

Alternative fuel Change in soot emissions

Change in initial ice particle numberof contrail

Change in microphysical und optical properties of contrail cirrus

Change in life time and climate impact of contrail

cirrus

Folie 6 Lisa Bock • FORUM-AE 03.04.2014

- 80 %

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 71 of 89

Page 72: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Folie 7

Experiment: Microphysical and optical properties

Lisa Bock • FORUM-AE 03.04.2014

- decrease in icewater content

- but fewer iceparticlesbecome larger, epecially in main flightregions

- decrease in optical depth

ice water content [mg/m3]

mean ice particle size [µm]

optical depth

240 hPa

Folie 8

Experiment: Coverage

Lisa Bock • FORUM-AE 03.04.2014

no decrease

significant changes in regions into which contrail cirrus are transported

decrease by70 %

> 0.05

total coverage

coverage of visible contrail cirrus

> 0.05

Folie 9

Experiment: Radiative Forcing

Lisa Bock • FORUM-AE 03.04.2014

change of initial ice particle number decrease of mean radiative forcing almost 60 %

radiative transfer parameterization in ECHAM5 needs to betested for small (r < 10µm) ice particles

mean: 29 mW/m2 mean: 12 mW/m2

PRELIMINARY

Folie 10

Summary

- Introduction of contrail ice particle number in the climate modelconsistent with two-moment-scheme of natural cirrus better representation of microphysical processes and better

knowledge of microphysical and optical properties of contrailcirrus

- Initial ice particle number strongly affects the microphysical and opticalproperties of contrail cirrus

- Reduction of initial ice particle number does not lead to a generaldecrease of the contrail lifetime, but the time contrail cirrus are visible( > 0.05), is shorter

Lisa Bock • FORUM-AE 03.04.2014

Thank you!

Lisa Bock • FORUM-AE 03.04.2014

FAIR

fewer aerosols fewer ice crystals decreased albedo larger sedimentation lower ice water content lower rad. effects larger ice crystals shorter life time

smaller contrail radiative forcing?

Soot‐rich regime Soot‐poor regime

soot

volatile particles

ambient liquid aerosols

liquid droplets

Dilution and cooling of jet plume

contrail iceparticles soot

volatile particles

ambient liquid aerosols

Dilution and cooling of jet plume

contrail iceparticles

liquid droplets

In soot-poor regime droplets / ice crystals are also formed on ambient andvolatile plume particles particularly at low temperatures

Formation of ice crystals in an aircraft plume

Folie 12 Lisa Bock • FORUM-AE 03.04.2014

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 72 of 89

Page 73: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Forum AE

How do aircraft types and properties affect contrail evolution?

Norman GörschOberpfaffenhofen, 03.04.14

up to now:

-basic contrail formation

-transition into contrail cirrus

-meteorological requirements & sensitivities

-importance of ice crystal number

Aircraft type based questions

-Effect on young contrail evolution?

-Sensitivity to meteorological parameters?

-Impact on contrail cirrus?

Aircraft types

Aircraft type characteristics

wing span (b) mass/weight (m)velocity (v) fuel consumption ( ymfuel )

Aircraft type characteristics

wing span (b) mass/weight (m)velocity (v) fuel consumption ( ymfuel )

Contrail parameters

vortex separation = vorticity = water vapor emission =ice crystal number =

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 73 of 89

Page 74: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Aircraft types

Source: BADA

CRJ B737 A320

B767 A300

B777 A350

B747 A380

wing span in

21.20 (35%)

24.40 (56%)

47.60 (78%)

60.90 (100%)

64.40 (106%)

79.80 (131%)

vorticity

in

130 (25%)

240 (46%)

390 (75%)

520 (100%)

590 (113%)

720 (138%)

fuel consump-tion in

1.42 (17%)

2.96 (47%)

5.81 (69%)

8.36 (100%)

11.1 (133%)

16.0 (191%)

Comparisaon between CRJ and A380

Vertical profiles of ice crystal number

CRJB737B767B777B747A380

RHi=140%

Ice crystal number evolution

CRJ – B737 – B767 – B777 – B747 – A380

RHi=140%RHi=100%

Temp.: 217K

CRJ – B737 – B767 – B777 – B747 – A380

RHi=120%

normalized with the initial ice crystal number

Ice crystal number evolution

CRJ – B737 – B767 – B777 – B747 – A380

RHi=120%

normalized with the initial ice crystal number

absolute ice crystal number values

Ice crystal number evolution

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 74 of 89

Page 75: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

CRJ – B737 – B767 – B777 – B747 – A380

RHi=120%

normalized with the initial ice crystal number

absolute ice crystal number values

variation Contrail cirrus evolution

CRJ – B737 – B767 – B777 – B747 – A380

Contrail cirrus evolution

Summary

Aircraft type

- vertical extent - ice crystal numberdistribution of ice crystalssensitivity to meteorological conditionsdifferences persist in contrail cirrus……

Summary

Aircraft type

- vertical extent - ice crystal number- distribution of ice crystalssensitivity to meteorological conditionsdifferences persist in contrail cirrus……

Summary

Aircraft type

- vertical extent - ice crystal number- distribution of ice crystals- sensitivity to meteorological conditionsdifferences persist in contrail cirrus……

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 75 of 89

Page 76: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Summary

Aircraft type

- vertical extent - ice crystal number- distribution of ice crystals- sensitivity to meteorological conditions- differences persist in contrail cirrus……

Summary

Aircraft type

- vertical extent - ice crystal number- distribution of ice crystals- sensitivity to meteorological conditions- differences persist in contrail cirrus- …- …

Thank you for your attention!

Norman GörschDeutsches Zentrum für Luft- und Raumfahrt e.V.

Institut fuer Physik der AtmosphäreTelephone +49 8153 28 1537

E-mail [email protected]

Forum AE

How do aircraft types and properties affect contrail evolution?

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 76 of 89

Page 77: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Forum AE workshop: Oberpfaffenhofen, 2 – 3 April 2014

Optical properties of contrails and contrail ice

crystals - consequences on their climate impact

A. SchwarzenboeckA. ChauvignéO. JourdanV. ShcherbakovJ.-F. GayetCh. GourbeyreG. Febvre

Laboratoire de Météorologie Physique (Laboratory of Physical Meteorology) Clermont –Ferrand, France

Forum AE workshop: Oberpfaffenhofen, 2 – 3 April 2014

Sphericalliquid particles

Typical diameteris less thanroughly 3 μm

The diameteris increasingwith the distancefrom the aircraft

Forum AE workshop: Oberpfaffenhofen, 2 – 3 April 2014

Fifth Assessment Reportof the Intergovernmental Panel on Climate Change

(IPCC 2013)

From Table 8.5: Confidence level for the forcing estimate.

Confidence

Level

Basis for Uncertainty Estimates (more certain

► less certain)

Contrails Medium

Contrails observations , large number of model estimates

► Spread in model estimates of RF and uncertainties in contrail optical properties

Contrail-induced

Cirrus Low

Observations of a few events of contrail induced cirrus

► Extent of events uncertain and large spread in estimates of ERF

Radiative Forcing (RF) Contrails from aviation +0.01 (+0.005 to +0.03) W m–2

Effective Radiative Forcing(ERF)

Combined contrail and contrail-cirrus +0.05 (+0.02 to +0.15) W m–2

Year 2011

Regional RF: ~ (global RF) x 6.

The differences in the net RF reach up to 50%.

Forum AE workshop: Oberpfaffenhofen, 2 – 3 April 2014

Cloud particles

Sampling Volume

Paraboloidal miror

Laser Beam

Symmetry axis

Photodiodes

Optic fibres

θ

The airborne Polar Nephelometer probe

Forum AE workshop: Oberpfaffenhofen, 2 – 3 April 2014

Polar Nephelometer:Measurement of the scattering phase functionof cloud particles (3 µm < D < ~ 1 mm).

Polar Nephelometer onboard the DLR Falcon aircraft

Forum AE workshop: Oberpfaffenhofen, 2 – 3 April 2014

Time series at 1s resolution for the flights 19b and 16b.(a) Extinction (in km-1) and (b) Asymmetry parameter measured by the Polar Nephelometer;(c) and concentration of nitric oxide (in ppbv) measured by chemiluminescence technique

Ice cloudA321

Y. ContrailB777

ContrailA346-A343

Contrail induced cirrusA380

Young ContrailCRJ-2B767

Aged contrail

a

b

c

CONCERT (2008 and 2011) campaigns

a

b

c

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 77 of 89

Page 78: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Forum AE workshop: Oberpfaffenhofen, 2 – 3 April 2014

Classification (Cluster analysis) using a statistical tool:Principal Component Analysis (PCA)

e1 : related to extinctione2 : correlated to the asymmetry parametere3 : Forward/Backward-hemisphere scattering

Forum AE workshop: Oberpfaffenhofen, 2 – 3 April 2014

Flight 16b (2011)

Flight 19b (2008)

Clusters (0,3,4):

Cluster (2):

Cluster (1):

Cluster (5):

“Young” Contrails,

“Aged” Contrails,

Contrail induced cirrus,

Ice clouds or cirrus,

g [0.83-0.85]

g [0.78-0.82]

g [0.75-0.78]

g [0.73-0.77]

Forum AE workshop: Oberpfaffenhofen, 2 – 3 April 2014

A380 contrail in the vortex phase

J.-F.Gayet, V.Shcherbakov, C.Voigt et al., Atmos. Chem. Phys., 2012

Forum AE workshop: Oberpfaffenhofen, 2 – 3 April 2014

CONCERT-2011 campaign

Contrails

Cirrus

Volcanic plumes

Mixed-phase

g

Forum AE workshop: Oberpfaffenhofen, 2 – 3 April 2014

TC2: Project led by CERFACS (2011-2015)

LaMP contributes to TC2 measurement campaigns 2013 & 2014Franch “Falcon 20” payload:

1. Polar Nephelometer2. CDP-23. Fast-FSSP or CPSPD4. 2D-S (larger crystals)

Future work:PCA to be applied to TC2 PN data and extended cloud particle

spectra.Also available some chemistry measured by the SPIRIT instrument

(trace gases at frequency of 1.5 s; peaks related to contrails).

TC2 (trainées de condensation et climat) = Contrails and Climate

Forum AE workshop: Oberpfaffenhofen, 2 – 3 April 2014

CONCLUSIONS

• Radiative forcing depends on optical characteristics of cirrus and contrails.

• Polar Nephelometer is a powerful tool to provide statistically significant data.

• Contrail optical-characteristics depend on:weather conditions;contrail age;aircraft engines;and so on.

• Synergy of Polar Nephelometer, Particles-counting probes, Trace-gas andAerosol measurements is of importance.

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 78 of 89

Page 79: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Folie 1

Aircraft and soot dependent radiative forcing by aviation induced cirrus –estimates from observations and model studies

Ulrich Schumann

DLR – Institut für Physik der AtmosphäreOberpfaffenhofen

Progress in Understanding Aviation-Induced Cirrus

1. ML-CIRRUS with HALO

2. CONCERT with Falcon

3. CoCiP + Meteosat +...

4. RF as in IPCC 2013

5. Aircraft effect

6. Soot effect

ML-CIRRUS 1CONCERT References

Voigt et al., ACP, 2010: overview and CoCiP testsVoigt et al., GRL, 2011: optical depth in young contrailsKübbeler at al., ACP, 2011: Thin and subvisible cirrus Jurkat et al., GRL, 2011: HONO, H2SO4/SO2Gayet et al., ACP, 2012: aspherical particlesJessberger et al. , ACP, 2013: Aircraft ImpactSchumann et al. , GRL, 2013: Particle number and Soot Impact

New insight on contrail properties – results of CONCERT 2008

5

Contrail Cirrus Prediction Tool - CoCiP Contrail Cirrus Prediction – Example: 0600 UTC in June 2006

flight path causing  contrail (Schmidt‐Appleman satisfied)

flight path causing persistent contrail

contrail positionSchumann (GMD, 2012)Schumann et al. (JAMC, 2012)

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 79 of 89

Page 80: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

7

9:50 UTC8:40:28 UTC

C1

C2

C3

C4C5

Schumann et al. (AMT, 2013; doi:10.5194/amt-6-3597-2013)8

9:50 UTC8:40:28 UTC

C1

C2

C3

C4C5

Schumann et al. (AMT, 2013; doi:10.5194/amt-6-3597-2013)

Radiative forcing from contrail cirrus

LW  SW  Ci Net

47   ‐9  ‐7     31 

mW/m2

LW  SW  Net

126    ‐77   49  

mW/m2

RF/(m

W/m

2 ) 100

0

50

Linear ECHAM4 CoCiPcontrails -CCMOD + MSG

LW  SW  Net

8      ‐2      6 

mW/m2

Frömming et al. (2011), Burkhardt and Kärcher (2011), Schumann and Graf (2013)

Soot impact on RF by contrail cirrus

CoCiP:

Increase of soot number emissions by factor of 2 implies

increases of: by a factor

RF: 1.64

tau: 1.27 (expected Twomey effect: 2**1/3 = 1.26)

cover: 1.29

age: 1.16

width: 1.22

depth: 1.14

Based on a few days of a global CoCiP simulation-

Details may change with model changes.

But the basic message should be robust: Soot has strong impact on contrail cirrus RF.

As expected, see Schumann(1996, Met. Z.)

10

altitude z

Aircraft dependence: size matters

aircraft type A319 A380mass/Mg 60 482 - factor 8 ratiofuel kg/km 2.67 15.9 - factor 6 rationormalizedRF-LW: 0.73 2.51 - factor 3.5 ratiopassengers*) 136 526 - factor 3.8 ratioper passenger: 6.5E-4 5.3E-4

Based on a 3-days global simulation for March 2006

cross‐flight direction, y

*) http://de.wikipedia.org/wiki/Lufthansa

Conclusions 1: Soot has strong impact on contrail cirrus RF

• An increase in the number of ice particles in young contrails by a factor of 2 causes a factor of 21/3 = 1.26 change of optical depth for fixed ice water path and fixed radiation extinction coefficient and correspondingly reduced effective radius (the Twomey effect).

• The larger RF change is a consequence of further changes:

• The model computes increases of visible contrail cover by 1.29, contrail age by 1.16, contrail width by 1.22, and contrail geometrical depth by 1.14. All these changes contribute to the larger changes in RF compared to that of optical depth.

• The quantitative model results depend on model details.

• Open: nonlinear interactions in the contrail for changes soot concentrations

• More important: Soot changes the whole cloud system

12

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 80 of 89

Page 81: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Conclusions 2: Aircraft - size matters

• The relative radiative effects of two global hypothetical fleets of A380 or A319 aircraft has been studied with CoCiP.

• The global simulation with CoCiP shows a change in net RF by factors of 0.73 or 2.51, when the global fleet of aircraft is replaced by a fictive fleet in which all aircraft are either A319 or A380 aircraft, respectively.

• Hence, the RF is about a factor 3.5 larger for an A380 than for an A319. This change results mainly from the larger aircraft mass (factor 8) and the larger fuel consumption (factor 6).

• These parameters cause changes in the simulated soot emissions, size-dependent mixing in the aircraft wake, and related contrail properties in the model.

• Hence, the global contrail effects depend strongly on the aircraft types.

• In terms of RF per passenger seat or RF per passenger-seat distance, the ratio between the simulation results for different aircraft is closer to unity or even smaller than one, i.e. a larger aircraft may have smaller climate impact per transport unit than a smaller aircraft.

13

end

14

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 81 of 89

Page 82: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

TC2

Traînées de Condensation et Climat

Contrails and Climate

A project financed by DGAC in the framework of CORAC

11/2011 – 11/2015

TC2 Traînées de Condensation et Climat

Contrails and Climate

TC2 Traînées de Condensation et Climat

Contrails and Climate

Présentation du projet IMPACT – D. Hauglustaine – 24 Octobre 2012

48 months project financed by Direction Générale de l’Aviation Civile in the framework of CORAC

Project start : 15 novembre 2011

Scientific Partners in the project :

Daniel Cariolle (PI)CERFACS, Toulouse

Michel BenhamouDassault Aviation, St Cloud

Didier HauglustaineLSCE, CNRS, Strasbourg

David Saint MartinCNRM, CNRS & Météo-France, Toulouse

Alfons SchwarzenboeckLaMP, CNRS Université B. Pascal, Aubière

Xavier VancasselONERA, Paris

TC2 project objectives (1)TC2 project objectives (1)

The TC2 project aims to contribute reducing uncertainties in calculating the climate impact associated with contrails and induced cirrus.

Lee et al., 2009

TC2 project objectives (2)TC2 project objectives (2)

• Development and improvement of numerical models of contrails and cirrus‐contrail;

• Development of parameterizations of contrails and induced cirrus for GCM; 

• Aircraft in‐situ measurements of contrail and contrail‐cirrus composition;

Wake evolution in four regimes Gerz et al. (1998)

t = 0 s.

a few hours

t ~ 1000 s.

t ~ 100 s.

t ~ 10 s.

Vortex regime

Dissipation regime

Diffusion regime

Jet regime

~ 1 km

~50 m

Evolution of aircraft wakes

Vortex roll-up;jet/vortex interaction

Vortex descent;Crow(elliptic) instability

Stratification; vortex break-up

Atmospheric variability ... to global scales

Zw = ua/c tua/c = 250 m/s (cruise)

ZwO

Modelling the diffusion regime to obtainparameterisations for large scale models: Life time of contrails and induced cirrus Evolution of the microphysical and meanradiative properties

Development acheived: Implementation of the turbulence scheme of « Paoli and Sharif »

Idealized simulations of the diffusion regime in atmospheric

layers under several levels of turbulence

Paoli et al, ACP 2014

•Atmosphere at tropopause level: N=0.012 s-1, Sice=130%•Flight level : 11 km

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 82 of 89

Page 83: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Turbulence fluctuations

4 Km

5 min. aged contrail added to background turbulence

NTMIX

Méso‐NH

NTMIX simulations

No atmospheric turbulence Moderate turbulence Strong turbulence

Snapshots of potential temperature fluctuations

Vertical slab containingthe 5 min old contrail

Initial background turbulence 20 min after contrail insertion

0 K

10243 LES

Weak Strong

without Rad 0.22 0.23

60 min40 min20 min

60 min40 min20 min

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 83 of 89

Page 84: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Young contrails(g > 0.83)

=Natural cirrus / elder contrails(g = 0.77 – 0.83)

NP response in young contrails and cirrus (possibly very thin old contrails)

NP response old contrails

Polar Nephelometre

Scattered contrails

Old contrails

Old Contrails scattered !!! Old Contrail !!!

Old Contrail verydiffused!!!

LowerlevelCirrus

TC2 next stepsTC2 next steps

• Effects of radiation and sedimentation in contrail aging;

• Influence of atmospheric conditions (humidity)

• Development of parameterizations of contrails and induced cirrus for global models; 

• Next Aircraft campaign in September‐October 2014;

• Model validation against in‐situ data;

IMPACT

Impact of aircraft emissions on present and future climate

A project financed by DGAC in the framework of CORAC

11/2012 – 1/2016

IMPACT of aircraft emissions on present and future climateIMPACT of aircraft emissions on present and future climate

Présentation du projet IMPACT – D. Hauglustaine – 24 Octobre 2012

48 months project financed by Direction Générale de l’Aviation Civile in the framework of CORAC

Project start : 1 novembre 2012

Kick-off meeting : 30/10/2012 (Paris). Annual meeting : 5/9/2013 (Strasbourg)

Partners in the project :

Didier Hauglustaine (PI)Laboratoire Image Ville Environnement (LIVE), CNRS, Strasbourg

Olivier Boucher, Laboratoire de Météorologie Dynamique (LMD), CNRS, Paris

Philippe RicaudCNRM-GAME, Météo-France, CNRS, Toulouse

Daniel CariolleCERFACS, Toulouse

Olivier PenanhoatSAFRAN Snecma, Villaroche

IMPACT project objectives (1)IMPACT project objectives (1)

The IMPACT project aims to contribute reducing uncertainties in calculating the climate impact of aircraft emissions and in particular those associated with contrails and induced cirrus but also to the NOx emissions (impact on methane and ozone) and particulates (sulfates, nitrates, soot).

Lee et al., 2009

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 84 of 89

Page 85: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

IMPACT project objectives (2)IMPACT project objectives (2)

• Development and improvement of numerical models of atmospheric composition and climate necessary for this problem; 

• Climate impact studies appropriate to the subject and climate perturbation due to aircraft emissions by 2050 time horizon; 

• Suggest ways to develop emission inventories associated with future fleets and specify the needs of the climate modeling in terms of emission inventories.

Burkhard and Karcher, 2012

1. Critical analysis of current global emissions by the fleet commonly used in models based on the existing literature but also on the basis of new measurements of emission factors.

2. Development and adaptation of the climate and chemical atmospheric composition models for use in impact studies by the aircraft fleet : representation of the region of the upper troposphere-lower stratosphere (vertical resolution, joint treatment tropospheric and stratospheric chemistry), coupling between the particles and the gas phase chemistry, coupling between chemistry and climate (direct and indirect effects of particles), radiative effect of contrails and induced cirrus.

3. The models should take into account the transient formation of contrails, cirrus and induced composition changes in the plume including ozone formation. These models must also be able to use new emission scenarios when they become available.

WP 1 : Development of the climate‐chemistry models (months 1‐30)WP 1 : Development of the climate‐chemistry models (months 1‐30)

Perturbations of the chemical composition and climate associated with aircraft emissions in the context of future IPCC simulations for present-day conditions but also for the 2050 time horizon ;

Perform sensitivity simulations with alternative future scenarios of emissions from aviation to quantify the uncertainty associated with different assumptions regarding the fleet, the engine and the fuel;

Contribution of soot emissions to contrails formation and induced cirrus and to the optical and radiative properties of clouds;

Contribution of contrails and induced cirrus to the total radiative forcing and to the climate impact ;

Use of cost / benefit climate functions integrating the time evolution of the radiative effects or of temperature changes resulting from aircraft emissions to quantify the effect of each factor to climate change functions ;

Critical analysis of future emission scenarios and recommendations in terms of possible new research programs to develop new emission inventories beyond IMPACT .

WP 2 : climate impact studies (months 18‐48)WP 2 : climate impact studies (months 18‐48) SNECMA – Emissions from the current fleetSNECMA – Emissions from the current fleet

Complete a critical revue of emission data used in previous projects.

Input : Technical reports from Quantify, scientific publications, interview of experts.

Output : Assessment Report on the hypothesis used to estimate the emissions indices (g/kg)for NOx at cruise altitude, et the indices for emitted particles (numbre/kg ou g/kg) at cruisealtitude.

Illustration of the dispersion of NOx

emission indices (Lee et al 2013) due to:

•Hypothesis on the engine behaviour;

• Various modelisation of the EINOx(at a given Qfuel ou engine regime);

•All other factors.

Version standard Ozone change : plume chemistry

CNRS/LIVE – Increased vertical resolution in LMDz‐INCA (1)

Ozone change : no plume chemistryPlume chemistry parameterisation (Cariolle et al. 2009)‐ Increase from 19 to 39 levels.

‐ Include both gas phase chemistry and aerosols (SO4, BC et OC, NO3, naturelles). 

CNRS/GAME – Tropospheric chemistry in the CNRM‐CCM modelCNRS/GAME – Tropospheric chemistry in the CNRM‐CCM model

1. Implement surface emissions• Select suitable emission inventories;

• Perform necessary lumping or splitting of the emitted species to make the correct correspondence with the RACMs species;

• Re‐grid emissions to the reduced gaussian grid;

• Apply suitable temporal variability

2. Implement dry deposition for the gaseous species

• Use the formulation implemented in MOCAGE and CEPMMT

3. Implement wet deposition

4. Add new chemistry solver

ARPE

GE-

Clim

ate

(Atm

osph

eric

GCM

)

Stratospheric and Tropospheric Chemistry

SURFEX (land surface)

NEMO (ocean model)

Sea Ice

OASIS (coupler)

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 85 of 89

Page 86: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

(Olivié et al., ACP, 2011)

Context: QUANTIFY (FP6) ITAAC (RTRA) and TC2 (DGAC) projects

non CO2 >> CO2 effects

Aviation

CNRM‐CCM

Supersaturation is a necessary condition for contrail formation

Climate model assumes a PDF for the total water content

The parameterized PDF of Bony et al. (2001) is interpreted differently to allow a treatment of ice supersaturation

CNRS/LMD – Parameterization of ice supersaturation (1)CNRS/LMD – Parameterization of ice supersaturation (1)

Methodology• GCM simulations zoomed over the SIRTA and nudged to observed wind and temperature outside the zoomed domain 

=> Evaluation of the model physics

• SIRTA : instrumented site in Palaiseau; coordinates 2,028°E, 48,713°N; Equipped with a sky camera to observe contrails in a ~50 km radius. 

• Flight database from air traffic control; 

SIRTA now also equipped with a flight radar

CNRS/LMD – Parameterization of ice supersaturation (2)CNRS/LMD – Parameterization of ice supersaturation (2)

Contrails are observed when the LMDz simulates a high probability of ice supersaturation but there are too many false positive. 

Brier score is used to quantify fitness of probabilistic model prediction of contrail formation.

Model

Observed contrails

CNRS/LMD – Parameterization of ice supersaturation (3)CNRS/LMD – Parameterization of ice supersaturation (3)

Comparison  of observed and simulated clouds

• Model (in blue) does a reasonable job at simulating clouds against observed clouds by MSG (in red) but there is an overestimate for high clouds

CNRS/LMD – Parameterization of ice supersaturation (4)CNRS/LMD – Parameterization of ice supersaturation (4) IMPACT next stepsIMPACT next steps

• Choice of scenarios to be studied;

• Introduction of parameterizations of contrails and induced cirrus in the global models; 

• Improve of model efficiency on super computers;

• Ensemble simulations with OGCM;

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 86 of 89

Page 87: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Institut für Physik der Atmosphäre

On uncertainties regarding contrail

and contrail cirrus climate impact

Klaus Gierens

Institut für Physik der Atmosphäre, DLR Oberpfaffenhofen

Institut für Physik der Atmosphäre

earlier IPCC and other assessments

Sausen et al. MZ 2005,Lee et al. Atmos. Env. 2009

Institut für Physik der Atmosphäre

most recent IPCC assessment, 2013

Institut für Physik der Atmosphäre

Institut für Physik der Atmosphäre

What is the origin of the problems?

Possible answers:

Spatial scales from few nm to 1000 km (15 orders of mag)

cloud to synoptic scale

Time scales from ms to few days (8 orders of mag)

contrail formation to synoptic scale

multitude of , chemical, dynamical, radiative processes simultaneously active and interactive

RF: small residuum of large LW and SW components, strongly dependent on crystal habits, sun angle, background atmosphere and ground albedo

extremely large parameter space and extremely large variability

Institut für Physik der Atmosphäre

Examples of cloud inhomogeneities and variability

Results from satellite data inspection (M. Vazquez-Navarro, 2010),

1 month and 4 months of data: large scatter and unphysical signatures in the pdf

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 87 of 89

Page 88: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

Institut für Physik der Atmosphäre

How do different research modes cope with this enormous ranges of variability?

Measurements

in situ:

Single events, questionable representativeness (thick contrails are the easiest to find and observe);

Connection with background situation generally possible and should be recorded .

satellite:

Good global coverage with low resolution, only bulk properties;

Connection with background situation perhaps possible, in particular background clouds and albedo;

Detection efficiency for optically thin contrails and contrail cirrus is low; fraction of undetected contrails depends on sensor and must be estimated with aid of global model results.

Institut für Physik der Atmosphäre

Low detection efficiency of optically thin contrails

Kärcher et al. ACP 2009

Institut für Physik der Atmosphäre

How do different research modes cope with this enormous ranges of variability?

Theory, modelling

CRM:

Good representation of and radiation;

Single situations in parameter space of many dimensions;

Mostly idealised situations.

GCM and CoCiP:

Global focus, but simplified representation of contrail Access to actual air traffic data sometimes a problem

Validation with observed cases is difficult because of the large number of relevant parameters.

Institut für Physik der Atmosphäre

Imperfection of (contrail) models

Model InadequacyModel structure differs from the structure of the modelled system per definitionem.Various reasons:• lack of knowledge: known and

unknown unknowns;• idealisation, simplified

equations;• constraints of computing time

and memory.

Model UncertaintyModel parameters; Initial and boundary conditions; Subgrid parameterisations;Non-linearity;Internal variability.

Epistemic and ontic uncertainties

Ontic (aleatory) uncertainties are irreducible.

Prediction error

Institut für Physik der Atmosphäre

Points for discussion

1. How far is it possible to reduce the uncertainty in contrails’ RF significantly?

2. Is it possible to devise meaningful mitigation measures for individual contrails if there remains an irreducible RF for all contrails?

3. Can essential input data for mitigation strategies be predicted (forecast) such that contrail mitigation can be performed in flight planning phase?

4. Are model results or forecasts robust enough to base mitigation strategies upon them? If not, which parameters/parameter combinations are most important to be fixed?

Institut für Physik der Atmosphäre

Points for discussion

5. Which approach to contrail mitigation is most promising to yield a substantial gain and least error-prone in making a wrong decision?

a. climatology based mitigation

b. individual contrail impact assessment

c. avoid only those contrails that can safely predicted to have a significant warming impact

D1.4 Climate Change Impact Proceedings V1.4, 2-3 April 2014, FORUM-AE (FP7)

Annex 2 - Day 2 - Page 88 of 89

Page 89: FORUM-AE D1 4 WS Proc CC v1 7 · 2020. 6. 23. · D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) Seite 3 von 89 Forum-AE Coordination & Support Action

D1.4 Climate Change Impact Proceedings V1.7, 2‐3 Apr 2014,FORUM‐AE (FP7) 

 Seite 89 von 89 

FORUM‐AEcontacts:

OlivierPenanhoat(Coordinator;WP2&WP4Co‐lead):[email protected]

Paul Brok (WP1 Co‐lead): [email protected] 

Sigrun Matthes (WP1 Co‐lead): [email protected] 

Xavier Vancassel (WP2 Co‐lead): [email protected] 

Bethan Owen (WP3 Co‐lead): [email protected] 

Paul Madden (WP3 Co‐lead): paul.madden@rolls‐royce.com 

Peter Wiesen (WP4 Co‐lead): wiesen@uni‐wuppertal.de 

 

 

 


Recommended