+ All Categories
Home > Documents > Forward Rate Modeling

Forward Rate Modeling

Date post: 13-Feb-2017
Category:
Upload: hatu
View: 233 times
Download: 3 times
Share this document with a friend
60
Chapter 13 Forward Rate Modeling This chapter is concerned with interest rate modeling, in which the mean reversion property plays an important role. We consider the main short rate models (Vasicek, CIR, CEV, affine models) and the computation of fixed income products, such as bond prices, in such models. Next we consider the modeling of forward rates in the HJM and BGM models, as well as in two- factor models. 13.1 Short Term Models and Mean Reversion Vasicek Model The first model to capture the mean reversion property of interest rates, a property not possessed by geometric Brownian motion, is the Vasicek [Vaš77] model, which is based on the Ornstein-Uhlenbeck process. Here, the short term interest rate process (r t ) tR+ solves the equation dr t =(a - br t )dt + σdB t , (13.1) where a, σ R, b> 0, and (B t ) tR+ is a standard Brownian motion, with solution r t = r 0 e -bt + a b (1 - e -bt )+ σ w t 0 e -b(t-s) dB s , t R + . (13.2) The probability distribution of r t is Gaussian at all times t, with mean IE[r t ]= r 0 e -bt + a b (1 - e -bt ), and variance Var[r t ]= σ 2 w t 0 (e -b(t-s) ) 2 ds = σ 2 w t 0 e -2bs ds = σ 2 2b (1 - e -2bt ), t R + , 411
Transcript
Page 1: Forward Rate Modeling

Chapter 13Forward Rate Modeling

This chapter is concerned with interest rate modeling in which the meanreversion property plays an important role We consider the main short ratemodels (Vasicek CIR CEV affine models) and the computation of fixedincome products such as bond prices in such models Next we consider themodeling of forward rates in the HJM and BGM models as well as in two-factor models

131 Short Term Models and Mean Reversion

Vasicek Model

The first model to capture the mean reversion property of interest rates aproperty not possessed by geometric Brownian motion is the Vasicek [Vaš77]model which is based on the Ornstein-Uhlenbeck process Here the shortterm interest rate process (rt)tisinR+ solves the equation

drt = (aminus brt)dt+ σdBt (131)

where a σ isin R b gt 0 and (Bt)tisinR+ is a standard Brownian motion withsolution

rt = r0 eminusbt + a

b(1minus eminusbt) + σ

w t

0eminusb(tminuss)dBs t isin R+ (132)

The probability distribution of rt is Gaussian at all times t with mean

IE[rt] = r0 eminusbt + a

b(1minus eminusbt)

and variance

Var[rt] = σ2w t

0( eminusb(tminuss))2ds = σ2

w t

0eminus2bsds = σ2

2b (1minus eminus2bt) t isin R+

411

N Privault

iert N

(r0 eminusbt + a

b(1minus eminusbt) σ

2

2b (1minus eminus2bt)) t gt 0

In large time t with b gt 0 we have

limtrarrinfin

IE[rt] = a

band lim

trarrinfinVar[rt] = σ2

2b

and this distribution converges to the Gaussian N (ab σ2(2b)) distributionwhich is also the invariant (or stationary) distribution of (rt)tisinR+ and theprocess tends to revert to its long term mean ab = limtrarrinfin IE[rt]

Figure 131 presents a random simulation of t 7minusrarr rt in the Vasicek modelwith r0 = 3 and shows the mean reverting property of the process withrespect to ab = 25

-2

-1

0

1

2

3

4

5

6

7

8

0 01 02 03 04 05 06 07 08 09 1

ab

rt

()

t

Fig 131 Graph of the Vasicek short rate t 7rarr rt with a = 25 b = 1 and σ = 01

As can be checked from the simulation of Figure 131 the value of rt in theVasicek model may become negative due to its Gaussian distribution Al-though real interest rates can sometimes fall below zero this can be regardedas a potential drawback of the Vasicek model

Cox-Ingersoll-Ross (CIR) Model

The Cox-Ingersoll-Ross (CIR) [CIR85] model brings a solution to the posi-tivity problem encountered with the Vasicek model by the use the nonlinearstochastic differential equation

drt = β(αminus rt)dt+ σradicrtdBt α gt 0 β gt 0

The probability distribution of rt at time t gt 0 admits the noncentral Chisquare probability density function given by

412

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

ft(x) (133)

= 2βσ2(1minus eminusβt) exp

(minus2β(x+ r0 eminusβt)

σ2(1minus eminusβt)

)(x

r0 eminusβt

)αβσ2minus12I2αβσ2minus1

(4βradicr0x eminusβt

σ2(1minus eminusβt)

)

x gt 0 where

Iλ(z) =(z

2

)λ infinsumk=0

(z24)kkΓ (λ+ k + 1) z isin R

is the modified Bessel function of the first kind cf Corollary 24 in [AL05]Note that ft(x) is not defined at x = 0 if αβσ2 minus 12 lt 0 ie σ2 gt 2αβ inwhich case the probability distribution of rt admits a point mass at x = 0On the other hand rt remains almost surely strictly positive under the Fellercondition 2αβ gt σ2 cf the study of the associated probability density inLemma 4 of [Fel51]

Figure 132 presents a random simulation of t 7minusrarr rt in the CIR model inthe case σ2 gt 2αβ in which the process is mean reverting with respect toα = 25 and has a nonzero probability of hitting 0

0

1

2

3

4

5

6

7

8

0 01 02 03 04 05 06 07 08 09 1

α=25

r

t (

)

t

Fig 132 Graph of the CIR short rate t 7rarr rt with α = 25 β = 1 and σ = 13

In large time t using the asymptotics

Iλ(z) zrarr01

Γ (λ+ 1)

(z2

the density (133) becomes the Gamma density

f(x) = limtrarrinfin

ft(x) = 1Γ (2αβσ2)

(2βσ2

)2αβσ2

xminus1+2αβσ2eminus2βxσ2

x gt 0

(134)

413

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

with shape parameter 2αβσ2 and scale parameter σ2(2β) which is also theinvariant distribution of rt

Other classical mean reverting models include the Courtadon (1982) model

drt = β(αminus rt)dt+ σrtdBt

where α β σ are nonnegative and the exponential Vasicek model

drt = rt(η minus a log rt)dt+ σrtdBt

where a η σ gt 0 cf Exercises 414 and 415

Constant Elasticity of Variance (CEV)

Constant Elasticity of Variance models are designed to take into accountnonconstant volatilities that can vary as a power of the underlying assetThe Marsh-Rosenfeld (1983) model

drt = (βrminus(1minusγ)t + αrt)dt+ σr

γ2t dBt (135)

where α β σ γ are constants and β is the variance (or diffusion) elasticitycoefficient covers most of the CEV models Denoting by v(r) = σrγ2 thediffusion coefficient in (135) constant elasticity refers to the constant ratio

dv(r)v(r)drr

= rvprime(r)v(r) = d log v(r)

d log r = d log rγ2d log r = γ

2

between the relative change dv(r)v(r) in the variance v(r) and the relativechange drr in r

For γ = 1 this is the CIR model and for β = 0 we get the standard CEVmodel

drt = αrtdt+ σrγ2t dBt

If γ = 2 this yields the Dothan [Dot78] model

drt = αrtdt+ σrtdBt

which is a version of geometric Brownian motion used for short term interestrate modeling

Time-dependent affine Models

The class of short rate interest rate models admits a number of generalizationsthat can be found in the references quoted in the introduction of this chapter

414

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

among which is the class of affine models of the form

drt = (η(t) + λ(t)rt)dt+radicδ(t) + γ(t)rtdBt (136)

Such models are called affine because the associated zero-coupon bonds canbe priced using an affine PDE of the type (1316) below as will be seen afterProposition 132

Affine models also include the Ho-Lee model

drt = θ(t)dt+ σdBt

where θ(t) is a deterministic function of time as an extension of the Mertonmodel drt = θdt+σdBt and the Hull-White model [HW90] cf Section 131

drt = (θ(t)minus α(t)rt)dt+ σ(t)dBt

which is itself a time-dependent extension of the Vasicek model

132 Calibration of the Vasicek model

The Vasicek equation (131) ie

drt = (aminus brt)dt+ σdBt

can be discretized according to a discrete-time sequence (tk)k=01n as

rtk+1 minus rtk = (aminus brtk)∆t+ σZk k isin N

where∆t = tk+1minustk and (Zk)kgt0 is a Gaussian white noise with variance∆tie a sequence of independent centered and identically distributed N (0 ∆t)Gaussian random variables

We find

rtk+1 = rtk + (aminus brtk)∆t+ σZk = a∆t+ (1minus b∆t)rtk + σZk k isin N

Based on a set (rtk)k=0n of market data we can minimize the residual

nminus1sumk=0

(rtk+1 minus a∆tminus (1minus b∆t)rtk

)2over a and b using Ordinary Least Square (OLS) regression For this compute

part

parta

nminus1sumk=0

(rtk+1 minus a∆tminus (1minus b∆t)rtk

)2 415

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minus2∆t(minusan∆t+

nminus1sumk=0

(rtk+1 minus (1minus b∆t)rtk

))= 0

and

part

partb

nminus1sumk=0

(rtk+1 minus a∆tminus (1minus b∆t)rtk

)2= ∆t

nminus1sumk=0

rtk(minusa∆t+ rtk+1 minus (1minus b∆t)rtk

)= ∆t

nminus1sumk=0

rtk

(rtk+1 minus (1minus b∆t)rtk + 1

n

nminus1suml=0

(rtl+1 minus (1minus b∆t)rtl

))= 0

This leads to an estimate the parameters a and b respectively as the empiricalmean and covariance of (rtk)k=01n ie

a∆t = 1n

nminus1sumk=0

rtk+1 minus1n

(1minus b∆t)nminus1sumk=0

rtk

and

1minus b∆t =

nminus1sumk=0

rtk rtk+1 minus1n

nminus1sumk=0

rtk

nminus1suml=0

rtl+1

nminus1sumk=0

rtk rtk minus1n

nminus1sumk=0

rtk

nminus1suml=0

rtl

=

nminus1sumk=0

(rtk minus

1n

nminus1suml=0

rtl

)(rtk+1 minus

1n

nminus1suml=0

rtl+1

)nminus1sumk=0

(rtk minus

1n

nminus1sumk=0

rtk

)2

This also yields

σ2∆t = Var[σZk] = Var[rtk+1 minus (1minus b∆t)rtk minus a∆t

] k isin N

hence σ can be estimated as

σ2∆t = 1n

nminus1sumk=0

(rtk+1 minus rtk(1minus b∆t)minus a∆t

)2

416

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Defining rtk = rtk minus ab k isin N we have

rtk+1 = rtk+1 minus ab= rtk minus ab+ (aminus brtk)∆t+ σZk

= rtk minus abminus b(rtk minus ab)∆t+ σZk

= rtk minus brtk∆t+ σZk

= (1minus b∆t)rtk + σZk k isin N

In other words the sequence (rtk)kisinisinN is modeled according to an autore-gressive AR(1) time series in which the current state Xn of the system isexpressed as the linear combination

Xn = σZn + α1Xnminus1 n gt 1 (137)

which can be solved recursively as the series

Xn = σZn + α1(σZnminus1 + α1Xnminus2) = middot middot middot = σ

infinsumk=0

αk1Znminusk

which converges when |α1| lt 1 ie |1minus b∆t| lt 1

Note that the variance of Xn is given by

Var[Xn] = σ2 Var[ infinsumk=0

αk1Znminusk

]

= σ2∆tinfinsumk=0

α2k1

= σ2∆tinfinsumk=0

(1minus b∆t)2k

= σ2∆t

1minus (1minus b∆t)2

= σ2∆t

2b∆tminus b2(∆t)2

σ2

2b

which is the expected variance of the Vasicek process in the stationary regime

417

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

library(quantmod)getSymbols(^TNXfrom=2012-01-01to=2016-01-01src=yahoo)rate=Ad(`TNX`)chartSeries(rateupcol=bluetheme=white)n = sum(isna(rate))

The next Figure 133 displays the yield of the 10 Year Treasury Note on theChicago Board Options Exchange (CBOE) Treasury notes usually have amaturity between one and 10 years whereas treasury bonds have maturitiesbeyond 10 years)

15

20

25

30

rate [2012minus01minus032015minus12minus31]

Last 2269

Jan 032012

Jul 022012

Jan 022013

Jul 012013

Jan 022014

Jul 012014

Jan 022015

Jul 012015

Dec 312015

Fig 133 CBOE 10 Year Treasury Note yield (TNX)

ratek=asvector(rate)ratekplus1 lt- c(ratek[-1]0)b lt- (sum(ratekratekplus1) - sum(ratek)sum(ratekplus1)n)(sum(ratekratek) - sum(ratek)sum(

ratek)n)a lt- sum(ratekplus1)n-bsum(ratek)nsigma lt- sqrt(sum((ratekplus1-bratek-a)^2)n)

The next code is generating Vasicek random samples according to the AR(1)time series (137)

for (i in 1100) arsimlt-arimasim(model=list(ar=c(b))nstart=100n)y=ratek[1]+ab+sigmaarsimtime lt- asPOSIXct(time(TNX) format = Y-m-d)yield lt- xts(x = y orderby = time)chartSeries(yieldupcol=bluetheme=white)Syssleep(05)

418

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

00

05

10

15

20

25

30

35

yield [2012minus01minus03 0800002015minus12minus31 080000]

Last 182260342989168

Jan 032012

Jul 022012

Jan 022013

Jul 012013

Jan 022014

Jul 012014

Jan 022015

Jul 012015

Dec 312015

Fig 134 Calibrated Vasicek samples

133 Zero-Coupon and Coupon Bonds

A zero-coupon bond is a contract priced P (t T ) at time t lt T to deliverP (T T ) = $1 at time T In addition to its value at maturity a bond mayyield a periodic coupon payment at regular time intervals until the maturitydate

Fig 135 Five dollar Louisiana bond of 1875 with 75 biannual coupons

The computation of the arbitrage price P0(t T ) of a zero-coupon bond basedon an underlying short term interest rate process (rt)tisinR+ is a basic andimportant issue in interest rate modeling

Constant short rate

In case the short term interest rate is a constant rt = r t isin R+ a standardarbitrage argument shows that the price P (t T ) of the bond is given by

P (t T ) = eminusr(Tminust) 0 6 t 6 T

419

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Indeed if P (t T ) gt eminusr(Tminust) we could issue a bond at the price P (t T ) andinvest this amount at the compounded risk free rate r which would yieldP (t T ) er(Tminust) gt 1 at time T

On the other hand if P (t T ) lt eminusr(Tminust) we could borrow P (t T ) at the rater to buy a bond priced P (t T ) At maturity time T we would receive $1 andrefund only P (t T ) er(Tminust) lt 1

Deterministic short rates

Similarly to the above when the short term interest rate process (rt)tisinR+ isa deterministic function of time a similar argument shows that

P (t T ) = eminusr Ttrsds 0 6 t 6 T (138)

Stochastic short rates

In case (rt)tisinR+ is an (Ft)tisinR+ -adapted random process the formula (138)is no longer valid as it relies on future information and we replace it with

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T (139)

under a risk-neutral measure Plowast It is natural to write P (t T ) as a conditionalexpectation under a martingale measure as the use of conditional expectationhelps to ldquofilter outrdquo the future information past time t contained in

w T

trsds

The expression (139) makes sense as the ldquobest possible estimaterdquo of thefuture quantity eminus

r Ttrsds in mean square sense given information known up

to time t

Coupon bonds

Pricing bonds with non-zero coupon is not difficult since in general theamount and periodicity of coupons are deterministiclowast In the case of a con-stant continuous-time coupon yield at the rate c gt 0 another application ofthe above absence of arbitrage argument shows that the price Pc(t T ) of thecoupon bond is given by

Pc(t T ) = ec(Tminust)P0(t T ) 0 6 t 6 T

see also Figure 139 below In the sequel we will mostly consider zero-couponbonds priced as P (t T ) = P0(t T ) 0 6 t 6 T lowast However coupon default cannot be excluded

420

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Martingale property of discounted bond prices

The following proposition shows that Assumption (A) of Chapter 12 is sat-isfied in other words the bond price process t 7minusrarr P (t T ) can be used as anumeacuteraireProposition 131 The discounted bond price process

t 7minusrarr P (t T ) = eminusr t

0 rsdsP (t T )

is a martingale under PlowastProof By (139) we have

eminusr t

0 rsdsP (t T ) = eminusr t

0 rsds IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r t0 rsds eminus

r Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r T0 rsds

∣∣∣ Ft] and this suffices to conclude since by the ldquotower propertyrdquo (1739) of condi-tional expectations any process (Xt)tisinR+ of the form t 7minusrarr Xt = IElowast[F | Ft]F isin L1(Ω) is a martingale cf Relation (61)

Path integrals

In physics the Feynman path integral

ψ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(i

~S(x(middot))

)where ~ is the Planck constant and S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 minus V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 minus V (x(timinus1)))∆ti

solves the Schroumldinger equation

i~partψ

partt(x t) = minus ~2

2mpart2ψ

partx2 (x t) + V (x(t))ψ(x t)

After the Wick rotation t 7rarr minusit the function

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

) 421

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

solves the heat equation

~partφ

partt(x t) = minus ~2

2mpart2φ

partx2 (x t) + V (x(t))φ(x t)

Given the action

S(x(middot)) =w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

we can rewrite the Euclidean path integral as

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

)=

wx(0)=x x(t)=y

Dx(middot) exp(minus 1

2~

Nsumi=1

(x(ti)minus x(timinus1))2

2∆timinus 1

~

Nsumi=1

V (x(timinus1)))

= IElowast[exp

(minus1~

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

]

This type of path integral computation

φ(y t) = IElowast[exp

(minus

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

] (1310)

is particularly useful for bond pricing as (1310) can be interpreted as theprice of a bond with short term interest rate process (rt)tisinR+ = (V (Bt)))tisinR+

conditionally to the value of the endpoint Bt = y cf (1331) below It can alsobe useful for exotic option pricing cf Chapter 10 and for risk managementThe path integral (1310) can be estimated either by closed-form expressionsusing Partial Differential Equations (PDEs) or probability densities by ap-proximations such as (conditional) Moment matching or by Monte Carloestimation from the paths of a Brownian bridge as shown in Figure 136

422

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 136 Brownian bridge

Bond pricing PDE

We assume from now on that the underlying short rate process is solution tothe stochastic differential equation

drt = micro(t rt)dt+ σ(t rt)dBt (1311)

where (Bt)tisinR+ is a standard Brownian motion under Plowast Note that specify-ing the dynamics of (rt)tisinR+ under the historical probability measure P willalso lead to a notion of market price of risk (MPoR) for the modeling of shortrates

Since all solutions of stochastic differential equations such as (1311) havethe Markov property cf eg Theorem V-32 of [Pro04] the arbitrage priceP (t T ) can be rewritten as a function F (t rt) of rt ie

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] = IElowast[

eminusr Ttrsds

∣∣∣ rt] = F (t rt)

and depends on rt only instead of depending on all information available inFt up to time t meaning that the pricing problem can now be formulated asa search for the function F (t x)

Proposition 132 (Bond pricing PDE) The bond pricing PDE for P (t T ) =F (t rt) is written as

xF (t x) = partF

partt(t x) + micro(t x)partF

partx(t x) + 1

2σ2(t x)part

2F

partx2 (t x) (1312)

423

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

t isin R+ x isin R subject to the terminal condition

F (T x) = 1 x isin R (1313)

Proof By Itocircrsquos formula we have

d(

eminusr t

0 rsdsP (t T ))

= minusrt eminusr t

0 rsdsP (t T )dt+ eminusr t

0 rsdsdP (t T )

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdsdF (t rt)

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdspartF

partx(t rt)(micro(t rt)dt+ σ(t rt)dBt)

+ eminusr t

0 rsds

(12σ

2(t rt)part2F

partx2 (t rt) + partF

partt(t rt)

)dt

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

+ eminusr t

0 rsds

(minusrtF (t rt) + micro(t rt)

partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

)dt

(1314)

Given that t 7minusrarr eminusr t

0 rsdsP (t T ) is a martingale the above expression(1314) should only contain terms in dBt (cf Corollary II-1 page 72 of[Pro04]) and all terms in dt should vanish inside (1314) This leads to theidentities

rtF (t rt)

= micro(t rt)partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

d(

eminusr t

0 rsdsP (t T ))

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

(1315a)

(1315b)

which recover (1312) Condition (1313) is due to the fact that P (T T ) = $1

In the case of an interest rate process modeled by (136) we have

micro(t x) = η(t) + λ(t)x and σ(t x) =radicδ(t) + γ(t)x

hence (1312) yields the (time dependent) affine PDE

xF (t x) = partF

partt(t x) + (η(t) + λ(t)x)partF

partx(t x) + 1

2(δ(t) + γ(t)x)part2F

partx2 (t x)

(1316)

t isin R+ x isin R By (1315b) the above proposition also shows that

424

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

dP (t T )P (t T ) = 1

P (t T )d(

er t

0 rsds eminusr t

0 rsdsP (t T ))

= 1P (t T )

(rtP (t T )dt+ e

r t0 rsdsd

(eminus

r t0 rsdsP (t T )

))= rtdt+ 1

P (t T ) er t

0 rsdsd(

eminusr t

0 rsdsP (t T ))

= rtdt+ 1F (t rt)

partF

partx(t rt)σ(t rt)dBt

= rtdt+ σ(t rt)part logFpartx

(t rt)dBt (1317)

In the Vasicek casedrt = (aminus brt)dt+ σdWt

the bond price takes the form

F (t rt) = P (t T ) = eA(Tminust)+rtC(Tminust)

where A(middot) and C(middot) are functions of time cf (1321) below and (1317)yields

dP (t T )P (t T ) = rtdtminus

σ

b(1minus eminusb(Tminust))dWt (1318)

since F (t x) = eA(Tminust)+xC(Tminust)

Note that more generally all affine short rate models as defined in Rela-tion (136) including the Vasicek model will yield a bond pricing formula ofthe form

P (t T ) = eA(Tminust)+rtC(Tminust)

cf eg sect 324 of [BM06]

Probabilistic solution of the Vasicek PDE

Next we solve the PDE (1312) written with micro(t x) = aminusbx and σ(t x) = σin the Vasicek [Vaš77] model

drt = (aminus brt)dt+ σdBt

as xF (t x) = partF

partt(t x) + (aminus bx)partF

partx(t x) + σ2

2part2F

partx2 (t x)

F (T x) = 1(1319)

by a direct computation of the conditional expectation

425

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

F (t rt) = P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] (1320)

Recall that in this model the short rate (rt)tisinR+ has the expression

rt = g(t) +w t

0h(t s)dBs = r0 eminusbt + a

b(1minus eminusbt) + σ

w t

0eminusb(tminuss)dBs

whereg(t) = r0 eminusbt + a

b(1minus eminusbt) t isin R+

andh(t s) = σ eminusb(tminuss) 0 6 s 6 t

are deterministic functions

Letting uort = max(u t) using the fact that Wiener integrals are Gaussianrandom variables and the Gaussian moment generating function we have

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r Tt

(g(s)+r s

0 h(su)dBu)ds∣∣∣ Ft]

= exp(minus

w T

tg(s)ds

)IElowast[

eminusr Tt

r s0 h(su)dBuds

∣∣∣ Ft]= exp

(minus

w T

tg(s)ds

)IElowast[

eminusr T

0r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

uorth(s u)dsdBu

)IElowast[

eminusr Tt

r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu + 1

2w T

t

(w T

uh(s u)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

w t

0

w T

teminusb(sminusu)dsdBu

)times exp

(σ2

2w T

t

(w T

ueminusb(sminusu)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

b(1minus eminusb(Tminust))

w t

0eminusb(tminusu)dBu

)times exp

(σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)

426

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= exp(minusrtb

(1minus eminusb(Tminust)) + 1b

(1minus eminusb(Tminust))(r0 eminusbt + a

b(1minus eminusbt)

))times exp

(minus

w T

t

(r0 eminusbs + a

b(1minus eminusbs)

)ds+ σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)= eA(Tminust)+rtC(Tminust) (1321)

whereC(T minus t) = minus1

b(1minus eminusb(Tminust)) (1322)

and

A(T minus t) = 4abminus 3σ2

4b3 + σ2 minus 2ab2b2 (T minus t) + σ2 minus ab

b3eminusb(Tminust)minus σ2

4b3 eminus2b(Tminust)

(1323)

Analytical solution of the Vasicek PDE

In order to solve the PDE (1319) analytically we may look for a solution ofthe form

F (t x) = eA(Tminust)+xC(Tminust) (1324)

where A(middot) and C(middot) are functions to be determined under the conditionsA(0) = 0 and C(0) = 0 Substituting (1324) into the PDE (1312) with theVasicek coefficients micro(t x) = (aminus bx) and σ(t x) = σ shows that

x eA(Tminust)+xC(Tminust) = minus(Aprime(T minus t)minus xC prime(T minus t)) eA(Tminust)+xC(Tminust)

+(aminus bx)C(T minus t) eA(Tminust)+xC(Tminust)

+12σ

2C2(T minus t) eA(Tminust)+xC(Tminust)

ie

x = minusAprime(T minus t) + xC prime(T minus t) + (aminus bx)C(T minus t) + 12σ

2C2(T minus t)

By identification of terms for x = 0 and x 6= 0 this yields the system ofRiccati and linear differential equations

Aprime(s) = aC(s) + σ2

2 C2(s)

C prime(s) = 1 + bC(s)

which can be solved to recover the above value of P (t T ) = F (t rt)

427

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Vasicek Bond Price Simulations

In this section we consider again the Vasicek model in which the short rate(rt)tisinR+ is solution to (131) Figure 137 presents a random simulation oft 7minusrarr P (t T ) in the same Vasicek model The graph of the correspondingdeterministic zero coupon bond price obtained for a = b = σ = 0 is alsoshown on the Figure 137

03

04

05

06

07

08

09

1

11

0 5 10 15 20

Fig 137 Graphs of t 7rarr F (t rt) = P (t T ) vs t 7rarr eminusr0(Tminust)

Figure 138 presents a random simulation of t 7minusrarr P (t T ) for a (non-zero)coupon bond with price Pc(t T ) = ec(Tminust)P (t T ) and coupon rate c gt 00 6 t 6 T

10000

10200

10400

10600

10800

0 5 10 15 20

Fig 138 Graph of t 7rarr F (t rt) = P (t T ) for a bond with a 23 coupon

The simulation of Figure 138 can be compared to the coupon bond marketdata of Figure 139 below

428

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 139 Bond price graph with maturity 011808 and coupon rate 625

See Exercise 133 for a bond pricing formula in the CIR model

Zero coupon bond price and yield data

The following zero coupon bond price was downloaded at EMMA fromthe Municipal Securities Rulemaking Board

ORANGE CNTY CALIF PENSION OBLIG CAP APPREC-TAXABLE-REF-SER A (CA)CUSIP 68428LBB9Dated Date 06121996 (June 12 1996)Maturity Date 09012016 (September 1st 2016)Interest Rate 00 Principal Amount at Issuance $26056000Initial Offering Price 19465

library(quantmod)bondprice lt- readtable(bond_data_Rtxtcolnames = c(DateHighPriceLowPrice

HighYieldLowYieldCountAmount))head(bondprice)time lt- asPOSIXct(bondprice$Date format = Y-m-d)price lt- xts(x = bondprice$HighPrice orderby = time)yield lt- xts(x = bondprice$HighYield orderby = time)chartSeries(priceupcol=bluetheme=white)chartSeries(yieldupcol=bluetheme=white)

429

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

2016-01-139908298982166615012200002015-12-2999183991831251251100002015-12-219795297952301430141100002015-12-179914198552123125156100002015-12-0798779877171417142100002015-12-04983639811826282282100002015-11-1898659865176817672200002015-11-1798306983062201222200002015-10-029865998514167150641000002015-09-099898210721071250002015-09-089888498043204311583300002015-07-20975059628345922992200002015-07-1698397983971461461250002015-07-15988729887210211021150002015-07-109768997689208420841300002015-06-1898123980231686163300002015-06-179884397034254313250002015-06-15983698299143113795850002015-06-0998016980161651651200002015-05-21978269772618321752500002015-05-189849498494119111912300002015-05-1598559835130311433300002015-05-129776997769175117511150002015-04-279834898348125112512400002015-04-249830398303128212821250002015-04-239760797607181318131650002015-04-1498649864111100002015-03-20983897981428114373850002015-03-199785197751159151836750002015-03-11981981391323600002015-02-27978297695156914832400002015-02-139858298357108309343750002015-02-119857698226116609343300002015-01-15983983106710671550002015-01-12989598950650652600002015-01-099898123212321600002014-12-11983197396155131600002014-12-109641696416214421442800002014-12-059804498044114811481500002014-12-049728897288159815981500002014-11-219782297822125125150002014-11-209642294353320733150002014-11-0797979964582014113861250002014-10-299650496504195619561150002014-10-1498149977841201123200002014-10-0797401974011396139611000002014-10-0397991970261598107353500002014-09-3097446962851991135842200002014-09-1997331972311455140221000002014-09-18964796419186221000002014-09-15969956732278161943000002014-09-119555952252823382200002014-08-199711995596223614495750002014-08-139528695286238623861300002014-08-069559395593220522051350002014-08-0197951977261114100341000002014-07-30976975122311742200002014-07-239603695036244919434500002014-07-1697494951246912526750002014-07-1497182969571461135141000002014-07-11956995572144208421000002014-05-209531495314212321232300002014-05-169372393723286628661300002014-04-299701396713143913052200002014-04-1695169516211521151200002014-04-07976339683313510042500002014-04-029577393974260718073750002014-02-2893293128932852200002014-02-2791759175348634861100002014-02-21956959269530417584400002014-02-189438593885251122992900002014-02-139310193101284228421450002013-11-159393262726271500002013-11-14915915320432041500002013-11-12925999171312127712200002013-10-319427294272210121013450002013-10-309232392323284828481100002013-10-299599942521011452200002013-10-259080790807342934291100002013-10-219161691491314230933750002013-08-0791008910083113112100002013-08-05894258942536813681150002013-07-229494394018216812800002013-07-1795167930262339162900002013-07-16951549515416161500002013-07-12944129441218518511000002013-06-28940049340421719663400002013-06-269471892567245417213500002013-06-11925692562422422120002013-06-05911119111129072907150002013-06-0495282952821528152862500002013-05-3195122951221547154712250002013-05-309429291069290718214280002013-05-2994969488516331652000002013-05-2492682926822352351100002013-05-2394488930732217174942100002013-05-219679193731199174950002013-05-169127691276280428041200002013-05-02916769015315126383270002013-04-24920999163926322483450002013-04-22920749161426322483540002013-04-179645941591810798550002013-04-159205491954250524722200002013-04-1191791725842584170002013-04-099635889785320810996570002013-03-12914491442602260218000002013-02-229164389323243250134830002013-02-0690290298529222400002012-11-29881528796434573399103200002012-11-2888176878843479338941200002012-11-279048790487268226821150002012-11-23890628906231063106150002012-11-13878737073707150002012-11-098472383048495644175200002012-10-3188798879313531351100002012-10-25907905261925612300002012-10-2490353903532662662400002012-10-168845888458319731972400002012-10-0290866900552724682300002012-10-0190148900472726712200002012-09-26882398779733513222500002012-09-249051390512255425542100002012-09-21905905255625561300002012-09-139103189907270923923750002012-08-0985188518400240023250002012-08-0886038333945513755410002012-08-0386486859863753605240002012-07-2785849404940192200002012-07-19876183625440732541800002012-07-18870738707334342350002012-07-178652286048368636092400002012-07-1685088840884254396131050002012-07-1386541865413543541150002012-06-29865728657235351400002012-06-2885258525387238721400002012-06-2187751868533431521100002012-06-208528984689401238431650002012-06-138643855937363521500002012-06-118386183861422142211750002012-05-258518485184380938091300002012-05-238386683866417841781300002012-05-2185331853313753751250002012-05-18838344094409150002012-05-178442484224405743750002012-04-05853283662410636541000002012-03-2988243851033692852530002012-03-2787258342141443112530002012-03-228495840753956371731350002012-03-02855855352535251100002012-03-018368583685400740071100002012-02-0787584664368529515750002012-01-2686645865853167315241500002012-01-2586458645323211610002012-01-248380754703409742540002012-01-2081188118458445841100002012-01-178245182351425342263650002012-01-128413781755440837746600002012-01-1181658094639443431650002012-01-0479575795754984981200002011-12-307875787551985198130002011-12-29764757647558245824130002011-12-088038580385468346831150002011-12-01798879884847992300002011-11-307969379693484848481150002011-11-01777560455491240002011-10-28788578854984981100002011-10-26767576755555551100002011-10-05777559725418280002011-08-2678119773195211521100002011-08-23774237742351695169170002011-08-2276576554065406170002011-07-278135881358414111300002011-06-227417415864586411300002011-04-267554575545532253221100002011-04-257481964916825555053400002011-04-206474163965853382983600002011-04-15767097545334500555000002011-04-087620176201511351131150002011-03-3174502745025525521150002011-03-17744347443455551400002011-03-167373586558651400002011-03-0374556745565435431500002011-03-017390373903558355831500002011-01-2871317713176156153200002011-01-2667256725723472332200002011-01-187300473004568756871600002011-01-1273719716560215561500002011-01-04735735552455242540002011-01-0371592713756055621200002010-12-2273173559855982300002010-12-1374185697646305533250002010-12-1073558735585455454800002010-12-0973547735475455452200002010-12-02658996589974087408150002010-12-017312570756124553241980002010-11-297508571889582650495290002010-11-19738738533653361150002010-11-10772797645452400002010-11-097674969503447934800002010-11-087914178641407240722400002010-11-037953178606397839782300002010-11-0277087770874524521350002010-10-068072779568371536714700002010-10-057906878277419741972700002010-10-04801793797379721100002010-10-018048978903371137113300002010-09-307717714453445321300002010-09-207888377821403440342400002010-09-177781277812426742672100002010-09-1476942769424454451250002010-09-097446274462500650061180002010-09-08732057320552965296150002010-09-03757527575247472100002010-09-02748317483149074907150002010-08-3176585748294896452800002010-08-307403974039507350731180002010-08-23765197651945452550002010-08-207463974639492149211550002010-08-167557454932470662100002010-08-117536575365473647361100002010-08-067425573255520652063300002010-07-26745787251535487651000002010-07-22740047245253500161750002010-07-2173417705936513384600002010-07-20707570655772577222000002010-07-077221172111537753772200002010-07-06720797207954544340002010-07-027293472068520152012160002010-06-307169934586856686900002010-06-29694269073609460942200002010-06-177140467856364551492000002010-06-1173567356500850081350002010-06-1072391713915275272500002010-06-09708647051570357032500002010-06-087281271524523516571050002010-06-077099270638566356632700002010-05-03720727107254775252100002010-04-016775661256568617731000002010-03-056765667556612661262400002010-03-03667566656366362400002010-02-1067946678600659966900002010-02-096586438683468343300002010-02-0866264874671167114800002010-01-066542565425649464942200002010-01-05708596310870465256500002009-12-157081570155521552154200002009-12-146565652965292200002009-11-1868569685695655652500002009-11-176717467174595259521400002009-11-1668526685265655652400002009-11-127039675255239417000002009-10-0170974642926063502952010002009-09-3070152605577397524460002009-09-29636296819681921200002009-09-0364605646056366361300002009-08-286190861908697269721300002009-08-19626561756774677431500002009-08-18614446083727221000002009-08-12621602573296884125900002009-07-216146561465697169711100002009-07-206033160307724572452200002009-06-265930159301742674261300002009-06-226112161121697269721250002009-06-175991959319739573952500002009-06-106088860888771180002009-06-0958685868752275221180002009-06-026096260962695569551250002009-05-225993959939717871781250002009-05-216204161692566842600002009-04-16609560956846842400002009-04-15604604696569651400002009-04-1462224622246546541100002009-04-0659868598687067061100002009-03-065656791279121250002009-03-0553983539838428421250002009-02-095770457554745741441450002009-02-06576925691776741431050002009-01-2855635556357887788712500002009-01-2258225582257257251250002009-01-215671556715760676061250002008-11-065720157201728972891150002008-10-166021959294655765572200002008-10-156095859283639563954500002008-10-0855454877877842000002008-07-3163623623515681568131500002008-07-186192961929661150002008-07-156361460368631456494600002008-07-1062562255918591821000002008-07-08642016170160225522100002008-07-0260567605676256251180002008-07-015859458594666766671180002008-06-2359589657665762300002008-06-20619936186592959293450002008-06-1661584598936631500002008-06-1358958865865821000002008-06-126094460944612761271150002008-05-156237562375578257821100002008-05-136137261372597659761100002008-04-2461086108664200002008-03-07626396157558085622000002008-02-2264256046012526662400002008-02-1164214642145255251400002008-02-0761756175571757171400002008-01-086385162951526152614600002008-01-04610716046590659063550002008-01-0359977592776146142100002007-10-18608446084456956921300002007-10-17613136131355995599150002007-10-1659655965591359131700002007-09-17610086100856561550002007-09-14594594590559052550002007-09-1260714607145655651200002007-09-1161458101615551661350002007-09-06608636075561256123750002007-08-2859514595145855851500002007-08-235994759947576257621110002007-08-205989958311606957622250002007-07-125942259422578857881250002007-07-115963459603575257462850002007-07-0958842588425895891950002007-07-02594085940857715771150002007-06-2759934590095665566541800002007-06-2659433582825754575431900002007-06-25598475875567456743600002007-06-225777577760696069150002007-06-2059275568356248578221050002007-06-1857214572146166616613000002007-05-255909659096576857681350002007-05-215959259592566356631550002007-05-15615236152353531150002007-05-1461514612535347532600002007-05-09602258955766576631950002007-05-01602846028455025502150002007-04-25612612532953291500002007-04-2461179585975802532852500002007-04-2359675585913591331500002007-04-1956556561986198150002007-03-2861658607520352032500002007-03-275953758877570357033750002007-02-2861125602575256525622000002007-02-2759953597535496549622000002007-02-265882258423566556653150002007-02-21585858085808150002007-02-085926959269555355531100002007-02-056019660196537853781300002007-02-025880658456562756272100002007-02-0159222592225555551500002007-01-316006358556853972200002007-01-265700357003594359431100002007-01-245791557915577857781100002007-01-236027560275534553451100002007-01-1660129601295365361400002007-01-115988659445467543400002007-01-05585157466582956374400002006-12-1859359579525707545352400002006-12-01573553617861783150002006-11-2160013600135353150002006-11-15583165831655915591150002006-09-07582215822155552450002006-09-065681256812575157511450002006-08-22577455675555855582400002006-08-1655709557095925921200002006-08-03565915486067573841200002006-07-3155135541356183599641000002006-07-27545585455861611100002006-07-2456094519225815814400002006-07-175624755372577157712200002006-07-115481954819602360231100002006-07-065479151686618602351700002006-07-055455456075607511000002006-06-2650571505716816681611000002006-06-16542552256476472400002006-06-1449319493197051705111000002006-05-155443854438662500002006-05-125218552185642264221500002006-04-255619456194565256521450002006-04-21545155316212621231350002006-04-125557455574574657461250002006-04-055663654525592355465650002006-04-035350353503610361031100002006-03-3055995599565156511100002006-03-285514955149579657961100002006-03-245473554735586758672100002006-03-23565563558755872200002006-03-21565565554655461100002006-03-135625549935855782300002006-02-1557671567715297529722000002006-02-1456219557945614561433000002006-02-08576576530153011350002006-01-26585585513151313300002006-01-2458558551255125150002006-01-235712557125535453541100002006-01-1757325732531353132700002006-01-125837558375513451341250002006-01-105717856552853273550002006-01-065375375935931200002006-01-0356394563945455451350002005-11-075656543754371350002005-10-075670756707528152811350002005-09-2058406584064977497711000002005-09-1356906569065211521111000002005-09-0758816572334897489731950002005-08-3156894565945249524921100002005-08-2559013590134851485111400002005-08-175678567852521400002005-08-165572854728553955393300002005-08-115483254832551755171400002005-07-22566685666851855185150002005-07-195757512551251180002005-07-1856103561035275271180002005-07-085621556215524152411800002005-07-0658755875483248321500002005-06-29589115652664841600002005-06-24567115671151425142150002005-06-2156006560065255251150002005-06-205449453949559255922300002005-06-1556035603524152411500002005-06-0158365565375144852350002005-05-2556497564975145141250002005-04-25564865548651512500002005-04-205494153788553955392500002005-04-075542155421525152512800002005-04-0553405525675723572332400002005-03-035490854908529152911200002005-03-0255149542254025252300002005-03-01551275340555335252600002005-02-28557455745155151250002005-02-25541925419254541250002005-02-245666455355001500122000002005-02-2353661536615483548311000002005-02-185572255722514151411300002005-02-155466454664530453041400002005-01-2751255125585558551250002005-01-265599155613513507227628000

N Privault

Date HighPrice LowPrice HighYield LowYield Count Amount1 2016-01-13 99082 98982 1666 1501 2 200002 2015-12-29 99183 99183 1250 1250 1 100003 2015-12-21 97952 97952 3014 3014 1 100004 2015-12-17 99141 98550 2123 1251 5 6100005 2015-12-07 98770 98770 1714 1714 2 100006 2015-12-04 98363 98118 2628 2280 2 10000

50

60

70

80

90

100

price [2005minus01minus262016minus01minus13]

Last 99082

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1310 Orange Cnty Calif bond prices

The next Figure 1311 plots the bond yield y(t T ) defined as

y(t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)y(tT ) 0 6 t 6 T

2

4

6

8

yield [2005minus01minus262016minus01minus13]

Last 1666

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1311 Orange Cnty Calif bond yields

Bond pricing in the Dothan model

In the Dothan [Dot78] model the short term interest rate process (rt)tisinR+ ismodeled according to a geometric Brownian motion

drt = micrortdt+ σrtdBt (1325)430

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

where the volatility σ gt 0 and the drift micro isin R are constant parameters and(Bt)tisinR+ is a standard Brownian motion In this model the short term inter-est rate rt remains always positive while the proportional volatility term σrtaccounts for the sensitivity of the volatility of interest rate changes to thelevel of the rate rt

On the other hand the Dothan model is the only lognormal short ratemodel that allows for an analytical formula for the zero coupon bond price

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

For convenience of notation we let p = 1minus 2microσ2 and rewrite (1325) as

drt = (1minus p)σ2

2 rtdt+ σrtdBt

with solutionrt = r0 eσBtminuspσ

2t2 t isin R+ (1326)

By the Markov property of (rt)tisinR+ the bond price P (t T ) is a functionF (t rt) of rt and time t isin [0 T ]

P (t T ) = F (t rt) = IElowast[

eminusr Ttrsds

∣∣∣ rt] 0 6 t 6 T (1327)

By computation of the conditional expectation (1327) using (106) we easilyobtain the following result cf Proposition 12 of [PP11] where the functionθ(v t) is defined in (104)

Proposition 133 The zero-coupon bond price P (t T ) = F (t rt) is givenfor all p isin R by

F (t x) (1328)

= eminusσ2p2(Tminust)8

winfin0

winfin0

eminusux exp(minus2(1 + z2)σ2u

(4zσ2u

σ2(T minus t)

4

)du

u

dz

zp+1

x gt 0

Proof By Proposition 101 cf [Yor92] Proposition 2 the probability distri-bution of the time integral

w Tminust

0eσBsminuspσ

2s2ds is given by

P(w Tminust

0eσBsminuspσ

2s2ds isin dy)

=winfinminusinfin

P(w t

0eσBsminuspσ

2s2ds isin dy Bt minus pσt2 isin dz)

431

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 2: Forward Rate Modeling

N Privault

iert N

(r0 eminusbt + a

b(1minus eminusbt) σ

2

2b (1minus eminus2bt)) t gt 0

In large time t with b gt 0 we have

limtrarrinfin

IE[rt] = a

band lim

trarrinfinVar[rt] = σ2

2b

and this distribution converges to the Gaussian N (ab σ2(2b)) distributionwhich is also the invariant (or stationary) distribution of (rt)tisinR+ and theprocess tends to revert to its long term mean ab = limtrarrinfin IE[rt]

Figure 131 presents a random simulation of t 7minusrarr rt in the Vasicek modelwith r0 = 3 and shows the mean reverting property of the process withrespect to ab = 25

-2

-1

0

1

2

3

4

5

6

7

8

0 01 02 03 04 05 06 07 08 09 1

ab

rt

()

t

Fig 131 Graph of the Vasicek short rate t 7rarr rt with a = 25 b = 1 and σ = 01

As can be checked from the simulation of Figure 131 the value of rt in theVasicek model may become negative due to its Gaussian distribution Al-though real interest rates can sometimes fall below zero this can be regardedas a potential drawback of the Vasicek model

Cox-Ingersoll-Ross (CIR) Model

The Cox-Ingersoll-Ross (CIR) [CIR85] model brings a solution to the posi-tivity problem encountered with the Vasicek model by the use the nonlinearstochastic differential equation

drt = β(αminus rt)dt+ σradicrtdBt α gt 0 β gt 0

The probability distribution of rt at time t gt 0 admits the noncentral Chisquare probability density function given by

412

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

ft(x) (133)

= 2βσ2(1minus eminusβt) exp

(minus2β(x+ r0 eminusβt)

σ2(1minus eminusβt)

)(x

r0 eminusβt

)αβσ2minus12I2αβσ2minus1

(4βradicr0x eminusβt

σ2(1minus eminusβt)

)

x gt 0 where

Iλ(z) =(z

2

)λ infinsumk=0

(z24)kkΓ (λ+ k + 1) z isin R

is the modified Bessel function of the first kind cf Corollary 24 in [AL05]Note that ft(x) is not defined at x = 0 if αβσ2 minus 12 lt 0 ie σ2 gt 2αβ inwhich case the probability distribution of rt admits a point mass at x = 0On the other hand rt remains almost surely strictly positive under the Fellercondition 2αβ gt σ2 cf the study of the associated probability density inLemma 4 of [Fel51]

Figure 132 presents a random simulation of t 7minusrarr rt in the CIR model inthe case σ2 gt 2αβ in which the process is mean reverting with respect toα = 25 and has a nonzero probability of hitting 0

0

1

2

3

4

5

6

7

8

0 01 02 03 04 05 06 07 08 09 1

α=25

r

t (

)

t

Fig 132 Graph of the CIR short rate t 7rarr rt with α = 25 β = 1 and σ = 13

In large time t using the asymptotics

Iλ(z) zrarr01

Γ (λ+ 1)

(z2

the density (133) becomes the Gamma density

f(x) = limtrarrinfin

ft(x) = 1Γ (2αβσ2)

(2βσ2

)2αβσ2

xminus1+2αβσ2eminus2βxσ2

x gt 0

(134)

413

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

with shape parameter 2αβσ2 and scale parameter σ2(2β) which is also theinvariant distribution of rt

Other classical mean reverting models include the Courtadon (1982) model

drt = β(αminus rt)dt+ σrtdBt

where α β σ are nonnegative and the exponential Vasicek model

drt = rt(η minus a log rt)dt+ σrtdBt

where a η σ gt 0 cf Exercises 414 and 415

Constant Elasticity of Variance (CEV)

Constant Elasticity of Variance models are designed to take into accountnonconstant volatilities that can vary as a power of the underlying assetThe Marsh-Rosenfeld (1983) model

drt = (βrminus(1minusγ)t + αrt)dt+ σr

γ2t dBt (135)

where α β σ γ are constants and β is the variance (or diffusion) elasticitycoefficient covers most of the CEV models Denoting by v(r) = σrγ2 thediffusion coefficient in (135) constant elasticity refers to the constant ratio

dv(r)v(r)drr

= rvprime(r)v(r) = d log v(r)

d log r = d log rγ2d log r = γ

2

between the relative change dv(r)v(r) in the variance v(r) and the relativechange drr in r

For γ = 1 this is the CIR model and for β = 0 we get the standard CEVmodel

drt = αrtdt+ σrγ2t dBt

If γ = 2 this yields the Dothan [Dot78] model

drt = αrtdt+ σrtdBt

which is a version of geometric Brownian motion used for short term interestrate modeling

Time-dependent affine Models

The class of short rate interest rate models admits a number of generalizationsthat can be found in the references quoted in the introduction of this chapter

414

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

among which is the class of affine models of the form

drt = (η(t) + λ(t)rt)dt+radicδ(t) + γ(t)rtdBt (136)

Such models are called affine because the associated zero-coupon bonds canbe priced using an affine PDE of the type (1316) below as will be seen afterProposition 132

Affine models also include the Ho-Lee model

drt = θ(t)dt+ σdBt

where θ(t) is a deterministic function of time as an extension of the Mertonmodel drt = θdt+σdBt and the Hull-White model [HW90] cf Section 131

drt = (θ(t)minus α(t)rt)dt+ σ(t)dBt

which is itself a time-dependent extension of the Vasicek model

132 Calibration of the Vasicek model

The Vasicek equation (131) ie

drt = (aminus brt)dt+ σdBt

can be discretized according to a discrete-time sequence (tk)k=01n as

rtk+1 minus rtk = (aminus brtk)∆t+ σZk k isin N

where∆t = tk+1minustk and (Zk)kgt0 is a Gaussian white noise with variance∆tie a sequence of independent centered and identically distributed N (0 ∆t)Gaussian random variables

We find

rtk+1 = rtk + (aminus brtk)∆t+ σZk = a∆t+ (1minus b∆t)rtk + σZk k isin N

Based on a set (rtk)k=0n of market data we can minimize the residual

nminus1sumk=0

(rtk+1 minus a∆tminus (1minus b∆t)rtk

)2over a and b using Ordinary Least Square (OLS) regression For this compute

part

parta

nminus1sumk=0

(rtk+1 minus a∆tminus (1minus b∆t)rtk

)2 415

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minus2∆t(minusan∆t+

nminus1sumk=0

(rtk+1 minus (1minus b∆t)rtk

))= 0

and

part

partb

nminus1sumk=0

(rtk+1 minus a∆tminus (1minus b∆t)rtk

)2= ∆t

nminus1sumk=0

rtk(minusa∆t+ rtk+1 minus (1minus b∆t)rtk

)= ∆t

nminus1sumk=0

rtk

(rtk+1 minus (1minus b∆t)rtk + 1

n

nminus1suml=0

(rtl+1 minus (1minus b∆t)rtl

))= 0

This leads to an estimate the parameters a and b respectively as the empiricalmean and covariance of (rtk)k=01n ie

a∆t = 1n

nminus1sumk=0

rtk+1 minus1n

(1minus b∆t)nminus1sumk=0

rtk

and

1minus b∆t =

nminus1sumk=0

rtk rtk+1 minus1n

nminus1sumk=0

rtk

nminus1suml=0

rtl+1

nminus1sumk=0

rtk rtk minus1n

nminus1sumk=0

rtk

nminus1suml=0

rtl

=

nminus1sumk=0

(rtk minus

1n

nminus1suml=0

rtl

)(rtk+1 minus

1n

nminus1suml=0

rtl+1

)nminus1sumk=0

(rtk minus

1n

nminus1sumk=0

rtk

)2

This also yields

σ2∆t = Var[σZk] = Var[rtk+1 minus (1minus b∆t)rtk minus a∆t

] k isin N

hence σ can be estimated as

σ2∆t = 1n

nminus1sumk=0

(rtk+1 minus rtk(1minus b∆t)minus a∆t

)2

416

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Defining rtk = rtk minus ab k isin N we have

rtk+1 = rtk+1 minus ab= rtk minus ab+ (aminus brtk)∆t+ σZk

= rtk minus abminus b(rtk minus ab)∆t+ σZk

= rtk minus brtk∆t+ σZk

= (1minus b∆t)rtk + σZk k isin N

In other words the sequence (rtk)kisinisinN is modeled according to an autore-gressive AR(1) time series in which the current state Xn of the system isexpressed as the linear combination

Xn = σZn + α1Xnminus1 n gt 1 (137)

which can be solved recursively as the series

Xn = σZn + α1(σZnminus1 + α1Xnminus2) = middot middot middot = σ

infinsumk=0

αk1Znminusk

which converges when |α1| lt 1 ie |1minus b∆t| lt 1

Note that the variance of Xn is given by

Var[Xn] = σ2 Var[ infinsumk=0

αk1Znminusk

]

= σ2∆tinfinsumk=0

α2k1

= σ2∆tinfinsumk=0

(1minus b∆t)2k

= σ2∆t

1minus (1minus b∆t)2

= σ2∆t

2b∆tminus b2(∆t)2

σ2

2b

which is the expected variance of the Vasicek process in the stationary regime

417

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

library(quantmod)getSymbols(^TNXfrom=2012-01-01to=2016-01-01src=yahoo)rate=Ad(`TNX`)chartSeries(rateupcol=bluetheme=white)n = sum(isna(rate))

The next Figure 133 displays the yield of the 10 Year Treasury Note on theChicago Board Options Exchange (CBOE) Treasury notes usually have amaturity between one and 10 years whereas treasury bonds have maturitiesbeyond 10 years)

15

20

25

30

rate [2012minus01minus032015minus12minus31]

Last 2269

Jan 032012

Jul 022012

Jan 022013

Jul 012013

Jan 022014

Jul 012014

Jan 022015

Jul 012015

Dec 312015

Fig 133 CBOE 10 Year Treasury Note yield (TNX)

ratek=asvector(rate)ratekplus1 lt- c(ratek[-1]0)b lt- (sum(ratekratekplus1) - sum(ratek)sum(ratekplus1)n)(sum(ratekratek) - sum(ratek)sum(

ratek)n)a lt- sum(ratekplus1)n-bsum(ratek)nsigma lt- sqrt(sum((ratekplus1-bratek-a)^2)n)

The next code is generating Vasicek random samples according to the AR(1)time series (137)

for (i in 1100) arsimlt-arimasim(model=list(ar=c(b))nstart=100n)y=ratek[1]+ab+sigmaarsimtime lt- asPOSIXct(time(TNX) format = Y-m-d)yield lt- xts(x = y orderby = time)chartSeries(yieldupcol=bluetheme=white)Syssleep(05)

418

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

00

05

10

15

20

25

30

35

yield [2012minus01minus03 0800002015minus12minus31 080000]

Last 182260342989168

Jan 032012

Jul 022012

Jan 022013

Jul 012013

Jan 022014

Jul 012014

Jan 022015

Jul 012015

Dec 312015

Fig 134 Calibrated Vasicek samples

133 Zero-Coupon and Coupon Bonds

A zero-coupon bond is a contract priced P (t T ) at time t lt T to deliverP (T T ) = $1 at time T In addition to its value at maturity a bond mayyield a periodic coupon payment at regular time intervals until the maturitydate

Fig 135 Five dollar Louisiana bond of 1875 with 75 biannual coupons

The computation of the arbitrage price P0(t T ) of a zero-coupon bond basedon an underlying short term interest rate process (rt)tisinR+ is a basic andimportant issue in interest rate modeling

Constant short rate

In case the short term interest rate is a constant rt = r t isin R+ a standardarbitrage argument shows that the price P (t T ) of the bond is given by

P (t T ) = eminusr(Tminust) 0 6 t 6 T

419

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Indeed if P (t T ) gt eminusr(Tminust) we could issue a bond at the price P (t T ) andinvest this amount at the compounded risk free rate r which would yieldP (t T ) er(Tminust) gt 1 at time T

On the other hand if P (t T ) lt eminusr(Tminust) we could borrow P (t T ) at the rater to buy a bond priced P (t T ) At maturity time T we would receive $1 andrefund only P (t T ) er(Tminust) lt 1

Deterministic short rates

Similarly to the above when the short term interest rate process (rt)tisinR+ isa deterministic function of time a similar argument shows that

P (t T ) = eminusr Ttrsds 0 6 t 6 T (138)

Stochastic short rates

In case (rt)tisinR+ is an (Ft)tisinR+ -adapted random process the formula (138)is no longer valid as it relies on future information and we replace it with

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T (139)

under a risk-neutral measure Plowast It is natural to write P (t T ) as a conditionalexpectation under a martingale measure as the use of conditional expectationhelps to ldquofilter outrdquo the future information past time t contained in

w T

trsds

The expression (139) makes sense as the ldquobest possible estimaterdquo of thefuture quantity eminus

r Ttrsds in mean square sense given information known up

to time t

Coupon bonds

Pricing bonds with non-zero coupon is not difficult since in general theamount and periodicity of coupons are deterministiclowast In the case of a con-stant continuous-time coupon yield at the rate c gt 0 another application ofthe above absence of arbitrage argument shows that the price Pc(t T ) of thecoupon bond is given by

Pc(t T ) = ec(Tminust)P0(t T ) 0 6 t 6 T

see also Figure 139 below In the sequel we will mostly consider zero-couponbonds priced as P (t T ) = P0(t T ) 0 6 t 6 T lowast However coupon default cannot be excluded

420

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Martingale property of discounted bond prices

The following proposition shows that Assumption (A) of Chapter 12 is sat-isfied in other words the bond price process t 7minusrarr P (t T ) can be used as anumeacuteraireProposition 131 The discounted bond price process

t 7minusrarr P (t T ) = eminusr t

0 rsdsP (t T )

is a martingale under PlowastProof By (139) we have

eminusr t

0 rsdsP (t T ) = eminusr t

0 rsds IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r t0 rsds eminus

r Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r T0 rsds

∣∣∣ Ft] and this suffices to conclude since by the ldquotower propertyrdquo (1739) of condi-tional expectations any process (Xt)tisinR+ of the form t 7minusrarr Xt = IElowast[F | Ft]F isin L1(Ω) is a martingale cf Relation (61)

Path integrals

In physics the Feynman path integral

ψ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(i

~S(x(middot))

)where ~ is the Planck constant and S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 minus V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 minus V (x(timinus1)))∆ti

solves the Schroumldinger equation

i~partψ

partt(x t) = minus ~2

2mpart2ψ

partx2 (x t) + V (x(t))ψ(x t)

After the Wick rotation t 7rarr minusit the function

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

) 421

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

solves the heat equation

~partφ

partt(x t) = minus ~2

2mpart2φ

partx2 (x t) + V (x(t))φ(x t)

Given the action

S(x(middot)) =w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

we can rewrite the Euclidean path integral as

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

)=

wx(0)=x x(t)=y

Dx(middot) exp(minus 1

2~

Nsumi=1

(x(ti)minus x(timinus1))2

2∆timinus 1

~

Nsumi=1

V (x(timinus1)))

= IElowast[exp

(minus1~

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

]

This type of path integral computation

φ(y t) = IElowast[exp

(minus

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

] (1310)

is particularly useful for bond pricing as (1310) can be interpreted as theprice of a bond with short term interest rate process (rt)tisinR+ = (V (Bt)))tisinR+

conditionally to the value of the endpoint Bt = y cf (1331) below It can alsobe useful for exotic option pricing cf Chapter 10 and for risk managementThe path integral (1310) can be estimated either by closed-form expressionsusing Partial Differential Equations (PDEs) or probability densities by ap-proximations such as (conditional) Moment matching or by Monte Carloestimation from the paths of a Brownian bridge as shown in Figure 136

422

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 136 Brownian bridge

Bond pricing PDE

We assume from now on that the underlying short rate process is solution tothe stochastic differential equation

drt = micro(t rt)dt+ σ(t rt)dBt (1311)

where (Bt)tisinR+ is a standard Brownian motion under Plowast Note that specify-ing the dynamics of (rt)tisinR+ under the historical probability measure P willalso lead to a notion of market price of risk (MPoR) for the modeling of shortrates

Since all solutions of stochastic differential equations such as (1311) havethe Markov property cf eg Theorem V-32 of [Pro04] the arbitrage priceP (t T ) can be rewritten as a function F (t rt) of rt ie

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] = IElowast[

eminusr Ttrsds

∣∣∣ rt] = F (t rt)

and depends on rt only instead of depending on all information available inFt up to time t meaning that the pricing problem can now be formulated asa search for the function F (t x)

Proposition 132 (Bond pricing PDE) The bond pricing PDE for P (t T ) =F (t rt) is written as

xF (t x) = partF

partt(t x) + micro(t x)partF

partx(t x) + 1

2σ2(t x)part

2F

partx2 (t x) (1312)

423

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

t isin R+ x isin R subject to the terminal condition

F (T x) = 1 x isin R (1313)

Proof By Itocircrsquos formula we have

d(

eminusr t

0 rsdsP (t T ))

= minusrt eminusr t

0 rsdsP (t T )dt+ eminusr t

0 rsdsdP (t T )

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdsdF (t rt)

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdspartF

partx(t rt)(micro(t rt)dt+ σ(t rt)dBt)

+ eminusr t

0 rsds

(12σ

2(t rt)part2F

partx2 (t rt) + partF

partt(t rt)

)dt

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

+ eminusr t

0 rsds

(minusrtF (t rt) + micro(t rt)

partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

)dt

(1314)

Given that t 7minusrarr eminusr t

0 rsdsP (t T ) is a martingale the above expression(1314) should only contain terms in dBt (cf Corollary II-1 page 72 of[Pro04]) and all terms in dt should vanish inside (1314) This leads to theidentities

rtF (t rt)

= micro(t rt)partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

d(

eminusr t

0 rsdsP (t T ))

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

(1315a)

(1315b)

which recover (1312) Condition (1313) is due to the fact that P (T T ) = $1

In the case of an interest rate process modeled by (136) we have

micro(t x) = η(t) + λ(t)x and σ(t x) =radicδ(t) + γ(t)x

hence (1312) yields the (time dependent) affine PDE

xF (t x) = partF

partt(t x) + (η(t) + λ(t)x)partF

partx(t x) + 1

2(δ(t) + γ(t)x)part2F

partx2 (t x)

(1316)

t isin R+ x isin R By (1315b) the above proposition also shows that

424

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

dP (t T )P (t T ) = 1

P (t T )d(

er t

0 rsds eminusr t

0 rsdsP (t T ))

= 1P (t T )

(rtP (t T )dt+ e

r t0 rsdsd

(eminus

r t0 rsdsP (t T )

))= rtdt+ 1

P (t T ) er t

0 rsdsd(

eminusr t

0 rsdsP (t T ))

= rtdt+ 1F (t rt)

partF

partx(t rt)σ(t rt)dBt

= rtdt+ σ(t rt)part logFpartx

(t rt)dBt (1317)

In the Vasicek casedrt = (aminus brt)dt+ σdWt

the bond price takes the form

F (t rt) = P (t T ) = eA(Tminust)+rtC(Tminust)

where A(middot) and C(middot) are functions of time cf (1321) below and (1317)yields

dP (t T )P (t T ) = rtdtminus

σ

b(1minus eminusb(Tminust))dWt (1318)

since F (t x) = eA(Tminust)+xC(Tminust)

Note that more generally all affine short rate models as defined in Rela-tion (136) including the Vasicek model will yield a bond pricing formula ofthe form

P (t T ) = eA(Tminust)+rtC(Tminust)

cf eg sect 324 of [BM06]

Probabilistic solution of the Vasicek PDE

Next we solve the PDE (1312) written with micro(t x) = aminusbx and σ(t x) = σin the Vasicek [Vaš77] model

drt = (aminus brt)dt+ σdBt

as xF (t x) = partF

partt(t x) + (aminus bx)partF

partx(t x) + σ2

2part2F

partx2 (t x)

F (T x) = 1(1319)

by a direct computation of the conditional expectation

425

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

F (t rt) = P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] (1320)

Recall that in this model the short rate (rt)tisinR+ has the expression

rt = g(t) +w t

0h(t s)dBs = r0 eminusbt + a

b(1minus eminusbt) + σ

w t

0eminusb(tminuss)dBs

whereg(t) = r0 eminusbt + a

b(1minus eminusbt) t isin R+

andh(t s) = σ eminusb(tminuss) 0 6 s 6 t

are deterministic functions

Letting uort = max(u t) using the fact that Wiener integrals are Gaussianrandom variables and the Gaussian moment generating function we have

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r Tt

(g(s)+r s

0 h(su)dBu)ds∣∣∣ Ft]

= exp(minus

w T

tg(s)ds

)IElowast[

eminusr Tt

r s0 h(su)dBuds

∣∣∣ Ft]= exp

(minus

w T

tg(s)ds

)IElowast[

eminusr T

0r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

uorth(s u)dsdBu

)IElowast[

eminusr Tt

r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu + 1

2w T

t

(w T

uh(s u)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

w t

0

w T

teminusb(sminusu)dsdBu

)times exp

(σ2

2w T

t

(w T

ueminusb(sminusu)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

b(1minus eminusb(Tminust))

w t

0eminusb(tminusu)dBu

)times exp

(σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)

426

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= exp(minusrtb

(1minus eminusb(Tminust)) + 1b

(1minus eminusb(Tminust))(r0 eminusbt + a

b(1minus eminusbt)

))times exp

(minus

w T

t

(r0 eminusbs + a

b(1minus eminusbs)

)ds+ σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)= eA(Tminust)+rtC(Tminust) (1321)

whereC(T minus t) = minus1

b(1minus eminusb(Tminust)) (1322)

and

A(T minus t) = 4abminus 3σ2

4b3 + σ2 minus 2ab2b2 (T minus t) + σ2 minus ab

b3eminusb(Tminust)minus σ2

4b3 eminus2b(Tminust)

(1323)

Analytical solution of the Vasicek PDE

In order to solve the PDE (1319) analytically we may look for a solution ofthe form

F (t x) = eA(Tminust)+xC(Tminust) (1324)

where A(middot) and C(middot) are functions to be determined under the conditionsA(0) = 0 and C(0) = 0 Substituting (1324) into the PDE (1312) with theVasicek coefficients micro(t x) = (aminus bx) and σ(t x) = σ shows that

x eA(Tminust)+xC(Tminust) = minus(Aprime(T minus t)minus xC prime(T minus t)) eA(Tminust)+xC(Tminust)

+(aminus bx)C(T minus t) eA(Tminust)+xC(Tminust)

+12σ

2C2(T minus t) eA(Tminust)+xC(Tminust)

ie

x = minusAprime(T minus t) + xC prime(T minus t) + (aminus bx)C(T minus t) + 12σ

2C2(T minus t)

By identification of terms for x = 0 and x 6= 0 this yields the system ofRiccati and linear differential equations

Aprime(s) = aC(s) + σ2

2 C2(s)

C prime(s) = 1 + bC(s)

which can be solved to recover the above value of P (t T ) = F (t rt)

427

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Vasicek Bond Price Simulations

In this section we consider again the Vasicek model in which the short rate(rt)tisinR+ is solution to (131) Figure 137 presents a random simulation oft 7minusrarr P (t T ) in the same Vasicek model The graph of the correspondingdeterministic zero coupon bond price obtained for a = b = σ = 0 is alsoshown on the Figure 137

03

04

05

06

07

08

09

1

11

0 5 10 15 20

Fig 137 Graphs of t 7rarr F (t rt) = P (t T ) vs t 7rarr eminusr0(Tminust)

Figure 138 presents a random simulation of t 7minusrarr P (t T ) for a (non-zero)coupon bond with price Pc(t T ) = ec(Tminust)P (t T ) and coupon rate c gt 00 6 t 6 T

10000

10200

10400

10600

10800

0 5 10 15 20

Fig 138 Graph of t 7rarr F (t rt) = P (t T ) for a bond with a 23 coupon

The simulation of Figure 138 can be compared to the coupon bond marketdata of Figure 139 below

428

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 139 Bond price graph with maturity 011808 and coupon rate 625

See Exercise 133 for a bond pricing formula in the CIR model

Zero coupon bond price and yield data

The following zero coupon bond price was downloaded at EMMA fromthe Municipal Securities Rulemaking Board

ORANGE CNTY CALIF PENSION OBLIG CAP APPREC-TAXABLE-REF-SER A (CA)CUSIP 68428LBB9Dated Date 06121996 (June 12 1996)Maturity Date 09012016 (September 1st 2016)Interest Rate 00 Principal Amount at Issuance $26056000Initial Offering Price 19465

library(quantmod)bondprice lt- readtable(bond_data_Rtxtcolnames = c(DateHighPriceLowPrice

HighYieldLowYieldCountAmount))head(bondprice)time lt- asPOSIXct(bondprice$Date format = Y-m-d)price lt- xts(x = bondprice$HighPrice orderby = time)yield lt- xts(x = bondprice$HighYield orderby = time)chartSeries(priceupcol=bluetheme=white)chartSeries(yieldupcol=bluetheme=white)

429

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

2016-01-139908298982166615012200002015-12-2999183991831251251100002015-12-219795297952301430141100002015-12-179914198552123125156100002015-12-0798779877171417142100002015-12-04983639811826282282100002015-11-1898659865176817672200002015-11-1798306983062201222200002015-10-029865998514167150641000002015-09-099898210721071250002015-09-089888498043204311583300002015-07-20975059628345922992200002015-07-1698397983971461461250002015-07-15988729887210211021150002015-07-109768997689208420841300002015-06-1898123980231686163300002015-06-179884397034254313250002015-06-15983698299143113795850002015-06-0998016980161651651200002015-05-21978269772618321752500002015-05-189849498494119111912300002015-05-1598559835130311433300002015-05-129776997769175117511150002015-04-279834898348125112512400002015-04-249830398303128212821250002015-04-239760797607181318131650002015-04-1498649864111100002015-03-20983897981428114373850002015-03-199785197751159151836750002015-03-11981981391323600002015-02-27978297695156914832400002015-02-139858298357108309343750002015-02-119857698226116609343300002015-01-15983983106710671550002015-01-12989598950650652600002015-01-099898123212321600002014-12-11983197396155131600002014-12-109641696416214421442800002014-12-059804498044114811481500002014-12-049728897288159815981500002014-11-219782297822125125150002014-11-209642294353320733150002014-11-0797979964582014113861250002014-10-299650496504195619561150002014-10-1498149977841201123200002014-10-0797401974011396139611000002014-10-0397991970261598107353500002014-09-3097446962851991135842200002014-09-1997331972311455140221000002014-09-18964796419186221000002014-09-15969956732278161943000002014-09-119555952252823382200002014-08-199711995596223614495750002014-08-139528695286238623861300002014-08-069559395593220522051350002014-08-0197951977261114100341000002014-07-30976975122311742200002014-07-239603695036244919434500002014-07-1697494951246912526750002014-07-1497182969571461135141000002014-07-11956995572144208421000002014-05-209531495314212321232300002014-05-169372393723286628661300002014-04-299701396713143913052200002014-04-1695169516211521151200002014-04-07976339683313510042500002014-04-029577393974260718073750002014-02-2893293128932852200002014-02-2791759175348634861100002014-02-21956959269530417584400002014-02-189438593885251122992900002014-02-139310193101284228421450002013-11-159393262726271500002013-11-14915915320432041500002013-11-12925999171312127712200002013-10-319427294272210121013450002013-10-309232392323284828481100002013-10-299599942521011452200002013-10-259080790807342934291100002013-10-219161691491314230933750002013-08-0791008910083113112100002013-08-05894258942536813681150002013-07-229494394018216812800002013-07-1795167930262339162900002013-07-16951549515416161500002013-07-12944129441218518511000002013-06-28940049340421719663400002013-06-269471892567245417213500002013-06-11925692562422422120002013-06-05911119111129072907150002013-06-0495282952821528152862500002013-05-3195122951221547154712250002013-05-309429291069290718214280002013-05-2994969488516331652000002013-05-2492682926822352351100002013-05-2394488930732217174942100002013-05-219679193731199174950002013-05-169127691276280428041200002013-05-02916769015315126383270002013-04-24920999163926322483450002013-04-22920749161426322483540002013-04-179645941591810798550002013-04-159205491954250524722200002013-04-1191791725842584170002013-04-099635889785320810996570002013-03-12914491442602260218000002013-02-229164389323243250134830002013-02-0690290298529222400002012-11-29881528796434573399103200002012-11-2888176878843479338941200002012-11-279048790487268226821150002012-11-23890628906231063106150002012-11-13878737073707150002012-11-098472383048495644175200002012-10-3188798879313531351100002012-10-25907905261925612300002012-10-2490353903532662662400002012-10-168845888458319731972400002012-10-0290866900552724682300002012-10-0190148900472726712200002012-09-26882398779733513222500002012-09-249051390512255425542100002012-09-21905905255625561300002012-09-139103189907270923923750002012-08-0985188518400240023250002012-08-0886038333945513755410002012-08-0386486859863753605240002012-07-2785849404940192200002012-07-19876183625440732541800002012-07-18870738707334342350002012-07-178652286048368636092400002012-07-1685088840884254396131050002012-07-1386541865413543541150002012-06-29865728657235351400002012-06-2885258525387238721400002012-06-2187751868533431521100002012-06-208528984689401238431650002012-06-138643855937363521500002012-06-118386183861422142211750002012-05-258518485184380938091300002012-05-238386683866417841781300002012-05-2185331853313753751250002012-05-18838344094409150002012-05-178442484224405743750002012-04-05853283662410636541000002012-03-2988243851033692852530002012-03-2787258342141443112530002012-03-228495840753956371731350002012-03-02855855352535251100002012-03-018368583685400740071100002012-02-0787584664368529515750002012-01-2686645865853167315241500002012-01-2586458645323211610002012-01-248380754703409742540002012-01-2081188118458445841100002012-01-178245182351425342263650002012-01-128413781755440837746600002012-01-1181658094639443431650002012-01-0479575795754984981200002011-12-307875787551985198130002011-12-29764757647558245824130002011-12-088038580385468346831150002011-12-01798879884847992300002011-11-307969379693484848481150002011-11-01777560455491240002011-10-28788578854984981100002011-10-26767576755555551100002011-10-05777559725418280002011-08-2678119773195211521100002011-08-23774237742351695169170002011-08-2276576554065406170002011-07-278135881358414111300002011-06-227417415864586411300002011-04-267554575545532253221100002011-04-257481964916825555053400002011-04-206474163965853382983600002011-04-15767097545334500555000002011-04-087620176201511351131150002011-03-3174502745025525521150002011-03-17744347443455551400002011-03-167373586558651400002011-03-0374556745565435431500002011-03-017390373903558355831500002011-01-2871317713176156153200002011-01-2667256725723472332200002011-01-187300473004568756871600002011-01-1273719716560215561500002011-01-04735735552455242540002011-01-0371592713756055621200002010-12-2273173559855982300002010-12-1374185697646305533250002010-12-1073558735585455454800002010-12-0973547735475455452200002010-12-02658996589974087408150002010-12-017312570756124553241980002010-11-297508571889582650495290002010-11-19738738533653361150002010-11-10772797645452400002010-11-097674969503447934800002010-11-087914178641407240722400002010-11-037953178606397839782300002010-11-0277087770874524521350002010-10-068072779568371536714700002010-10-057906878277419741972700002010-10-04801793797379721100002010-10-018048978903371137113300002010-09-307717714453445321300002010-09-207888377821403440342400002010-09-177781277812426742672100002010-09-1476942769424454451250002010-09-097446274462500650061180002010-09-08732057320552965296150002010-09-03757527575247472100002010-09-02748317483149074907150002010-08-3176585748294896452800002010-08-307403974039507350731180002010-08-23765197651945452550002010-08-207463974639492149211550002010-08-167557454932470662100002010-08-117536575365473647361100002010-08-067425573255520652063300002010-07-26745787251535487651000002010-07-22740047245253500161750002010-07-2173417705936513384600002010-07-20707570655772577222000002010-07-077221172111537753772200002010-07-06720797207954544340002010-07-027293472068520152012160002010-06-307169934586856686900002010-06-29694269073609460942200002010-06-177140467856364551492000002010-06-1173567356500850081350002010-06-1072391713915275272500002010-06-09708647051570357032500002010-06-087281271524523516571050002010-06-077099270638566356632700002010-05-03720727107254775252100002010-04-016775661256568617731000002010-03-056765667556612661262400002010-03-03667566656366362400002010-02-1067946678600659966900002010-02-096586438683468343300002010-02-0866264874671167114800002010-01-066542565425649464942200002010-01-05708596310870465256500002009-12-157081570155521552154200002009-12-146565652965292200002009-11-1868569685695655652500002009-11-176717467174595259521400002009-11-1668526685265655652400002009-11-127039675255239417000002009-10-0170974642926063502952010002009-09-3070152605577397524460002009-09-29636296819681921200002009-09-0364605646056366361300002009-08-286190861908697269721300002009-08-19626561756774677431500002009-08-18614446083727221000002009-08-12621602573296884125900002009-07-216146561465697169711100002009-07-206033160307724572452200002009-06-265930159301742674261300002009-06-226112161121697269721250002009-06-175991959319739573952500002009-06-106088860888771180002009-06-0958685868752275221180002009-06-026096260962695569551250002009-05-225993959939717871781250002009-05-216204161692566842600002009-04-16609560956846842400002009-04-15604604696569651400002009-04-1462224622246546541100002009-04-0659868598687067061100002009-03-065656791279121250002009-03-0553983539838428421250002009-02-095770457554745741441450002009-02-06576925691776741431050002009-01-2855635556357887788712500002009-01-2258225582257257251250002009-01-215671556715760676061250002008-11-065720157201728972891150002008-10-166021959294655765572200002008-10-156095859283639563954500002008-10-0855454877877842000002008-07-3163623623515681568131500002008-07-186192961929661150002008-07-156361460368631456494600002008-07-1062562255918591821000002008-07-08642016170160225522100002008-07-0260567605676256251180002008-07-015859458594666766671180002008-06-2359589657665762300002008-06-20619936186592959293450002008-06-1661584598936631500002008-06-1358958865865821000002008-06-126094460944612761271150002008-05-156237562375578257821100002008-05-136137261372597659761100002008-04-2461086108664200002008-03-07626396157558085622000002008-02-2264256046012526662400002008-02-1164214642145255251400002008-02-0761756175571757171400002008-01-086385162951526152614600002008-01-04610716046590659063550002008-01-0359977592776146142100002007-10-18608446084456956921300002007-10-17613136131355995599150002007-10-1659655965591359131700002007-09-17610086100856561550002007-09-14594594590559052550002007-09-1260714607145655651200002007-09-1161458101615551661350002007-09-06608636075561256123750002007-08-2859514595145855851500002007-08-235994759947576257621110002007-08-205989958311606957622250002007-07-125942259422578857881250002007-07-115963459603575257462850002007-07-0958842588425895891950002007-07-02594085940857715771150002007-06-2759934590095665566541800002007-06-2659433582825754575431900002007-06-25598475875567456743600002007-06-225777577760696069150002007-06-2059275568356248578221050002007-06-1857214572146166616613000002007-05-255909659096576857681350002007-05-215959259592566356631550002007-05-15615236152353531150002007-05-1461514612535347532600002007-05-09602258955766576631950002007-05-01602846028455025502150002007-04-25612612532953291500002007-04-2461179585975802532852500002007-04-2359675585913591331500002007-04-1956556561986198150002007-03-2861658607520352032500002007-03-275953758877570357033750002007-02-2861125602575256525622000002007-02-2759953597535496549622000002007-02-265882258423566556653150002007-02-21585858085808150002007-02-085926959269555355531100002007-02-056019660196537853781300002007-02-025880658456562756272100002007-02-0159222592225555551500002007-01-316006358556853972200002007-01-265700357003594359431100002007-01-245791557915577857781100002007-01-236027560275534553451100002007-01-1660129601295365361400002007-01-115988659445467543400002007-01-05585157466582956374400002006-12-1859359579525707545352400002006-12-01573553617861783150002006-11-2160013600135353150002006-11-15583165831655915591150002006-09-07582215822155552450002006-09-065681256812575157511450002006-08-22577455675555855582400002006-08-1655709557095925921200002006-08-03565915486067573841200002006-07-3155135541356183599641000002006-07-27545585455861611100002006-07-2456094519225815814400002006-07-175624755372577157712200002006-07-115481954819602360231100002006-07-065479151686618602351700002006-07-055455456075607511000002006-06-2650571505716816681611000002006-06-16542552256476472400002006-06-1449319493197051705111000002006-05-155443854438662500002006-05-125218552185642264221500002006-04-255619456194565256521450002006-04-21545155316212621231350002006-04-125557455574574657461250002006-04-055663654525592355465650002006-04-035350353503610361031100002006-03-3055995599565156511100002006-03-285514955149579657961100002006-03-245473554735586758672100002006-03-23565563558755872200002006-03-21565565554655461100002006-03-135625549935855782300002006-02-1557671567715297529722000002006-02-1456219557945614561433000002006-02-08576576530153011350002006-01-26585585513151313300002006-01-2458558551255125150002006-01-235712557125535453541100002006-01-1757325732531353132700002006-01-125837558375513451341250002006-01-105717856552853273550002006-01-065375375935931200002006-01-0356394563945455451350002005-11-075656543754371350002005-10-075670756707528152811350002005-09-2058406584064977497711000002005-09-1356906569065211521111000002005-09-0758816572334897489731950002005-08-3156894565945249524921100002005-08-2559013590134851485111400002005-08-175678567852521400002005-08-165572854728553955393300002005-08-115483254832551755171400002005-07-22566685666851855185150002005-07-195757512551251180002005-07-1856103561035275271180002005-07-085621556215524152411800002005-07-0658755875483248321500002005-06-29589115652664841600002005-06-24567115671151425142150002005-06-2156006560065255251150002005-06-205449453949559255922300002005-06-1556035603524152411500002005-06-0158365565375144852350002005-05-2556497564975145141250002005-04-25564865548651512500002005-04-205494153788553955392500002005-04-075542155421525152512800002005-04-0553405525675723572332400002005-03-035490854908529152911200002005-03-0255149542254025252300002005-03-01551275340555335252600002005-02-28557455745155151250002005-02-25541925419254541250002005-02-245666455355001500122000002005-02-2353661536615483548311000002005-02-185572255722514151411300002005-02-155466454664530453041400002005-01-2751255125585558551250002005-01-265599155613513507227628000

N Privault

Date HighPrice LowPrice HighYield LowYield Count Amount1 2016-01-13 99082 98982 1666 1501 2 200002 2015-12-29 99183 99183 1250 1250 1 100003 2015-12-21 97952 97952 3014 3014 1 100004 2015-12-17 99141 98550 2123 1251 5 6100005 2015-12-07 98770 98770 1714 1714 2 100006 2015-12-04 98363 98118 2628 2280 2 10000

50

60

70

80

90

100

price [2005minus01minus262016minus01minus13]

Last 99082

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1310 Orange Cnty Calif bond prices

The next Figure 1311 plots the bond yield y(t T ) defined as

y(t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)y(tT ) 0 6 t 6 T

2

4

6

8

yield [2005minus01minus262016minus01minus13]

Last 1666

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1311 Orange Cnty Calif bond yields

Bond pricing in the Dothan model

In the Dothan [Dot78] model the short term interest rate process (rt)tisinR+ ismodeled according to a geometric Brownian motion

drt = micrortdt+ σrtdBt (1325)430

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

where the volatility σ gt 0 and the drift micro isin R are constant parameters and(Bt)tisinR+ is a standard Brownian motion In this model the short term inter-est rate rt remains always positive while the proportional volatility term σrtaccounts for the sensitivity of the volatility of interest rate changes to thelevel of the rate rt

On the other hand the Dothan model is the only lognormal short ratemodel that allows for an analytical formula for the zero coupon bond price

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

For convenience of notation we let p = 1minus 2microσ2 and rewrite (1325) as

drt = (1minus p)σ2

2 rtdt+ σrtdBt

with solutionrt = r0 eσBtminuspσ

2t2 t isin R+ (1326)

By the Markov property of (rt)tisinR+ the bond price P (t T ) is a functionF (t rt) of rt and time t isin [0 T ]

P (t T ) = F (t rt) = IElowast[

eminusr Ttrsds

∣∣∣ rt] 0 6 t 6 T (1327)

By computation of the conditional expectation (1327) using (106) we easilyobtain the following result cf Proposition 12 of [PP11] where the functionθ(v t) is defined in (104)

Proposition 133 The zero-coupon bond price P (t T ) = F (t rt) is givenfor all p isin R by

F (t x) (1328)

= eminusσ2p2(Tminust)8

winfin0

winfin0

eminusux exp(minus2(1 + z2)σ2u

(4zσ2u

σ2(T minus t)

4

)du

u

dz

zp+1

x gt 0

Proof By Proposition 101 cf [Yor92] Proposition 2 the probability distri-bution of the time integral

w Tminust

0eσBsminuspσ

2s2ds is given by

P(w Tminust

0eσBsminuspσ

2s2ds isin dy)

=winfinminusinfin

P(w t

0eσBsminuspσ

2s2ds isin dy Bt minus pσt2 isin dz)

431

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 3: Forward Rate Modeling

Forward Rate Modeling

ft(x) (133)

= 2βσ2(1minus eminusβt) exp

(minus2β(x+ r0 eminusβt)

σ2(1minus eminusβt)

)(x

r0 eminusβt

)αβσ2minus12I2αβσ2minus1

(4βradicr0x eminusβt

σ2(1minus eminusβt)

)

x gt 0 where

Iλ(z) =(z

2

)λ infinsumk=0

(z24)kkΓ (λ+ k + 1) z isin R

is the modified Bessel function of the first kind cf Corollary 24 in [AL05]Note that ft(x) is not defined at x = 0 if αβσ2 minus 12 lt 0 ie σ2 gt 2αβ inwhich case the probability distribution of rt admits a point mass at x = 0On the other hand rt remains almost surely strictly positive under the Fellercondition 2αβ gt σ2 cf the study of the associated probability density inLemma 4 of [Fel51]

Figure 132 presents a random simulation of t 7minusrarr rt in the CIR model inthe case σ2 gt 2αβ in which the process is mean reverting with respect toα = 25 and has a nonzero probability of hitting 0

0

1

2

3

4

5

6

7

8

0 01 02 03 04 05 06 07 08 09 1

α=25

r

t (

)

t

Fig 132 Graph of the CIR short rate t 7rarr rt with α = 25 β = 1 and σ = 13

In large time t using the asymptotics

Iλ(z) zrarr01

Γ (λ+ 1)

(z2

the density (133) becomes the Gamma density

f(x) = limtrarrinfin

ft(x) = 1Γ (2αβσ2)

(2βσ2

)2αβσ2

xminus1+2αβσ2eminus2βxσ2

x gt 0

(134)

413

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

with shape parameter 2αβσ2 and scale parameter σ2(2β) which is also theinvariant distribution of rt

Other classical mean reverting models include the Courtadon (1982) model

drt = β(αminus rt)dt+ σrtdBt

where α β σ are nonnegative and the exponential Vasicek model

drt = rt(η minus a log rt)dt+ σrtdBt

where a η σ gt 0 cf Exercises 414 and 415

Constant Elasticity of Variance (CEV)

Constant Elasticity of Variance models are designed to take into accountnonconstant volatilities that can vary as a power of the underlying assetThe Marsh-Rosenfeld (1983) model

drt = (βrminus(1minusγ)t + αrt)dt+ σr

γ2t dBt (135)

where α β σ γ are constants and β is the variance (or diffusion) elasticitycoefficient covers most of the CEV models Denoting by v(r) = σrγ2 thediffusion coefficient in (135) constant elasticity refers to the constant ratio

dv(r)v(r)drr

= rvprime(r)v(r) = d log v(r)

d log r = d log rγ2d log r = γ

2

between the relative change dv(r)v(r) in the variance v(r) and the relativechange drr in r

For γ = 1 this is the CIR model and for β = 0 we get the standard CEVmodel

drt = αrtdt+ σrγ2t dBt

If γ = 2 this yields the Dothan [Dot78] model

drt = αrtdt+ σrtdBt

which is a version of geometric Brownian motion used for short term interestrate modeling

Time-dependent affine Models

The class of short rate interest rate models admits a number of generalizationsthat can be found in the references quoted in the introduction of this chapter

414

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

among which is the class of affine models of the form

drt = (η(t) + λ(t)rt)dt+radicδ(t) + γ(t)rtdBt (136)

Such models are called affine because the associated zero-coupon bonds canbe priced using an affine PDE of the type (1316) below as will be seen afterProposition 132

Affine models also include the Ho-Lee model

drt = θ(t)dt+ σdBt

where θ(t) is a deterministic function of time as an extension of the Mertonmodel drt = θdt+σdBt and the Hull-White model [HW90] cf Section 131

drt = (θ(t)minus α(t)rt)dt+ σ(t)dBt

which is itself a time-dependent extension of the Vasicek model

132 Calibration of the Vasicek model

The Vasicek equation (131) ie

drt = (aminus brt)dt+ σdBt

can be discretized according to a discrete-time sequence (tk)k=01n as

rtk+1 minus rtk = (aminus brtk)∆t+ σZk k isin N

where∆t = tk+1minustk and (Zk)kgt0 is a Gaussian white noise with variance∆tie a sequence of independent centered and identically distributed N (0 ∆t)Gaussian random variables

We find

rtk+1 = rtk + (aminus brtk)∆t+ σZk = a∆t+ (1minus b∆t)rtk + σZk k isin N

Based on a set (rtk)k=0n of market data we can minimize the residual

nminus1sumk=0

(rtk+1 minus a∆tminus (1minus b∆t)rtk

)2over a and b using Ordinary Least Square (OLS) regression For this compute

part

parta

nminus1sumk=0

(rtk+1 minus a∆tminus (1minus b∆t)rtk

)2 415

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minus2∆t(minusan∆t+

nminus1sumk=0

(rtk+1 minus (1minus b∆t)rtk

))= 0

and

part

partb

nminus1sumk=0

(rtk+1 minus a∆tminus (1minus b∆t)rtk

)2= ∆t

nminus1sumk=0

rtk(minusa∆t+ rtk+1 minus (1minus b∆t)rtk

)= ∆t

nminus1sumk=0

rtk

(rtk+1 minus (1minus b∆t)rtk + 1

n

nminus1suml=0

(rtl+1 minus (1minus b∆t)rtl

))= 0

This leads to an estimate the parameters a and b respectively as the empiricalmean and covariance of (rtk)k=01n ie

a∆t = 1n

nminus1sumk=0

rtk+1 minus1n

(1minus b∆t)nminus1sumk=0

rtk

and

1minus b∆t =

nminus1sumk=0

rtk rtk+1 minus1n

nminus1sumk=0

rtk

nminus1suml=0

rtl+1

nminus1sumk=0

rtk rtk minus1n

nminus1sumk=0

rtk

nminus1suml=0

rtl

=

nminus1sumk=0

(rtk minus

1n

nminus1suml=0

rtl

)(rtk+1 minus

1n

nminus1suml=0

rtl+1

)nminus1sumk=0

(rtk minus

1n

nminus1sumk=0

rtk

)2

This also yields

σ2∆t = Var[σZk] = Var[rtk+1 minus (1minus b∆t)rtk minus a∆t

] k isin N

hence σ can be estimated as

σ2∆t = 1n

nminus1sumk=0

(rtk+1 minus rtk(1minus b∆t)minus a∆t

)2

416

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Defining rtk = rtk minus ab k isin N we have

rtk+1 = rtk+1 minus ab= rtk minus ab+ (aminus brtk)∆t+ σZk

= rtk minus abminus b(rtk minus ab)∆t+ σZk

= rtk minus brtk∆t+ σZk

= (1minus b∆t)rtk + σZk k isin N

In other words the sequence (rtk)kisinisinN is modeled according to an autore-gressive AR(1) time series in which the current state Xn of the system isexpressed as the linear combination

Xn = σZn + α1Xnminus1 n gt 1 (137)

which can be solved recursively as the series

Xn = σZn + α1(σZnminus1 + α1Xnminus2) = middot middot middot = σ

infinsumk=0

αk1Znminusk

which converges when |α1| lt 1 ie |1minus b∆t| lt 1

Note that the variance of Xn is given by

Var[Xn] = σ2 Var[ infinsumk=0

αk1Znminusk

]

= σ2∆tinfinsumk=0

α2k1

= σ2∆tinfinsumk=0

(1minus b∆t)2k

= σ2∆t

1minus (1minus b∆t)2

= σ2∆t

2b∆tminus b2(∆t)2

σ2

2b

which is the expected variance of the Vasicek process in the stationary regime

417

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

library(quantmod)getSymbols(^TNXfrom=2012-01-01to=2016-01-01src=yahoo)rate=Ad(`TNX`)chartSeries(rateupcol=bluetheme=white)n = sum(isna(rate))

The next Figure 133 displays the yield of the 10 Year Treasury Note on theChicago Board Options Exchange (CBOE) Treasury notes usually have amaturity between one and 10 years whereas treasury bonds have maturitiesbeyond 10 years)

15

20

25

30

rate [2012minus01minus032015minus12minus31]

Last 2269

Jan 032012

Jul 022012

Jan 022013

Jul 012013

Jan 022014

Jul 012014

Jan 022015

Jul 012015

Dec 312015

Fig 133 CBOE 10 Year Treasury Note yield (TNX)

ratek=asvector(rate)ratekplus1 lt- c(ratek[-1]0)b lt- (sum(ratekratekplus1) - sum(ratek)sum(ratekplus1)n)(sum(ratekratek) - sum(ratek)sum(

ratek)n)a lt- sum(ratekplus1)n-bsum(ratek)nsigma lt- sqrt(sum((ratekplus1-bratek-a)^2)n)

The next code is generating Vasicek random samples according to the AR(1)time series (137)

for (i in 1100) arsimlt-arimasim(model=list(ar=c(b))nstart=100n)y=ratek[1]+ab+sigmaarsimtime lt- asPOSIXct(time(TNX) format = Y-m-d)yield lt- xts(x = y orderby = time)chartSeries(yieldupcol=bluetheme=white)Syssleep(05)

418

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

00

05

10

15

20

25

30

35

yield [2012minus01minus03 0800002015minus12minus31 080000]

Last 182260342989168

Jan 032012

Jul 022012

Jan 022013

Jul 012013

Jan 022014

Jul 012014

Jan 022015

Jul 012015

Dec 312015

Fig 134 Calibrated Vasicek samples

133 Zero-Coupon and Coupon Bonds

A zero-coupon bond is a contract priced P (t T ) at time t lt T to deliverP (T T ) = $1 at time T In addition to its value at maturity a bond mayyield a periodic coupon payment at regular time intervals until the maturitydate

Fig 135 Five dollar Louisiana bond of 1875 with 75 biannual coupons

The computation of the arbitrage price P0(t T ) of a zero-coupon bond basedon an underlying short term interest rate process (rt)tisinR+ is a basic andimportant issue in interest rate modeling

Constant short rate

In case the short term interest rate is a constant rt = r t isin R+ a standardarbitrage argument shows that the price P (t T ) of the bond is given by

P (t T ) = eminusr(Tminust) 0 6 t 6 T

419

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Indeed if P (t T ) gt eminusr(Tminust) we could issue a bond at the price P (t T ) andinvest this amount at the compounded risk free rate r which would yieldP (t T ) er(Tminust) gt 1 at time T

On the other hand if P (t T ) lt eminusr(Tminust) we could borrow P (t T ) at the rater to buy a bond priced P (t T ) At maturity time T we would receive $1 andrefund only P (t T ) er(Tminust) lt 1

Deterministic short rates

Similarly to the above when the short term interest rate process (rt)tisinR+ isa deterministic function of time a similar argument shows that

P (t T ) = eminusr Ttrsds 0 6 t 6 T (138)

Stochastic short rates

In case (rt)tisinR+ is an (Ft)tisinR+ -adapted random process the formula (138)is no longer valid as it relies on future information and we replace it with

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T (139)

under a risk-neutral measure Plowast It is natural to write P (t T ) as a conditionalexpectation under a martingale measure as the use of conditional expectationhelps to ldquofilter outrdquo the future information past time t contained in

w T

trsds

The expression (139) makes sense as the ldquobest possible estimaterdquo of thefuture quantity eminus

r Ttrsds in mean square sense given information known up

to time t

Coupon bonds

Pricing bonds with non-zero coupon is not difficult since in general theamount and periodicity of coupons are deterministiclowast In the case of a con-stant continuous-time coupon yield at the rate c gt 0 another application ofthe above absence of arbitrage argument shows that the price Pc(t T ) of thecoupon bond is given by

Pc(t T ) = ec(Tminust)P0(t T ) 0 6 t 6 T

see also Figure 139 below In the sequel we will mostly consider zero-couponbonds priced as P (t T ) = P0(t T ) 0 6 t 6 T lowast However coupon default cannot be excluded

420

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Martingale property of discounted bond prices

The following proposition shows that Assumption (A) of Chapter 12 is sat-isfied in other words the bond price process t 7minusrarr P (t T ) can be used as anumeacuteraireProposition 131 The discounted bond price process

t 7minusrarr P (t T ) = eminusr t

0 rsdsP (t T )

is a martingale under PlowastProof By (139) we have

eminusr t

0 rsdsP (t T ) = eminusr t

0 rsds IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r t0 rsds eminus

r Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r T0 rsds

∣∣∣ Ft] and this suffices to conclude since by the ldquotower propertyrdquo (1739) of condi-tional expectations any process (Xt)tisinR+ of the form t 7minusrarr Xt = IElowast[F | Ft]F isin L1(Ω) is a martingale cf Relation (61)

Path integrals

In physics the Feynman path integral

ψ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(i

~S(x(middot))

)where ~ is the Planck constant and S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 minus V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 minus V (x(timinus1)))∆ti

solves the Schroumldinger equation

i~partψ

partt(x t) = minus ~2

2mpart2ψ

partx2 (x t) + V (x(t))ψ(x t)

After the Wick rotation t 7rarr minusit the function

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

) 421

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

solves the heat equation

~partφ

partt(x t) = minus ~2

2mpart2φ

partx2 (x t) + V (x(t))φ(x t)

Given the action

S(x(middot)) =w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

we can rewrite the Euclidean path integral as

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

)=

wx(0)=x x(t)=y

Dx(middot) exp(minus 1

2~

Nsumi=1

(x(ti)minus x(timinus1))2

2∆timinus 1

~

Nsumi=1

V (x(timinus1)))

= IElowast[exp

(minus1~

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

]

This type of path integral computation

φ(y t) = IElowast[exp

(minus

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

] (1310)

is particularly useful for bond pricing as (1310) can be interpreted as theprice of a bond with short term interest rate process (rt)tisinR+ = (V (Bt)))tisinR+

conditionally to the value of the endpoint Bt = y cf (1331) below It can alsobe useful for exotic option pricing cf Chapter 10 and for risk managementThe path integral (1310) can be estimated either by closed-form expressionsusing Partial Differential Equations (PDEs) or probability densities by ap-proximations such as (conditional) Moment matching or by Monte Carloestimation from the paths of a Brownian bridge as shown in Figure 136

422

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 136 Brownian bridge

Bond pricing PDE

We assume from now on that the underlying short rate process is solution tothe stochastic differential equation

drt = micro(t rt)dt+ σ(t rt)dBt (1311)

where (Bt)tisinR+ is a standard Brownian motion under Plowast Note that specify-ing the dynamics of (rt)tisinR+ under the historical probability measure P willalso lead to a notion of market price of risk (MPoR) for the modeling of shortrates

Since all solutions of stochastic differential equations such as (1311) havethe Markov property cf eg Theorem V-32 of [Pro04] the arbitrage priceP (t T ) can be rewritten as a function F (t rt) of rt ie

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] = IElowast[

eminusr Ttrsds

∣∣∣ rt] = F (t rt)

and depends on rt only instead of depending on all information available inFt up to time t meaning that the pricing problem can now be formulated asa search for the function F (t x)

Proposition 132 (Bond pricing PDE) The bond pricing PDE for P (t T ) =F (t rt) is written as

xF (t x) = partF

partt(t x) + micro(t x)partF

partx(t x) + 1

2σ2(t x)part

2F

partx2 (t x) (1312)

423

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

t isin R+ x isin R subject to the terminal condition

F (T x) = 1 x isin R (1313)

Proof By Itocircrsquos formula we have

d(

eminusr t

0 rsdsP (t T ))

= minusrt eminusr t

0 rsdsP (t T )dt+ eminusr t

0 rsdsdP (t T )

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdsdF (t rt)

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdspartF

partx(t rt)(micro(t rt)dt+ σ(t rt)dBt)

+ eminusr t

0 rsds

(12σ

2(t rt)part2F

partx2 (t rt) + partF

partt(t rt)

)dt

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

+ eminusr t

0 rsds

(minusrtF (t rt) + micro(t rt)

partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

)dt

(1314)

Given that t 7minusrarr eminusr t

0 rsdsP (t T ) is a martingale the above expression(1314) should only contain terms in dBt (cf Corollary II-1 page 72 of[Pro04]) and all terms in dt should vanish inside (1314) This leads to theidentities

rtF (t rt)

= micro(t rt)partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

d(

eminusr t

0 rsdsP (t T ))

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

(1315a)

(1315b)

which recover (1312) Condition (1313) is due to the fact that P (T T ) = $1

In the case of an interest rate process modeled by (136) we have

micro(t x) = η(t) + λ(t)x and σ(t x) =radicδ(t) + γ(t)x

hence (1312) yields the (time dependent) affine PDE

xF (t x) = partF

partt(t x) + (η(t) + λ(t)x)partF

partx(t x) + 1

2(δ(t) + γ(t)x)part2F

partx2 (t x)

(1316)

t isin R+ x isin R By (1315b) the above proposition also shows that

424

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

dP (t T )P (t T ) = 1

P (t T )d(

er t

0 rsds eminusr t

0 rsdsP (t T ))

= 1P (t T )

(rtP (t T )dt+ e

r t0 rsdsd

(eminus

r t0 rsdsP (t T )

))= rtdt+ 1

P (t T ) er t

0 rsdsd(

eminusr t

0 rsdsP (t T ))

= rtdt+ 1F (t rt)

partF

partx(t rt)σ(t rt)dBt

= rtdt+ σ(t rt)part logFpartx

(t rt)dBt (1317)

In the Vasicek casedrt = (aminus brt)dt+ σdWt

the bond price takes the form

F (t rt) = P (t T ) = eA(Tminust)+rtC(Tminust)

where A(middot) and C(middot) are functions of time cf (1321) below and (1317)yields

dP (t T )P (t T ) = rtdtminus

σ

b(1minus eminusb(Tminust))dWt (1318)

since F (t x) = eA(Tminust)+xC(Tminust)

Note that more generally all affine short rate models as defined in Rela-tion (136) including the Vasicek model will yield a bond pricing formula ofthe form

P (t T ) = eA(Tminust)+rtC(Tminust)

cf eg sect 324 of [BM06]

Probabilistic solution of the Vasicek PDE

Next we solve the PDE (1312) written with micro(t x) = aminusbx and σ(t x) = σin the Vasicek [Vaš77] model

drt = (aminus brt)dt+ σdBt

as xF (t x) = partF

partt(t x) + (aminus bx)partF

partx(t x) + σ2

2part2F

partx2 (t x)

F (T x) = 1(1319)

by a direct computation of the conditional expectation

425

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

F (t rt) = P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] (1320)

Recall that in this model the short rate (rt)tisinR+ has the expression

rt = g(t) +w t

0h(t s)dBs = r0 eminusbt + a

b(1minus eminusbt) + σ

w t

0eminusb(tminuss)dBs

whereg(t) = r0 eminusbt + a

b(1minus eminusbt) t isin R+

andh(t s) = σ eminusb(tminuss) 0 6 s 6 t

are deterministic functions

Letting uort = max(u t) using the fact that Wiener integrals are Gaussianrandom variables and the Gaussian moment generating function we have

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r Tt

(g(s)+r s

0 h(su)dBu)ds∣∣∣ Ft]

= exp(minus

w T

tg(s)ds

)IElowast[

eminusr Tt

r s0 h(su)dBuds

∣∣∣ Ft]= exp

(minus

w T

tg(s)ds

)IElowast[

eminusr T

0r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

uorth(s u)dsdBu

)IElowast[

eminusr Tt

r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu + 1

2w T

t

(w T

uh(s u)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

w t

0

w T

teminusb(sminusu)dsdBu

)times exp

(σ2

2w T

t

(w T

ueminusb(sminusu)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

b(1minus eminusb(Tminust))

w t

0eminusb(tminusu)dBu

)times exp

(σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)

426

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= exp(minusrtb

(1minus eminusb(Tminust)) + 1b

(1minus eminusb(Tminust))(r0 eminusbt + a

b(1minus eminusbt)

))times exp

(minus

w T

t

(r0 eminusbs + a

b(1minus eminusbs)

)ds+ σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)= eA(Tminust)+rtC(Tminust) (1321)

whereC(T minus t) = minus1

b(1minus eminusb(Tminust)) (1322)

and

A(T minus t) = 4abminus 3σ2

4b3 + σ2 minus 2ab2b2 (T minus t) + σ2 minus ab

b3eminusb(Tminust)minus σ2

4b3 eminus2b(Tminust)

(1323)

Analytical solution of the Vasicek PDE

In order to solve the PDE (1319) analytically we may look for a solution ofthe form

F (t x) = eA(Tminust)+xC(Tminust) (1324)

where A(middot) and C(middot) are functions to be determined under the conditionsA(0) = 0 and C(0) = 0 Substituting (1324) into the PDE (1312) with theVasicek coefficients micro(t x) = (aminus bx) and σ(t x) = σ shows that

x eA(Tminust)+xC(Tminust) = minus(Aprime(T minus t)minus xC prime(T minus t)) eA(Tminust)+xC(Tminust)

+(aminus bx)C(T minus t) eA(Tminust)+xC(Tminust)

+12σ

2C2(T minus t) eA(Tminust)+xC(Tminust)

ie

x = minusAprime(T minus t) + xC prime(T minus t) + (aminus bx)C(T minus t) + 12σ

2C2(T minus t)

By identification of terms for x = 0 and x 6= 0 this yields the system ofRiccati and linear differential equations

Aprime(s) = aC(s) + σ2

2 C2(s)

C prime(s) = 1 + bC(s)

which can be solved to recover the above value of P (t T ) = F (t rt)

427

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Vasicek Bond Price Simulations

In this section we consider again the Vasicek model in which the short rate(rt)tisinR+ is solution to (131) Figure 137 presents a random simulation oft 7minusrarr P (t T ) in the same Vasicek model The graph of the correspondingdeterministic zero coupon bond price obtained for a = b = σ = 0 is alsoshown on the Figure 137

03

04

05

06

07

08

09

1

11

0 5 10 15 20

Fig 137 Graphs of t 7rarr F (t rt) = P (t T ) vs t 7rarr eminusr0(Tminust)

Figure 138 presents a random simulation of t 7minusrarr P (t T ) for a (non-zero)coupon bond with price Pc(t T ) = ec(Tminust)P (t T ) and coupon rate c gt 00 6 t 6 T

10000

10200

10400

10600

10800

0 5 10 15 20

Fig 138 Graph of t 7rarr F (t rt) = P (t T ) for a bond with a 23 coupon

The simulation of Figure 138 can be compared to the coupon bond marketdata of Figure 139 below

428

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 139 Bond price graph with maturity 011808 and coupon rate 625

See Exercise 133 for a bond pricing formula in the CIR model

Zero coupon bond price and yield data

The following zero coupon bond price was downloaded at EMMA fromthe Municipal Securities Rulemaking Board

ORANGE CNTY CALIF PENSION OBLIG CAP APPREC-TAXABLE-REF-SER A (CA)CUSIP 68428LBB9Dated Date 06121996 (June 12 1996)Maturity Date 09012016 (September 1st 2016)Interest Rate 00 Principal Amount at Issuance $26056000Initial Offering Price 19465

library(quantmod)bondprice lt- readtable(bond_data_Rtxtcolnames = c(DateHighPriceLowPrice

HighYieldLowYieldCountAmount))head(bondprice)time lt- asPOSIXct(bondprice$Date format = Y-m-d)price lt- xts(x = bondprice$HighPrice orderby = time)yield lt- xts(x = bondprice$HighYield orderby = time)chartSeries(priceupcol=bluetheme=white)chartSeries(yieldupcol=bluetheme=white)

429

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

2016-01-139908298982166615012200002015-12-2999183991831251251100002015-12-219795297952301430141100002015-12-179914198552123125156100002015-12-0798779877171417142100002015-12-04983639811826282282100002015-11-1898659865176817672200002015-11-1798306983062201222200002015-10-029865998514167150641000002015-09-099898210721071250002015-09-089888498043204311583300002015-07-20975059628345922992200002015-07-1698397983971461461250002015-07-15988729887210211021150002015-07-109768997689208420841300002015-06-1898123980231686163300002015-06-179884397034254313250002015-06-15983698299143113795850002015-06-0998016980161651651200002015-05-21978269772618321752500002015-05-189849498494119111912300002015-05-1598559835130311433300002015-05-129776997769175117511150002015-04-279834898348125112512400002015-04-249830398303128212821250002015-04-239760797607181318131650002015-04-1498649864111100002015-03-20983897981428114373850002015-03-199785197751159151836750002015-03-11981981391323600002015-02-27978297695156914832400002015-02-139858298357108309343750002015-02-119857698226116609343300002015-01-15983983106710671550002015-01-12989598950650652600002015-01-099898123212321600002014-12-11983197396155131600002014-12-109641696416214421442800002014-12-059804498044114811481500002014-12-049728897288159815981500002014-11-219782297822125125150002014-11-209642294353320733150002014-11-0797979964582014113861250002014-10-299650496504195619561150002014-10-1498149977841201123200002014-10-0797401974011396139611000002014-10-0397991970261598107353500002014-09-3097446962851991135842200002014-09-1997331972311455140221000002014-09-18964796419186221000002014-09-15969956732278161943000002014-09-119555952252823382200002014-08-199711995596223614495750002014-08-139528695286238623861300002014-08-069559395593220522051350002014-08-0197951977261114100341000002014-07-30976975122311742200002014-07-239603695036244919434500002014-07-1697494951246912526750002014-07-1497182969571461135141000002014-07-11956995572144208421000002014-05-209531495314212321232300002014-05-169372393723286628661300002014-04-299701396713143913052200002014-04-1695169516211521151200002014-04-07976339683313510042500002014-04-029577393974260718073750002014-02-2893293128932852200002014-02-2791759175348634861100002014-02-21956959269530417584400002014-02-189438593885251122992900002014-02-139310193101284228421450002013-11-159393262726271500002013-11-14915915320432041500002013-11-12925999171312127712200002013-10-319427294272210121013450002013-10-309232392323284828481100002013-10-299599942521011452200002013-10-259080790807342934291100002013-10-219161691491314230933750002013-08-0791008910083113112100002013-08-05894258942536813681150002013-07-229494394018216812800002013-07-1795167930262339162900002013-07-16951549515416161500002013-07-12944129441218518511000002013-06-28940049340421719663400002013-06-269471892567245417213500002013-06-11925692562422422120002013-06-05911119111129072907150002013-06-0495282952821528152862500002013-05-3195122951221547154712250002013-05-309429291069290718214280002013-05-2994969488516331652000002013-05-2492682926822352351100002013-05-2394488930732217174942100002013-05-219679193731199174950002013-05-169127691276280428041200002013-05-02916769015315126383270002013-04-24920999163926322483450002013-04-22920749161426322483540002013-04-179645941591810798550002013-04-159205491954250524722200002013-04-1191791725842584170002013-04-099635889785320810996570002013-03-12914491442602260218000002013-02-229164389323243250134830002013-02-0690290298529222400002012-11-29881528796434573399103200002012-11-2888176878843479338941200002012-11-279048790487268226821150002012-11-23890628906231063106150002012-11-13878737073707150002012-11-098472383048495644175200002012-10-3188798879313531351100002012-10-25907905261925612300002012-10-2490353903532662662400002012-10-168845888458319731972400002012-10-0290866900552724682300002012-10-0190148900472726712200002012-09-26882398779733513222500002012-09-249051390512255425542100002012-09-21905905255625561300002012-09-139103189907270923923750002012-08-0985188518400240023250002012-08-0886038333945513755410002012-08-0386486859863753605240002012-07-2785849404940192200002012-07-19876183625440732541800002012-07-18870738707334342350002012-07-178652286048368636092400002012-07-1685088840884254396131050002012-07-1386541865413543541150002012-06-29865728657235351400002012-06-2885258525387238721400002012-06-2187751868533431521100002012-06-208528984689401238431650002012-06-138643855937363521500002012-06-118386183861422142211750002012-05-258518485184380938091300002012-05-238386683866417841781300002012-05-2185331853313753751250002012-05-18838344094409150002012-05-178442484224405743750002012-04-05853283662410636541000002012-03-2988243851033692852530002012-03-2787258342141443112530002012-03-228495840753956371731350002012-03-02855855352535251100002012-03-018368583685400740071100002012-02-0787584664368529515750002012-01-2686645865853167315241500002012-01-2586458645323211610002012-01-248380754703409742540002012-01-2081188118458445841100002012-01-178245182351425342263650002012-01-128413781755440837746600002012-01-1181658094639443431650002012-01-0479575795754984981200002011-12-307875787551985198130002011-12-29764757647558245824130002011-12-088038580385468346831150002011-12-01798879884847992300002011-11-307969379693484848481150002011-11-01777560455491240002011-10-28788578854984981100002011-10-26767576755555551100002011-10-05777559725418280002011-08-2678119773195211521100002011-08-23774237742351695169170002011-08-2276576554065406170002011-07-278135881358414111300002011-06-227417415864586411300002011-04-267554575545532253221100002011-04-257481964916825555053400002011-04-206474163965853382983600002011-04-15767097545334500555000002011-04-087620176201511351131150002011-03-3174502745025525521150002011-03-17744347443455551400002011-03-167373586558651400002011-03-0374556745565435431500002011-03-017390373903558355831500002011-01-2871317713176156153200002011-01-2667256725723472332200002011-01-187300473004568756871600002011-01-1273719716560215561500002011-01-04735735552455242540002011-01-0371592713756055621200002010-12-2273173559855982300002010-12-1374185697646305533250002010-12-1073558735585455454800002010-12-0973547735475455452200002010-12-02658996589974087408150002010-12-017312570756124553241980002010-11-297508571889582650495290002010-11-19738738533653361150002010-11-10772797645452400002010-11-097674969503447934800002010-11-087914178641407240722400002010-11-037953178606397839782300002010-11-0277087770874524521350002010-10-068072779568371536714700002010-10-057906878277419741972700002010-10-04801793797379721100002010-10-018048978903371137113300002010-09-307717714453445321300002010-09-207888377821403440342400002010-09-177781277812426742672100002010-09-1476942769424454451250002010-09-097446274462500650061180002010-09-08732057320552965296150002010-09-03757527575247472100002010-09-02748317483149074907150002010-08-3176585748294896452800002010-08-307403974039507350731180002010-08-23765197651945452550002010-08-207463974639492149211550002010-08-167557454932470662100002010-08-117536575365473647361100002010-08-067425573255520652063300002010-07-26745787251535487651000002010-07-22740047245253500161750002010-07-2173417705936513384600002010-07-20707570655772577222000002010-07-077221172111537753772200002010-07-06720797207954544340002010-07-027293472068520152012160002010-06-307169934586856686900002010-06-29694269073609460942200002010-06-177140467856364551492000002010-06-1173567356500850081350002010-06-1072391713915275272500002010-06-09708647051570357032500002010-06-087281271524523516571050002010-06-077099270638566356632700002010-05-03720727107254775252100002010-04-016775661256568617731000002010-03-056765667556612661262400002010-03-03667566656366362400002010-02-1067946678600659966900002010-02-096586438683468343300002010-02-0866264874671167114800002010-01-066542565425649464942200002010-01-05708596310870465256500002009-12-157081570155521552154200002009-12-146565652965292200002009-11-1868569685695655652500002009-11-176717467174595259521400002009-11-1668526685265655652400002009-11-127039675255239417000002009-10-0170974642926063502952010002009-09-3070152605577397524460002009-09-29636296819681921200002009-09-0364605646056366361300002009-08-286190861908697269721300002009-08-19626561756774677431500002009-08-18614446083727221000002009-08-12621602573296884125900002009-07-216146561465697169711100002009-07-206033160307724572452200002009-06-265930159301742674261300002009-06-226112161121697269721250002009-06-175991959319739573952500002009-06-106088860888771180002009-06-0958685868752275221180002009-06-026096260962695569551250002009-05-225993959939717871781250002009-05-216204161692566842600002009-04-16609560956846842400002009-04-15604604696569651400002009-04-1462224622246546541100002009-04-0659868598687067061100002009-03-065656791279121250002009-03-0553983539838428421250002009-02-095770457554745741441450002009-02-06576925691776741431050002009-01-2855635556357887788712500002009-01-2258225582257257251250002009-01-215671556715760676061250002008-11-065720157201728972891150002008-10-166021959294655765572200002008-10-156095859283639563954500002008-10-0855454877877842000002008-07-3163623623515681568131500002008-07-186192961929661150002008-07-156361460368631456494600002008-07-1062562255918591821000002008-07-08642016170160225522100002008-07-0260567605676256251180002008-07-015859458594666766671180002008-06-2359589657665762300002008-06-20619936186592959293450002008-06-1661584598936631500002008-06-1358958865865821000002008-06-126094460944612761271150002008-05-156237562375578257821100002008-05-136137261372597659761100002008-04-2461086108664200002008-03-07626396157558085622000002008-02-2264256046012526662400002008-02-1164214642145255251400002008-02-0761756175571757171400002008-01-086385162951526152614600002008-01-04610716046590659063550002008-01-0359977592776146142100002007-10-18608446084456956921300002007-10-17613136131355995599150002007-10-1659655965591359131700002007-09-17610086100856561550002007-09-14594594590559052550002007-09-1260714607145655651200002007-09-1161458101615551661350002007-09-06608636075561256123750002007-08-2859514595145855851500002007-08-235994759947576257621110002007-08-205989958311606957622250002007-07-125942259422578857881250002007-07-115963459603575257462850002007-07-0958842588425895891950002007-07-02594085940857715771150002007-06-2759934590095665566541800002007-06-2659433582825754575431900002007-06-25598475875567456743600002007-06-225777577760696069150002007-06-2059275568356248578221050002007-06-1857214572146166616613000002007-05-255909659096576857681350002007-05-215959259592566356631550002007-05-15615236152353531150002007-05-1461514612535347532600002007-05-09602258955766576631950002007-05-01602846028455025502150002007-04-25612612532953291500002007-04-2461179585975802532852500002007-04-2359675585913591331500002007-04-1956556561986198150002007-03-2861658607520352032500002007-03-275953758877570357033750002007-02-2861125602575256525622000002007-02-2759953597535496549622000002007-02-265882258423566556653150002007-02-21585858085808150002007-02-085926959269555355531100002007-02-056019660196537853781300002007-02-025880658456562756272100002007-02-0159222592225555551500002007-01-316006358556853972200002007-01-265700357003594359431100002007-01-245791557915577857781100002007-01-236027560275534553451100002007-01-1660129601295365361400002007-01-115988659445467543400002007-01-05585157466582956374400002006-12-1859359579525707545352400002006-12-01573553617861783150002006-11-2160013600135353150002006-11-15583165831655915591150002006-09-07582215822155552450002006-09-065681256812575157511450002006-08-22577455675555855582400002006-08-1655709557095925921200002006-08-03565915486067573841200002006-07-3155135541356183599641000002006-07-27545585455861611100002006-07-2456094519225815814400002006-07-175624755372577157712200002006-07-115481954819602360231100002006-07-065479151686618602351700002006-07-055455456075607511000002006-06-2650571505716816681611000002006-06-16542552256476472400002006-06-1449319493197051705111000002006-05-155443854438662500002006-05-125218552185642264221500002006-04-255619456194565256521450002006-04-21545155316212621231350002006-04-125557455574574657461250002006-04-055663654525592355465650002006-04-035350353503610361031100002006-03-3055995599565156511100002006-03-285514955149579657961100002006-03-245473554735586758672100002006-03-23565563558755872200002006-03-21565565554655461100002006-03-135625549935855782300002006-02-1557671567715297529722000002006-02-1456219557945614561433000002006-02-08576576530153011350002006-01-26585585513151313300002006-01-2458558551255125150002006-01-235712557125535453541100002006-01-1757325732531353132700002006-01-125837558375513451341250002006-01-105717856552853273550002006-01-065375375935931200002006-01-0356394563945455451350002005-11-075656543754371350002005-10-075670756707528152811350002005-09-2058406584064977497711000002005-09-1356906569065211521111000002005-09-0758816572334897489731950002005-08-3156894565945249524921100002005-08-2559013590134851485111400002005-08-175678567852521400002005-08-165572854728553955393300002005-08-115483254832551755171400002005-07-22566685666851855185150002005-07-195757512551251180002005-07-1856103561035275271180002005-07-085621556215524152411800002005-07-0658755875483248321500002005-06-29589115652664841600002005-06-24567115671151425142150002005-06-2156006560065255251150002005-06-205449453949559255922300002005-06-1556035603524152411500002005-06-0158365565375144852350002005-05-2556497564975145141250002005-04-25564865548651512500002005-04-205494153788553955392500002005-04-075542155421525152512800002005-04-0553405525675723572332400002005-03-035490854908529152911200002005-03-0255149542254025252300002005-03-01551275340555335252600002005-02-28557455745155151250002005-02-25541925419254541250002005-02-245666455355001500122000002005-02-2353661536615483548311000002005-02-185572255722514151411300002005-02-155466454664530453041400002005-01-2751255125585558551250002005-01-265599155613513507227628000

N Privault

Date HighPrice LowPrice HighYield LowYield Count Amount1 2016-01-13 99082 98982 1666 1501 2 200002 2015-12-29 99183 99183 1250 1250 1 100003 2015-12-21 97952 97952 3014 3014 1 100004 2015-12-17 99141 98550 2123 1251 5 6100005 2015-12-07 98770 98770 1714 1714 2 100006 2015-12-04 98363 98118 2628 2280 2 10000

50

60

70

80

90

100

price [2005minus01minus262016minus01minus13]

Last 99082

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1310 Orange Cnty Calif bond prices

The next Figure 1311 plots the bond yield y(t T ) defined as

y(t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)y(tT ) 0 6 t 6 T

2

4

6

8

yield [2005minus01minus262016minus01minus13]

Last 1666

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1311 Orange Cnty Calif bond yields

Bond pricing in the Dothan model

In the Dothan [Dot78] model the short term interest rate process (rt)tisinR+ ismodeled according to a geometric Brownian motion

drt = micrortdt+ σrtdBt (1325)430

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

where the volatility σ gt 0 and the drift micro isin R are constant parameters and(Bt)tisinR+ is a standard Brownian motion In this model the short term inter-est rate rt remains always positive while the proportional volatility term σrtaccounts for the sensitivity of the volatility of interest rate changes to thelevel of the rate rt

On the other hand the Dothan model is the only lognormal short ratemodel that allows for an analytical formula for the zero coupon bond price

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

For convenience of notation we let p = 1minus 2microσ2 and rewrite (1325) as

drt = (1minus p)σ2

2 rtdt+ σrtdBt

with solutionrt = r0 eσBtminuspσ

2t2 t isin R+ (1326)

By the Markov property of (rt)tisinR+ the bond price P (t T ) is a functionF (t rt) of rt and time t isin [0 T ]

P (t T ) = F (t rt) = IElowast[

eminusr Ttrsds

∣∣∣ rt] 0 6 t 6 T (1327)

By computation of the conditional expectation (1327) using (106) we easilyobtain the following result cf Proposition 12 of [PP11] where the functionθ(v t) is defined in (104)

Proposition 133 The zero-coupon bond price P (t T ) = F (t rt) is givenfor all p isin R by

F (t x) (1328)

= eminusσ2p2(Tminust)8

winfin0

winfin0

eminusux exp(minus2(1 + z2)σ2u

(4zσ2u

σ2(T minus t)

4

)du

u

dz

zp+1

x gt 0

Proof By Proposition 101 cf [Yor92] Proposition 2 the probability distri-bution of the time integral

w Tminust

0eσBsminuspσ

2s2ds is given by

P(w Tminust

0eσBsminuspσ

2s2ds isin dy)

=winfinminusinfin

P(w t

0eσBsminuspσ

2s2ds isin dy Bt minus pσt2 isin dz)

431

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 4: Forward Rate Modeling

N Privault

with shape parameter 2αβσ2 and scale parameter σ2(2β) which is also theinvariant distribution of rt

Other classical mean reverting models include the Courtadon (1982) model

drt = β(αminus rt)dt+ σrtdBt

where α β σ are nonnegative and the exponential Vasicek model

drt = rt(η minus a log rt)dt+ σrtdBt

where a η σ gt 0 cf Exercises 414 and 415

Constant Elasticity of Variance (CEV)

Constant Elasticity of Variance models are designed to take into accountnonconstant volatilities that can vary as a power of the underlying assetThe Marsh-Rosenfeld (1983) model

drt = (βrminus(1minusγ)t + αrt)dt+ σr

γ2t dBt (135)

where α β σ γ are constants and β is the variance (or diffusion) elasticitycoefficient covers most of the CEV models Denoting by v(r) = σrγ2 thediffusion coefficient in (135) constant elasticity refers to the constant ratio

dv(r)v(r)drr

= rvprime(r)v(r) = d log v(r)

d log r = d log rγ2d log r = γ

2

between the relative change dv(r)v(r) in the variance v(r) and the relativechange drr in r

For γ = 1 this is the CIR model and for β = 0 we get the standard CEVmodel

drt = αrtdt+ σrγ2t dBt

If γ = 2 this yields the Dothan [Dot78] model

drt = αrtdt+ σrtdBt

which is a version of geometric Brownian motion used for short term interestrate modeling

Time-dependent affine Models

The class of short rate interest rate models admits a number of generalizationsthat can be found in the references quoted in the introduction of this chapter

414

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

among which is the class of affine models of the form

drt = (η(t) + λ(t)rt)dt+radicδ(t) + γ(t)rtdBt (136)

Such models are called affine because the associated zero-coupon bonds canbe priced using an affine PDE of the type (1316) below as will be seen afterProposition 132

Affine models also include the Ho-Lee model

drt = θ(t)dt+ σdBt

where θ(t) is a deterministic function of time as an extension of the Mertonmodel drt = θdt+σdBt and the Hull-White model [HW90] cf Section 131

drt = (θ(t)minus α(t)rt)dt+ σ(t)dBt

which is itself a time-dependent extension of the Vasicek model

132 Calibration of the Vasicek model

The Vasicek equation (131) ie

drt = (aminus brt)dt+ σdBt

can be discretized according to a discrete-time sequence (tk)k=01n as

rtk+1 minus rtk = (aminus brtk)∆t+ σZk k isin N

where∆t = tk+1minustk and (Zk)kgt0 is a Gaussian white noise with variance∆tie a sequence of independent centered and identically distributed N (0 ∆t)Gaussian random variables

We find

rtk+1 = rtk + (aminus brtk)∆t+ σZk = a∆t+ (1minus b∆t)rtk + σZk k isin N

Based on a set (rtk)k=0n of market data we can minimize the residual

nminus1sumk=0

(rtk+1 minus a∆tminus (1minus b∆t)rtk

)2over a and b using Ordinary Least Square (OLS) regression For this compute

part

parta

nminus1sumk=0

(rtk+1 minus a∆tminus (1minus b∆t)rtk

)2 415

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minus2∆t(minusan∆t+

nminus1sumk=0

(rtk+1 minus (1minus b∆t)rtk

))= 0

and

part

partb

nminus1sumk=0

(rtk+1 minus a∆tminus (1minus b∆t)rtk

)2= ∆t

nminus1sumk=0

rtk(minusa∆t+ rtk+1 minus (1minus b∆t)rtk

)= ∆t

nminus1sumk=0

rtk

(rtk+1 minus (1minus b∆t)rtk + 1

n

nminus1suml=0

(rtl+1 minus (1minus b∆t)rtl

))= 0

This leads to an estimate the parameters a and b respectively as the empiricalmean and covariance of (rtk)k=01n ie

a∆t = 1n

nminus1sumk=0

rtk+1 minus1n

(1minus b∆t)nminus1sumk=0

rtk

and

1minus b∆t =

nminus1sumk=0

rtk rtk+1 minus1n

nminus1sumk=0

rtk

nminus1suml=0

rtl+1

nminus1sumk=0

rtk rtk minus1n

nminus1sumk=0

rtk

nminus1suml=0

rtl

=

nminus1sumk=0

(rtk minus

1n

nminus1suml=0

rtl

)(rtk+1 minus

1n

nminus1suml=0

rtl+1

)nminus1sumk=0

(rtk minus

1n

nminus1sumk=0

rtk

)2

This also yields

σ2∆t = Var[σZk] = Var[rtk+1 minus (1minus b∆t)rtk minus a∆t

] k isin N

hence σ can be estimated as

σ2∆t = 1n

nminus1sumk=0

(rtk+1 minus rtk(1minus b∆t)minus a∆t

)2

416

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Defining rtk = rtk minus ab k isin N we have

rtk+1 = rtk+1 minus ab= rtk minus ab+ (aminus brtk)∆t+ σZk

= rtk minus abminus b(rtk minus ab)∆t+ σZk

= rtk minus brtk∆t+ σZk

= (1minus b∆t)rtk + σZk k isin N

In other words the sequence (rtk)kisinisinN is modeled according to an autore-gressive AR(1) time series in which the current state Xn of the system isexpressed as the linear combination

Xn = σZn + α1Xnminus1 n gt 1 (137)

which can be solved recursively as the series

Xn = σZn + α1(σZnminus1 + α1Xnminus2) = middot middot middot = σ

infinsumk=0

αk1Znminusk

which converges when |α1| lt 1 ie |1minus b∆t| lt 1

Note that the variance of Xn is given by

Var[Xn] = σ2 Var[ infinsumk=0

αk1Znminusk

]

= σ2∆tinfinsumk=0

α2k1

= σ2∆tinfinsumk=0

(1minus b∆t)2k

= σ2∆t

1minus (1minus b∆t)2

= σ2∆t

2b∆tminus b2(∆t)2

σ2

2b

which is the expected variance of the Vasicek process in the stationary regime

417

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

library(quantmod)getSymbols(^TNXfrom=2012-01-01to=2016-01-01src=yahoo)rate=Ad(`TNX`)chartSeries(rateupcol=bluetheme=white)n = sum(isna(rate))

The next Figure 133 displays the yield of the 10 Year Treasury Note on theChicago Board Options Exchange (CBOE) Treasury notes usually have amaturity between one and 10 years whereas treasury bonds have maturitiesbeyond 10 years)

15

20

25

30

rate [2012minus01minus032015minus12minus31]

Last 2269

Jan 032012

Jul 022012

Jan 022013

Jul 012013

Jan 022014

Jul 012014

Jan 022015

Jul 012015

Dec 312015

Fig 133 CBOE 10 Year Treasury Note yield (TNX)

ratek=asvector(rate)ratekplus1 lt- c(ratek[-1]0)b lt- (sum(ratekratekplus1) - sum(ratek)sum(ratekplus1)n)(sum(ratekratek) - sum(ratek)sum(

ratek)n)a lt- sum(ratekplus1)n-bsum(ratek)nsigma lt- sqrt(sum((ratekplus1-bratek-a)^2)n)

The next code is generating Vasicek random samples according to the AR(1)time series (137)

for (i in 1100) arsimlt-arimasim(model=list(ar=c(b))nstart=100n)y=ratek[1]+ab+sigmaarsimtime lt- asPOSIXct(time(TNX) format = Y-m-d)yield lt- xts(x = y orderby = time)chartSeries(yieldupcol=bluetheme=white)Syssleep(05)

418

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

00

05

10

15

20

25

30

35

yield [2012minus01minus03 0800002015minus12minus31 080000]

Last 182260342989168

Jan 032012

Jul 022012

Jan 022013

Jul 012013

Jan 022014

Jul 012014

Jan 022015

Jul 012015

Dec 312015

Fig 134 Calibrated Vasicek samples

133 Zero-Coupon and Coupon Bonds

A zero-coupon bond is a contract priced P (t T ) at time t lt T to deliverP (T T ) = $1 at time T In addition to its value at maturity a bond mayyield a periodic coupon payment at regular time intervals until the maturitydate

Fig 135 Five dollar Louisiana bond of 1875 with 75 biannual coupons

The computation of the arbitrage price P0(t T ) of a zero-coupon bond basedon an underlying short term interest rate process (rt)tisinR+ is a basic andimportant issue in interest rate modeling

Constant short rate

In case the short term interest rate is a constant rt = r t isin R+ a standardarbitrage argument shows that the price P (t T ) of the bond is given by

P (t T ) = eminusr(Tminust) 0 6 t 6 T

419

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Indeed if P (t T ) gt eminusr(Tminust) we could issue a bond at the price P (t T ) andinvest this amount at the compounded risk free rate r which would yieldP (t T ) er(Tminust) gt 1 at time T

On the other hand if P (t T ) lt eminusr(Tminust) we could borrow P (t T ) at the rater to buy a bond priced P (t T ) At maturity time T we would receive $1 andrefund only P (t T ) er(Tminust) lt 1

Deterministic short rates

Similarly to the above when the short term interest rate process (rt)tisinR+ isa deterministic function of time a similar argument shows that

P (t T ) = eminusr Ttrsds 0 6 t 6 T (138)

Stochastic short rates

In case (rt)tisinR+ is an (Ft)tisinR+ -adapted random process the formula (138)is no longer valid as it relies on future information and we replace it with

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T (139)

under a risk-neutral measure Plowast It is natural to write P (t T ) as a conditionalexpectation under a martingale measure as the use of conditional expectationhelps to ldquofilter outrdquo the future information past time t contained in

w T

trsds

The expression (139) makes sense as the ldquobest possible estimaterdquo of thefuture quantity eminus

r Ttrsds in mean square sense given information known up

to time t

Coupon bonds

Pricing bonds with non-zero coupon is not difficult since in general theamount and periodicity of coupons are deterministiclowast In the case of a con-stant continuous-time coupon yield at the rate c gt 0 another application ofthe above absence of arbitrage argument shows that the price Pc(t T ) of thecoupon bond is given by

Pc(t T ) = ec(Tminust)P0(t T ) 0 6 t 6 T

see also Figure 139 below In the sequel we will mostly consider zero-couponbonds priced as P (t T ) = P0(t T ) 0 6 t 6 T lowast However coupon default cannot be excluded

420

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Martingale property of discounted bond prices

The following proposition shows that Assumption (A) of Chapter 12 is sat-isfied in other words the bond price process t 7minusrarr P (t T ) can be used as anumeacuteraireProposition 131 The discounted bond price process

t 7minusrarr P (t T ) = eminusr t

0 rsdsP (t T )

is a martingale under PlowastProof By (139) we have

eminusr t

0 rsdsP (t T ) = eminusr t

0 rsds IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r t0 rsds eminus

r Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r T0 rsds

∣∣∣ Ft] and this suffices to conclude since by the ldquotower propertyrdquo (1739) of condi-tional expectations any process (Xt)tisinR+ of the form t 7minusrarr Xt = IElowast[F | Ft]F isin L1(Ω) is a martingale cf Relation (61)

Path integrals

In physics the Feynman path integral

ψ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(i

~S(x(middot))

)where ~ is the Planck constant and S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 minus V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 minus V (x(timinus1)))∆ti

solves the Schroumldinger equation

i~partψ

partt(x t) = minus ~2

2mpart2ψ

partx2 (x t) + V (x(t))ψ(x t)

After the Wick rotation t 7rarr minusit the function

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

) 421

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

solves the heat equation

~partφ

partt(x t) = minus ~2

2mpart2φ

partx2 (x t) + V (x(t))φ(x t)

Given the action

S(x(middot)) =w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

we can rewrite the Euclidean path integral as

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

)=

wx(0)=x x(t)=y

Dx(middot) exp(minus 1

2~

Nsumi=1

(x(ti)minus x(timinus1))2

2∆timinus 1

~

Nsumi=1

V (x(timinus1)))

= IElowast[exp

(minus1~

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

]

This type of path integral computation

φ(y t) = IElowast[exp

(minus

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

] (1310)

is particularly useful for bond pricing as (1310) can be interpreted as theprice of a bond with short term interest rate process (rt)tisinR+ = (V (Bt)))tisinR+

conditionally to the value of the endpoint Bt = y cf (1331) below It can alsobe useful for exotic option pricing cf Chapter 10 and for risk managementThe path integral (1310) can be estimated either by closed-form expressionsusing Partial Differential Equations (PDEs) or probability densities by ap-proximations such as (conditional) Moment matching or by Monte Carloestimation from the paths of a Brownian bridge as shown in Figure 136

422

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 136 Brownian bridge

Bond pricing PDE

We assume from now on that the underlying short rate process is solution tothe stochastic differential equation

drt = micro(t rt)dt+ σ(t rt)dBt (1311)

where (Bt)tisinR+ is a standard Brownian motion under Plowast Note that specify-ing the dynamics of (rt)tisinR+ under the historical probability measure P willalso lead to a notion of market price of risk (MPoR) for the modeling of shortrates

Since all solutions of stochastic differential equations such as (1311) havethe Markov property cf eg Theorem V-32 of [Pro04] the arbitrage priceP (t T ) can be rewritten as a function F (t rt) of rt ie

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] = IElowast[

eminusr Ttrsds

∣∣∣ rt] = F (t rt)

and depends on rt only instead of depending on all information available inFt up to time t meaning that the pricing problem can now be formulated asa search for the function F (t x)

Proposition 132 (Bond pricing PDE) The bond pricing PDE for P (t T ) =F (t rt) is written as

xF (t x) = partF

partt(t x) + micro(t x)partF

partx(t x) + 1

2σ2(t x)part

2F

partx2 (t x) (1312)

423

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

t isin R+ x isin R subject to the terminal condition

F (T x) = 1 x isin R (1313)

Proof By Itocircrsquos formula we have

d(

eminusr t

0 rsdsP (t T ))

= minusrt eminusr t

0 rsdsP (t T )dt+ eminusr t

0 rsdsdP (t T )

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdsdF (t rt)

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdspartF

partx(t rt)(micro(t rt)dt+ σ(t rt)dBt)

+ eminusr t

0 rsds

(12σ

2(t rt)part2F

partx2 (t rt) + partF

partt(t rt)

)dt

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

+ eminusr t

0 rsds

(minusrtF (t rt) + micro(t rt)

partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

)dt

(1314)

Given that t 7minusrarr eminusr t

0 rsdsP (t T ) is a martingale the above expression(1314) should only contain terms in dBt (cf Corollary II-1 page 72 of[Pro04]) and all terms in dt should vanish inside (1314) This leads to theidentities

rtF (t rt)

= micro(t rt)partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

d(

eminusr t

0 rsdsP (t T ))

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

(1315a)

(1315b)

which recover (1312) Condition (1313) is due to the fact that P (T T ) = $1

In the case of an interest rate process modeled by (136) we have

micro(t x) = η(t) + λ(t)x and σ(t x) =radicδ(t) + γ(t)x

hence (1312) yields the (time dependent) affine PDE

xF (t x) = partF

partt(t x) + (η(t) + λ(t)x)partF

partx(t x) + 1

2(δ(t) + γ(t)x)part2F

partx2 (t x)

(1316)

t isin R+ x isin R By (1315b) the above proposition also shows that

424

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

dP (t T )P (t T ) = 1

P (t T )d(

er t

0 rsds eminusr t

0 rsdsP (t T ))

= 1P (t T )

(rtP (t T )dt+ e

r t0 rsdsd

(eminus

r t0 rsdsP (t T )

))= rtdt+ 1

P (t T ) er t

0 rsdsd(

eminusr t

0 rsdsP (t T ))

= rtdt+ 1F (t rt)

partF

partx(t rt)σ(t rt)dBt

= rtdt+ σ(t rt)part logFpartx

(t rt)dBt (1317)

In the Vasicek casedrt = (aminus brt)dt+ σdWt

the bond price takes the form

F (t rt) = P (t T ) = eA(Tminust)+rtC(Tminust)

where A(middot) and C(middot) are functions of time cf (1321) below and (1317)yields

dP (t T )P (t T ) = rtdtminus

σ

b(1minus eminusb(Tminust))dWt (1318)

since F (t x) = eA(Tminust)+xC(Tminust)

Note that more generally all affine short rate models as defined in Rela-tion (136) including the Vasicek model will yield a bond pricing formula ofthe form

P (t T ) = eA(Tminust)+rtC(Tminust)

cf eg sect 324 of [BM06]

Probabilistic solution of the Vasicek PDE

Next we solve the PDE (1312) written with micro(t x) = aminusbx and σ(t x) = σin the Vasicek [Vaš77] model

drt = (aminus brt)dt+ σdBt

as xF (t x) = partF

partt(t x) + (aminus bx)partF

partx(t x) + σ2

2part2F

partx2 (t x)

F (T x) = 1(1319)

by a direct computation of the conditional expectation

425

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

F (t rt) = P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] (1320)

Recall that in this model the short rate (rt)tisinR+ has the expression

rt = g(t) +w t

0h(t s)dBs = r0 eminusbt + a

b(1minus eminusbt) + σ

w t

0eminusb(tminuss)dBs

whereg(t) = r0 eminusbt + a

b(1minus eminusbt) t isin R+

andh(t s) = σ eminusb(tminuss) 0 6 s 6 t

are deterministic functions

Letting uort = max(u t) using the fact that Wiener integrals are Gaussianrandom variables and the Gaussian moment generating function we have

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r Tt

(g(s)+r s

0 h(su)dBu)ds∣∣∣ Ft]

= exp(minus

w T

tg(s)ds

)IElowast[

eminusr Tt

r s0 h(su)dBuds

∣∣∣ Ft]= exp

(minus

w T

tg(s)ds

)IElowast[

eminusr T

0r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

uorth(s u)dsdBu

)IElowast[

eminusr Tt

r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu + 1

2w T

t

(w T

uh(s u)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

w t

0

w T

teminusb(sminusu)dsdBu

)times exp

(σ2

2w T

t

(w T

ueminusb(sminusu)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

b(1minus eminusb(Tminust))

w t

0eminusb(tminusu)dBu

)times exp

(σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)

426

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= exp(minusrtb

(1minus eminusb(Tminust)) + 1b

(1minus eminusb(Tminust))(r0 eminusbt + a

b(1minus eminusbt)

))times exp

(minus

w T

t

(r0 eminusbs + a

b(1minus eminusbs)

)ds+ σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)= eA(Tminust)+rtC(Tminust) (1321)

whereC(T minus t) = minus1

b(1minus eminusb(Tminust)) (1322)

and

A(T minus t) = 4abminus 3σ2

4b3 + σ2 minus 2ab2b2 (T minus t) + σ2 minus ab

b3eminusb(Tminust)minus σ2

4b3 eminus2b(Tminust)

(1323)

Analytical solution of the Vasicek PDE

In order to solve the PDE (1319) analytically we may look for a solution ofthe form

F (t x) = eA(Tminust)+xC(Tminust) (1324)

where A(middot) and C(middot) are functions to be determined under the conditionsA(0) = 0 and C(0) = 0 Substituting (1324) into the PDE (1312) with theVasicek coefficients micro(t x) = (aminus bx) and σ(t x) = σ shows that

x eA(Tminust)+xC(Tminust) = minus(Aprime(T minus t)minus xC prime(T minus t)) eA(Tminust)+xC(Tminust)

+(aminus bx)C(T minus t) eA(Tminust)+xC(Tminust)

+12σ

2C2(T minus t) eA(Tminust)+xC(Tminust)

ie

x = minusAprime(T minus t) + xC prime(T minus t) + (aminus bx)C(T minus t) + 12σ

2C2(T minus t)

By identification of terms for x = 0 and x 6= 0 this yields the system ofRiccati and linear differential equations

Aprime(s) = aC(s) + σ2

2 C2(s)

C prime(s) = 1 + bC(s)

which can be solved to recover the above value of P (t T ) = F (t rt)

427

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Vasicek Bond Price Simulations

In this section we consider again the Vasicek model in which the short rate(rt)tisinR+ is solution to (131) Figure 137 presents a random simulation oft 7minusrarr P (t T ) in the same Vasicek model The graph of the correspondingdeterministic zero coupon bond price obtained for a = b = σ = 0 is alsoshown on the Figure 137

03

04

05

06

07

08

09

1

11

0 5 10 15 20

Fig 137 Graphs of t 7rarr F (t rt) = P (t T ) vs t 7rarr eminusr0(Tminust)

Figure 138 presents a random simulation of t 7minusrarr P (t T ) for a (non-zero)coupon bond with price Pc(t T ) = ec(Tminust)P (t T ) and coupon rate c gt 00 6 t 6 T

10000

10200

10400

10600

10800

0 5 10 15 20

Fig 138 Graph of t 7rarr F (t rt) = P (t T ) for a bond with a 23 coupon

The simulation of Figure 138 can be compared to the coupon bond marketdata of Figure 139 below

428

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 139 Bond price graph with maturity 011808 and coupon rate 625

See Exercise 133 for a bond pricing formula in the CIR model

Zero coupon bond price and yield data

The following zero coupon bond price was downloaded at EMMA fromthe Municipal Securities Rulemaking Board

ORANGE CNTY CALIF PENSION OBLIG CAP APPREC-TAXABLE-REF-SER A (CA)CUSIP 68428LBB9Dated Date 06121996 (June 12 1996)Maturity Date 09012016 (September 1st 2016)Interest Rate 00 Principal Amount at Issuance $26056000Initial Offering Price 19465

library(quantmod)bondprice lt- readtable(bond_data_Rtxtcolnames = c(DateHighPriceLowPrice

HighYieldLowYieldCountAmount))head(bondprice)time lt- asPOSIXct(bondprice$Date format = Y-m-d)price lt- xts(x = bondprice$HighPrice orderby = time)yield lt- xts(x = bondprice$HighYield orderby = time)chartSeries(priceupcol=bluetheme=white)chartSeries(yieldupcol=bluetheme=white)

429

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

2016-01-139908298982166615012200002015-12-2999183991831251251100002015-12-219795297952301430141100002015-12-179914198552123125156100002015-12-0798779877171417142100002015-12-04983639811826282282100002015-11-1898659865176817672200002015-11-1798306983062201222200002015-10-029865998514167150641000002015-09-099898210721071250002015-09-089888498043204311583300002015-07-20975059628345922992200002015-07-1698397983971461461250002015-07-15988729887210211021150002015-07-109768997689208420841300002015-06-1898123980231686163300002015-06-179884397034254313250002015-06-15983698299143113795850002015-06-0998016980161651651200002015-05-21978269772618321752500002015-05-189849498494119111912300002015-05-1598559835130311433300002015-05-129776997769175117511150002015-04-279834898348125112512400002015-04-249830398303128212821250002015-04-239760797607181318131650002015-04-1498649864111100002015-03-20983897981428114373850002015-03-199785197751159151836750002015-03-11981981391323600002015-02-27978297695156914832400002015-02-139858298357108309343750002015-02-119857698226116609343300002015-01-15983983106710671550002015-01-12989598950650652600002015-01-099898123212321600002014-12-11983197396155131600002014-12-109641696416214421442800002014-12-059804498044114811481500002014-12-049728897288159815981500002014-11-219782297822125125150002014-11-209642294353320733150002014-11-0797979964582014113861250002014-10-299650496504195619561150002014-10-1498149977841201123200002014-10-0797401974011396139611000002014-10-0397991970261598107353500002014-09-3097446962851991135842200002014-09-1997331972311455140221000002014-09-18964796419186221000002014-09-15969956732278161943000002014-09-119555952252823382200002014-08-199711995596223614495750002014-08-139528695286238623861300002014-08-069559395593220522051350002014-08-0197951977261114100341000002014-07-30976975122311742200002014-07-239603695036244919434500002014-07-1697494951246912526750002014-07-1497182969571461135141000002014-07-11956995572144208421000002014-05-209531495314212321232300002014-05-169372393723286628661300002014-04-299701396713143913052200002014-04-1695169516211521151200002014-04-07976339683313510042500002014-04-029577393974260718073750002014-02-2893293128932852200002014-02-2791759175348634861100002014-02-21956959269530417584400002014-02-189438593885251122992900002014-02-139310193101284228421450002013-11-159393262726271500002013-11-14915915320432041500002013-11-12925999171312127712200002013-10-319427294272210121013450002013-10-309232392323284828481100002013-10-299599942521011452200002013-10-259080790807342934291100002013-10-219161691491314230933750002013-08-0791008910083113112100002013-08-05894258942536813681150002013-07-229494394018216812800002013-07-1795167930262339162900002013-07-16951549515416161500002013-07-12944129441218518511000002013-06-28940049340421719663400002013-06-269471892567245417213500002013-06-11925692562422422120002013-06-05911119111129072907150002013-06-0495282952821528152862500002013-05-3195122951221547154712250002013-05-309429291069290718214280002013-05-2994969488516331652000002013-05-2492682926822352351100002013-05-2394488930732217174942100002013-05-219679193731199174950002013-05-169127691276280428041200002013-05-02916769015315126383270002013-04-24920999163926322483450002013-04-22920749161426322483540002013-04-179645941591810798550002013-04-159205491954250524722200002013-04-1191791725842584170002013-04-099635889785320810996570002013-03-12914491442602260218000002013-02-229164389323243250134830002013-02-0690290298529222400002012-11-29881528796434573399103200002012-11-2888176878843479338941200002012-11-279048790487268226821150002012-11-23890628906231063106150002012-11-13878737073707150002012-11-098472383048495644175200002012-10-3188798879313531351100002012-10-25907905261925612300002012-10-2490353903532662662400002012-10-168845888458319731972400002012-10-0290866900552724682300002012-10-0190148900472726712200002012-09-26882398779733513222500002012-09-249051390512255425542100002012-09-21905905255625561300002012-09-139103189907270923923750002012-08-0985188518400240023250002012-08-0886038333945513755410002012-08-0386486859863753605240002012-07-2785849404940192200002012-07-19876183625440732541800002012-07-18870738707334342350002012-07-178652286048368636092400002012-07-1685088840884254396131050002012-07-1386541865413543541150002012-06-29865728657235351400002012-06-2885258525387238721400002012-06-2187751868533431521100002012-06-208528984689401238431650002012-06-138643855937363521500002012-06-118386183861422142211750002012-05-258518485184380938091300002012-05-238386683866417841781300002012-05-2185331853313753751250002012-05-18838344094409150002012-05-178442484224405743750002012-04-05853283662410636541000002012-03-2988243851033692852530002012-03-2787258342141443112530002012-03-228495840753956371731350002012-03-02855855352535251100002012-03-018368583685400740071100002012-02-0787584664368529515750002012-01-2686645865853167315241500002012-01-2586458645323211610002012-01-248380754703409742540002012-01-2081188118458445841100002012-01-178245182351425342263650002012-01-128413781755440837746600002012-01-1181658094639443431650002012-01-0479575795754984981200002011-12-307875787551985198130002011-12-29764757647558245824130002011-12-088038580385468346831150002011-12-01798879884847992300002011-11-307969379693484848481150002011-11-01777560455491240002011-10-28788578854984981100002011-10-26767576755555551100002011-10-05777559725418280002011-08-2678119773195211521100002011-08-23774237742351695169170002011-08-2276576554065406170002011-07-278135881358414111300002011-06-227417415864586411300002011-04-267554575545532253221100002011-04-257481964916825555053400002011-04-206474163965853382983600002011-04-15767097545334500555000002011-04-087620176201511351131150002011-03-3174502745025525521150002011-03-17744347443455551400002011-03-167373586558651400002011-03-0374556745565435431500002011-03-017390373903558355831500002011-01-2871317713176156153200002011-01-2667256725723472332200002011-01-187300473004568756871600002011-01-1273719716560215561500002011-01-04735735552455242540002011-01-0371592713756055621200002010-12-2273173559855982300002010-12-1374185697646305533250002010-12-1073558735585455454800002010-12-0973547735475455452200002010-12-02658996589974087408150002010-12-017312570756124553241980002010-11-297508571889582650495290002010-11-19738738533653361150002010-11-10772797645452400002010-11-097674969503447934800002010-11-087914178641407240722400002010-11-037953178606397839782300002010-11-0277087770874524521350002010-10-068072779568371536714700002010-10-057906878277419741972700002010-10-04801793797379721100002010-10-018048978903371137113300002010-09-307717714453445321300002010-09-207888377821403440342400002010-09-177781277812426742672100002010-09-1476942769424454451250002010-09-097446274462500650061180002010-09-08732057320552965296150002010-09-03757527575247472100002010-09-02748317483149074907150002010-08-3176585748294896452800002010-08-307403974039507350731180002010-08-23765197651945452550002010-08-207463974639492149211550002010-08-167557454932470662100002010-08-117536575365473647361100002010-08-067425573255520652063300002010-07-26745787251535487651000002010-07-22740047245253500161750002010-07-2173417705936513384600002010-07-20707570655772577222000002010-07-077221172111537753772200002010-07-06720797207954544340002010-07-027293472068520152012160002010-06-307169934586856686900002010-06-29694269073609460942200002010-06-177140467856364551492000002010-06-1173567356500850081350002010-06-1072391713915275272500002010-06-09708647051570357032500002010-06-087281271524523516571050002010-06-077099270638566356632700002010-05-03720727107254775252100002010-04-016775661256568617731000002010-03-056765667556612661262400002010-03-03667566656366362400002010-02-1067946678600659966900002010-02-096586438683468343300002010-02-0866264874671167114800002010-01-066542565425649464942200002010-01-05708596310870465256500002009-12-157081570155521552154200002009-12-146565652965292200002009-11-1868569685695655652500002009-11-176717467174595259521400002009-11-1668526685265655652400002009-11-127039675255239417000002009-10-0170974642926063502952010002009-09-3070152605577397524460002009-09-29636296819681921200002009-09-0364605646056366361300002009-08-286190861908697269721300002009-08-19626561756774677431500002009-08-18614446083727221000002009-08-12621602573296884125900002009-07-216146561465697169711100002009-07-206033160307724572452200002009-06-265930159301742674261300002009-06-226112161121697269721250002009-06-175991959319739573952500002009-06-106088860888771180002009-06-0958685868752275221180002009-06-026096260962695569551250002009-05-225993959939717871781250002009-05-216204161692566842600002009-04-16609560956846842400002009-04-15604604696569651400002009-04-1462224622246546541100002009-04-0659868598687067061100002009-03-065656791279121250002009-03-0553983539838428421250002009-02-095770457554745741441450002009-02-06576925691776741431050002009-01-2855635556357887788712500002009-01-2258225582257257251250002009-01-215671556715760676061250002008-11-065720157201728972891150002008-10-166021959294655765572200002008-10-156095859283639563954500002008-10-0855454877877842000002008-07-3163623623515681568131500002008-07-186192961929661150002008-07-156361460368631456494600002008-07-1062562255918591821000002008-07-08642016170160225522100002008-07-0260567605676256251180002008-07-015859458594666766671180002008-06-2359589657665762300002008-06-20619936186592959293450002008-06-1661584598936631500002008-06-1358958865865821000002008-06-126094460944612761271150002008-05-156237562375578257821100002008-05-136137261372597659761100002008-04-2461086108664200002008-03-07626396157558085622000002008-02-2264256046012526662400002008-02-1164214642145255251400002008-02-0761756175571757171400002008-01-086385162951526152614600002008-01-04610716046590659063550002008-01-0359977592776146142100002007-10-18608446084456956921300002007-10-17613136131355995599150002007-10-1659655965591359131700002007-09-17610086100856561550002007-09-14594594590559052550002007-09-1260714607145655651200002007-09-1161458101615551661350002007-09-06608636075561256123750002007-08-2859514595145855851500002007-08-235994759947576257621110002007-08-205989958311606957622250002007-07-125942259422578857881250002007-07-115963459603575257462850002007-07-0958842588425895891950002007-07-02594085940857715771150002007-06-2759934590095665566541800002007-06-2659433582825754575431900002007-06-25598475875567456743600002007-06-225777577760696069150002007-06-2059275568356248578221050002007-06-1857214572146166616613000002007-05-255909659096576857681350002007-05-215959259592566356631550002007-05-15615236152353531150002007-05-1461514612535347532600002007-05-09602258955766576631950002007-05-01602846028455025502150002007-04-25612612532953291500002007-04-2461179585975802532852500002007-04-2359675585913591331500002007-04-1956556561986198150002007-03-2861658607520352032500002007-03-275953758877570357033750002007-02-2861125602575256525622000002007-02-2759953597535496549622000002007-02-265882258423566556653150002007-02-21585858085808150002007-02-085926959269555355531100002007-02-056019660196537853781300002007-02-025880658456562756272100002007-02-0159222592225555551500002007-01-316006358556853972200002007-01-265700357003594359431100002007-01-245791557915577857781100002007-01-236027560275534553451100002007-01-1660129601295365361400002007-01-115988659445467543400002007-01-05585157466582956374400002006-12-1859359579525707545352400002006-12-01573553617861783150002006-11-2160013600135353150002006-11-15583165831655915591150002006-09-07582215822155552450002006-09-065681256812575157511450002006-08-22577455675555855582400002006-08-1655709557095925921200002006-08-03565915486067573841200002006-07-3155135541356183599641000002006-07-27545585455861611100002006-07-2456094519225815814400002006-07-175624755372577157712200002006-07-115481954819602360231100002006-07-065479151686618602351700002006-07-055455456075607511000002006-06-2650571505716816681611000002006-06-16542552256476472400002006-06-1449319493197051705111000002006-05-155443854438662500002006-05-125218552185642264221500002006-04-255619456194565256521450002006-04-21545155316212621231350002006-04-125557455574574657461250002006-04-055663654525592355465650002006-04-035350353503610361031100002006-03-3055995599565156511100002006-03-285514955149579657961100002006-03-245473554735586758672100002006-03-23565563558755872200002006-03-21565565554655461100002006-03-135625549935855782300002006-02-1557671567715297529722000002006-02-1456219557945614561433000002006-02-08576576530153011350002006-01-26585585513151313300002006-01-2458558551255125150002006-01-235712557125535453541100002006-01-1757325732531353132700002006-01-125837558375513451341250002006-01-105717856552853273550002006-01-065375375935931200002006-01-0356394563945455451350002005-11-075656543754371350002005-10-075670756707528152811350002005-09-2058406584064977497711000002005-09-1356906569065211521111000002005-09-0758816572334897489731950002005-08-3156894565945249524921100002005-08-2559013590134851485111400002005-08-175678567852521400002005-08-165572854728553955393300002005-08-115483254832551755171400002005-07-22566685666851855185150002005-07-195757512551251180002005-07-1856103561035275271180002005-07-085621556215524152411800002005-07-0658755875483248321500002005-06-29589115652664841600002005-06-24567115671151425142150002005-06-2156006560065255251150002005-06-205449453949559255922300002005-06-1556035603524152411500002005-06-0158365565375144852350002005-05-2556497564975145141250002005-04-25564865548651512500002005-04-205494153788553955392500002005-04-075542155421525152512800002005-04-0553405525675723572332400002005-03-035490854908529152911200002005-03-0255149542254025252300002005-03-01551275340555335252600002005-02-28557455745155151250002005-02-25541925419254541250002005-02-245666455355001500122000002005-02-2353661536615483548311000002005-02-185572255722514151411300002005-02-155466454664530453041400002005-01-2751255125585558551250002005-01-265599155613513507227628000

N Privault

Date HighPrice LowPrice HighYield LowYield Count Amount1 2016-01-13 99082 98982 1666 1501 2 200002 2015-12-29 99183 99183 1250 1250 1 100003 2015-12-21 97952 97952 3014 3014 1 100004 2015-12-17 99141 98550 2123 1251 5 6100005 2015-12-07 98770 98770 1714 1714 2 100006 2015-12-04 98363 98118 2628 2280 2 10000

50

60

70

80

90

100

price [2005minus01minus262016minus01minus13]

Last 99082

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1310 Orange Cnty Calif bond prices

The next Figure 1311 plots the bond yield y(t T ) defined as

y(t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)y(tT ) 0 6 t 6 T

2

4

6

8

yield [2005minus01minus262016minus01minus13]

Last 1666

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1311 Orange Cnty Calif bond yields

Bond pricing in the Dothan model

In the Dothan [Dot78] model the short term interest rate process (rt)tisinR+ ismodeled according to a geometric Brownian motion

drt = micrortdt+ σrtdBt (1325)430

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

where the volatility σ gt 0 and the drift micro isin R are constant parameters and(Bt)tisinR+ is a standard Brownian motion In this model the short term inter-est rate rt remains always positive while the proportional volatility term σrtaccounts for the sensitivity of the volatility of interest rate changes to thelevel of the rate rt

On the other hand the Dothan model is the only lognormal short ratemodel that allows for an analytical formula for the zero coupon bond price

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

For convenience of notation we let p = 1minus 2microσ2 and rewrite (1325) as

drt = (1minus p)σ2

2 rtdt+ σrtdBt

with solutionrt = r0 eσBtminuspσ

2t2 t isin R+ (1326)

By the Markov property of (rt)tisinR+ the bond price P (t T ) is a functionF (t rt) of rt and time t isin [0 T ]

P (t T ) = F (t rt) = IElowast[

eminusr Ttrsds

∣∣∣ rt] 0 6 t 6 T (1327)

By computation of the conditional expectation (1327) using (106) we easilyobtain the following result cf Proposition 12 of [PP11] where the functionθ(v t) is defined in (104)

Proposition 133 The zero-coupon bond price P (t T ) = F (t rt) is givenfor all p isin R by

F (t x) (1328)

= eminusσ2p2(Tminust)8

winfin0

winfin0

eminusux exp(minus2(1 + z2)σ2u

(4zσ2u

σ2(T minus t)

4

)du

u

dz

zp+1

x gt 0

Proof By Proposition 101 cf [Yor92] Proposition 2 the probability distri-bution of the time integral

w Tminust

0eσBsminuspσ

2s2ds is given by

P(w Tminust

0eσBsminuspσ

2s2ds isin dy)

=winfinminusinfin

P(w t

0eσBsminuspσ

2s2ds isin dy Bt minus pσt2 isin dz)

431

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 5: Forward Rate Modeling

Forward Rate Modeling

among which is the class of affine models of the form

drt = (η(t) + λ(t)rt)dt+radicδ(t) + γ(t)rtdBt (136)

Such models are called affine because the associated zero-coupon bonds canbe priced using an affine PDE of the type (1316) below as will be seen afterProposition 132

Affine models also include the Ho-Lee model

drt = θ(t)dt+ σdBt

where θ(t) is a deterministic function of time as an extension of the Mertonmodel drt = θdt+σdBt and the Hull-White model [HW90] cf Section 131

drt = (θ(t)minus α(t)rt)dt+ σ(t)dBt

which is itself a time-dependent extension of the Vasicek model

132 Calibration of the Vasicek model

The Vasicek equation (131) ie

drt = (aminus brt)dt+ σdBt

can be discretized according to a discrete-time sequence (tk)k=01n as

rtk+1 minus rtk = (aminus brtk)∆t+ σZk k isin N

where∆t = tk+1minustk and (Zk)kgt0 is a Gaussian white noise with variance∆tie a sequence of independent centered and identically distributed N (0 ∆t)Gaussian random variables

We find

rtk+1 = rtk + (aminus brtk)∆t+ σZk = a∆t+ (1minus b∆t)rtk + σZk k isin N

Based on a set (rtk)k=0n of market data we can minimize the residual

nminus1sumk=0

(rtk+1 minus a∆tminus (1minus b∆t)rtk

)2over a and b using Ordinary Least Square (OLS) regression For this compute

part

parta

nminus1sumk=0

(rtk+1 minus a∆tminus (1minus b∆t)rtk

)2 415

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minus2∆t(minusan∆t+

nminus1sumk=0

(rtk+1 minus (1minus b∆t)rtk

))= 0

and

part

partb

nminus1sumk=0

(rtk+1 minus a∆tminus (1minus b∆t)rtk

)2= ∆t

nminus1sumk=0

rtk(minusa∆t+ rtk+1 minus (1minus b∆t)rtk

)= ∆t

nminus1sumk=0

rtk

(rtk+1 minus (1minus b∆t)rtk + 1

n

nminus1suml=0

(rtl+1 minus (1minus b∆t)rtl

))= 0

This leads to an estimate the parameters a and b respectively as the empiricalmean and covariance of (rtk)k=01n ie

a∆t = 1n

nminus1sumk=0

rtk+1 minus1n

(1minus b∆t)nminus1sumk=0

rtk

and

1minus b∆t =

nminus1sumk=0

rtk rtk+1 minus1n

nminus1sumk=0

rtk

nminus1suml=0

rtl+1

nminus1sumk=0

rtk rtk minus1n

nminus1sumk=0

rtk

nminus1suml=0

rtl

=

nminus1sumk=0

(rtk minus

1n

nminus1suml=0

rtl

)(rtk+1 minus

1n

nminus1suml=0

rtl+1

)nminus1sumk=0

(rtk minus

1n

nminus1sumk=0

rtk

)2

This also yields

σ2∆t = Var[σZk] = Var[rtk+1 minus (1minus b∆t)rtk minus a∆t

] k isin N

hence σ can be estimated as

σ2∆t = 1n

nminus1sumk=0

(rtk+1 minus rtk(1minus b∆t)minus a∆t

)2

416

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Defining rtk = rtk minus ab k isin N we have

rtk+1 = rtk+1 minus ab= rtk minus ab+ (aminus brtk)∆t+ σZk

= rtk minus abminus b(rtk minus ab)∆t+ σZk

= rtk minus brtk∆t+ σZk

= (1minus b∆t)rtk + σZk k isin N

In other words the sequence (rtk)kisinisinN is modeled according to an autore-gressive AR(1) time series in which the current state Xn of the system isexpressed as the linear combination

Xn = σZn + α1Xnminus1 n gt 1 (137)

which can be solved recursively as the series

Xn = σZn + α1(σZnminus1 + α1Xnminus2) = middot middot middot = σ

infinsumk=0

αk1Znminusk

which converges when |α1| lt 1 ie |1minus b∆t| lt 1

Note that the variance of Xn is given by

Var[Xn] = σ2 Var[ infinsumk=0

αk1Znminusk

]

= σ2∆tinfinsumk=0

α2k1

= σ2∆tinfinsumk=0

(1minus b∆t)2k

= σ2∆t

1minus (1minus b∆t)2

= σ2∆t

2b∆tminus b2(∆t)2

σ2

2b

which is the expected variance of the Vasicek process in the stationary regime

417

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

library(quantmod)getSymbols(^TNXfrom=2012-01-01to=2016-01-01src=yahoo)rate=Ad(`TNX`)chartSeries(rateupcol=bluetheme=white)n = sum(isna(rate))

The next Figure 133 displays the yield of the 10 Year Treasury Note on theChicago Board Options Exchange (CBOE) Treasury notes usually have amaturity between one and 10 years whereas treasury bonds have maturitiesbeyond 10 years)

15

20

25

30

rate [2012minus01minus032015minus12minus31]

Last 2269

Jan 032012

Jul 022012

Jan 022013

Jul 012013

Jan 022014

Jul 012014

Jan 022015

Jul 012015

Dec 312015

Fig 133 CBOE 10 Year Treasury Note yield (TNX)

ratek=asvector(rate)ratekplus1 lt- c(ratek[-1]0)b lt- (sum(ratekratekplus1) - sum(ratek)sum(ratekplus1)n)(sum(ratekratek) - sum(ratek)sum(

ratek)n)a lt- sum(ratekplus1)n-bsum(ratek)nsigma lt- sqrt(sum((ratekplus1-bratek-a)^2)n)

The next code is generating Vasicek random samples according to the AR(1)time series (137)

for (i in 1100) arsimlt-arimasim(model=list(ar=c(b))nstart=100n)y=ratek[1]+ab+sigmaarsimtime lt- asPOSIXct(time(TNX) format = Y-m-d)yield lt- xts(x = y orderby = time)chartSeries(yieldupcol=bluetheme=white)Syssleep(05)

418

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

00

05

10

15

20

25

30

35

yield [2012minus01minus03 0800002015minus12minus31 080000]

Last 182260342989168

Jan 032012

Jul 022012

Jan 022013

Jul 012013

Jan 022014

Jul 012014

Jan 022015

Jul 012015

Dec 312015

Fig 134 Calibrated Vasicek samples

133 Zero-Coupon and Coupon Bonds

A zero-coupon bond is a contract priced P (t T ) at time t lt T to deliverP (T T ) = $1 at time T In addition to its value at maturity a bond mayyield a periodic coupon payment at regular time intervals until the maturitydate

Fig 135 Five dollar Louisiana bond of 1875 with 75 biannual coupons

The computation of the arbitrage price P0(t T ) of a zero-coupon bond basedon an underlying short term interest rate process (rt)tisinR+ is a basic andimportant issue in interest rate modeling

Constant short rate

In case the short term interest rate is a constant rt = r t isin R+ a standardarbitrage argument shows that the price P (t T ) of the bond is given by

P (t T ) = eminusr(Tminust) 0 6 t 6 T

419

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Indeed if P (t T ) gt eminusr(Tminust) we could issue a bond at the price P (t T ) andinvest this amount at the compounded risk free rate r which would yieldP (t T ) er(Tminust) gt 1 at time T

On the other hand if P (t T ) lt eminusr(Tminust) we could borrow P (t T ) at the rater to buy a bond priced P (t T ) At maturity time T we would receive $1 andrefund only P (t T ) er(Tminust) lt 1

Deterministic short rates

Similarly to the above when the short term interest rate process (rt)tisinR+ isa deterministic function of time a similar argument shows that

P (t T ) = eminusr Ttrsds 0 6 t 6 T (138)

Stochastic short rates

In case (rt)tisinR+ is an (Ft)tisinR+ -adapted random process the formula (138)is no longer valid as it relies on future information and we replace it with

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T (139)

under a risk-neutral measure Plowast It is natural to write P (t T ) as a conditionalexpectation under a martingale measure as the use of conditional expectationhelps to ldquofilter outrdquo the future information past time t contained in

w T

trsds

The expression (139) makes sense as the ldquobest possible estimaterdquo of thefuture quantity eminus

r Ttrsds in mean square sense given information known up

to time t

Coupon bonds

Pricing bonds with non-zero coupon is not difficult since in general theamount and periodicity of coupons are deterministiclowast In the case of a con-stant continuous-time coupon yield at the rate c gt 0 another application ofthe above absence of arbitrage argument shows that the price Pc(t T ) of thecoupon bond is given by

Pc(t T ) = ec(Tminust)P0(t T ) 0 6 t 6 T

see also Figure 139 below In the sequel we will mostly consider zero-couponbonds priced as P (t T ) = P0(t T ) 0 6 t 6 T lowast However coupon default cannot be excluded

420

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Martingale property of discounted bond prices

The following proposition shows that Assumption (A) of Chapter 12 is sat-isfied in other words the bond price process t 7minusrarr P (t T ) can be used as anumeacuteraireProposition 131 The discounted bond price process

t 7minusrarr P (t T ) = eminusr t

0 rsdsP (t T )

is a martingale under PlowastProof By (139) we have

eminusr t

0 rsdsP (t T ) = eminusr t

0 rsds IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r t0 rsds eminus

r Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r T0 rsds

∣∣∣ Ft] and this suffices to conclude since by the ldquotower propertyrdquo (1739) of condi-tional expectations any process (Xt)tisinR+ of the form t 7minusrarr Xt = IElowast[F | Ft]F isin L1(Ω) is a martingale cf Relation (61)

Path integrals

In physics the Feynman path integral

ψ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(i

~S(x(middot))

)where ~ is the Planck constant and S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 minus V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 minus V (x(timinus1)))∆ti

solves the Schroumldinger equation

i~partψ

partt(x t) = minus ~2

2mpart2ψ

partx2 (x t) + V (x(t))ψ(x t)

After the Wick rotation t 7rarr minusit the function

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

) 421

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

solves the heat equation

~partφ

partt(x t) = minus ~2

2mpart2φ

partx2 (x t) + V (x(t))φ(x t)

Given the action

S(x(middot)) =w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

we can rewrite the Euclidean path integral as

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

)=

wx(0)=x x(t)=y

Dx(middot) exp(minus 1

2~

Nsumi=1

(x(ti)minus x(timinus1))2

2∆timinus 1

~

Nsumi=1

V (x(timinus1)))

= IElowast[exp

(minus1~

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

]

This type of path integral computation

φ(y t) = IElowast[exp

(minus

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

] (1310)

is particularly useful for bond pricing as (1310) can be interpreted as theprice of a bond with short term interest rate process (rt)tisinR+ = (V (Bt)))tisinR+

conditionally to the value of the endpoint Bt = y cf (1331) below It can alsobe useful for exotic option pricing cf Chapter 10 and for risk managementThe path integral (1310) can be estimated either by closed-form expressionsusing Partial Differential Equations (PDEs) or probability densities by ap-proximations such as (conditional) Moment matching or by Monte Carloestimation from the paths of a Brownian bridge as shown in Figure 136

422

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 136 Brownian bridge

Bond pricing PDE

We assume from now on that the underlying short rate process is solution tothe stochastic differential equation

drt = micro(t rt)dt+ σ(t rt)dBt (1311)

where (Bt)tisinR+ is a standard Brownian motion under Plowast Note that specify-ing the dynamics of (rt)tisinR+ under the historical probability measure P willalso lead to a notion of market price of risk (MPoR) for the modeling of shortrates

Since all solutions of stochastic differential equations such as (1311) havethe Markov property cf eg Theorem V-32 of [Pro04] the arbitrage priceP (t T ) can be rewritten as a function F (t rt) of rt ie

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] = IElowast[

eminusr Ttrsds

∣∣∣ rt] = F (t rt)

and depends on rt only instead of depending on all information available inFt up to time t meaning that the pricing problem can now be formulated asa search for the function F (t x)

Proposition 132 (Bond pricing PDE) The bond pricing PDE for P (t T ) =F (t rt) is written as

xF (t x) = partF

partt(t x) + micro(t x)partF

partx(t x) + 1

2σ2(t x)part

2F

partx2 (t x) (1312)

423

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

t isin R+ x isin R subject to the terminal condition

F (T x) = 1 x isin R (1313)

Proof By Itocircrsquos formula we have

d(

eminusr t

0 rsdsP (t T ))

= minusrt eminusr t

0 rsdsP (t T )dt+ eminusr t

0 rsdsdP (t T )

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdsdF (t rt)

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdspartF

partx(t rt)(micro(t rt)dt+ σ(t rt)dBt)

+ eminusr t

0 rsds

(12σ

2(t rt)part2F

partx2 (t rt) + partF

partt(t rt)

)dt

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

+ eminusr t

0 rsds

(minusrtF (t rt) + micro(t rt)

partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

)dt

(1314)

Given that t 7minusrarr eminusr t

0 rsdsP (t T ) is a martingale the above expression(1314) should only contain terms in dBt (cf Corollary II-1 page 72 of[Pro04]) and all terms in dt should vanish inside (1314) This leads to theidentities

rtF (t rt)

= micro(t rt)partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

d(

eminusr t

0 rsdsP (t T ))

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

(1315a)

(1315b)

which recover (1312) Condition (1313) is due to the fact that P (T T ) = $1

In the case of an interest rate process modeled by (136) we have

micro(t x) = η(t) + λ(t)x and σ(t x) =radicδ(t) + γ(t)x

hence (1312) yields the (time dependent) affine PDE

xF (t x) = partF

partt(t x) + (η(t) + λ(t)x)partF

partx(t x) + 1

2(δ(t) + γ(t)x)part2F

partx2 (t x)

(1316)

t isin R+ x isin R By (1315b) the above proposition also shows that

424

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

dP (t T )P (t T ) = 1

P (t T )d(

er t

0 rsds eminusr t

0 rsdsP (t T ))

= 1P (t T )

(rtP (t T )dt+ e

r t0 rsdsd

(eminus

r t0 rsdsP (t T )

))= rtdt+ 1

P (t T ) er t

0 rsdsd(

eminusr t

0 rsdsP (t T ))

= rtdt+ 1F (t rt)

partF

partx(t rt)σ(t rt)dBt

= rtdt+ σ(t rt)part logFpartx

(t rt)dBt (1317)

In the Vasicek casedrt = (aminus brt)dt+ σdWt

the bond price takes the form

F (t rt) = P (t T ) = eA(Tminust)+rtC(Tminust)

where A(middot) and C(middot) are functions of time cf (1321) below and (1317)yields

dP (t T )P (t T ) = rtdtminus

σ

b(1minus eminusb(Tminust))dWt (1318)

since F (t x) = eA(Tminust)+xC(Tminust)

Note that more generally all affine short rate models as defined in Rela-tion (136) including the Vasicek model will yield a bond pricing formula ofthe form

P (t T ) = eA(Tminust)+rtC(Tminust)

cf eg sect 324 of [BM06]

Probabilistic solution of the Vasicek PDE

Next we solve the PDE (1312) written with micro(t x) = aminusbx and σ(t x) = σin the Vasicek [Vaš77] model

drt = (aminus brt)dt+ σdBt

as xF (t x) = partF

partt(t x) + (aminus bx)partF

partx(t x) + σ2

2part2F

partx2 (t x)

F (T x) = 1(1319)

by a direct computation of the conditional expectation

425

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

F (t rt) = P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] (1320)

Recall that in this model the short rate (rt)tisinR+ has the expression

rt = g(t) +w t

0h(t s)dBs = r0 eminusbt + a

b(1minus eminusbt) + σ

w t

0eminusb(tminuss)dBs

whereg(t) = r0 eminusbt + a

b(1minus eminusbt) t isin R+

andh(t s) = σ eminusb(tminuss) 0 6 s 6 t

are deterministic functions

Letting uort = max(u t) using the fact that Wiener integrals are Gaussianrandom variables and the Gaussian moment generating function we have

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r Tt

(g(s)+r s

0 h(su)dBu)ds∣∣∣ Ft]

= exp(minus

w T

tg(s)ds

)IElowast[

eminusr Tt

r s0 h(su)dBuds

∣∣∣ Ft]= exp

(minus

w T

tg(s)ds

)IElowast[

eminusr T

0r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

uorth(s u)dsdBu

)IElowast[

eminusr Tt

r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu + 1

2w T

t

(w T

uh(s u)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

w t

0

w T

teminusb(sminusu)dsdBu

)times exp

(σ2

2w T

t

(w T

ueminusb(sminusu)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

b(1minus eminusb(Tminust))

w t

0eminusb(tminusu)dBu

)times exp

(σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)

426

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= exp(minusrtb

(1minus eminusb(Tminust)) + 1b

(1minus eminusb(Tminust))(r0 eminusbt + a

b(1minus eminusbt)

))times exp

(minus

w T

t

(r0 eminusbs + a

b(1minus eminusbs)

)ds+ σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)= eA(Tminust)+rtC(Tminust) (1321)

whereC(T minus t) = minus1

b(1minus eminusb(Tminust)) (1322)

and

A(T minus t) = 4abminus 3σ2

4b3 + σ2 minus 2ab2b2 (T minus t) + σ2 minus ab

b3eminusb(Tminust)minus σ2

4b3 eminus2b(Tminust)

(1323)

Analytical solution of the Vasicek PDE

In order to solve the PDE (1319) analytically we may look for a solution ofthe form

F (t x) = eA(Tminust)+xC(Tminust) (1324)

where A(middot) and C(middot) are functions to be determined under the conditionsA(0) = 0 and C(0) = 0 Substituting (1324) into the PDE (1312) with theVasicek coefficients micro(t x) = (aminus bx) and σ(t x) = σ shows that

x eA(Tminust)+xC(Tminust) = minus(Aprime(T minus t)minus xC prime(T minus t)) eA(Tminust)+xC(Tminust)

+(aminus bx)C(T minus t) eA(Tminust)+xC(Tminust)

+12σ

2C2(T minus t) eA(Tminust)+xC(Tminust)

ie

x = minusAprime(T minus t) + xC prime(T minus t) + (aminus bx)C(T minus t) + 12σ

2C2(T minus t)

By identification of terms for x = 0 and x 6= 0 this yields the system ofRiccati and linear differential equations

Aprime(s) = aC(s) + σ2

2 C2(s)

C prime(s) = 1 + bC(s)

which can be solved to recover the above value of P (t T ) = F (t rt)

427

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Vasicek Bond Price Simulations

In this section we consider again the Vasicek model in which the short rate(rt)tisinR+ is solution to (131) Figure 137 presents a random simulation oft 7minusrarr P (t T ) in the same Vasicek model The graph of the correspondingdeterministic zero coupon bond price obtained for a = b = σ = 0 is alsoshown on the Figure 137

03

04

05

06

07

08

09

1

11

0 5 10 15 20

Fig 137 Graphs of t 7rarr F (t rt) = P (t T ) vs t 7rarr eminusr0(Tminust)

Figure 138 presents a random simulation of t 7minusrarr P (t T ) for a (non-zero)coupon bond with price Pc(t T ) = ec(Tminust)P (t T ) and coupon rate c gt 00 6 t 6 T

10000

10200

10400

10600

10800

0 5 10 15 20

Fig 138 Graph of t 7rarr F (t rt) = P (t T ) for a bond with a 23 coupon

The simulation of Figure 138 can be compared to the coupon bond marketdata of Figure 139 below

428

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 139 Bond price graph with maturity 011808 and coupon rate 625

See Exercise 133 for a bond pricing formula in the CIR model

Zero coupon bond price and yield data

The following zero coupon bond price was downloaded at EMMA fromthe Municipal Securities Rulemaking Board

ORANGE CNTY CALIF PENSION OBLIG CAP APPREC-TAXABLE-REF-SER A (CA)CUSIP 68428LBB9Dated Date 06121996 (June 12 1996)Maturity Date 09012016 (September 1st 2016)Interest Rate 00 Principal Amount at Issuance $26056000Initial Offering Price 19465

library(quantmod)bondprice lt- readtable(bond_data_Rtxtcolnames = c(DateHighPriceLowPrice

HighYieldLowYieldCountAmount))head(bondprice)time lt- asPOSIXct(bondprice$Date format = Y-m-d)price lt- xts(x = bondprice$HighPrice orderby = time)yield lt- xts(x = bondprice$HighYield orderby = time)chartSeries(priceupcol=bluetheme=white)chartSeries(yieldupcol=bluetheme=white)

429

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

2016-01-139908298982166615012200002015-12-2999183991831251251100002015-12-219795297952301430141100002015-12-179914198552123125156100002015-12-0798779877171417142100002015-12-04983639811826282282100002015-11-1898659865176817672200002015-11-1798306983062201222200002015-10-029865998514167150641000002015-09-099898210721071250002015-09-089888498043204311583300002015-07-20975059628345922992200002015-07-1698397983971461461250002015-07-15988729887210211021150002015-07-109768997689208420841300002015-06-1898123980231686163300002015-06-179884397034254313250002015-06-15983698299143113795850002015-06-0998016980161651651200002015-05-21978269772618321752500002015-05-189849498494119111912300002015-05-1598559835130311433300002015-05-129776997769175117511150002015-04-279834898348125112512400002015-04-249830398303128212821250002015-04-239760797607181318131650002015-04-1498649864111100002015-03-20983897981428114373850002015-03-199785197751159151836750002015-03-11981981391323600002015-02-27978297695156914832400002015-02-139858298357108309343750002015-02-119857698226116609343300002015-01-15983983106710671550002015-01-12989598950650652600002015-01-099898123212321600002014-12-11983197396155131600002014-12-109641696416214421442800002014-12-059804498044114811481500002014-12-049728897288159815981500002014-11-219782297822125125150002014-11-209642294353320733150002014-11-0797979964582014113861250002014-10-299650496504195619561150002014-10-1498149977841201123200002014-10-0797401974011396139611000002014-10-0397991970261598107353500002014-09-3097446962851991135842200002014-09-1997331972311455140221000002014-09-18964796419186221000002014-09-15969956732278161943000002014-09-119555952252823382200002014-08-199711995596223614495750002014-08-139528695286238623861300002014-08-069559395593220522051350002014-08-0197951977261114100341000002014-07-30976975122311742200002014-07-239603695036244919434500002014-07-1697494951246912526750002014-07-1497182969571461135141000002014-07-11956995572144208421000002014-05-209531495314212321232300002014-05-169372393723286628661300002014-04-299701396713143913052200002014-04-1695169516211521151200002014-04-07976339683313510042500002014-04-029577393974260718073750002014-02-2893293128932852200002014-02-2791759175348634861100002014-02-21956959269530417584400002014-02-189438593885251122992900002014-02-139310193101284228421450002013-11-159393262726271500002013-11-14915915320432041500002013-11-12925999171312127712200002013-10-319427294272210121013450002013-10-309232392323284828481100002013-10-299599942521011452200002013-10-259080790807342934291100002013-10-219161691491314230933750002013-08-0791008910083113112100002013-08-05894258942536813681150002013-07-229494394018216812800002013-07-1795167930262339162900002013-07-16951549515416161500002013-07-12944129441218518511000002013-06-28940049340421719663400002013-06-269471892567245417213500002013-06-11925692562422422120002013-06-05911119111129072907150002013-06-0495282952821528152862500002013-05-3195122951221547154712250002013-05-309429291069290718214280002013-05-2994969488516331652000002013-05-2492682926822352351100002013-05-2394488930732217174942100002013-05-219679193731199174950002013-05-169127691276280428041200002013-05-02916769015315126383270002013-04-24920999163926322483450002013-04-22920749161426322483540002013-04-179645941591810798550002013-04-159205491954250524722200002013-04-1191791725842584170002013-04-099635889785320810996570002013-03-12914491442602260218000002013-02-229164389323243250134830002013-02-0690290298529222400002012-11-29881528796434573399103200002012-11-2888176878843479338941200002012-11-279048790487268226821150002012-11-23890628906231063106150002012-11-13878737073707150002012-11-098472383048495644175200002012-10-3188798879313531351100002012-10-25907905261925612300002012-10-2490353903532662662400002012-10-168845888458319731972400002012-10-0290866900552724682300002012-10-0190148900472726712200002012-09-26882398779733513222500002012-09-249051390512255425542100002012-09-21905905255625561300002012-09-139103189907270923923750002012-08-0985188518400240023250002012-08-0886038333945513755410002012-08-0386486859863753605240002012-07-2785849404940192200002012-07-19876183625440732541800002012-07-18870738707334342350002012-07-178652286048368636092400002012-07-1685088840884254396131050002012-07-1386541865413543541150002012-06-29865728657235351400002012-06-2885258525387238721400002012-06-2187751868533431521100002012-06-208528984689401238431650002012-06-138643855937363521500002012-06-118386183861422142211750002012-05-258518485184380938091300002012-05-238386683866417841781300002012-05-2185331853313753751250002012-05-18838344094409150002012-05-178442484224405743750002012-04-05853283662410636541000002012-03-2988243851033692852530002012-03-2787258342141443112530002012-03-228495840753956371731350002012-03-02855855352535251100002012-03-018368583685400740071100002012-02-0787584664368529515750002012-01-2686645865853167315241500002012-01-2586458645323211610002012-01-248380754703409742540002012-01-2081188118458445841100002012-01-178245182351425342263650002012-01-128413781755440837746600002012-01-1181658094639443431650002012-01-0479575795754984981200002011-12-307875787551985198130002011-12-29764757647558245824130002011-12-088038580385468346831150002011-12-01798879884847992300002011-11-307969379693484848481150002011-11-01777560455491240002011-10-28788578854984981100002011-10-26767576755555551100002011-10-05777559725418280002011-08-2678119773195211521100002011-08-23774237742351695169170002011-08-2276576554065406170002011-07-278135881358414111300002011-06-227417415864586411300002011-04-267554575545532253221100002011-04-257481964916825555053400002011-04-206474163965853382983600002011-04-15767097545334500555000002011-04-087620176201511351131150002011-03-3174502745025525521150002011-03-17744347443455551400002011-03-167373586558651400002011-03-0374556745565435431500002011-03-017390373903558355831500002011-01-2871317713176156153200002011-01-2667256725723472332200002011-01-187300473004568756871600002011-01-1273719716560215561500002011-01-04735735552455242540002011-01-0371592713756055621200002010-12-2273173559855982300002010-12-1374185697646305533250002010-12-1073558735585455454800002010-12-0973547735475455452200002010-12-02658996589974087408150002010-12-017312570756124553241980002010-11-297508571889582650495290002010-11-19738738533653361150002010-11-10772797645452400002010-11-097674969503447934800002010-11-087914178641407240722400002010-11-037953178606397839782300002010-11-0277087770874524521350002010-10-068072779568371536714700002010-10-057906878277419741972700002010-10-04801793797379721100002010-10-018048978903371137113300002010-09-307717714453445321300002010-09-207888377821403440342400002010-09-177781277812426742672100002010-09-1476942769424454451250002010-09-097446274462500650061180002010-09-08732057320552965296150002010-09-03757527575247472100002010-09-02748317483149074907150002010-08-3176585748294896452800002010-08-307403974039507350731180002010-08-23765197651945452550002010-08-207463974639492149211550002010-08-167557454932470662100002010-08-117536575365473647361100002010-08-067425573255520652063300002010-07-26745787251535487651000002010-07-22740047245253500161750002010-07-2173417705936513384600002010-07-20707570655772577222000002010-07-077221172111537753772200002010-07-06720797207954544340002010-07-027293472068520152012160002010-06-307169934586856686900002010-06-29694269073609460942200002010-06-177140467856364551492000002010-06-1173567356500850081350002010-06-1072391713915275272500002010-06-09708647051570357032500002010-06-087281271524523516571050002010-06-077099270638566356632700002010-05-03720727107254775252100002010-04-016775661256568617731000002010-03-056765667556612661262400002010-03-03667566656366362400002010-02-1067946678600659966900002010-02-096586438683468343300002010-02-0866264874671167114800002010-01-066542565425649464942200002010-01-05708596310870465256500002009-12-157081570155521552154200002009-12-146565652965292200002009-11-1868569685695655652500002009-11-176717467174595259521400002009-11-1668526685265655652400002009-11-127039675255239417000002009-10-0170974642926063502952010002009-09-3070152605577397524460002009-09-29636296819681921200002009-09-0364605646056366361300002009-08-286190861908697269721300002009-08-19626561756774677431500002009-08-18614446083727221000002009-08-12621602573296884125900002009-07-216146561465697169711100002009-07-206033160307724572452200002009-06-265930159301742674261300002009-06-226112161121697269721250002009-06-175991959319739573952500002009-06-106088860888771180002009-06-0958685868752275221180002009-06-026096260962695569551250002009-05-225993959939717871781250002009-05-216204161692566842600002009-04-16609560956846842400002009-04-15604604696569651400002009-04-1462224622246546541100002009-04-0659868598687067061100002009-03-065656791279121250002009-03-0553983539838428421250002009-02-095770457554745741441450002009-02-06576925691776741431050002009-01-2855635556357887788712500002009-01-2258225582257257251250002009-01-215671556715760676061250002008-11-065720157201728972891150002008-10-166021959294655765572200002008-10-156095859283639563954500002008-10-0855454877877842000002008-07-3163623623515681568131500002008-07-186192961929661150002008-07-156361460368631456494600002008-07-1062562255918591821000002008-07-08642016170160225522100002008-07-0260567605676256251180002008-07-015859458594666766671180002008-06-2359589657665762300002008-06-20619936186592959293450002008-06-1661584598936631500002008-06-1358958865865821000002008-06-126094460944612761271150002008-05-156237562375578257821100002008-05-136137261372597659761100002008-04-2461086108664200002008-03-07626396157558085622000002008-02-2264256046012526662400002008-02-1164214642145255251400002008-02-0761756175571757171400002008-01-086385162951526152614600002008-01-04610716046590659063550002008-01-0359977592776146142100002007-10-18608446084456956921300002007-10-17613136131355995599150002007-10-1659655965591359131700002007-09-17610086100856561550002007-09-14594594590559052550002007-09-1260714607145655651200002007-09-1161458101615551661350002007-09-06608636075561256123750002007-08-2859514595145855851500002007-08-235994759947576257621110002007-08-205989958311606957622250002007-07-125942259422578857881250002007-07-115963459603575257462850002007-07-0958842588425895891950002007-07-02594085940857715771150002007-06-2759934590095665566541800002007-06-2659433582825754575431900002007-06-25598475875567456743600002007-06-225777577760696069150002007-06-2059275568356248578221050002007-06-1857214572146166616613000002007-05-255909659096576857681350002007-05-215959259592566356631550002007-05-15615236152353531150002007-05-1461514612535347532600002007-05-09602258955766576631950002007-05-01602846028455025502150002007-04-25612612532953291500002007-04-2461179585975802532852500002007-04-2359675585913591331500002007-04-1956556561986198150002007-03-2861658607520352032500002007-03-275953758877570357033750002007-02-2861125602575256525622000002007-02-2759953597535496549622000002007-02-265882258423566556653150002007-02-21585858085808150002007-02-085926959269555355531100002007-02-056019660196537853781300002007-02-025880658456562756272100002007-02-0159222592225555551500002007-01-316006358556853972200002007-01-265700357003594359431100002007-01-245791557915577857781100002007-01-236027560275534553451100002007-01-1660129601295365361400002007-01-115988659445467543400002007-01-05585157466582956374400002006-12-1859359579525707545352400002006-12-01573553617861783150002006-11-2160013600135353150002006-11-15583165831655915591150002006-09-07582215822155552450002006-09-065681256812575157511450002006-08-22577455675555855582400002006-08-1655709557095925921200002006-08-03565915486067573841200002006-07-3155135541356183599641000002006-07-27545585455861611100002006-07-2456094519225815814400002006-07-175624755372577157712200002006-07-115481954819602360231100002006-07-065479151686618602351700002006-07-055455456075607511000002006-06-2650571505716816681611000002006-06-16542552256476472400002006-06-1449319493197051705111000002006-05-155443854438662500002006-05-125218552185642264221500002006-04-255619456194565256521450002006-04-21545155316212621231350002006-04-125557455574574657461250002006-04-055663654525592355465650002006-04-035350353503610361031100002006-03-3055995599565156511100002006-03-285514955149579657961100002006-03-245473554735586758672100002006-03-23565563558755872200002006-03-21565565554655461100002006-03-135625549935855782300002006-02-1557671567715297529722000002006-02-1456219557945614561433000002006-02-08576576530153011350002006-01-26585585513151313300002006-01-2458558551255125150002006-01-235712557125535453541100002006-01-1757325732531353132700002006-01-125837558375513451341250002006-01-105717856552853273550002006-01-065375375935931200002006-01-0356394563945455451350002005-11-075656543754371350002005-10-075670756707528152811350002005-09-2058406584064977497711000002005-09-1356906569065211521111000002005-09-0758816572334897489731950002005-08-3156894565945249524921100002005-08-2559013590134851485111400002005-08-175678567852521400002005-08-165572854728553955393300002005-08-115483254832551755171400002005-07-22566685666851855185150002005-07-195757512551251180002005-07-1856103561035275271180002005-07-085621556215524152411800002005-07-0658755875483248321500002005-06-29589115652664841600002005-06-24567115671151425142150002005-06-2156006560065255251150002005-06-205449453949559255922300002005-06-1556035603524152411500002005-06-0158365565375144852350002005-05-2556497564975145141250002005-04-25564865548651512500002005-04-205494153788553955392500002005-04-075542155421525152512800002005-04-0553405525675723572332400002005-03-035490854908529152911200002005-03-0255149542254025252300002005-03-01551275340555335252600002005-02-28557455745155151250002005-02-25541925419254541250002005-02-245666455355001500122000002005-02-2353661536615483548311000002005-02-185572255722514151411300002005-02-155466454664530453041400002005-01-2751255125585558551250002005-01-265599155613513507227628000

N Privault

Date HighPrice LowPrice HighYield LowYield Count Amount1 2016-01-13 99082 98982 1666 1501 2 200002 2015-12-29 99183 99183 1250 1250 1 100003 2015-12-21 97952 97952 3014 3014 1 100004 2015-12-17 99141 98550 2123 1251 5 6100005 2015-12-07 98770 98770 1714 1714 2 100006 2015-12-04 98363 98118 2628 2280 2 10000

50

60

70

80

90

100

price [2005minus01minus262016minus01minus13]

Last 99082

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1310 Orange Cnty Calif bond prices

The next Figure 1311 plots the bond yield y(t T ) defined as

y(t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)y(tT ) 0 6 t 6 T

2

4

6

8

yield [2005minus01minus262016minus01minus13]

Last 1666

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1311 Orange Cnty Calif bond yields

Bond pricing in the Dothan model

In the Dothan [Dot78] model the short term interest rate process (rt)tisinR+ ismodeled according to a geometric Brownian motion

drt = micrortdt+ σrtdBt (1325)430

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

where the volatility σ gt 0 and the drift micro isin R are constant parameters and(Bt)tisinR+ is a standard Brownian motion In this model the short term inter-est rate rt remains always positive while the proportional volatility term σrtaccounts for the sensitivity of the volatility of interest rate changes to thelevel of the rate rt

On the other hand the Dothan model is the only lognormal short ratemodel that allows for an analytical formula for the zero coupon bond price

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

For convenience of notation we let p = 1minus 2microσ2 and rewrite (1325) as

drt = (1minus p)σ2

2 rtdt+ σrtdBt

with solutionrt = r0 eσBtminuspσ

2t2 t isin R+ (1326)

By the Markov property of (rt)tisinR+ the bond price P (t T ) is a functionF (t rt) of rt and time t isin [0 T ]

P (t T ) = F (t rt) = IElowast[

eminusr Ttrsds

∣∣∣ rt] 0 6 t 6 T (1327)

By computation of the conditional expectation (1327) using (106) we easilyobtain the following result cf Proposition 12 of [PP11] where the functionθ(v t) is defined in (104)

Proposition 133 The zero-coupon bond price P (t T ) = F (t rt) is givenfor all p isin R by

F (t x) (1328)

= eminusσ2p2(Tminust)8

winfin0

winfin0

eminusux exp(minus2(1 + z2)σ2u

(4zσ2u

σ2(T minus t)

4

)du

u

dz

zp+1

x gt 0

Proof By Proposition 101 cf [Yor92] Proposition 2 the probability distri-bution of the time integral

w Tminust

0eσBsminuspσ

2s2ds is given by

P(w Tminust

0eσBsminuspσ

2s2ds isin dy)

=winfinminusinfin

P(w t

0eσBsminuspσ

2s2ds isin dy Bt minus pσt2 isin dz)

431

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 6: Forward Rate Modeling

N Privault

= minus2∆t(minusan∆t+

nminus1sumk=0

(rtk+1 minus (1minus b∆t)rtk

))= 0

and

part

partb

nminus1sumk=0

(rtk+1 minus a∆tminus (1minus b∆t)rtk

)2= ∆t

nminus1sumk=0

rtk(minusa∆t+ rtk+1 minus (1minus b∆t)rtk

)= ∆t

nminus1sumk=0

rtk

(rtk+1 minus (1minus b∆t)rtk + 1

n

nminus1suml=0

(rtl+1 minus (1minus b∆t)rtl

))= 0

This leads to an estimate the parameters a and b respectively as the empiricalmean and covariance of (rtk)k=01n ie

a∆t = 1n

nminus1sumk=0

rtk+1 minus1n

(1minus b∆t)nminus1sumk=0

rtk

and

1minus b∆t =

nminus1sumk=0

rtk rtk+1 minus1n

nminus1sumk=0

rtk

nminus1suml=0

rtl+1

nminus1sumk=0

rtk rtk minus1n

nminus1sumk=0

rtk

nminus1suml=0

rtl

=

nminus1sumk=0

(rtk minus

1n

nminus1suml=0

rtl

)(rtk+1 minus

1n

nminus1suml=0

rtl+1

)nminus1sumk=0

(rtk minus

1n

nminus1sumk=0

rtk

)2

This also yields

σ2∆t = Var[σZk] = Var[rtk+1 minus (1minus b∆t)rtk minus a∆t

] k isin N

hence σ can be estimated as

σ2∆t = 1n

nminus1sumk=0

(rtk+1 minus rtk(1minus b∆t)minus a∆t

)2

416

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Defining rtk = rtk minus ab k isin N we have

rtk+1 = rtk+1 minus ab= rtk minus ab+ (aminus brtk)∆t+ σZk

= rtk minus abminus b(rtk minus ab)∆t+ σZk

= rtk minus brtk∆t+ σZk

= (1minus b∆t)rtk + σZk k isin N

In other words the sequence (rtk)kisinisinN is modeled according to an autore-gressive AR(1) time series in which the current state Xn of the system isexpressed as the linear combination

Xn = σZn + α1Xnminus1 n gt 1 (137)

which can be solved recursively as the series

Xn = σZn + α1(σZnminus1 + α1Xnminus2) = middot middot middot = σ

infinsumk=0

αk1Znminusk

which converges when |α1| lt 1 ie |1minus b∆t| lt 1

Note that the variance of Xn is given by

Var[Xn] = σ2 Var[ infinsumk=0

αk1Znminusk

]

= σ2∆tinfinsumk=0

α2k1

= σ2∆tinfinsumk=0

(1minus b∆t)2k

= σ2∆t

1minus (1minus b∆t)2

= σ2∆t

2b∆tminus b2(∆t)2

σ2

2b

which is the expected variance of the Vasicek process in the stationary regime

417

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

library(quantmod)getSymbols(^TNXfrom=2012-01-01to=2016-01-01src=yahoo)rate=Ad(`TNX`)chartSeries(rateupcol=bluetheme=white)n = sum(isna(rate))

The next Figure 133 displays the yield of the 10 Year Treasury Note on theChicago Board Options Exchange (CBOE) Treasury notes usually have amaturity between one and 10 years whereas treasury bonds have maturitiesbeyond 10 years)

15

20

25

30

rate [2012minus01minus032015minus12minus31]

Last 2269

Jan 032012

Jul 022012

Jan 022013

Jul 012013

Jan 022014

Jul 012014

Jan 022015

Jul 012015

Dec 312015

Fig 133 CBOE 10 Year Treasury Note yield (TNX)

ratek=asvector(rate)ratekplus1 lt- c(ratek[-1]0)b lt- (sum(ratekratekplus1) - sum(ratek)sum(ratekplus1)n)(sum(ratekratek) - sum(ratek)sum(

ratek)n)a lt- sum(ratekplus1)n-bsum(ratek)nsigma lt- sqrt(sum((ratekplus1-bratek-a)^2)n)

The next code is generating Vasicek random samples according to the AR(1)time series (137)

for (i in 1100) arsimlt-arimasim(model=list(ar=c(b))nstart=100n)y=ratek[1]+ab+sigmaarsimtime lt- asPOSIXct(time(TNX) format = Y-m-d)yield lt- xts(x = y orderby = time)chartSeries(yieldupcol=bluetheme=white)Syssleep(05)

418

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

00

05

10

15

20

25

30

35

yield [2012minus01minus03 0800002015minus12minus31 080000]

Last 182260342989168

Jan 032012

Jul 022012

Jan 022013

Jul 012013

Jan 022014

Jul 012014

Jan 022015

Jul 012015

Dec 312015

Fig 134 Calibrated Vasicek samples

133 Zero-Coupon and Coupon Bonds

A zero-coupon bond is a contract priced P (t T ) at time t lt T to deliverP (T T ) = $1 at time T In addition to its value at maturity a bond mayyield a periodic coupon payment at regular time intervals until the maturitydate

Fig 135 Five dollar Louisiana bond of 1875 with 75 biannual coupons

The computation of the arbitrage price P0(t T ) of a zero-coupon bond basedon an underlying short term interest rate process (rt)tisinR+ is a basic andimportant issue in interest rate modeling

Constant short rate

In case the short term interest rate is a constant rt = r t isin R+ a standardarbitrage argument shows that the price P (t T ) of the bond is given by

P (t T ) = eminusr(Tminust) 0 6 t 6 T

419

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Indeed if P (t T ) gt eminusr(Tminust) we could issue a bond at the price P (t T ) andinvest this amount at the compounded risk free rate r which would yieldP (t T ) er(Tminust) gt 1 at time T

On the other hand if P (t T ) lt eminusr(Tminust) we could borrow P (t T ) at the rater to buy a bond priced P (t T ) At maturity time T we would receive $1 andrefund only P (t T ) er(Tminust) lt 1

Deterministic short rates

Similarly to the above when the short term interest rate process (rt)tisinR+ isa deterministic function of time a similar argument shows that

P (t T ) = eminusr Ttrsds 0 6 t 6 T (138)

Stochastic short rates

In case (rt)tisinR+ is an (Ft)tisinR+ -adapted random process the formula (138)is no longer valid as it relies on future information and we replace it with

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T (139)

under a risk-neutral measure Plowast It is natural to write P (t T ) as a conditionalexpectation under a martingale measure as the use of conditional expectationhelps to ldquofilter outrdquo the future information past time t contained in

w T

trsds

The expression (139) makes sense as the ldquobest possible estimaterdquo of thefuture quantity eminus

r Ttrsds in mean square sense given information known up

to time t

Coupon bonds

Pricing bonds with non-zero coupon is not difficult since in general theamount and periodicity of coupons are deterministiclowast In the case of a con-stant continuous-time coupon yield at the rate c gt 0 another application ofthe above absence of arbitrage argument shows that the price Pc(t T ) of thecoupon bond is given by

Pc(t T ) = ec(Tminust)P0(t T ) 0 6 t 6 T

see also Figure 139 below In the sequel we will mostly consider zero-couponbonds priced as P (t T ) = P0(t T ) 0 6 t 6 T lowast However coupon default cannot be excluded

420

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Martingale property of discounted bond prices

The following proposition shows that Assumption (A) of Chapter 12 is sat-isfied in other words the bond price process t 7minusrarr P (t T ) can be used as anumeacuteraireProposition 131 The discounted bond price process

t 7minusrarr P (t T ) = eminusr t

0 rsdsP (t T )

is a martingale under PlowastProof By (139) we have

eminusr t

0 rsdsP (t T ) = eminusr t

0 rsds IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r t0 rsds eminus

r Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r T0 rsds

∣∣∣ Ft] and this suffices to conclude since by the ldquotower propertyrdquo (1739) of condi-tional expectations any process (Xt)tisinR+ of the form t 7minusrarr Xt = IElowast[F | Ft]F isin L1(Ω) is a martingale cf Relation (61)

Path integrals

In physics the Feynman path integral

ψ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(i

~S(x(middot))

)where ~ is the Planck constant and S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 minus V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 minus V (x(timinus1)))∆ti

solves the Schroumldinger equation

i~partψ

partt(x t) = minus ~2

2mpart2ψ

partx2 (x t) + V (x(t))ψ(x t)

After the Wick rotation t 7rarr minusit the function

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

) 421

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

solves the heat equation

~partφ

partt(x t) = minus ~2

2mpart2φ

partx2 (x t) + V (x(t))φ(x t)

Given the action

S(x(middot)) =w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

we can rewrite the Euclidean path integral as

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

)=

wx(0)=x x(t)=y

Dx(middot) exp(minus 1

2~

Nsumi=1

(x(ti)minus x(timinus1))2

2∆timinus 1

~

Nsumi=1

V (x(timinus1)))

= IElowast[exp

(minus1~

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

]

This type of path integral computation

φ(y t) = IElowast[exp

(minus

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

] (1310)

is particularly useful for bond pricing as (1310) can be interpreted as theprice of a bond with short term interest rate process (rt)tisinR+ = (V (Bt)))tisinR+

conditionally to the value of the endpoint Bt = y cf (1331) below It can alsobe useful for exotic option pricing cf Chapter 10 and for risk managementThe path integral (1310) can be estimated either by closed-form expressionsusing Partial Differential Equations (PDEs) or probability densities by ap-proximations such as (conditional) Moment matching or by Monte Carloestimation from the paths of a Brownian bridge as shown in Figure 136

422

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 136 Brownian bridge

Bond pricing PDE

We assume from now on that the underlying short rate process is solution tothe stochastic differential equation

drt = micro(t rt)dt+ σ(t rt)dBt (1311)

where (Bt)tisinR+ is a standard Brownian motion under Plowast Note that specify-ing the dynamics of (rt)tisinR+ under the historical probability measure P willalso lead to a notion of market price of risk (MPoR) for the modeling of shortrates

Since all solutions of stochastic differential equations such as (1311) havethe Markov property cf eg Theorem V-32 of [Pro04] the arbitrage priceP (t T ) can be rewritten as a function F (t rt) of rt ie

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] = IElowast[

eminusr Ttrsds

∣∣∣ rt] = F (t rt)

and depends on rt only instead of depending on all information available inFt up to time t meaning that the pricing problem can now be formulated asa search for the function F (t x)

Proposition 132 (Bond pricing PDE) The bond pricing PDE for P (t T ) =F (t rt) is written as

xF (t x) = partF

partt(t x) + micro(t x)partF

partx(t x) + 1

2σ2(t x)part

2F

partx2 (t x) (1312)

423

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

t isin R+ x isin R subject to the terminal condition

F (T x) = 1 x isin R (1313)

Proof By Itocircrsquos formula we have

d(

eminusr t

0 rsdsP (t T ))

= minusrt eminusr t

0 rsdsP (t T )dt+ eminusr t

0 rsdsdP (t T )

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdsdF (t rt)

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdspartF

partx(t rt)(micro(t rt)dt+ σ(t rt)dBt)

+ eminusr t

0 rsds

(12σ

2(t rt)part2F

partx2 (t rt) + partF

partt(t rt)

)dt

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

+ eminusr t

0 rsds

(minusrtF (t rt) + micro(t rt)

partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

)dt

(1314)

Given that t 7minusrarr eminusr t

0 rsdsP (t T ) is a martingale the above expression(1314) should only contain terms in dBt (cf Corollary II-1 page 72 of[Pro04]) and all terms in dt should vanish inside (1314) This leads to theidentities

rtF (t rt)

= micro(t rt)partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

d(

eminusr t

0 rsdsP (t T ))

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

(1315a)

(1315b)

which recover (1312) Condition (1313) is due to the fact that P (T T ) = $1

In the case of an interest rate process modeled by (136) we have

micro(t x) = η(t) + λ(t)x and σ(t x) =radicδ(t) + γ(t)x

hence (1312) yields the (time dependent) affine PDE

xF (t x) = partF

partt(t x) + (η(t) + λ(t)x)partF

partx(t x) + 1

2(δ(t) + γ(t)x)part2F

partx2 (t x)

(1316)

t isin R+ x isin R By (1315b) the above proposition also shows that

424

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

dP (t T )P (t T ) = 1

P (t T )d(

er t

0 rsds eminusr t

0 rsdsP (t T ))

= 1P (t T )

(rtP (t T )dt+ e

r t0 rsdsd

(eminus

r t0 rsdsP (t T )

))= rtdt+ 1

P (t T ) er t

0 rsdsd(

eminusr t

0 rsdsP (t T ))

= rtdt+ 1F (t rt)

partF

partx(t rt)σ(t rt)dBt

= rtdt+ σ(t rt)part logFpartx

(t rt)dBt (1317)

In the Vasicek casedrt = (aminus brt)dt+ σdWt

the bond price takes the form

F (t rt) = P (t T ) = eA(Tminust)+rtC(Tminust)

where A(middot) and C(middot) are functions of time cf (1321) below and (1317)yields

dP (t T )P (t T ) = rtdtminus

σ

b(1minus eminusb(Tminust))dWt (1318)

since F (t x) = eA(Tminust)+xC(Tminust)

Note that more generally all affine short rate models as defined in Rela-tion (136) including the Vasicek model will yield a bond pricing formula ofthe form

P (t T ) = eA(Tminust)+rtC(Tminust)

cf eg sect 324 of [BM06]

Probabilistic solution of the Vasicek PDE

Next we solve the PDE (1312) written with micro(t x) = aminusbx and σ(t x) = σin the Vasicek [Vaš77] model

drt = (aminus brt)dt+ σdBt

as xF (t x) = partF

partt(t x) + (aminus bx)partF

partx(t x) + σ2

2part2F

partx2 (t x)

F (T x) = 1(1319)

by a direct computation of the conditional expectation

425

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

F (t rt) = P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] (1320)

Recall that in this model the short rate (rt)tisinR+ has the expression

rt = g(t) +w t

0h(t s)dBs = r0 eminusbt + a

b(1minus eminusbt) + σ

w t

0eminusb(tminuss)dBs

whereg(t) = r0 eminusbt + a

b(1minus eminusbt) t isin R+

andh(t s) = σ eminusb(tminuss) 0 6 s 6 t

are deterministic functions

Letting uort = max(u t) using the fact that Wiener integrals are Gaussianrandom variables and the Gaussian moment generating function we have

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r Tt

(g(s)+r s

0 h(su)dBu)ds∣∣∣ Ft]

= exp(minus

w T

tg(s)ds

)IElowast[

eminusr Tt

r s0 h(su)dBuds

∣∣∣ Ft]= exp

(minus

w T

tg(s)ds

)IElowast[

eminusr T

0r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

uorth(s u)dsdBu

)IElowast[

eminusr Tt

r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu + 1

2w T

t

(w T

uh(s u)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

w t

0

w T

teminusb(sminusu)dsdBu

)times exp

(σ2

2w T

t

(w T

ueminusb(sminusu)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

b(1minus eminusb(Tminust))

w t

0eminusb(tminusu)dBu

)times exp

(σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)

426

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= exp(minusrtb

(1minus eminusb(Tminust)) + 1b

(1minus eminusb(Tminust))(r0 eminusbt + a

b(1minus eminusbt)

))times exp

(minus

w T

t

(r0 eminusbs + a

b(1minus eminusbs)

)ds+ σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)= eA(Tminust)+rtC(Tminust) (1321)

whereC(T minus t) = minus1

b(1minus eminusb(Tminust)) (1322)

and

A(T minus t) = 4abminus 3σ2

4b3 + σ2 minus 2ab2b2 (T minus t) + σ2 minus ab

b3eminusb(Tminust)minus σ2

4b3 eminus2b(Tminust)

(1323)

Analytical solution of the Vasicek PDE

In order to solve the PDE (1319) analytically we may look for a solution ofthe form

F (t x) = eA(Tminust)+xC(Tminust) (1324)

where A(middot) and C(middot) are functions to be determined under the conditionsA(0) = 0 and C(0) = 0 Substituting (1324) into the PDE (1312) with theVasicek coefficients micro(t x) = (aminus bx) and σ(t x) = σ shows that

x eA(Tminust)+xC(Tminust) = minus(Aprime(T minus t)minus xC prime(T minus t)) eA(Tminust)+xC(Tminust)

+(aminus bx)C(T minus t) eA(Tminust)+xC(Tminust)

+12σ

2C2(T minus t) eA(Tminust)+xC(Tminust)

ie

x = minusAprime(T minus t) + xC prime(T minus t) + (aminus bx)C(T minus t) + 12σ

2C2(T minus t)

By identification of terms for x = 0 and x 6= 0 this yields the system ofRiccati and linear differential equations

Aprime(s) = aC(s) + σ2

2 C2(s)

C prime(s) = 1 + bC(s)

which can be solved to recover the above value of P (t T ) = F (t rt)

427

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Vasicek Bond Price Simulations

In this section we consider again the Vasicek model in which the short rate(rt)tisinR+ is solution to (131) Figure 137 presents a random simulation oft 7minusrarr P (t T ) in the same Vasicek model The graph of the correspondingdeterministic zero coupon bond price obtained for a = b = σ = 0 is alsoshown on the Figure 137

03

04

05

06

07

08

09

1

11

0 5 10 15 20

Fig 137 Graphs of t 7rarr F (t rt) = P (t T ) vs t 7rarr eminusr0(Tminust)

Figure 138 presents a random simulation of t 7minusrarr P (t T ) for a (non-zero)coupon bond with price Pc(t T ) = ec(Tminust)P (t T ) and coupon rate c gt 00 6 t 6 T

10000

10200

10400

10600

10800

0 5 10 15 20

Fig 138 Graph of t 7rarr F (t rt) = P (t T ) for a bond with a 23 coupon

The simulation of Figure 138 can be compared to the coupon bond marketdata of Figure 139 below

428

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 139 Bond price graph with maturity 011808 and coupon rate 625

See Exercise 133 for a bond pricing formula in the CIR model

Zero coupon bond price and yield data

The following zero coupon bond price was downloaded at EMMA fromthe Municipal Securities Rulemaking Board

ORANGE CNTY CALIF PENSION OBLIG CAP APPREC-TAXABLE-REF-SER A (CA)CUSIP 68428LBB9Dated Date 06121996 (June 12 1996)Maturity Date 09012016 (September 1st 2016)Interest Rate 00 Principal Amount at Issuance $26056000Initial Offering Price 19465

library(quantmod)bondprice lt- readtable(bond_data_Rtxtcolnames = c(DateHighPriceLowPrice

HighYieldLowYieldCountAmount))head(bondprice)time lt- asPOSIXct(bondprice$Date format = Y-m-d)price lt- xts(x = bondprice$HighPrice orderby = time)yield lt- xts(x = bondprice$HighYield orderby = time)chartSeries(priceupcol=bluetheme=white)chartSeries(yieldupcol=bluetheme=white)

429

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

2016-01-139908298982166615012200002015-12-2999183991831251251100002015-12-219795297952301430141100002015-12-179914198552123125156100002015-12-0798779877171417142100002015-12-04983639811826282282100002015-11-1898659865176817672200002015-11-1798306983062201222200002015-10-029865998514167150641000002015-09-099898210721071250002015-09-089888498043204311583300002015-07-20975059628345922992200002015-07-1698397983971461461250002015-07-15988729887210211021150002015-07-109768997689208420841300002015-06-1898123980231686163300002015-06-179884397034254313250002015-06-15983698299143113795850002015-06-0998016980161651651200002015-05-21978269772618321752500002015-05-189849498494119111912300002015-05-1598559835130311433300002015-05-129776997769175117511150002015-04-279834898348125112512400002015-04-249830398303128212821250002015-04-239760797607181318131650002015-04-1498649864111100002015-03-20983897981428114373850002015-03-199785197751159151836750002015-03-11981981391323600002015-02-27978297695156914832400002015-02-139858298357108309343750002015-02-119857698226116609343300002015-01-15983983106710671550002015-01-12989598950650652600002015-01-099898123212321600002014-12-11983197396155131600002014-12-109641696416214421442800002014-12-059804498044114811481500002014-12-049728897288159815981500002014-11-219782297822125125150002014-11-209642294353320733150002014-11-0797979964582014113861250002014-10-299650496504195619561150002014-10-1498149977841201123200002014-10-0797401974011396139611000002014-10-0397991970261598107353500002014-09-3097446962851991135842200002014-09-1997331972311455140221000002014-09-18964796419186221000002014-09-15969956732278161943000002014-09-119555952252823382200002014-08-199711995596223614495750002014-08-139528695286238623861300002014-08-069559395593220522051350002014-08-0197951977261114100341000002014-07-30976975122311742200002014-07-239603695036244919434500002014-07-1697494951246912526750002014-07-1497182969571461135141000002014-07-11956995572144208421000002014-05-209531495314212321232300002014-05-169372393723286628661300002014-04-299701396713143913052200002014-04-1695169516211521151200002014-04-07976339683313510042500002014-04-029577393974260718073750002014-02-2893293128932852200002014-02-2791759175348634861100002014-02-21956959269530417584400002014-02-189438593885251122992900002014-02-139310193101284228421450002013-11-159393262726271500002013-11-14915915320432041500002013-11-12925999171312127712200002013-10-319427294272210121013450002013-10-309232392323284828481100002013-10-299599942521011452200002013-10-259080790807342934291100002013-10-219161691491314230933750002013-08-0791008910083113112100002013-08-05894258942536813681150002013-07-229494394018216812800002013-07-1795167930262339162900002013-07-16951549515416161500002013-07-12944129441218518511000002013-06-28940049340421719663400002013-06-269471892567245417213500002013-06-11925692562422422120002013-06-05911119111129072907150002013-06-0495282952821528152862500002013-05-3195122951221547154712250002013-05-309429291069290718214280002013-05-2994969488516331652000002013-05-2492682926822352351100002013-05-2394488930732217174942100002013-05-219679193731199174950002013-05-169127691276280428041200002013-05-02916769015315126383270002013-04-24920999163926322483450002013-04-22920749161426322483540002013-04-179645941591810798550002013-04-159205491954250524722200002013-04-1191791725842584170002013-04-099635889785320810996570002013-03-12914491442602260218000002013-02-229164389323243250134830002013-02-0690290298529222400002012-11-29881528796434573399103200002012-11-2888176878843479338941200002012-11-279048790487268226821150002012-11-23890628906231063106150002012-11-13878737073707150002012-11-098472383048495644175200002012-10-3188798879313531351100002012-10-25907905261925612300002012-10-2490353903532662662400002012-10-168845888458319731972400002012-10-0290866900552724682300002012-10-0190148900472726712200002012-09-26882398779733513222500002012-09-249051390512255425542100002012-09-21905905255625561300002012-09-139103189907270923923750002012-08-0985188518400240023250002012-08-0886038333945513755410002012-08-0386486859863753605240002012-07-2785849404940192200002012-07-19876183625440732541800002012-07-18870738707334342350002012-07-178652286048368636092400002012-07-1685088840884254396131050002012-07-1386541865413543541150002012-06-29865728657235351400002012-06-2885258525387238721400002012-06-2187751868533431521100002012-06-208528984689401238431650002012-06-138643855937363521500002012-06-118386183861422142211750002012-05-258518485184380938091300002012-05-238386683866417841781300002012-05-2185331853313753751250002012-05-18838344094409150002012-05-178442484224405743750002012-04-05853283662410636541000002012-03-2988243851033692852530002012-03-2787258342141443112530002012-03-228495840753956371731350002012-03-02855855352535251100002012-03-018368583685400740071100002012-02-0787584664368529515750002012-01-2686645865853167315241500002012-01-2586458645323211610002012-01-248380754703409742540002012-01-2081188118458445841100002012-01-178245182351425342263650002012-01-128413781755440837746600002012-01-1181658094639443431650002012-01-0479575795754984981200002011-12-307875787551985198130002011-12-29764757647558245824130002011-12-088038580385468346831150002011-12-01798879884847992300002011-11-307969379693484848481150002011-11-01777560455491240002011-10-28788578854984981100002011-10-26767576755555551100002011-10-05777559725418280002011-08-2678119773195211521100002011-08-23774237742351695169170002011-08-2276576554065406170002011-07-278135881358414111300002011-06-227417415864586411300002011-04-267554575545532253221100002011-04-257481964916825555053400002011-04-206474163965853382983600002011-04-15767097545334500555000002011-04-087620176201511351131150002011-03-3174502745025525521150002011-03-17744347443455551400002011-03-167373586558651400002011-03-0374556745565435431500002011-03-017390373903558355831500002011-01-2871317713176156153200002011-01-2667256725723472332200002011-01-187300473004568756871600002011-01-1273719716560215561500002011-01-04735735552455242540002011-01-0371592713756055621200002010-12-2273173559855982300002010-12-1374185697646305533250002010-12-1073558735585455454800002010-12-0973547735475455452200002010-12-02658996589974087408150002010-12-017312570756124553241980002010-11-297508571889582650495290002010-11-19738738533653361150002010-11-10772797645452400002010-11-097674969503447934800002010-11-087914178641407240722400002010-11-037953178606397839782300002010-11-0277087770874524521350002010-10-068072779568371536714700002010-10-057906878277419741972700002010-10-04801793797379721100002010-10-018048978903371137113300002010-09-307717714453445321300002010-09-207888377821403440342400002010-09-177781277812426742672100002010-09-1476942769424454451250002010-09-097446274462500650061180002010-09-08732057320552965296150002010-09-03757527575247472100002010-09-02748317483149074907150002010-08-3176585748294896452800002010-08-307403974039507350731180002010-08-23765197651945452550002010-08-207463974639492149211550002010-08-167557454932470662100002010-08-117536575365473647361100002010-08-067425573255520652063300002010-07-26745787251535487651000002010-07-22740047245253500161750002010-07-2173417705936513384600002010-07-20707570655772577222000002010-07-077221172111537753772200002010-07-06720797207954544340002010-07-027293472068520152012160002010-06-307169934586856686900002010-06-29694269073609460942200002010-06-177140467856364551492000002010-06-1173567356500850081350002010-06-1072391713915275272500002010-06-09708647051570357032500002010-06-087281271524523516571050002010-06-077099270638566356632700002010-05-03720727107254775252100002010-04-016775661256568617731000002010-03-056765667556612661262400002010-03-03667566656366362400002010-02-1067946678600659966900002010-02-096586438683468343300002010-02-0866264874671167114800002010-01-066542565425649464942200002010-01-05708596310870465256500002009-12-157081570155521552154200002009-12-146565652965292200002009-11-1868569685695655652500002009-11-176717467174595259521400002009-11-1668526685265655652400002009-11-127039675255239417000002009-10-0170974642926063502952010002009-09-3070152605577397524460002009-09-29636296819681921200002009-09-0364605646056366361300002009-08-286190861908697269721300002009-08-19626561756774677431500002009-08-18614446083727221000002009-08-12621602573296884125900002009-07-216146561465697169711100002009-07-206033160307724572452200002009-06-265930159301742674261300002009-06-226112161121697269721250002009-06-175991959319739573952500002009-06-106088860888771180002009-06-0958685868752275221180002009-06-026096260962695569551250002009-05-225993959939717871781250002009-05-216204161692566842600002009-04-16609560956846842400002009-04-15604604696569651400002009-04-1462224622246546541100002009-04-0659868598687067061100002009-03-065656791279121250002009-03-0553983539838428421250002009-02-095770457554745741441450002009-02-06576925691776741431050002009-01-2855635556357887788712500002009-01-2258225582257257251250002009-01-215671556715760676061250002008-11-065720157201728972891150002008-10-166021959294655765572200002008-10-156095859283639563954500002008-10-0855454877877842000002008-07-3163623623515681568131500002008-07-186192961929661150002008-07-156361460368631456494600002008-07-1062562255918591821000002008-07-08642016170160225522100002008-07-0260567605676256251180002008-07-015859458594666766671180002008-06-2359589657665762300002008-06-20619936186592959293450002008-06-1661584598936631500002008-06-1358958865865821000002008-06-126094460944612761271150002008-05-156237562375578257821100002008-05-136137261372597659761100002008-04-2461086108664200002008-03-07626396157558085622000002008-02-2264256046012526662400002008-02-1164214642145255251400002008-02-0761756175571757171400002008-01-086385162951526152614600002008-01-04610716046590659063550002008-01-0359977592776146142100002007-10-18608446084456956921300002007-10-17613136131355995599150002007-10-1659655965591359131700002007-09-17610086100856561550002007-09-14594594590559052550002007-09-1260714607145655651200002007-09-1161458101615551661350002007-09-06608636075561256123750002007-08-2859514595145855851500002007-08-235994759947576257621110002007-08-205989958311606957622250002007-07-125942259422578857881250002007-07-115963459603575257462850002007-07-0958842588425895891950002007-07-02594085940857715771150002007-06-2759934590095665566541800002007-06-2659433582825754575431900002007-06-25598475875567456743600002007-06-225777577760696069150002007-06-2059275568356248578221050002007-06-1857214572146166616613000002007-05-255909659096576857681350002007-05-215959259592566356631550002007-05-15615236152353531150002007-05-1461514612535347532600002007-05-09602258955766576631950002007-05-01602846028455025502150002007-04-25612612532953291500002007-04-2461179585975802532852500002007-04-2359675585913591331500002007-04-1956556561986198150002007-03-2861658607520352032500002007-03-275953758877570357033750002007-02-2861125602575256525622000002007-02-2759953597535496549622000002007-02-265882258423566556653150002007-02-21585858085808150002007-02-085926959269555355531100002007-02-056019660196537853781300002007-02-025880658456562756272100002007-02-0159222592225555551500002007-01-316006358556853972200002007-01-265700357003594359431100002007-01-245791557915577857781100002007-01-236027560275534553451100002007-01-1660129601295365361400002007-01-115988659445467543400002007-01-05585157466582956374400002006-12-1859359579525707545352400002006-12-01573553617861783150002006-11-2160013600135353150002006-11-15583165831655915591150002006-09-07582215822155552450002006-09-065681256812575157511450002006-08-22577455675555855582400002006-08-1655709557095925921200002006-08-03565915486067573841200002006-07-3155135541356183599641000002006-07-27545585455861611100002006-07-2456094519225815814400002006-07-175624755372577157712200002006-07-115481954819602360231100002006-07-065479151686618602351700002006-07-055455456075607511000002006-06-2650571505716816681611000002006-06-16542552256476472400002006-06-1449319493197051705111000002006-05-155443854438662500002006-05-125218552185642264221500002006-04-255619456194565256521450002006-04-21545155316212621231350002006-04-125557455574574657461250002006-04-055663654525592355465650002006-04-035350353503610361031100002006-03-3055995599565156511100002006-03-285514955149579657961100002006-03-245473554735586758672100002006-03-23565563558755872200002006-03-21565565554655461100002006-03-135625549935855782300002006-02-1557671567715297529722000002006-02-1456219557945614561433000002006-02-08576576530153011350002006-01-26585585513151313300002006-01-2458558551255125150002006-01-235712557125535453541100002006-01-1757325732531353132700002006-01-125837558375513451341250002006-01-105717856552853273550002006-01-065375375935931200002006-01-0356394563945455451350002005-11-075656543754371350002005-10-075670756707528152811350002005-09-2058406584064977497711000002005-09-1356906569065211521111000002005-09-0758816572334897489731950002005-08-3156894565945249524921100002005-08-2559013590134851485111400002005-08-175678567852521400002005-08-165572854728553955393300002005-08-115483254832551755171400002005-07-22566685666851855185150002005-07-195757512551251180002005-07-1856103561035275271180002005-07-085621556215524152411800002005-07-0658755875483248321500002005-06-29589115652664841600002005-06-24567115671151425142150002005-06-2156006560065255251150002005-06-205449453949559255922300002005-06-1556035603524152411500002005-06-0158365565375144852350002005-05-2556497564975145141250002005-04-25564865548651512500002005-04-205494153788553955392500002005-04-075542155421525152512800002005-04-0553405525675723572332400002005-03-035490854908529152911200002005-03-0255149542254025252300002005-03-01551275340555335252600002005-02-28557455745155151250002005-02-25541925419254541250002005-02-245666455355001500122000002005-02-2353661536615483548311000002005-02-185572255722514151411300002005-02-155466454664530453041400002005-01-2751255125585558551250002005-01-265599155613513507227628000

N Privault

Date HighPrice LowPrice HighYield LowYield Count Amount1 2016-01-13 99082 98982 1666 1501 2 200002 2015-12-29 99183 99183 1250 1250 1 100003 2015-12-21 97952 97952 3014 3014 1 100004 2015-12-17 99141 98550 2123 1251 5 6100005 2015-12-07 98770 98770 1714 1714 2 100006 2015-12-04 98363 98118 2628 2280 2 10000

50

60

70

80

90

100

price [2005minus01minus262016minus01minus13]

Last 99082

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1310 Orange Cnty Calif bond prices

The next Figure 1311 plots the bond yield y(t T ) defined as

y(t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)y(tT ) 0 6 t 6 T

2

4

6

8

yield [2005minus01minus262016minus01minus13]

Last 1666

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1311 Orange Cnty Calif bond yields

Bond pricing in the Dothan model

In the Dothan [Dot78] model the short term interest rate process (rt)tisinR+ ismodeled according to a geometric Brownian motion

drt = micrortdt+ σrtdBt (1325)430

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

where the volatility σ gt 0 and the drift micro isin R are constant parameters and(Bt)tisinR+ is a standard Brownian motion In this model the short term inter-est rate rt remains always positive while the proportional volatility term σrtaccounts for the sensitivity of the volatility of interest rate changes to thelevel of the rate rt

On the other hand the Dothan model is the only lognormal short ratemodel that allows for an analytical formula for the zero coupon bond price

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

For convenience of notation we let p = 1minus 2microσ2 and rewrite (1325) as

drt = (1minus p)σ2

2 rtdt+ σrtdBt

with solutionrt = r0 eσBtminuspσ

2t2 t isin R+ (1326)

By the Markov property of (rt)tisinR+ the bond price P (t T ) is a functionF (t rt) of rt and time t isin [0 T ]

P (t T ) = F (t rt) = IElowast[

eminusr Ttrsds

∣∣∣ rt] 0 6 t 6 T (1327)

By computation of the conditional expectation (1327) using (106) we easilyobtain the following result cf Proposition 12 of [PP11] where the functionθ(v t) is defined in (104)

Proposition 133 The zero-coupon bond price P (t T ) = F (t rt) is givenfor all p isin R by

F (t x) (1328)

= eminusσ2p2(Tminust)8

winfin0

winfin0

eminusux exp(minus2(1 + z2)σ2u

(4zσ2u

σ2(T minus t)

4

)du

u

dz

zp+1

x gt 0

Proof By Proposition 101 cf [Yor92] Proposition 2 the probability distri-bution of the time integral

w Tminust

0eσBsminuspσ

2s2ds is given by

P(w Tminust

0eσBsminuspσ

2s2ds isin dy)

=winfinminusinfin

P(w t

0eσBsminuspσ

2s2ds isin dy Bt minus pσt2 isin dz)

431

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 7: Forward Rate Modeling

Forward Rate Modeling

Defining rtk = rtk minus ab k isin N we have

rtk+1 = rtk+1 minus ab= rtk minus ab+ (aminus brtk)∆t+ σZk

= rtk minus abminus b(rtk minus ab)∆t+ σZk

= rtk minus brtk∆t+ σZk

= (1minus b∆t)rtk + σZk k isin N

In other words the sequence (rtk)kisinisinN is modeled according to an autore-gressive AR(1) time series in which the current state Xn of the system isexpressed as the linear combination

Xn = σZn + α1Xnminus1 n gt 1 (137)

which can be solved recursively as the series

Xn = σZn + α1(σZnminus1 + α1Xnminus2) = middot middot middot = σ

infinsumk=0

αk1Znminusk

which converges when |α1| lt 1 ie |1minus b∆t| lt 1

Note that the variance of Xn is given by

Var[Xn] = σ2 Var[ infinsumk=0

αk1Znminusk

]

= σ2∆tinfinsumk=0

α2k1

= σ2∆tinfinsumk=0

(1minus b∆t)2k

= σ2∆t

1minus (1minus b∆t)2

= σ2∆t

2b∆tminus b2(∆t)2

σ2

2b

which is the expected variance of the Vasicek process in the stationary regime

417

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

library(quantmod)getSymbols(^TNXfrom=2012-01-01to=2016-01-01src=yahoo)rate=Ad(`TNX`)chartSeries(rateupcol=bluetheme=white)n = sum(isna(rate))

The next Figure 133 displays the yield of the 10 Year Treasury Note on theChicago Board Options Exchange (CBOE) Treasury notes usually have amaturity between one and 10 years whereas treasury bonds have maturitiesbeyond 10 years)

15

20

25

30

rate [2012minus01minus032015minus12minus31]

Last 2269

Jan 032012

Jul 022012

Jan 022013

Jul 012013

Jan 022014

Jul 012014

Jan 022015

Jul 012015

Dec 312015

Fig 133 CBOE 10 Year Treasury Note yield (TNX)

ratek=asvector(rate)ratekplus1 lt- c(ratek[-1]0)b lt- (sum(ratekratekplus1) - sum(ratek)sum(ratekplus1)n)(sum(ratekratek) - sum(ratek)sum(

ratek)n)a lt- sum(ratekplus1)n-bsum(ratek)nsigma lt- sqrt(sum((ratekplus1-bratek-a)^2)n)

The next code is generating Vasicek random samples according to the AR(1)time series (137)

for (i in 1100) arsimlt-arimasim(model=list(ar=c(b))nstart=100n)y=ratek[1]+ab+sigmaarsimtime lt- asPOSIXct(time(TNX) format = Y-m-d)yield lt- xts(x = y orderby = time)chartSeries(yieldupcol=bluetheme=white)Syssleep(05)

418

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

00

05

10

15

20

25

30

35

yield [2012minus01minus03 0800002015minus12minus31 080000]

Last 182260342989168

Jan 032012

Jul 022012

Jan 022013

Jul 012013

Jan 022014

Jul 012014

Jan 022015

Jul 012015

Dec 312015

Fig 134 Calibrated Vasicek samples

133 Zero-Coupon and Coupon Bonds

A zero-coupon bond is a contract priced P (t T ) at time t lt T to deliverP (T T ) = $1 at time T In addition to its value at maturity a bond mayyield a periodic coupon payment at regular time intervals until the maturitydate

Fig 135 Five dollar Louisiana bond of 1875 with 75 biannual coupons

The computation of the arbitrage price P0(t T ) of a zero-coupon bond basedon an underlying short term interest rate process (rt)tisinR+ is a basic andimportant issue in interest rate modeling

Constant short rate

In case the short term interest rate is a constant rt = r t isin R+ a standardarbitrage argument shows that the price P (t T ) of the bond is given by

P (t T ) = eminusr(Tminust) 0 6 t 6 T

419

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Indeed if P (t T ) gt eminusr(Tminust) we could issue a bond at the price P (t T ) andinvest this amount at the compounded risk free rate r which would yieldP (t T ) er(Tminust) gt 1 at time T

On the other hand if P (t T ) lt eminusr(Tminust) we could borrow P (t T ) at the rater to buy a bond priced P (t T ) At maturity time T we would receive $1 andrefund only P (t T ) er(Tminust) lt 1

Deterministic short rates

Similarly to the above when the short term interest rate process (rt)tisinR+ isa deterministic function of time a similar argument shows that

P (t T ) = eminusr Ttrsds 0 6 t 6 T (138)

Stochastic short rates

In case (rt)tisinR+ is an (Ft)tisinR+ -adapted random process the formula (138)is no longer valid as it relies on future information and we replace it with

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T (139)

under a risk-neutral measure Plowast It is natural to write P (t T ) as a conditionalexpectation under a martingale measure as the use of conditional expectationhelps to ldquofilter outrdquo the future information past time t contained in

w T

trsds

The expression (139) makes sense as the ldquobest possible estimaterdquo of thefuture quantity eminus

r Ttrsds in mean square sense given information known up

to time t

Coupon bonds

Pricing bonds with non-zero coupon is not difficult since in general theamount and periodicity of coupons are deterministiclowast In the case of a con-stant continuous-time coupon yield at the rate c gt 0 another application ofthe above absence of arbitrage argument shows that the price Pc(t T ) of thecoupon bond is given by

Pc(t T ) = ec(Tminust)P0(t T ) 0 6 t 6 T

see also Figure 139 below In the sequel we will mostly consider zero-couponbonds priced as P (t T ) = P0(t T ) 0 6 t 6 T lowast However coupon default cannot be excluded

420

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Martingale property of discounted bond prices

The following proposition shows that Assumption (A) of Chapter 12 is sat-isfied in other words the bond price process t 7minusrarr P (t T ) can be used as anumeacuteraireProposition 131 The discounted bond price process

t 7minusrarr P (t T ) = eminusr t

0 rsdsP (t T )

is a martingale under PlowastProof By (139) we have

eminusr t

0 rsdsP (t T ) = eminusr t

0 rsds IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r t0 rsds eminus

r Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r T0 rsds

∣∣∣ Ft] and this suffices to conclude since by the ldquotower propertyrdquo (1739) of condi-tional expectations any process (Xt)tisinR+ of the form t 7minusrarr Xt = IElowast[F | Ft]F isin L1(Ω) is a martingale cf Relation (61)

Path integrals

In physics the Feynman path integral

ψ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(i

~S(x(middot))

)where ~ is the Planck constant and S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 minus V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 minus V (x(timinus1)))∆ti

solves the Schroumldinger equation

i~partψ

partt(x t) = minus ~2

2mpart2ψ

partx2 (x t) + V (x(t))ψ(x t)

After the Wick rotation t 7rarr minusit the function

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

) 421

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

solves the heat equation

~partφ

partt(x t) = minus ~2

2mpart2φ

partx2 (x t) + V (x(t))φ(x t)

Given the action

S(x(middot)) =w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

we can rewrite the Euclidean path integral as

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

)=

wx(0)=x x(t)=y

Dx(middot) exp(minus 1

2~

Nsumi=1

(x(ti)minus x(timinus1))2

2∆timinus 1

~

Nsumi=1

V (x(timinus1)))

= IElowast[exp

(minus1~

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

]

This type of path integral computation

φ(y t) = IElowast[exp

(minus

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

] (1310)

is particularly useful for bond pricing as (1310) can be interpreted as theprice of a bond with short term interest rate process (rt)tisinR+ = (V (Bt)))tisinR+

conditionally to the value of the endpoint Bt = y cf (1331) below It can alsobe useful for exotic option pricing cf Chapter 10 and for risk managementThe path integral (1310) can be estimated either by closed-form expressionsusing Partial Differential Equations (PDEs) or probability densities by ap-proximations such as (conditional) Moment matching or by Monte Carloestimation from the paths of a Brownian bridge as shown in Figure 136

422

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 136 Brownian bridge

Bond pricing PDE

We assume from now on that the underlying short rate process is solution tothe stochastic differential equation

drt = micro(t rt)dt+ σ(t rt)dBt (1311)

where (Bt)tisinR+ is a standard Brownian motion under Plowast Note that specify-ing the dynamics of (rt)tisinR+ under the historical probability measure P willalso lead to a notion of market price of risk (MPoR) for the modeling of shortrates

Since all solutions of stochastic differential equations such as (1311) havethe Markov property cf eg Theorem V-32 of [Pro04] the arbitrage priceP (t T ) can be rewritten as a function F (t rt) of rt ie

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] = IElowast[

eminusr Ttrsds

∣∣∣ rt] = F (t rt)

and depends on rt only instead of depending on all information available inFt up to time t meaning that the pricing problem can now be formulated asa search for the function F (t x)

Proposition 132 (Bond pricing PDE) The bond pricing PDE for P (t T ) =F (t rt) is written as

xF (t x) = partF

partt(t x) + micro(t x)partF

partx(t x) + 1

2σ2(t x)part

2F

partx2 (t x) (1312)

423

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

t isin R+ x isin R subject to the terminal condition

F (T x) = 1 x isin R (1313)

Proof By Itocircrsquos formula we have

d(

eminusr t

0 rsdsP (t T ))

= minusrt eminusr t

0 rsdsP (t T )dt+ eminusr t

0 rsdsdP (t T )

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdsdF (t rt)

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdspartF

partx(t rt)(micro(t rt)dt+ σ(t rt)dBt)

+ eminusr t

0 rsds

(12σ

2(t rt)part2F

partx2 (t rt) + partF

partt(t rt)

)dt

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

+ eminusr t

0 rsds

(minusrtF (t rt) + micro(t rt)

partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

)dt

(1314)

Given that t 7minusrarr eminusr t

0 rsdsP (t T ) is a martingale the above expression(1314) should only contain terms in dBt (cf Corollary II-1 page 72 of[Pro04]) and all terms in dt should vanish inside (1314) This leads to theidentities

rtF (t rt)

= micro(t rt)partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

d(

eminusr t

0 rsdsP (t T ))

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

(1315a)

(1315b)

which recover (1312) Condition (1313) is due to the fact that P (T T ) = $1

In the case of an interest rate process modeled by (136) we have

micro(t x) = η(t) + λ(t)x and σ(t x) =radicδ(t) + γ(t)x

hence (1312) yields the (time dependent) affine PDE

xF (t x) = partF

partt(t x) + (η(t) + λ(t)x)partF

partx(t x) + 1

2(δ(t) + γ(t)x)part2F

partx2 (t x)

(1316)

t isin R+ x isin R By (1315b) the above proposition also shows that

424

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

dP (t T )P (t T ) = 1

P (t T )d(

er t

0 rsds eminusr t

0 rsdsP (t T ))

= 1P (t T )

(rtP (t T )dt+ e

r t0 rsdsd

(eminus

r t0 rsdsP (t T )

))= rtdt+ 1

P (t T ) er t

0 rsdsd(

eminusr t

0 rsdsP (t T ))

= rtdt+ 1F (t rt)

partF

partx(t rt)σ(t rt)dBt

= rtdt+ σ(t rt)part logFpartx

(t rt)dBt (1317)

In the Vasicek casedrt = (aminus brt)dt+ σdWt

the bond price takes the form

F (t rt) = P (t T ) = eA(Tminust)+rtC(Tminust)

where A(middot) and C(middot) are functions of time cf (1321) below and (1317)yields

dP (t T )P (t T ) = rtdtminus

σ

b(1minus eminusb(Tminust))dWt (1318)

since F (t x) = eA(Tminust)+xC(Tminust)

Note that more generally all affine short rate models as defined in Rela-tion (136) including the Vasicek model will yield a bond pricing formula ofthe form

P (t T ) = eA(Tminust)+rtC(Tminust)

cf eg sect 324 of [BM06]

Probabilistic solution of the Vasicek PDE

Next we solve the PDE (1312) written with micro(t x) = aminusbx and σ(t x) = σin the Vasicek [Vaš77] model

drt = (aminus brt)dt+ σdBt

as xF (t x) = partF

partt(t x) + (aminus bx)partF

partx(t x) + σ2

2part2F

partx2 (t x)

F (T x) = 1(1319)

by a direct computation of the conditional expectation

425

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

F (t rt) = P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] (1320)

Recall that in this model the short rate (rt)tisinR+ has the expression

rt = g(t) +w t

0h(t s)dBs = r0 eminusbt + a

b(1minus eminusbt) + σ

w t

0eminusb(tminuss)dBs

whereg(t) = r0 eminusbt + a

b(1minus eminusbt) t isin R+

andh(t s) = σ eminusb(tminuss) 0 6 s 6 t

are deterministic functions

Letting uort = max(u t) using the fact that Wiener integrals are Gaussianrandom variables and the Gaussian moment generating function we have

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r Tt

(g(s)+r s

0 h(su)dBu)ds∣∣∣ Ft]

= exp(minus

w T

tg(s)ds

)IElowast[

eminusr Tt

r s0 h(su)dBuds

∣∣∣ Ft]= exp

(minus

w T

tg(s)ds

)IElowast[

eminusr T

0r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

uorth(s u)dsdBu

)IElowast[

eminusr Tt

r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu + 1

2w T

t

(w T

uh(s u)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

w t

0

w T

teminusb(sminusu)dsdBu

)times exp

(σ2

2w T

t

(w T

ueminusb(sminusu)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

b(1minus eminusb(Tminust))

w t

0eminusb(tminusu)dBu

)times exp

(σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)

426

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= exp(minusrtb

(1minus eminusb(Tminust)) + 1b

(1minus eminusb(Tminust))(r0 eminusbt + a

b(1minus eminusbt)

))times exp

(minus

w T

t

(r0 eminusbs + a

b(1minus eminusbs)

)ds+ σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)= eA(Tminust)+rtC(Tminust) (1321)

whereC(T minus t) = minus1

b(1minus eminusb(Tminust)) (1322)

and

A(T minus t) = 4abminus 3σ2

4b3 + σ2 minus 2ab2b2 (T minus t) + σ2 minus ab

b3eminusb(Tminust)minus σ2

4b3 eminus2b(Tminust)

(1323)

Analytical solution of the Vasicek PDE

In order to solve the PDE (1319) analytically we may look for a solution ofthe form

F (t x) = eA(Tminust)+xC(Tminust) (1324)

where A(middot) and C(middot) are functions to be determined under the conditionsA(0) = 0 and C(0) = 0 Substituting (1324) into the PDE (1312) with theVasicek coefficients micro(t x) = (aminus bx) and σ(t x) = σ shows that

x eA(Tminust)+xC(Tminust) = minus(Aprime(T minus t)minus xC prime(T minus t)) eA(Tminust)+xC(Tminust)

+(aminus bx)C(T minus t) eA(Tminust)+xC(Tminust)

+12σ

2C2(T minus t) eA(Tminust)+xC(Tminust)

ie

x = minusAprime(T minus t) + xC prime(T minus t) + (aminus bx)C(T minus t) + 12σ

2C2(T minus t)

By identification of terms for x = 0 and x 6= 0 this yields the system ofRiccati and linear differential equations

Aprime(s) = aC(s) + σ2

2 C2(s)

C prime(s) = 1 + bC(s)

which can be solved to recover the above value of P (t T ) = F (t rt)

427

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Vasicek Bond Price Simulations

In this section we consider again the Vasicek model in which the short rate(rt)tisinR+ is solution to (131) Figure 137 presents a random simulation oft 7minusrarr P (t T ) in the same Vasicek model The graph of the correspondingdeterministic zero coupon bond price obtained for a = b = σ = 0 is alsoshown on the Figure 137

03

04

05

06

07

08

09

1

11

0 5 10 15 20

Fig 137 Graphs of t 7rarr F (t rt) = P (t T ) vs t 7rarr eminusr0(Tminust)

Figure 138 presents a random simulation of t 7minusrarr P (t T ) for a (non-zero)coupon bond with price Pc(t T ) = ec(Tminust)P (t T ) and coupon rate c gt 00 6 t 6 T

10000

10200

10400

10600

10800

0 5 10 15 20

Fig 138 Graph of t 7rarr F (t rt) = P (t T ) for a bond with a 23 coupon

The simulation of Figure 138 can be compared to the coupon bond marketdata of Figure 139 below

428

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 139 Bond price graph with maturity 011808 and coupon rate 625

See Exercise 133 for a bond pricing formula in the CIR model

Zero coupon bond price and yield data

The following zero coupon bond price was downloaded at EMMA fromthe Municipal Securities Rulemaking Board

ORANGE CNTY CALIF PENSION OBLIG CAP APPREC-TAXABLE-REF-SER A (CA)CUSIP 68428LBB9Dated Date 06121996 (June 12 1996)Maturity Date 09012016 (September 1st 2016)Interest Rate 00 Principal Amount at Issuance $26056000Initial Offering Price 19465

library(quantmod)bondprice lt- readtable(bond_data_Rtxtcolnames = c(DateHighPriceLowPrice

HighYieldLowYieldCountAmount))head(bondprice)time lt- asPOSIXct(bondprice$Date format = Y-m-d)price lt- xts(x = bondprice$HighPrice orderby = time)yield lt- xts(x = bondprice$HighYield orderby = time)chartSeries(priceupcol=bluetheme=white)chartSeries(yieldupcol=bluetheme=white)

429

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

2016-01-139908298982166615012200002015-12-2999183991831251251100002015-12-219795297952301430141100002015-12-179914198552123125156100002015-12-0798779877171417142100002015-12-04983639811826282282100002015-11-1898659865176817672200002015-11-1798306983062201222200002015-10-029865998514167150641000002015-09-099898210721071250002015-09-089888498043204311583300002015-07-20975059628345922992200002015-07-1698397983971461461250002015-07-15988729887210211021150002015-07-109768997689208420841300002015-06-1898123980231686163300002015-06-179884397034254313250002015-06-15983698299143113795850002015-06-0998016980161651651200002015-05-21978269772618321752500002015-05-189849498494119111912300002015-05-1598559835130311433300002015-05-129776997769175117511150002015-04-279834898348125112512400002015-04-249830398303128212821250002015-04-239760797607181318131650002015-04-1498649864111100002015-03-20983897981428114373850002015-03-199785197751159151836750002015-03-11981981391323600002015-02-27978297695156914832400002015-02-139858298357108309343750002015-02-119857698226116609343300002015-01-15983983106710671550002015-01-12989598950650652600002015-01-099898123212321600002014-12-11983197396155131600002014-12-109641696416214421442800002014-12-059804498044114811481500002014-12-049728897288159815981500002014-11-219782297822125125150002014-11-209642294353320733150002014-11-0797979964582014113861250002014-10-299650496504195619561150002014-10-1498149977841201123200002014-10-0797401974011396139611000002014-10-0397991970261598107353500002014-09-3097446962851991135842200002014-09-1997331972311455140221000002014-09-18964796419186221000002014-09-15969956732278161943000002014-09-119555952252823382200002014-08-199711995596223614495750002014-08-139528695286238623861300002014-08-069559395593220522051350002014-08-0197951977261114100341000002014-07-30976975122311742200002014-07-239603695036244919434500002014-07-1697494951246912526750002014-07-1497182969571461135141000002014-07-11956995572144208421000002014-05-209531495314212321232300002014-05-169372393723286628661300002014-04-299701396713143913052200002014-04-1695169516211521151200002014-04-07976339683313510042500002014-04-029577393974260718073750002014-02-2893293128932852200002014-02-2791759175348634861100002014-02-21956959269530417584400002014-02-189438593885251122992900002014-02-139310193101284228421450002013-11-159393262726271500002013-11-14915915320432041500002013-11-12925999171312127712200002013-10-319427294272210121013450002013-10-309232392323284828481100002013-10-299599942521011452200002013-10-259080790807342934291100002013-10-219161691491314230933750002013-08-0791008910083113112100002013-08-05894258942536813681150002013-07-229494394018216812800002013-07-1795167930262339162900002013-07-16951549515416161500002013-07-12944129441218518511000002013-06-28940049340421719663400002013-06-269471892567245417213500002013-06-11925692562422422120002013-06-05911119111129072907150002013-06-0495282952821528152862500002013-05-3195122951221547154712250002013-05-309429291069290718214280002013-05-2994969488516331652000002013-05-2492682926822352351100002013-05-2394488930732217174942100002013-05-219679193731199174950002013-05-169127691276280428041200002013-05-02916769015315126383270002013-04-24920999163926322483450002013-04-22920749161426322483540002013-04-179645941591810798550002013-04-159205491954250524722200002013-04-1191791725842584170002013-04-099635889785320810996570002013-03-12914491442602260218000002013-02-229164389323243250134830002013-02-0690290298529222400002012-11-29881528796434573399103200002012-11-2888176878843479338941200002012-11-279048790487268226821150002012-11-23890628906231063106150002012-11-13878737073707150002012-11-098472383048495644175200002012-10-3188798879313531351100002012-10-25907905261925612300002012-10-2490353903532662662400002012-10-168845888458319731972400002012-10-0290866900552724682300002012-10-0190148900472726712200002012-09-26882398779733513222500002012-09-249051390512255425542100002012-09-21905905255625561300002012-09-139103189907270923923750002012-08-0985188518400240023250002012-08-0886038333945513755410002012-08-0386486859863753605240002012-07-2785849404940192200002012-07-19876183625440732541800002012-07-18870738707334342350002012-07-178652286048368636092400002012-07-1685088840884254396131050002012-07-1386541865413543541150002012-06-29865728657235351400002012-06-2885258525387238721400002012-06-2187751868533431521100002012-06-208528984689401238431650002012-06-138643855937363521500002012-06-118386183861422142211750002012-05-258518485184380938091300002012-05-238386683866417841781300002012-05-2185331853313753751250002012-05-18838344094409150002012-05-178442484224405743750002012-04-05853283662410636541000002012-03-2988243851033692852530002012-03-2787258342141443112530002012-03-228495840753956371731350002012-03-02855855352535251100002012-03-018368583685400740071100002012-02-0787584664368529515750002012-01-2686645865853167315241500002012-01-2586458645323211610002012-01-248380754703409742540002012-01-2081188118458445841100002012-01-178245182351425342263650002012-01-128413781755440837746600002012-01-1181658094639443431650002012-01-0479575795754984981200002011-12-307875787551985198130002011-12-29764757647558245824130002011-12-088038580385468346831150002011-12-01798879884847992300002011-11-307969379693484848481150002011-11-01777560455491240002011-10-28788578854984981100002011-10-26767576755555551100002011-10-05777559725418280002011-08-2678119773195211521100002011-08-23774237742351695169170002011-08-2276576554065406170002011-07-278135881358414111300002011-06-227417415864586411300002011-04-267554575545532253221100002011-04-257481964916825555053400002011-04-206474163965853382983600002011-04-15767097545334500555000002011-04-087620176201511351131150002011-03-3174502745025525521150002011-03-17744347443455551400002011-03-167373586558651400002011-03-0374556745565435431500002011-03-017390373903558355831500002011-01-2871317713176156153200002011-01-2667256725723472332200002011-01-187300473004568756871600002011-01-1273719716560215561500002011-01-04735735552455242540002011-01-0371592713756055621200002010-12-2273173559855982300002010-12-1374185697646305533250002010-12-1073558735585455454800002010-12-0973547735475455452200002010-12-02658996589974087408150002010-12-017312570756124553241980002010-11-297508571889582650495290002010-11-19738738533653361150002010-11-10772797645452400002010-11-097674969503447934800002010-11-087914178641407240722400002010-11-037953178606397839782300002010-11-0277087770874524521350002010-10-068072779568371536714700002010-10-057906878277419741972700002010-10-04801793797379721100002010-10-018048978903371137113300002010-09-307717714453445321300002010-09-207888377821403440342400002010-09-177781277812426742672100002010-09-1476942769424454451250002010-09-097446274462500650061180002010-09-08732057320552965296150002010-09-03757527575247472100002010-09-02748317483149074907150002010-08-3176585748294896452800002010-08-307403974039507350731180002010-08-23765197651945452550002010-08-207463974639492149211550002010-08-167557454932470662100002010-08-117536575365473647361100002010-08-067425573255520652063300002010-07-26745787251535487651000002010-07-22740047245253500161750002010-07-2173417705936513384600002010-07-20707570655772577222000002010-07-077221172111537753772200002010-07-06720797207954544340002010-07-027293472068520152012160002010-06-307169934586856686900002010-06-29694269073609460942200002010-06-177140467856364551492000002010-06-1173567356500850081350002010-06-1072391713915275272500002010-06-09708647051570357032500002010-06-087281271524523516571050002010-06-077099270638566356632700002010-05-03720727107254775252100002010-04-016775661256568617731000002010-03-056765667556612661262400002010-03-03667566656366362400002010-02-1067946678600659966900002010-02-096586438683468343300002010-02-0866264874671167114800002010-01-066542565425649464942200002010-01-05708596310870465256500002009-12-157081570155521552154200002009-12-146565652965292200002009-11-1868569685695655652500002009-11-176717467174595259521400002009-11-1668526685265655652400002009-11-127039675255239417000002009-10-0170974642926063502952010002009-09-3070152605577397524460002009-09-29636296819681921200002009-09-0364605646056366361300002009-08-286190861908697269721300002009-08-19626561756774677431500002009-08-18614446083727221000002009-08-12621602573296884125900002009-07-216146561465697169711100002009-07-206033160307724572452200002009-06-265930159301742674261300002009-06-226112161121697269721250002009-06-175991959319739573952500002009-06-106088860888771180002009-06-0958685868752275221180002009-06-026096260962695569551250002009-05-225993959939717871781250002009-05-216204161692566842600002009-04-16609560956846842400002009-04-15604604696569651400002009-04-1462224622246546541100002009-04-0659868598687067061100002009-03-065656791279121250002009-03-0553983539838428421250002009-02-095770457554745741441450002009-02-06576925691776741431050002009-01-2855635556357887788712500002009-01-2258225582257257251250002009-01-215671556715760676061250002008-11-065720157201728972891150002008-10-166021959294655765572200002008-10-156095859283639563954500002008-10-0855454877877842000002008-07-3163623623515681568131500002008-07-186192961929661150002008-07-156361460368631456494600002008-07-1062562255918591821000002008-07-08642016170160225522100002008-07-0260567605676256251180002008-07-015859458594666766671180002008-06-2359589657665762300002008-06-20619936186592959293450002008-06-1661584598936631500002008-06-1358958865865821000002008-06-126094460944612761271150002008-05-156237562375578257821100002008-05-136137261372597659761100002008-04-2461086108664200002008-03-07626396157558085622000002008-02-2264256046012526662400002008-02-1164214642145255251400002008-02-0761756175571757171400002008-01-086385162951526152614600002008-01-04610716046590659063550002008-01-0359977592776146142100002007-10-18608446084456956921300002007-10-17613136131355995599150002007-10-1659655965591359131700002007-09-17610086100856561550002007-09-14594594590559052550002007-09-1260714607145655651200002007-09-1161458101615551661350002007-09-06608636075561256123750002007-08-2859514595145855851500002007-08-235994759947576257621110002007-08-205989958311606957622250002007-07-125942259422578857881250002007-07-115963459603575257462850002007-07-0958842588425895891950002007-07-02594085940857715771150002007-06-2759934590095665566541800002007-06-2659433582825754575431900002007-06-25598475875567456743600002007-06-225777577760696069150002007-06-2059275568356248578221050002007-06-1857214572146166616613000002007-05-255909659096576857681350002007-05-215959259592566356631550002007-05-15615236152353531150002007-05-1461514612535347532600002007-05-09602258955766576631950002007-05-01602846028455025502150002007-04-25612612532953291500002007-04-2461179585975802532852500002007-04-2359675585913591331500002007-04-1956556561986198150002007-03-2861658607520352032500002007-03-275953758877570357033750002007-02-2861125602575256525622000002007-02-2759953597535496549622000002007-02-265882258423566556653150002007-02-21585858085808150002007-02-085926959269555355531100002007-02-056019660196537853781300002007-02-025880658456562756272100002007-02-0159222592225555551500002007-01-316006358556853972200002007-01-265700357003594359431100002007-01-245791557915577857781100002007-01-236027560275534553451100002007-01-1660129601295365361400002007-01-115988659445467543400002007-01-05585157466582956374400002006-12-1859359579525707545352400002006-12-01573553617861783150002006-11-2160013600135353150002006-11-15583165831655915591150002006-09-07582215822155552450002006-09-065681256812575157511450002006-08-22577455675555855582400002006-08-1655709557095925921200002006-08-03565915486067573841200002006-07-3155135541356183599641000002006-07-27545585455861611100002006-07-2456094519225815814400002006-07-175624755372577157712200002006-07-115481954819602360231100002006-07-065479151686618602351700002006-07-055455456075607511000002006-06-2650571505716816681611000002006-06-16542552256476472400002006-06-1449319493197051705111000002006-05-155443854438662500002006-05-125218552185642264221500002006-04-255619456194565256521450002006-04-21545155316212621231350002006-04-125557455574574657461250002006-04-055663654525592355465650002006-04-035350353503610361031100002006-03-3055995599565156511100002006-03-285514955149579657961100002006-03-245473554735586758672100002006-03-23565563558755872200002006-03-21565565554655461100002006-03-135625549935855782300002006-02-1557671567715297529722000002006-02-1456219557945614561433000002006-02-08576576530153011350002006-01-26585585513151313300002006-01-2458558551255125150002006-01-235712557125535453541100002006-01-1757325732531353132700002006-01-125837558375513451341250002006-01-105717856552853273550002006-01-065375375935931200002006-01-0356394563945455451350002005-11-075656543754371350002005-10-075670756707528152811350002005-09-2058406584064977497711000002005-09-1356906569065211521111000002005-09-0758816572334897489731950002005-08-3156894565945249524921100002005-08-2559013590134851485111400002005-08-175678567852521400002005-08-165572854728553955393300002005-08-115483254832551755171400002005-07-22566685666851855185150002005-07-195757512551251180002005-07-1856103561035275271180002005-07-085621556215524152411800002005-07-0658755875483248321500002005-06-29589115652664841600002005-06-24567115671151425142150002005-06-2156006560065255251150002005-06-205449453949559255922300002005-06-1556035603524152411500002005-06-0158365565375144852350002005-05-2556497564975145141250002005-04-25564865548651512500002005-04-205494153788553955392500002005-04-075542155421525152512800002005-04-0553405525675723572332400002005-03-035490854908529152911200002005-03-0255149542254025252300002005-03-01551275340555335252600002005-02-28557455745155151250002005-02-25541925419254541250002005-02-245666455355001500122000002005-02-2353661536615483548311000002005-02-185572255722514151411300002005-02-155466454664530453041400002005-01-2751255125585558551250002005-01-265599155613513507227628000

N Privault

Date HighPrice LowPrice HighYield LowYield Count Amount1 2016-01-13 99082 98982 1666 1501 2 200002 2015-12-29 99183 99183 1250 1250 1 100003 2015-12-21 97952 97952 3014 3014 1 100004 2015-12-17 99141 98550 2123 1251 5 6100005 2015-12-07 98770 98770 1714 1714 2 100006 2015-12-04 98363 98118 2628 2280 2 10000

50

60

70

80

90

100

price [2005minus01minus262016minus01minus13]

Last 99082

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1310 Orange Cnty Calif bond prices

The next Figure 1311 plots the bond yield y(t T ) defined as

y(t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)y(tT ) 0 6 t 6 T

2

4

6

8

yield [2005minus01minus262016minus01minus13]

Last 1666

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1311 Orange Cnty Calif bond yields

Bond pricing in the Dothan model

In the Dothan [Dot78] model the short term interest rate process (rt)tisinR+ ismodeled according to a geometric Brownian motion

drt = micrortdt+ σrtdBt (1325)430

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

where the volatility σ gt 0 and the drift micro isin R are constant parameters and(Bt)tisinR+ is a standard Brownian motion In this model the short term inter-est rate rt remains always positive while the proportional volatility term σrtaccounts for the sensitivity of the volatility of interest rate changes to thelevel of the rate rt

On the other hand the Dothan model is the only lognormal short ratemodel that allows for an analytical formula for the zero coupon bond price

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

For convenience of notation we let p = 1minus 2microσ2 and rewrite (1325) as

drt = (1minus p)σ2

2 rtdt+ σrtdBt

with solutionrt = r0 eσBtminuspσ

2t2 t isin R+ (1326)

By the Markov property of (rt)tisinR+ the bond price P (t T ) is a functionF (t rt) of rt and time t isin [0 T ]

P (t T ) = F (t rt) = IElowast[

eminusr Ttrsds

∣∣∣ rt] 0 6 t 6 T (1327)

By computation of the conditional expectation (1327) using (106) we easilyobtain the following result cf Proposition 12 of [PP11] where the functionθ(v t) is defined in (104)

Proposition 133 The zero-coupon bond price P (t T ) = F (t rt) is givenfor all p isin R by

F (t x) (1328)

= eminusσ2p2(Tminust)8

winfin0

winfin0

eminusux exp(minus2(1 + z2)σ2u

(4zσ2u

σ2(T minus t)

4

)du

u

dz

zp+1

x gt 0

Proof By Proposition 101 cf [Yor92] Proposition 2 the probability distri-bution of the time integral

w Tminust

0eσBsminuspσ

2s2ds is given by

P(w Tminust

0eσBsminuspσ

2s2ds isin dy)

=winfinminusinfin

P(w t

0eσBsminuspσ

2s2ds isin dy Bt minus pσt2 isin dz)

431

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 8: Forward Rate Modeling

N Privault

library(quantmod)getSymbols(^TNXfrom=2012-01-01to=2016-01-01src=yahoo)rate=Ad(`TNX`)chartSeries(rateupcol=bluetheme=white)n = sum(isna(rate))

The next Figure 133 displays the yield of the 10 Year Treasury Note on theChicago Board Options Exchange (CBOE) Treasury notes usually have amaturity between one and 10 years whereas treasury bonds have maturitiesbeyond 10 years)

15

20

25

30

rate [2012minus01minus032015minus12minus31]

Last 2269

Jan 032012

Jul 022012

Jan 022013

Jul 012013

Jan 022014

Jul 012014

Jan 022015

Jul 012015

Dec 312015

Fig 133 CBOE 10 Year Treasury Note yield (TNX)

ratek=asvector(rate)ratekplus1 lt- c(ratek[-1]0)b lt- (sum(ratekratekplus1) - sum(ratek)sum(ratekplus1)n)(sum(ratekratek) - sum(ratek)sum(

ratek)n)a lt- sum(ratekplus1)n-bsum(ratek)nsigma lt- sqrt(sum((ratekplus1-bratek-a)^2)n)

The next code is generating Vasicek random samples according to the AR(1)time series (137)

for (i in 1100) arsimlt-arimasim(model=list(ar=c(b))nstart=100n)y=ratek[1]+ab+sigmaarsimtime lt- asPOSIXct(time(TNX) format = Y-m-d)yield lt- xts(x = y orderby = time)chartSeries(yieldupcol=bluetheme=white)Syssleep(05)

418

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

00

05

10

15

20

25

30

35

yield [2012minus01minus03 0800002015minus12minus31 080000]

Last 182260342989168

Jan 032012

Jul 022012

Jan 022013

Jul 012013

Jan 022014

Jul 012014

Jan 022015

Jul 012015

Dec 312015

Fig 134 Calibrated Vasicek samples

133 Zero-Coupon and Coupon Bonds

A zero-coupon bond is a contract priced P (t T ) at time t lt T to deliverP (T T ) = $1 at time T In addition to its value at maturity a bond mayyield a periodic coupon payment at regular time intervals until the maturitydate

Fig 135 Five dollar Louisiana bond of 1875 with 75 biannual coupons

The computation of the arbitrage price P0(t T ) of a zero-coupon bond basedon an underlying short term interest rate process (rt)tisinR+ is a basic andimportant issue in interest rate modeling

Constant short rate

In case the short term interest rate is a constant rt = r t isin R+ a standardarbitrage argument shows that the price P (t T ) of the bond is given by

P (t T ) = eminusr(Tminust) 0 6 t 6 T

419

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Indeed if P (t T ) gt eminusr(Tminust) we could issue a bond at the price P (t T ) andinvest this amount at the compounded risk free rate r which would yieldP (t T ) er(Tminust) gt 1 at time T

On the other hand if P (t T ) lt eminusr(Tminust) we could borrow P (t T ) at the rater to buy a bond priced P (t T ) At maturity time T we would receive $1 andrefund only P (t T ) er(Tminust) lt 1

Deterministic short rates

Similarly to the above when the short term interest rate process (rt)tisinR+ isa deterministic function of time a similar argument shows that

P (t T ) = eminusr Ttrsds 0 6 t 6 T (138)

Stochastic short rates

In case (rt)tisinR+ is an (Ft)tisinR+ -adapted random process the formula (138)is no longer valid as it relies on future information and we replace it with

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T (139)

under a risk-neutral measure Plowast It is natural to write P (t T ) as a conditionalexpectation under a martingale measure as the use of conditional expectationhelps to ldquofilter outrdquo the future information past time t contained in

w T

trsds

The expression (139) makes sense as the ldquobest possible estimaterdquo of thefuture quantity eminus

r Ttrsds in mean square sense given information known up

to time t

Coupon bonds

Pricing bonds with non-zero coupon is not difficult since in general theamount and periodicity of coupons are deterministiclowast In the case of a con-stant continuous-time coupon yield at the rate c gt 0 another application ofthe above absence of arbitrage argument shows that the price Pc(t T ) of thecoupon bond is given by

Pc(t T ) = ec(Tminust)P0(t T ) 0 6 t 6 T

see also Figure 139 below In the sequel we will mostly consider zero-couponbonds priced as P (t T ) = P0(t T ) 0 6 t 6 T lowast However coupon default cannot be excluded

420

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Martingale property of discounted bond prices

The following proposition shows that Assumption (A) of Chapter 12 is sat-isfied in other words the bond price process t 7minusrarr P (t T ) can be used as anumeacuteraireProposition 131 The discounted bond price process

t 7minusrarr P (t T ) = eminusr t

0 rsdsP (t T )

is a martingale under PlowastProof By (139) we have

eminusr t

0 rsdsP (t T ) = eminusr t

0 rsds IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r t0 rsds eminus

r Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r T0 rsds

∣∣∣ Ft] and this suffices to conclude since by the ldquotower propertyrdquo (1739) of condi-tional expectations any process (Xt)tisinR+ of the form t 7minusrarr Xt = IElowast[F | Ft]F isin L1(Ω) is a martingale cf Relation (61)

Path integrals

In physics the Feynman path integral

ψ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(i

~S(x(middot))

)where ~ is the Planck constant and S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 minus V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 minus V (x(timinus1)))∆ti

solves the Schroumldinger equation

i~partψ

partt(x t) = minus ~2

2mpart2ψ

partx2 (x t) + V (x(t))ψ(x t)

After the Wick rotation t 7rarr minusit the function

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

) 421

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

solves the heat equation

~partφ

partt(x t) = minus ~2

2mpart2φ

partx2 (x t) + V (x(t))φ(x t)

Given the action

S(x(middot)) =w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

we can rewrite the Euclidean path integral as

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

)=

wx(0)=x x(t)=y

Dx(middot) exp(minus 1

2~

Nsumi=1

(x(ti)minus x(timinus1))2

2∆timinus 1

~

Nsumi=1

V (x(timinus1)))

= IElowast[exp

(minus1~

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

]

This type of path integral computation

φ(y t) = IElowast[exp

(minus

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

] (1310)

is particularly useful for bond pricing as (1310) can be interpreted as theprice of a bond with short term interest rate process (rt)tisinR+ = (V (Bt)))tisinR+

conditionally to the value of the endpoint Bt = y cf (1331) below It can alsobe useful for exotic option pricing cf Chapter 10 and for risk managementThe path integral (1310) can be estimated either by closed-form expressionsusing Partial Differential Equations (PDEs) or probability densities by ap-proximations such as (conditional) Moment matching or by Monte Carloestimation from the paths of a Brownian bridge as shown in Figure 136

422

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 136 Brownian bridge

Bond pricing PDE

We assume from now on that the underlying short rate process is solution tothe stochastic differential equation

drt = micro(t rt)dt+ σ(t rt)dBt (1311)

where (Bt)tisinR+ is a standard Brownian motion under Plowast Note that specify-ing the dynamics of (rt)tisinR+ under the historical probability measure P willalso lead to a notion of market price of risk (MPoR) for the modeling of shortrates

Since all solutions of stochastic differential equations such as (1311) havethe Markov property cf eg Theorem V-32 of [Pro04] the arbitrage priceP (t T ) can be rewritten as a function F (t rt) of rt ie

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] = IElowast[

eminusr Ttrsds

∣∣∣ rt] = F (t rt)

and depends on rt only instead of depending on all information available inFt up to time t meaning that the pricing problem can now be formulated asa search for the function F (t x)

Proposition 132 (Bond pricing PDE) The bond pricing PDE for P (t T ) =F (t rt) is written as

xF (t x) = partF

partt(t x) + micro(t x)partF

partx(t x) + 1

2σ2(t x)part

2F

partx2 (t x) (1312)

423

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

t isin R+ x isin R subject to the terminal condition

F (T x) = 1 x isin R (1313)

Proof By Itocircrsquos formula we have

d(

eminusr t

0 rsdsP (t T ))

= minusrt eminusr t

0 rsdsP (t T )dt+ eminusr t

0 rsdsdP (t T )

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdsdF (t rt)

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdspartF

partx(t rt)(micro(t rt)dt+ σ(t rt)dBt)

+ eminusr t

0 rsds

(12σ

2(t rt)part2F

partx2 (t rt) + partF

partt(t rt)

)dt

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

+ eminusr t

0 rsds

(minusrtF (t rt) + micro(t rt)

partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

)dt

(1314)

Given that t 7minusrarr eminusr t

0 rsdsP (t T ) is a martingale the above expression(1314) should only contain terms in dBt (cf Corollary II-1 page 72 of[Pro04]) and all terms in dt should vanish inside (1314) This leads to theidentities

rtF (t rt)

= micro(t rt)partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

d(

eminusr t

0 rsdsP (t T ))

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

(1315a)

(1315b)

which recover (1312) Condition (1313) is due to the fact that P (T T ) = $1

In the case of an interest rate process modeled by (136) we have

micro(t x) = η(t) + λ(t)x and σ(t x) =radicδ(t) + γ(t)x

hence (1312) yields the (time dependent) affine PDE

xF (t x) = partF

partt(t x) + (η(t) + λ(t)x)partF

partx(t x) + 1

2(δ(t) + γ(t)x)part2F

partx2 (t x)

(1316)

t isin R+ x isin R By (1315b) the above proposition also shows that

424

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

dP (t T )P (t T ) = 1

P (t T )d(

er t

0 rsds eminusr t

0 rsdsP (t T ))

= 1P (t T )

(rtP (t T )dt+ e

r t0 rsdsd

(eminus

r t0 rsdsP (t T )

))= rtdt+ 1

P (t T ) er t

0 rsdsd(

eminusr t

0 rsdsP (t T ))

= rtdt+ 1F (t rt)

partF

partx(t rt)σ(t rt)dBt

= rtdt+ σ(t rt)part logFpartx

(t rt)dBt (1317)

In the Vasicek casedrt = (aminus brt)dt+ σdWt

the bond price takes the form

F (t rt) = P (t T ) = eA(Tminust)+rtC(Tminust)

where A(middot) and C(middot) are functions of time cf (1321) below and (1317)yields

dP (t T )P (t T ) = rtdtminus

σ

b(1minus eminusb(Tminust))dWt (1318)

since F (t x) = eA(Tminust)+xC(Tminust)

Note that more generally all affine short rate models as defined in Rela-tion (136) including the Vasicek model will yield a bond pricing formula ofthe form

P (t T ) = eA(Tminust)+rtC(Tminust)

cf eg sect 324 of [BM06]

Probabilistic solution of the Vasicek PDE

Next we solve the PDE (1312) written with micro(t x) = aminusbx and σ(t x) = σin the Vasicek [Vaš77] model

drt = (aminus brt)dt+ σdBt

as xF (t x) = partF

partt(t x) + (aminus bx)partF

partx(t x) + σ2

2part2F

partx2 (t x)

F (T x) = 1(1319)

by a direct computation of the conditional expectation

425

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

F (t rt) = P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] (1320)

Recall that in this model the short rate (rt)tisinR+ has the expression

rt = g(t) +w t

0h(t s)dBs = r0 eminusbt + a

b(1minus eminusbt) + σ

w t

0eminusb(tminuss)dBs

whereg(t) = r0 eminusbt + a

b(1minus eminusbt) t isin R+

andh(t s) = σ eminusb(tminuss) 0 6 s 6 t

are deterministic functions

Letting uort = max(u t) using the fact that Wiener integrals are Gaussianrandom variables and the Gaussian moment generating function we have

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r Tt

(g(s)+r s

0 h(su)dBu)ds∣∣∣ Ft]

= exp(minus

w T

tg(s)ds

)IElowast[

eminusr Tt

r s0 h(su)dBuds

∣∣∣ Ft]= exp

(minus

w T

tg(s)ds

)IElowast[

eminusr T

0r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

uorth(s u)dsdBu

)IElowast[

eminusr Tt

r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu + 1

2w T

t

(w T

uh(s u)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

w t

0

w T

teminusb(sminusu)dsdBu

)times exp

(σ2

2w T

t

(w T

ueminusb(sminusu)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

b(1minus eminusb(Tminust))

w t

0eminusb(tminusu)dBu

)times exp

(σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)

426

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= exp(minusrtb

(1minus eminusb(Tminust)) + 1b

(1minus eminusb(Tminust))(r0 eminusbt + a

b(1minus eminusbt)

))times exp

(minus

w T

t

(r0 eminusbs + a

b(1minus eminusbs)

)ds+ σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)= eA(Tminust)+rtC(Tminust) (1321)

whereC(T minus t) = minus1

b(1minus eminusb(Tminust)) (1322)

and

A(T minus t) = 4abminus 3σ2

4b3 + σ2 minus 2ab2b2 (T minus t) + σ2 minus ab

b3eminusb(Tminust)minus σ2

4b3 eminus2b(Tminust)

(1323)

Analytical solution of the Vasicek PDE

In order to solve the PDE (1319) analytically we may look for a solution ofthe form

F (t x) = eA(Tminust)+xC(Tminust) (1324)

where A(middot) and C(middot) are functions to be determined under the conditionsA(0) = 0 and C(0) = 0 Substituting (1324) into the PDE (1312) with theVasicek coefficients micro(t x) = (aminus bx) and σ(t x) = σ shows that

x eA(Tminust)+xC(Tminust) = minus(Aprime(T minus t)minus xC prime(T minus t)) eA(Tminust)+xC(Tminust)

+(aminus bx)C(T minus t) eA(Tminust)+xC(Tminust)

+12σ

2C2(T minus t) eA(Tminust)+xC(Tminust)

ie

x = minusAprime(T minus t) + xC prime(T minus t) + (aminus bx)C(T minus t) + 12σ

2C2(T minus t)

By identification of terms for x = 0 and x 6= 0 this yields the system ofRiccati and linear differential equations

Aprime(s) = aC(s) + σ2

2 C2(s)

C prime(s) = 1 + bC(s)

which can be solved to recover the above value of P (t T ) = F (t rt)

427

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Vasicek Bond Price Simulations

In this section we consider again the Vasicek model in which the short rate(rt)tisinR+ is solution to (131) Figure 137 presents a random simulation oft 7minusrarr P (t T ) in the same Vasicek model The graph of the correspondingdeterministic zero coupon bond price obtained for a = b = σ = 0 is alsoshown on the Figure 137

03

04

05

06

07

08

09

1

11

0 5 10 15 20

Fig 137 Graphs of t 7rarr F (t rt) = P (t T ) vs t 7rarr eminusr0(Tminust)

Figure 138 presents a random simulation of t 7minusrarr P (t T ) for a (non-zero)coupon bond with price Pc(t T ) = ec(Tminust)P (t T ) and coupon rate c gt 00 6 t 6 T

10000

10200

10400

10600

10800

0 5 10 15 20

Fig 138 Graph of t 7rarr F (t rt) = P (t T ) for a bond with a 23 coupon

The simulation of Figure 138 can be compared to the coupon bond marketdata of Figure 139 below

428

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 139 Bond price graph with maturity 011808 and coupon rate 625

See Exercise 133 for a bond pricing formula in the CIR model

Zero coupon bond price and yield data

The following zero coupon bond price was downloaded at EMMA fromthe Municipal Securities Rulemaking Board

ORANGE CNTY CALIF PENSION OBLIG CAP APPREC-TAXABLE-REF-SER A (CA)CUSIP 68428LBB9Dated Date 06121996 (June 12 1996)Maturity Date 09012016 (September 1st 2016)Interest Rate 00 Principal Amount at Issuance $26056000Initial Offering Price 19465

library(quantmod)bondprice lt- readtable(bond_data_Rtxtcolnames = c(DateHighPriceLowPrice

HighYieldLowYieldCountAmount))head(bondprice)time lt- asPOSIXct(bondprice$Date format = Y-m-d)price lt- xts(x = bondprice$HighPrice orderby = time)yield lt- xts(x = bondprice$HighYield orderby = time)chartSeries(priceupcol=bluetheme=white)chartSeries(yieldupcol=bluetheme=white)

429

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

2016-01-139908298982166615012200002015-12-2999183991831251251100002015-12-219795297952301430141100002015-12-179914198552123125156100002015-12-0798779877171417142100002015-12-04983639811826282282100002015-11-1898659865176817672200002015-11-1798306983062201222200002015-10-029865998514167150641000002015-09-099898210721071250002015-09-089888498043204311583300002015-07-20975059628345922992200002015-07-1698397983971461461250002015-07-15988729887210211021150002015-07-109768997689208420841300002015-06-1898123980231686163300002015-06-179884397034254313250002015-06-15983698299143113795850002015-06-0998016980161651651200002015-05-21978269772618321752500002015-05-189849498494119111912300002015-05-1598559835130311433300002015-05-129776997769175117511150002015-04-279834898348125112512400002015-04-249830398303128212821250002015-04-239760797607181318131650002015-04-1498649864111100002015-03-20983897981428114373850002015-03-199785197751159151836750002015-03-11981981391323600002015-02-27978297695156914832400002015-02-139858298357108309343750002015-02-119857698226116609343300002015-01-15983983106710671550002015-01-12989598950650652600002015-01-099898123212321600002014-12-11983197396155131600002014-12-109641696416214421442800002014-12-059804498044114811481500002014-12-049728897288159815981500002014-11-219782297822125125150002014-11-209642294353320733150002014-11-0797979964582014113861250002014-10-299650496504195619561150002014-10-1498149977841201123200002014-10-0797401974011396139611000002014-10-0397991970261598107353500002014-09-3097446962851991135842200002014-09-1997331972311455140221000002014-09-18964796419186221000002014-09-15969956732278161943000002014-09-119555952252823382200002014-08-199711995596223614495750002014-08-139528695286238623861300002014-08-069559395593220522051350002014-08-0197951977261114100341000002014-07-30976975122311742200002014-07-239603695036244919434500002014-07-1697494951246912526750002014-07-1497182969571461135141000002014-07-11956995572144208421000002014-05-209531495314212321232300002014-05-169372393723286628661300002014-04-299701396713143913052200002014-04-1695169516211521151200002014-04-07976339683313510042500002014-04-029577393974260718073750002014-02-2893293128932852200002014-02-2791759175348634861100002014-02-21956959269530417584400002014-02-189438593885251122992900002014-02-139310193101284228421450002013-11-159393262726271500002013-11-14915915320432041500002013-11-12925999171312127712200002013-10-319427294272210121013450002013-10-309232392323284828481100002013-10-299599942521011452200002013-10-259080790807342934291100002013-10-219161691491314230933750002013-08-0791008910083113112100002013-08-05894258942536813681150002013-07-229494394018216812800002013-07-1795167930262339162900002013-07-16951549515416161500002013-07-12944129441218518511000002013-06-28940049340421719663400002013-06-269471892567245417213500002013-06-11925692562422422120002013-06-05911119111129072907150002013-06-0495282952821528152862500002013-05-3195122951221547154712250002013-05-309429291069290718214280002013-05-2994969488516331652000002013-05-2492682926822352351100002013-05-2394488930732217174942100002013-05-219679193731199174950002013-05-169127691276280428041200002013-05-02916769015315126383270002013-04-24920999163926322483450002013-04-22920749161426322483540002013-04-179645941591810798550002013-04-159205491954250524722200002013-04-1191791725842584170002013-04-099635889785320810996570002013-03-12914491442602260218000002013-02-229164389323243250134830002013-02-0690290298529222400002012-11-29881528796434573399103200002012-11-2888176878843479338941200002012-11-279048790487268226821150002012-11-23890628906231063106150002012-11-13878737073707150002012-11-098472383048495644175200002012-10-3188798879313531351100002012-10-25907905261925612300002012-10-2490353903532662662400002012-10-168845888458319731972400002012-10-0290866900552724682300002012-10-0190148900472726712200002012-09-26882398779733513222500002012-09-249051390512255425542100002012-09-21905905255625561300002012-09-139103189907270923923750002012-08-0985188518400240023250002012-08-0886038333945513755410002012-08-0386486859863753605240002012-07-2785849404940192200002012-07-19876183625440732541800002012-07-18870738707334342350002012-07-178652286048368636092400002012-07-1685088840884254396131050002012-07-1386541865413543541150002012-06-29865728657235351400002012-06-2885258525387238721400002012-06-2187751868533431521100002012-06-208528984689401238431650002012-06-138643855937363521500002012-06-118386183861422142211750002012-05-258518485184380938091300002012-05-238386683866417841781300002012-05-2185331853313753751250002012-05-18838344094409150002012-05-178442484224405743750002012-04-05853283662410636541000002012-03-2988243851033692852530002012-03-2787258342141443112530002012-03-228495840753956371731350002012-03-02855855352535251100002012-03-018368583685400740071100002012-02-0787584664368529515750002012-01-2686645865853167315241500002012-01-2586458645323211610002012-01-248380754703409742540002012-01-2081188118458445841100002012-01-178245182351425342263650002012-01-128413781755440837746600002012-01-1181658094639443431650002012-01-0479575795754984981200002011-12-307875787551985198130002011-12-29764757647558245824130002011-12-088038580385468346831150002011-12-01798879884847992300002011-11-307969379693484848481150002011-11-01777560455491240002011-10-28788578854984981100002011-10-26767576755555551100002011-10-05777559725418280002011-08-2678119773195211521100002011-08-23774237742351695169170002011-08-2276576554065406170002011-07-278135881358414111300002011-06-227417415864586411300002011-04-267554575545532253221100002011-04-257481964916825555053400002011-04-206474163965853382983600002011-04-15767097545334500555000002011-04-087620176201511351131150002011-03-3174502745025525521150002011-03-17744347443455551400002011-03-167373586558651400002011-03-0374556745565435431500002011-03-017390373903558355831500002011-01-2871317713176156153200002011-01-2667256725723472332200002011-01-187300473004568756871600002011-01-1273719716560215561500002011-01-04735735552455242540002011-01-0371592713756055621200002010-12-2273173559855982300002010-12-1374185697646305533250002010-12-1073558735585455454800002010-12-0973547735475455452200002010-12-02658996589974087408150002010-12-017312570756124553241980002010-11-297508571889582650495290002010-11-19738738533653361150002010-11-10772797645452400002010-11-097674969503447934800002010-11-087914178641407240722400002010-11-037953178606397839782300002010-11-0277087770874524521350002010-10-068072779568371536714700002010-10-057906878277419741972700002010-10-04801793797379721100002010-10-018048978903371137113300002010-09-307717714453445321300002010-09-207888377821403440342400002010-09-177781277812426742672100002010-09-1476942769424454451250002010-09-097446274462500650061180002010-09-08732057320552965296150002010-09-03757527575247472100002010-09-02748317483149074907150002010-08-3176585748294896452800002010-08-307403974039507350731180002010-08-23765197651945452550002010-08-207463974639492149211550002010-08-167557454932470662100002010-08-117536575365473647361100002010-08-067425573255520652063300002010-07-26745787251535487651000002010-07-22740047245253500161750002010-07-2173417705936513384600002010-07-20707570655772577222000002010-07-077221172111537753772200002010-07-06720797207954544340002010-07-027293472068520152012160002010-06-307169934586856686900002010-06-29694269073609460942200002010-06-177140467856364551492000002010-06-1173567356500850081350002010-06-1072391713915275272500002010-06-09708647051570357032500002010-06-087281271524523516571050002010-06-077099270638566356632700002010-05-03720727107254775252100002010-04-016775661256568617731000002010-03-056765667556612661262400002010-03-03667566656366362400002010-02-1067946678600659966900002010-02-096586438683468343300002010-02-0866264874671167114800002010-01-066542565425649464942200002010-01-05708596310870465256500002009-12-157081570155521552154200002009-12-146565652965292200002009-11-1868569685695655652500002009-11-176717467174595259521400002009-11-1668526685265655652400002009-11-127039675255239417000002009-10-0170974642926063502952010002009-09-3070152605577397524460002009-09-29636296819681921200002009-09-0364605646056366361300002009-08-286190861908697269721300002009-08-19626561756774677431500002009-08-18614446083727221000002009-08-12621602573296884125900002009-07-216146561465697169711100002009-07-206033160307724572452200002009-06-265930159301742674261300002009-06-226112161121697269721250002009-06-175991959319739573952500002009-06-106088860888771180002009-06-0958685868752275221180002009-06-026096260962695569551250002009-05-225993959939717871781250002009-05-216204161692566842600002009-04-16609560956846842400002009-04-15604604696569651400002009-04-1462224622246546541100002009-04-0659868598687067061100002009-03-065656791279121250002009-03-0553983539838428421250002009-02-095770457554745741441450002009-02-06576925691776741431050002009-01-2855635556357887788712500002009-01-2258225582257257251250002009-01-215671556715760676061250002008-11-065720157201728972891150002008-10-166021959294655765572200002008-10-156095859283639563954500002008-10-0855454877877842000002008-07-3163623623515681568131500002008-07-186192961929661150002008-07-156361460368631456494600002008-07-1062562255918591821000002008-07-08642016170160225522100002008-07-0260567605676256251180002008-07-015859458594666766671180002008-06-2359589657665762300002008-06-20619936186592959293450002008-06-1661584598936631500002008-06-1358958865865821000002008-06-126094460944612761271150002008-05-156237562375578257821100002008-05-136137261372597659761100002008-04-2461086108664200002008-03-07626396157558085622000002008-02-2264256046012526662400002008-02-1164214642145255251400002008-02-0761756175571757171400002008-01-086385162951526152614600002008-01-04610716046590659063550002008-01-0359977592776146142100002007-10-18608446084456956921300002007-10-17613136131355995599150002007-10-1659655965591359131700002007-09-17610086100856561550002007-09-14594594590559052550002007-09-1260714607145655651200002007-09-1161458101615551661350002007-09-06608636075561256123750002007-08-2859514595145855851500002007-08-235994759947576257621110002007-08-205989958311606957622250002007-07-125942259422578857881250002007-07-115963459603575257462850002007-07-0958842588425895891950002007-07-02594085940857715771150002007-06-2759934590095665566541800002007-06-2659433582825754575431900002007-06-25598475875567456743600002007-06-225777577760696069150002007-06-2059275568356248578221050002007-06-1857214572146166616613000002007-05-255909659096576857681350002007-05-215959259592566356631550002007-05-15615236152353531150002007-05-1461514612535347532600002007-05-09602258955766576631950002007-05-01602846028455025502150002007-04-25612612532953291500002007-04-2461179585975802532852500002007-04-2359675585913591331500002007-04-1956556561986198150002007-03-2861658607520352032500002007-03-275953758877570357033750002007-02-2861125602575256525622000002007-02-2759953597535496549622000002007-02-265882258423566556653150002007-02-21585858085808150002007-02-085926959269555355531100002007-02-056019660196537853781300002007-02-025880658456562756272100002007-02-0159222592225555551500002007-01-316006358556853972200002007-01-265700357003594359431100002007-01-245791557915577857781100002007-01-236027560275534553451100002007-01-1660129601295365361400002007-01-115988659445467543400002007-01-05585157466582956374400002006-12-1859359579525707545352400002006-12-01573553617861783150002006-11-2160013600135353150002006-11-15583165831655915591150002006-09-07582215822155552450002006-09-065681256812575157511450002006-08-22577455675555855582400002006-08-1655709557095925921200002006-08-03565915486067573841200002006-07-3155135541356183599641000002006-07-27545585455861611100002006-07-2456094519225815814400002006-07-175624755372577157712200002006-07-115481954819602360231100002006-07-065479151686618602351700002006-07-055455456075607511000002006-06-2650571505716816681611000002006-06-16542552256476472400002006-06-1449319493197051705111000002006-05-155443854438662500002006-05-125218552185642264221500002006-04-255619456194565256521450002006-04-21545155316212621231350002006-04-125557455574574657461250002006-04-055663654525592355465650002006-04-035350353503610361031100002006-03-3055995599565156511100002006-03-285514955149579657961100002006-03-245473554735586758672100002006-03-23565563558755872200002006-03-21565565554655461100002006-03-135625549935855782300002006-02-1557671567715297529722000002006-02-1456219557945614561433000002006-02-08576576530153011350002006-01-26585585513151313300002006-01-2458558551255125150002006-01-235712557125535453541100002006-01-1757325732531353132700002006-01-125837558375513451341250002006-01-105717856552853273550002006-01-065375375935931200002006-01-0356394563945455451350002005-11-075656543754371350002005-10-075670756707528152811350002005-09-2058406584064977497711000002005-09-1356906569065211521111000002005-09-0758816572334897489731950002005-08-3156894565945249524921100002005-08-2559013590134851485111400002005-08-175678567852521400002005-08-165572854728553955393300002005-08-115483254832551755171400002005-07-22566685666851855185150002005-07-195757512551251180002005-07-1856103561035275271180002005-07-085621556215524152411800002005-07-0658755875483248321500002005-06-29589115652664841600002005-06-24567115671151425142150002005-06-2156006560065255251150002005-06-205449453949559255922300002005-06-1556035603524152411500002005-06-0158365565375144852350002005-05-2556497564975145141250002005-04-25564865548651512500002005-04-205494153788553955392500002005-04-075542155421525152512800002005-04-0553405525675723572332400002005-03-035490854908529152911200002005-03-0255149542254025252300002005-03-01551275340555335252600002005-02-28557455745155151250002005-02-25541925419254541250002005-02-245666455355001500122000002005-02-2353661536615483548311000002005-02-185572255722514151411300002005-02-155466454664530453041400002005-01-2751255125585558551250002005-01-265599155613513507227628000

N Privault

Date HighPrice LowPrice HighYield LowYield Count Amount1 2016-01-13 99082 98982 1666 1501 2 200002 2015-12-29 99183 99183 1250 1250 1 100003 2015-12-21 97952 97952 3014 3014 1 100004 2015-12-17 99141 98550 2123 1251 5 6100005 2015-12-07 98770 98770 1714 1714 2 100006 2015-12-04 98363 98118 2628 2280 2 10000

50

60

70

80

90

100

price [2005minus01minus262016minus01minus13]

Last 99082

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1310 Orange Cnty Calif bond prices

The next Figure 1311 plots the bond yield y(t T ) defined as

y(t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)y(tT ) 0 6 t 6 T

2

4

6

8

yield [2005minus01minus262016minus01minus13]

Last 1666

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1311 Orange Cnty Calif bond yields

Bond pricing in the Dothan model

In the Dothan [Dot78] model the short term interest rate process (rt)tisinR+ ismodeled according to a geometric Brownian motion

drt = micrortdt+ σrtdBt (1325)430

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

where the volatility σ gt 0 and the drift micro isin R are constant parameters and(Bt)tisinR+ is a standard Brownian motion In this model the short term inter-est rate rt remains always positive while the proportional volatility term σrtaccounts for the sensitivity of the volatility of interest rate changes to thelevel of the rate rt

On the other hand the Dothan model is the only lognormal short ratemodel that allows for an analytical formula for the zero coupon bond price

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

For convenience of notation we let p = 1minus 2microσ2 and rewrite (1325) as

drt = (1minus p)σ2

2 rtdt+ σrtdBt

with solutionrt = r0 eσBtminuspσ

2t2 t isin R+ (1326)

By the Markov property of (rt)tisinR+ the bond price P (t T ) is a functionF (t rt) of rt and time t isin [0 T ]

P (t T ) = F (t rt) = IElowast[

eminusr Ttrsds

∣∣∣ rt] 0 6 t 6 T (1327)

By computation of the conditional expectation (1327) using (106) we easilyobtain the following result cf Proposition 12 of [PP11] where the functionθ(v t) is defined in (104)

Proposition 133 The zero-coupon bond price P (t T ) = F (t rt) is givenfor all p isin R by

F (t x) (1328)

= eminusσ2p2(Tminust)8

winfin0

winfin0

eminusux exp(minus2(1 + z2)σ2u

(4zσ2u

σ2(T minus t)

4

)du

u

dz

zp+1

x gt 0

Proof By Proposition 101 cf [Yor92] Proposition 2 the probability distri-bution of the time integral

w Tminust

0eσBsminuspσ

2s2ds is given by

P(w Tminust

0eσBsminuspσ

2s2ds isin dy)

=winfinminusinfin

P(w t

0eσBsminuspσ

2s2ds isin dy Bt minus pσt2 isin dz)

431

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 9: Forward Rate Modeling

Forward Rate Modeling

00

05

10

15

20

25

30

35

yield [2012minus01minus03 0800002015minus12minus31 080000]

Last 182260342989168

Jan 032012

Jul 022012

Jan 022013

Jul 012013

Jan 022014

Jul 012014

Jan 022015

Jul 012015

Dec 312015

Fig 134 Calibrated Vasicek samples

133 Zero-Coupon and Coupon Bonds

A zero-coupon bond is a contract priced P (t T ) at time t lt T to deliverP (T T ) = $1 at time T In addition to its value at maturity a bond mayyield a periodic coupon payment at regular time intervals until the maturitydate

Fig 135 Five dollar Louisiana bond of 1875 with 75 biannual coupons

The computation of the arbitrage price P0(t T ) of a zero-coupon bond basedon an underlying short term interest rate process (rt)tisinR+ is a basic andimportant issue in interest rate modeling

Constant short rate

In case the short term interest rate is a constant rt = r t isin R+ a standardarbitrage argument shows that the price P (t T ) of the bond is given by

P (t T ) = eminusr(Tminust) 0 6 t 6 T

419

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Indeed if P (t T ) gt eminusr(Tminust) we could issue a bond at the price P (t T ) andinvest this amount at the compounded risk free rate r which would yieldP (t T ) er(Tminust) gt 1 at time T

On the other hand if P (t T ) lt eminusr(Tminust) we could borrow P (t T ) at the rater to buy a bond priced P (t T ) At maturity time T we would receive $1 andrefund only P (t T ) er(Tminust) lt 1

Deterministic short rates

Similarly to the above when the short term interest rate process (rt)tisinR+ isa deterministic function of time a similar argument shows that

P (t T ) = eminusr Ttrsds 0 6 t 6 T (138)

Stochastic short rates

In case (rt)tisinR+ is an (Ft)tisinR+ -adapted random process the formula (138)is no longer valid as it relies on future information and we replace it with

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T (139)

under a risk-neutral measure Plowast It is natural to write P (t T ) as a conditionalexpectation under a martingale measure as the use of conditional expectationhelps to ldquofilter outrdquo the future information past time t contained in

w T

trsds

The expression (139) makes sense as the ldquobest possible estimaterdquo of thefuture quantity eminus

r Ttrsds in mean square sense given information known up

to time t

Coupon bonds

Pricing bonds with non-zero coupon is not difficult since in general theamount and periodicity of coupons are deterministiclowast In the case of a con-stant continuous-time coupon yield at the rate c gt 0 another application ofthe above absence of arbitrage argument shows that the price Pc(t T ) of thecoupon bond is given by

Pc(t T ) = ec(Tminust)P0(t T ) 0 6 t 6 T

see also Figure 139 below In the sequel we will mostly consider zero-couponbonds priced as P (t T ) = P0(t T ) 0 6 t 6 T lowast However coupon default cannot be excluded

420

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Martingale property of discounted bond prices

The following proposition shows that Assumption (A) of Chapter 12 is sat-isfied in other words the bond price process t 7minusrarr P (t T ) can be used as anumeacuteraireProposition 131 The discounted bond price process

t 7minusrarr P (t T ) = eminusr t

0 rsdsP (t T )

is a martingale under PlowastProof By (139) we have

eminusr t

0 rsdsP (t T ) = eminusr t

0 rsds IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r t0 rsds eminus

r Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r T0 rsds

∣∣∣ Ft] and this suffices to conclude since by the ldquotower propertyrdquo (1739) of condi-tional expectations any process (Xt)tisinR+ of the form t 7minusrarr Xt = IElowast[F | Ft]F isin L1(Ω) is a martingale cf Relation (61)

Path integrals

In physics the Feynman path integral

ψ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(i

~S(x(middot))

)where ~ is the Planck constant and S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 minus V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 minus V (x(timinus1)))∆ti

solves the Schroumldinger equation

i~partψ

partt(x t) = minus ~2

2mpart2ψ

partx2 (x t) + V (x(t))ψ(x t)

After the Wick rotation t 7rarr minusit the function

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

) 421

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

solves the heat equation

~partφ

partt(x t) = minus ~2

2mpart2φ

partx2 (x t) + V (x(t))φ(x t)

Given the action

S(x(middot)) =w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

we can rewrite the Euclidean path integral as

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

)=

wx(0)=x x(t)=y

Dx(middot) exp(minus 1

2~

Nsumi=1

(x(ti)minus x(timinus1))2

2∆timinus 1

~

Nsumi=1

V (x(timinus1)))

= IElowast[exp

(minus1~

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

]

This type of path integral computation

φ(y t) = IElowast[exp

(minus

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

] (1310)

is particularly useful for bond pricing as (1310) can be interpreted as theprice of a bond with short term interest rate process (rt)tisinR+ = (V (Bt)))tisinR+

conditionally to the value of the endpoint Bt = y cf (1331) below It can alsobe useful for exotic option pricing cf Chapter 10 and for risk managementThe path integral (1310) can be estimated either by closed-form expressionsusing Partial Differential Equations (PDEs) or probability densities by ap-proximations such as (conditional) Moment matching or by Monte Carloestimation from the paths of a Brownian bridge as shown in Figure 136

422

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 136 Brownian bridge

Bond pricing PDE

We assume from now on that the underlying short rate process is solution tothe stochastic differential equation

drt = micro(t rt)dt+ σ(t rt)dBt (1311)

where (Bt)tisinR+ is a standard Brownian motion under Plowast Note that specify-ing the dynamics of (rt)tisinR+ under the historical probability measure P willalso lead to a notion of market price of risk (MPoR) for the modeling of shortrates

Since all solutions of stochastic differential equations such as (1311) havethe Markov property cf eg Theorem V-32 of [Pro04] the arbitrage priceP (t T ) can be rewritten as a function F (t rt) of rt ie

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] = IElowast[

eminusr Ttrsds

∣∣∣ rt] = F (t rt)

and depends on rt only instead of depending on all information available inFt up to time t meaning that the pricing problem can now be formulated asa search for the function F (t x)

Proposition 132 (Bond pricing PDE) The bond pricing PDE for P (t T ) =F (t rt) is written as

xF (t x) = partF

partt(t x) + micro(t x)partF

partx(t x) + 1

2σ2(t x)part

2F

partx2 (t x) (1312)

423

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

t isin R+ x isin R subject to the terminal condition

F (T x) = 1 x isin R (1313)

Proof By Itocircrsquos formula we have

d(

eminusr t

0 rsdsP (t T ))

= minusrt eminusr t

0 rsdsP (t T )dt+ eminusr t

0 rsdsdP (t T )

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdsdF (t rt)

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdspartF

partx(t rt)(micro(t rt)dt+ σ(t rt)dBt)

+ eminusr t

0 rsds

(12σ

2(t rt)part2F

partx2 (t rt) + partF

partt(t rt)

)dt

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

+ eminusr t

0 rsds

(minusrtF (t rt) + micro(t rt)

partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

)dt

(1314)

Given that t 7minusrarr eminusr t

0 rsdsP (t T ) is a martingale the above expression(1314) should only contain terms in dBt (cf Corollary II-1 page 72 of[Pro04]) and all terms in dt should vanish inside (1314) This leads to theidentities

rtF (t rt)

= micro(t rt)partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

d(

eminusr t

0 rsdsP (t T ))

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

(1315a)

(1315b)

which recover (1312) Condition (1313) is due to the fact that P (T T ) = $1

In the case of an interest rate process modeled by (136) we have

micro(t x) = η(t) + λ(t)x and σ(t x) =radicδ(t) + γ(t)x

hence (1312) yields the (time dependent) affine PDE

xF (t x) = partF

partt(t x) + (η(t) + λ(t)x)partF

partx(t x) + 1

2(δ(t) + γ(t)x)part2F

partx2 (t x)

(1316)

t isin R+ x isin R By (1315b) the above proposition also shows that

424

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

dP (t T )P (t T ) = 1

P (t T )d(

er t

0 rsds eminusr t

0 rsdsP (t T ))

= 1P (t T )

(rtP (t T )dt+ e

r t0 rsdsd

(eminus

r t0 rsdsP (t T )

))= rtdt+ 1

P (t T ) er t

0 rsdsd(

eminusr t

0 rsdsP (t T ))

= rtdt+ 1F (t rt)

partF

partx(t rt)σ(t rt)dBt

= rtdt+ σ(t rt)part logFpartx

(t rt)dBt (1317)

In the Vasicek casedrt = (aminus brt)dt+ σdWt

the bond price takes the form

F (t rt) = P (t T ) = eA(Tminust)+rtC(Tminust)

where A(middot) and C(middot) are functions of time cf (1321) below and (1317)yields

dP (t T )P (t T ) = rtdtminus

σ

b(1minus eminusb(Tminust))dWt (1318)

since F (t x) = eA(Tminust)+xC(Tminust)

Note that more generally all affine short rate models as defined in Rela-tion (136) including the Vasicek model will yield a bond pricing formula ofthe form

P (t T ) = eA(Tminust)+rtC(Tminust)

cf eg sect 324 of [BM06]

Probabilistic solution of the Vasicek PDE

Next we solve the PDE (1312) written with micro(t x) = aminusbx and σ(t x) = σin the Vasicek [Vaš77] model

drt = (aminus brt)dt+ σdBt

as xF (t x) = partF

partt(t x) + (aminus bx)partF

partx(t x) + σ2

2part2F

partx2 (t x)

F (T x) = 1(1319)

by a direct computation of the conditional expectation

425

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

F (t rt) = P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] (1320)

Recall that in this model the short rate (rt)tisinR+ has the expression

rt = g(t) +w t

0h(t s)dBs = r0 eminusbt + a

b(1minus eminusbt) + σ

w t

0eminusb(tminuss)dBs

whereg(t) = r0 eminusbt + a

b(1minus eminusbt) t isin R+

andh(t s) = σ eminusb(tminuss) 0 6 s 6 t

are deterministic functions

Letting uort = max(u t) using the fact that Wiener integrals are Gaussianrandom variables and the Gaussian moment generating function we have

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r Tt

(g(s)+r s

0 h(su)dBu)ds∣∣∣ Ft]

= exp(minus

w T

tg(s)ds

)IElowast[

eminusr Tt

r s0 h(su)dBuds

∣∣∣ Ft]= exp

(minus

w T

tg(s)ds

)IElowast[

eminusr T

0r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

uorth(s u)dsdBu

)IElowast[

eminusr Tt

r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu + 1

2w T

t

(w T

uh(s u)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

w t

0

w T

teminusb(sminusu)dsdBu

)times exp

(σ2

2w T

t

(w T

ueminusb(sminusu)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

b(1minus eminusb(Tminust))

w t

0eminusb(tminusu)dBu

)times exp

(σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)

426

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= exp(minusrtb

(1minus eminusb(Tminust)) + 1b

(1minus eminusb(Tminust))(r0 eminusbt + a

b(1minus eminusbt)

))times exp

(minus

w T

t

(r0 eminusbs + a

b(1minus eminusbs)

)ds+ σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)= eA(Tminust)+rtC(Tminust) (1321)

whereC(T minus t) = minus1

b(1minus eminusb(Tminust)) (1322)

and

A(T minus t) = 4abminus 3σ2

4b3 + σ2 minus 2ab2b2 (T minus t) + σ2 minus ab

b3eminusb(Tminust)minus σ2

4b3 eminus2b(Tminust)

(1323)

Analytical solution of the Vasicek PDE

In order to solve the PDE (1319) analytically we may look for a solution ofthe form

F (t x) = eA(Tminust)+xC(Tminust) (1324)

where A(middot) and C(middot) are functions to be determined under the conditionsA(0) = 0 and C(0) = 0 Substituting (1324) into the PDE (1312) with theVasicek coefficients micro(t x) = (aminus bx) and σ(t x) = σ shows that

x eA(Tminust)+xC(Tminust) = minus(Aprime(T minus t)minus xC prime(T minus t)) eA(Tminust)+xC(Tminust)

+(aminus bx)C(T minus t) eA(Tminust)+xC(Tminust)

+12σ

2C2(T minus t) eA(Tminust)+xC(Tminust)

ie

x = minusAprime(T minus t) + xC prime(T minus t) + (aminus bx)C(T minus t) + 12σ

2C2(T minus t)

By identification of terms for x = 0 and x 6= 0 this yields the system ofRiccati and linear differential equations

Aprime(s) = aC(s) + σ2

2 C2(s)

C prime(s) = 1 + bC(s)

which can be solved to recover the above value of P (t T ) = F (t rt)

427

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Vasicek Bond Price Simulations

In this section we consider again the Vasicek model in which the short rate(rt)tisinR+ is solution to (131) Figure 137 presents a random simulation oft 7minusrarr P (t T ) in the same Vasicek model The graph of the correspondingdeterministic zero coupon bond price obtained for a = b = σ = 0 is alsoshown on the Figure 137

03

04

05

06

07

08

09

1

11

0 5 10 15 20

Fig 137 Graphs of t 7rarr F (t rt) = P (t T ) vs t 7rarr eminusr0(Tminust)

Figure 138 presents a random simulation of t 7minusrarr P (t T ) for a (non-zero)coupon bond with price Pc(t T ) = ec(Tminust)P (t T ) and coupon rate c gt 00 6 t 6 T

10000

10200

10400

10600

10800

0 5 10 15 20

Fig 138 Graph of t 7rarr F (t rt) = P (t T ) for a bond with a 23 coupon

The simulation of Figure 138 can be compared to the coupon bond marketdata of Figure 139 below

428

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 139 Bond price graph with maturity 011808 and coupon rate 625

See Exercise 133 for a bond pricing formula in the CIR model

Zero coupon bond price and yield data

The following zero coupon bond price was downloaded at EMMA fromthe Municipal Securities Rulemaking Board

ORANGE CNTY CALIF PENSION OBLIG CAP APPREC-TAXABLE-REF-SER A (CA)CUSIP 68428LBB9Dated Date 06121996 (June 12 1996)Maturity Date 09012016 (September 1st 2016)Interest Rate 00 Principal Amount at Issuance $26056000Initial Offering Price 19465

library(quantmod)bondprice lt- readtable(bond_data_Rtxtcolnames = c(DateHighPriceLowPrice

HighYieldLowYieldCountAmount))head(bondprice)time lt- asPOSIXct(bondprice$Date format = Y-m-d)price lt- xts(x = bondprice$HighPrice orderby = time)yield lt- xts(x = bondprice$HighYield orderby = time)chartSeries(priceupcol=bluetheme=white)chartSeries(yieldupcol=bluetheme=white)

429

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

2016-01-139908298982166615012200002015-12-2999183991831251251100002015-12-219795297952301430141100002015-12-179914198552123125156100002015-12-0798779877171417142100002015-12-04983639811826282282100002015-11-1898659865176817672200002015-11-1798306983062201222200002015-10-029865998514167150641000002015-09-099898210721071250002015-09-089888498043204311583300002015-07-20975059628345922992200002015-07-1698397983971461461250002015-07-15988729887210211021150002015-07-109768997689208420841300002015-06-1898123980231686163300002015-06-179884397034254313250002015-06-15983698299143113795850002015-06-0998016980161651651200002015-05-21978269772618321752500002015-05-189849498494119111912300002015-05-1598559835130311433300002015-05-129776997769175117511150002015-04-279834898348125112512400002015-04-249830398303128212821250002015-04-239760797607181318131650002015-04-1498649864111100002015-03-20983897981428114373850002015-03-199785197751159151836750002015-03-11981981391323600002015-02-27978297695156914832400002015-02-139858298357108309343750002015-02-119857698226116609343300002015-01-15983983106710671550002015-01-12989598950650652600002015-01-099898123212321600002014-12-11983197396155131600002014-12-109641696416214421442800002014-12-059804498044114811481500002014-12-049728897288159815981500002014-11-219782297822125125150002014-11-209642294353320733150002014-11-0797979964582014113861250002014-10-299650496504195619561150002014-10-1498149977841201123200002014-10-0797401974011396139611000002014-10-0397991970261598107353500002014-09-3097446962851991135842200002014-09-1997331972311455140221000002014-09-18964796419186221000002014-09-15969956732278161943000002014-09-119555952252823382200002014-08-199711995596223614495750002014-08-139528695286238623861300002014-08-069559395593220522051350002014-08-0197951977261114100341000002014-07-30976975122311742200002014-07-239603695036244919434500002014-07-1697494951246912526750002014-07-1497182969571461135141000002014-07-11956995572144208421000002014-05-209531495314212321232300002014-05-169372393723286628661300002014-04-299701396713143913052200002014-04-1695169516211521151200002014-04-07976339683313510042500002014-04-029577393974260718073750002014-02-2893293128932852200002014-02-2791759175348634861100002014-02-21956959269530417584400002014-02-189438593885251122992900002014-02-139310193101284228421450002013-11-159393262726271500002013-11-14915915320432041500002013-11-12925999171312127712200002013-10-319427294272210121013450002013-10-309232392323284828481100002013-10-299599942521011452200002013-10-259080790807342934291100002013-10-219161691491314230933750002013-08-0791008910083113112100002013-08-05894258942536813681150002013-07-229494394018216812800002013-07-1795167930262339162900002013-07-16951549515416161500002013-07-12944129441218518511000002013-06-28940049340421719663400002013-06-269471892567245417213500002013-06-11925692562422422120002013-06-05911119111129072907150002013-06-0495282952821528152862500002013-05-3195122951221547154712250002013-05-309429291069290718214280002013-05-2994969488516331652000002013-05-2492682926822352351100002013-05-2394488930732217174942100002013-05-219679193731199174950002013-05-169127691276280428041200002013-05-02916769015315126383270002013-04-24920999163926322483450002013-04-22920749161426322483540002013-04-179645941591810798550002013-04-159205491954250524722200002013-04-1191791725842584170002013-04-099635889785320810996570002013-03-12914491442602260218000002013-02-229164389323243250134830002013-02-0690290298529222400002012-11-29881528796434573399103200002012-11-2888176878843479338941200002012-11-279048790487268226821150002012-11-23890628906231063106150002012-11-13878737073707150002012-11-098472383048495644175200002012-10-3188798879313531351100002012-10-25907905261925612300002012-10-2490353903532662662400002012-10-168845888458319731972400002012-10-0290866900552724682300002012-10-0190148900472726712200002012-09-26882398779733513222500002012-09-249051390512255425542100002012-09-21905905255625561300002012-09-139103189907270923923750002012-08-0985188518400240023250002012-08-0886038333945513755410002012-08-0386486859863753605240002012-07-2785849404940192200002012-07-19876183625440732541800002012-07-18870738707334342350002012-07-178652286048368636092400002012-07-1685088840884254396131050002012-07-1386541865413543541150002012-06-29865728657235351400002012-06-2885258525387238721400002012-06-2187751868533431521100002012-06-208528984689401238431650002012-06-138643855937363521500002012-06-118386183861422142211750002012-05-258518485184380938091300002012-05-238386683866417841781300002012-05-2185331853313753751250002012-05-18838344094409150002012-05-178442484224405743750002012-04-05853283662410636541000002012-03-2988243851033692852530002012-03-2787258342141443112530002012-03-228495840753956371731350002012-03-02855855352535251100002012-03-018368583685400740071100002012-02-0787584664368529515750002012-01-2686645865853167315241500002012-01-2586458645323211610002012-01-248380754703409742540002012-01-2081188118458445841100002012-01-178245182351425342263650002012-01-128413781755440837746600002012-01-1181658094639443431650002012-01-0479575795754984981200002011-12-307875787551985198130002011-12-29764757647558245824130002011-12-088038580385468346831150002011-12-01798879884847992300002011-11-307969379693484848481150002011-11-01777560455491240002011-10-28788578854984981100002011-10-26767576755555551100002011-10-05777559725418280002011-08-2678119773195211521100002011-08-23774237742351695169170002011-08-2276576554065406170002011-07-278135881358414111300002011-06-227417415864586411300002011-04-267554575545532253221100002011-04-257481964916825555053400002011-04-206474163965853382983600002011-04-15767097545334500555000002011-04-087620176201511351131150002011-03-3174502745025525521150002011-03-17744347443455551400002011-03-167373586558651400002011-03-0374556745565435431500002011-03-017390373903558355831500002011-01-2871317713176156153200002011-01-2667256725723472332200002011-01-187300473004568756871600002011-01-1273719716560215561500002011-01-04735735552455242540002011-01-0371592713756055621200002010-12-2273173559855982300002010-12-1374185697646305533250002010-12-1073558735585455454800002010-12-0973547735475455452200002010-12-02658996589974087408150002010-12-017312570756124553241980002010-11-297508571889582650495290002010-11-19738738533653361150002010-11-10772797645452400002010-11-097674969503447934800002010-11-087914178641407240722400002010-11-037953178606397839782300002010-11-0277087770874524521350002010-10-068072779568371536714700002010-10-057906878277419741972700002010-10-04801793797379721100002010-10-018048978903371137113300002010-09-307717714453445321300002010-09-207888377821403440342400002010-09-177781277812426742672100002010-09-1476942769424454451250002010-09-097446274462500650061180002010-09-08732057320552965296150002010-09-03757527575247472100002010-09-02748317483149074907150002010-08-3176585748294896452800002010-08-307403974039507350731180002010-08-23765197651945452550002010-08-207463974639492149211550002010-08-167557454932470662100002010-08-117536575365473647361100002010-08-067425573255520652063300002010-07-26745787251535487651000002010-07-22740047245253500161750002010-07-2173417705936513384600002010-07-20707570655772577222000002010-07-077221172111537753772200002010-07-06720797207954544340002010-07-027293472068520152012160002010-06-307169934586856686900002010-06-29694269073609460942200002010-06-177140467856364551492000002010-06-1173567356500850081350002010-06-1072391713915275272500002010-06-09708647051570357032500002010-06-087281271524523516571050002010-06-077099270638566356632700002010-05-03720727107254775252100002010-04-016775661256568617731000002010-03-056765667556612661262400002010-03-03667566656366362400002010-02-1067946678600659966900002010-02-096586438683468343300002010-02-0866264874671167114800002010-01-066542565425649464942200002010-01-05708596310870465256500002009-12-157081570155521552154200002009-12-146565652965292200002009-11-1868569685695655652500002009-11-176717467174595259521400002009-11-1668526685265655652400002009-11-127039675255239417000002009-10-0170974642926063502952010002009-09-3070152605577397524460002009-09-29636296819681921200002009-09-0364605646056366361300002009-08-286190861908697269721300002009-08-19626561756774677431500002009-08-18614446083727221000002009-08-12621602573296884125900002009-07-216146561465697169711100002009-07-206033160307724572452200002009-06-265930159301742674261300002009-06-226112161121697269721250002009-06-175991959319739573952500002009-06-106088860888771180002009-06-0958685868752275221180002009-06-026096260962695569551250002009-05-225993959939717871781250002009-05-216204161692566842600002009-04-16609560956846842400002009-04-15604604696569651400002009-04-1462224622246546541100002009-04-0659868598687067061100002009-03-065656791279121250002009-03-0553983539838428421250002009-02-095770457554745741441450002009-02-06576925691776741431050002009-01-2855635556357887788712500002009-01-2258225582257257251250002009-01-215671556715760676061250002008-11-065720157201728972891150002008-10-166021959294655765572200002008-10-156095859283639563954500002008-10-0855454877877842000002008-07-3163623623515681568131500002008-07-186192961929661150002008-07-156361460368631456494600002008-07-1062562255918591821000002008-07-08642016170160225522100002008-07-0260567605676256251180002008-07-015859458594666766671180002008-06-2359589657665762300002008-06-20619936186592959293450002008-06-1661584598936631500002008-06-1358958865865821000002008-06-126094460944612761271150002008-05-156237562375578257821100002008-05-136137261372597659761100002008-04-2461086108664200002008-03-07626396157558085622000002008-02-2264256046012526662400002008-02-1164214642145255251400002008-02-0761756175571757171400002008-01-086385162951526152614600002008-01-04610716046590659063550002008-01-0359977592776146142100002007-10-18608446084456956921300002007-10-17613136131355995599150002007-10-1659655965591359131700002007-09-17610086100856561550002007-09-14594594590559052550002007-09-1260714607145655651200002007-09-1161458101615551661350002007-09-06608636075561256123750002007-08-2859514595145855851500002007-08-235994759947576257621110002007-08-205989958311606957622250002007-07-125942259422578857881250002007-07-115963459603575257462850002007-07-0958842588425895891950002007-07-02594085940857715771150002007-06-2759934590095665566541800002007-06-2659433582825754575431900002007-06-25598475875567456743600002007-06-225777577760696069150002007-06-2059275568356248578221050002007-06-1857214572146166616613000002007-05-255909659096576857681350002007-05-215959259592566356631550002007-05-15615236152353531150002007-05-1461514612535347532600002007-05-09602258955766576631950002007-05-01602846028455025502150002007-04-25612612532953291500002007-04-2461179585975802532852500002007-04-2359675585913591331500002007-04-1956556561986198150002007-03-2861658607520352032500002007-03-275953758877570357033750002007-02-2861125602575256525622000002007-02-2759953597535496549622000002007-02-265882258423566556653150002007-02-21585858085808150002007-02-085926959269555355531100002007-02-056019660196537853781300002007-02-025880658456562756272100002007-02-0159222592225555551500002007-01-316006358556853972200002007-01-265700357003594359431100002007-01-245791557915577857781100002007-01-236027560275534553451100002007-01-1660129601295365361400002007-01-115988659445467543400002007-01-05585157466582956374400002006-12-1859359579525707545352400002006-12-01573553617861783150002006-11-2160013600135353150002006-11-15583165831655915591150002006-09-07582215822155552450002006-09-065681256812575157511450002006-08-22577455675555855582400002006-08-1655709557095925921200002006-08-03565915486067573841200002006-07-3155135541356183599641000002006-07-27545585455861611100002006-07-2456094519225815814400002006-07-175624755372577157712200002006-07-115481954819602360231100002006-07-065479151686618602351700002006-07-055455456075607511000002006-06-2650571505716816681611000002006-06-16542552256476472400002006-06-1449319493197051705111000002006-05-155443854438662500002006-05-125218552185642264221500002006-04-255619456194565256521450002006-04-21545155316212621231350002006-04-125557455574574657461250002006-04-055663654525592355465650002006-04-035350353503610361031100002006-03-3055995599565156511100002006-03-285514955149579657961100002006-03-245473554735586758672100002006-03-23565563558755872200002006-03-21565565554655461100002006-03-135625549935855782300002006-02-1557671567715297529722000002006-02-1456219557945614561433000002006-02-08576576530153011350002006-01-26585585513151313300002006-01-2458558551255125150002006-01-235712557125535453541100002006-01-1757325732531353132700002006-01-125837558375513451341250002006-01-105717856552853273550002006-01-065375375935931200002006-01-0356394563945455451350002005-11-075656543754371350002005-10-075670756707528152811350002005-09-2058406584064977497711000002005-09-1356906569065211521111000002005-09-0758816572334897489731950002005-08-3156894565945249524921100002005-08-2559013590134851485111400002005-08-175678567852521400002005-08-165572854728553955393300002005-08-115483254832551755171400002005-07-22566685666851855185150002005-07-195757512551251180002005-07-1856103561035275271180002005-07-085621556215524152411800002005-07-0658755875483248321500002005-06-29589115652664841600002005-06-24567115671151425142150002005-06-2156006560065255251150002005-06-205449453949559255922300002005-06-1556035603524152411500002005-06-0158365565375144852350002005-05-2556497564975145141250002005-04-25564865548651512500002005-04-205494153788553955392500002005-04-075542155421525152512800002005-04-0553405525675723572332400002005-03-035490854908529152911200002005-03-0255149542254025252300002005-03-01551275340555335252600002005-02-28557455745155151250002005-02-25541925419254541250002005-02-245666455355001500122000002005-02-2353661536615483548311000002005-02-185572255722514151411300002005-02-155466454664530453041400002005-01-2751255125585558551250002005-01-265599155613513507227628000

N Privault

Date HighPrice LowPrice HighYield LowYield Count Amount1 2016-01-13 99082 98982 1666 1501 2 200002 2015-12-29 99183 99183 1250 1250 1 100003 2015-12-21 97952 97952 3014 3014 1 100004 2015-12-17 99141 98550 2123 1251 5 6100005 2015-12-07 98770 98770 1714 1714 2 100006 2015-12-04 98363 98118 2628 2280 2 10000

50

60

70

80

90

100

price [2005minus01minus262016minus01minus13]

Last 99082

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1310 Orange Cnty Calif bond prices

The next Figure 1311 plots the bond yield y(t T ) defined as

y(t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)y(tT ) 0 6 t 6 T

2

4

6

8

yield [2005minus01minus262016minus01minus13]

Last 1666

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1311 Orange Cnty Calif bond yields

Bond pricing in the Dothan model

In the Dothan [Dot78] model the short term interest rate process (rt)tisinR+ ismodeled according to a geometric Brownian motion

drt = micrortdt+ σrtdBt (1325)430

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

where the volatility σ gt 0 and the drift micro isin R are constant parameters and(Bt)tisinR+ is a standard Brownian motion In this model the short term inter-est rate rt remains always positive while the proportional volatility term σrtaccounts for the sensitivity of the volatility of interest rate changes to thelevel of the rate rt

On the other hand the Dothan model is the only lognormal short ratemodel that allows for an analytical formula for the zero coupon bond price

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

For convenience of notation we let p = 1minus 2microσ2 and rewrite (1325) as

drt = (1minus p)σ2

2 rtdt+ σrtdBt

with solutionrt = r0 eσBtminuspσ

2t2 t isin R+ (1326)

By the Markov property of (rt)tisinR+ the bond price P (t T ) is a functionF (t rt) of rt and time t isin [0 T ]

P (t T ) = F (t rt) = IElowast[

eminusr Ttrsds

∣∣∣ rt] 0 6 t 6 T (1327)

By computation of the conditional expectation (1327) using (106) we easilyobtain the following result cf Proposition 12 of [PP11] where the functionθ(v t) is defined in (104)

Proposition 133 The zero-coupon bond price P (t T ) = F (t rt) is givenfor all p isin R by

F (t x) (1328)

= eminusσ2p2(Tminust)8

winfin0

winfin0

eminusux exp(minus2(1 + z2)σ2u

(4zσ2u

σ2(T minus t)

4

)du

u

dz

zp+1

x gt 0

Proof By Proposition 101 cf [Yor92] Proposition 2 the probability distri-bution of the time integral

w Tminust

0eσBsminuspσ

2s2ds is given by

P(w Tminust

0eσBsminuspσ

2s2ds isin dy)

=winfinminusinfin

P(w t

0eσBsminuspσ

2s2ds isin dy Bt minus pσt2 isin dz)

431

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 10: Forward Rate Modeling

N Privault

Indeed if P (t T ) gt eminusr(Tminust) we could issue a bond at the price P (t T ) andinvest this amount at the compounded risk free rate r which would yieldP (t T ) er(Tminust) gt 1 at time T

On the other hand if P (t T ) lt eminusr(Tminust) we could borrow P (t T ) at the rater to buy a bond priced P (t T ) At maturity time T we would receive $1 andrefund only P (t T ) er(Tminust) lt 1

Deterministic short rates

Similarly to the above when the short term interest rate process (rt)tisinR+ isa deterministic function of time a similar argument shows that

P (t T ) = eminusr Ttrsds 0 6 t 6 T (138)

Stochastic short rates

In case (rt)tisinR+ is an (Ft)tisinR+ -adapted random process the formula (138)is no longer valid as it relies on future information and we replace it with

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T (139)

under a risk-neutral measure Plowast It is natural to write P (t T ) as a conditionalexpectation under a martingale measure as the use of conditional expectationhelps to ldquofilter outrdquo the future information past time t contained in

w T

trsds

The expression (139) makes sense as the ldquobest possible estimaterdquo of thefuture quantity eminus

r Ttrsds in mean square sense given information known up

to time t

Coupon bonds

Pricing bonds with non-zero coupon is not difficult since in general theamount and periodicity of coupons are deterministiclowast In the case of a con-stant continuous-time coupon yield at the rate c gt 0 another application ofthe above absence of arbitrage argument shows that the price Pc(t T ) of thecoupon bond is given by

Pc(t T ) = ec(Tminust)P0(t T ) 0 6 t 6 T

see also Figure 139 below In the sequel we will mostly consider zero-couponbonds priced as P (t T ) = P0(t T ) 0 6 t 6 T lowast However coupon default cannot be excluded

420

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Martingale property of discounted bond prices

The following proposition shows that Assumption (A) of Chapter 12 is sat-isfied in other words the bond price process t 7minusrarr P (t T ) can be used as anumeacuteraireProposition 131 The discounted bond price process

t 7minusrarr P (t T ) = eminusr t

0 rsdsP (t T )

is a martingale under PlowastProof By (139) we have

eminusr t

0 rsdsP (t T ) = eminusr t

0 rsds IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r t0 rsds eminus

r Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r T0 rsds

∣∣∣ Ft] and this suffices to conclude since by the ldquotower propertyrdquo (1739) of condi-tional expectations any process (Xt)tisinR+ of the form t 7minusrarr Xt = IElowast[F | Ft]F isin L1(Ω) is a martingale cf Relation (61)

Path integrals

In physics the Feynman path integral

ψ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(i

~S(x(middot))

)where ~ is the Planck constant and S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 minus V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 minus V (x(timinus1)))∆ti

solves the Schroumldinger equation

i~partψ

partt(x t) = minus ~2

2mpart2ψ

partx2 (x t) + V (x(t))ψ(x t)

After the Wick rotation t 7rarr minusit the function

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

) 421

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

solves the heat equation

~partφ

partt(x t) = minus ~2

2mpart2φ

partx2 (x t) + V (x(t))φ(x t)

Given the action

S(x(middot)) =w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

we can rewrite the Euclidean path integral as

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

)=

wx(0)=x x(t)=y

Dx(middot) exp(minus 1

2~

Nsumi=1

(x(ti)minus x(timinus1))2

2∆timinus 1

~

Nsumi=1

V (x(timinus1)))

= IElowast[exp

(minus1~

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

]

This type of path integral computation

φ(y t) = IElowast[exp

(minus

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

] (1310)

is particularly useful for bond pricing as (1310) can be interpreted as theprice of a bond with short term interest rate process (rt)tisinR+ = (V (Bt)))tisinR+

conditionally to the value of the endpoint Bt = y cf (1331) below It can alsobe useful for exotic option pricing cf Chapter 10 and for risk managementThe path integral (1310) can be estimated either by closed-form expressionsusing Partial Differential Equations (PDEs) or probability densities by ap-proximations such as (conditional) Moment matching or by Monte Carloestimation from the paths of a Brownian bridge as shown in Figure 136

422

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 136 Brownian bridge

Bond pricing PDE

We assume from now on that the underlying short rate process is solution tothe stochastic differential equation

drt = micro(t rt)dt+ σ(t rt)dBt (1311)

where (Bt)tisinR+ is a standard Brownian motion under Plowast Note that specify-ing the dynamics of (rt)tisinR+ under the historical probability measure P willalso lead to a notion of market price of risk (MPoR) for the modeling of shortrates

Since all solutions of stochastic differential equations such as (1311) havethe Markov property cf eg Theorem V-32 of [Pro04] the arbitrage priceP (t T ) can be rewritten as a function F (t rt) of rt ie

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] = IElowast[

eminusr Ttrsds

∣∣∣ rt] = F (t rt)

and depends on rt only instead of depending on all information available inFt up to time t meaning that the pricing problem can now be formulated asa search for the function F (t x)

Proposition 132 (Bond pricing PDE) The bond pricing PDE for P (t T ) =F (t rt) is written as

xF (t x) = partF

partt(t x) + micro(t x)partF

partx(t x) + 1

2σ2(t x)part

2F

partx2 (t x) (1312)

423

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

t isin R+ x isin R subject to the terminal condition

F (T x) = 1 x isin R (1313)

Proof By Itocircrsquos formula we have

d(

eminusr t

0 rsdsP (t T ))

= minusrt eminusr t

0 rsdsP (t T )dt+ eminusr t

0 rsdsdP (t T )

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdsdF (t rt)

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdspartF

partx(t rt)(micro(t rt)dt+ σ(t rt)dBt)

+ eminusr t

0 rsds

(12σ

2(t rt)part2F

partx2 (t rt) + partF

partt(t rt)

)dt

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

+ eminusr t

0 rsds

(minusrtF (t rt) + micro(t rt)

partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

)dt

(1314)

Given that t 7minusrarr eminusr t

0 rsdsP (t T ) is a martingale the above expression(1314) should only contain terms in dBt (cf Corollary II-1 page 72 of[Pro04]) and all terms in dt should vanish inside (1314) This leads to theidentities

rtF (t rt)

= micro(t rt)partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

d(

eminusr t

0 rsdsP (t T ))

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

(1315a)

(1315b)

which recover (1312) Condition (1313) is due to the fact that P (T T ) = $1

In the case of an interest rate process modeled by (136) we have

micro(t x) = η(t) + λ(t)x and σ(t x) =radicδ(t) + γ(t)x

hence (1312) yields the (time dependent) affine PDE

xF (t x) = partF

partt(t x) + (η(t) + λ(t)x)partF

partx(t x) + 1

2(δ(t) + γ(t)x)part2F

partx2 (t x)

(1316)

t isin R+ x isin R By (1315b) the above proposition also shows that

424

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

dP (t T )P (t T ) = 1

P (t T )d(

er t

0 rsds eminusr t

0 rsdsP (t T ))

= 1P (t T )

(rtP (t T )dt+ e

r t0 rsdsd

(eminus

r t0 rsdsP (t T )

))= rtdt+ 1

P (t T ) er t

0 rsdsd(

eminusr t

0 rsdsP (t T ))

= rtdt+ 1F (t rt)

partF

partx(t rt)σ(t rt)dBt

= rtdt+ σ(t rt)part logFpartx

(t rt)dBt (1317)

In the Vasicek casedrt = (aminus brt)dt+ σdWt

the bond price takes the form

F (t rt) = P (t T ) = eA(Tminust)+rtC(Tminust)

where A(middot) and C(middot) are functions of time cf (1321) below and (1317)yields

dP (t T )P (t T ) = rtdtminus

σ

b(1minus eminusb(Tminust))dWt (1318)

since F (t x) = eA(Tminust)+xC(Tminust)

Note that more generally all affine short rate models as defined in Rela-tion (136) including the Vasicek model will yield a bond pricing formula ofthe form

P (t T ) = eA(Tminust)+rtC(Tminust)

cf eg sect 324 of [BM06]

Probabilistic solution of the Vasicek PDE

Next we solve the PDE (1312) written with micro(t x) = aminusbx and σ(t x) = σin the Vasicek [Vaš77] model

drt = (aminus brt)dt+ σdBt

as xF (t x) = partF

partt(t x) + (aminus bx)partF

partx(t x) + σ2

2part2F

partx2 (t x)

F (T x) = 1(1319)

by a direct computation of the conditional expectation

425

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

F (t rt) = P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] (1320)

Recall that in this model the short rate (rt)tisinR+ has the expression

rt = g(t) +w t

0h(t s)dBs = r0 eminusbt + a

b(1minus eminusbt) + σ

w t

0eminusb(tminuss)dBs

whereg(t) = r0 eminusbt + a

b(1minus eminusbt) t isin R+

andh(t s) = σ eminusb(tminuss) 0 6 s 6 t

are deterministic functions

Letting uort = max(u t) using the fact that Wiener integrals are Gaussianrandom variables and the Gaussian moment generating function we have

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r Tt

(g(s)+r s

0 h(su)dBu)ds∣∣∣ Ft]

= exp(minus

w T

tg(s)ds

)IElowast[

eminusr Tt

r s0 h(su)dBuds

∣∣∣ Ft]= exp

(minus

w T

tg(s)ds

)IElowast[

eminusr T

0r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

uorth(s u)dsdBu

)IElowast[

eminusr Tt

r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu + 1

2w T

t

(w T

uh(s u)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

w t

0

w T

teminusb(sminusu)dsdBu

)times exp

(σ2

2w T

t

(w T

ueminusb(sminusu)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

b(1minus eminusb(Tminust))

w t

0eminusb(tminusu)dBu

)times exp

(σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)

426

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= exp(minusrtb

(1minus eminusb(Tminust)) + 1b

(1minus eminusb(Tminust))(r0 eminusbt + a

b(1minus eminusbt)

))times exp

(minus

w T

t

(r0 eminusbs + a

b(1minus eminusbs)

)ds+ σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)= eA(Tminust)+rtC(Tminust) (1321)

whereC(T minus t) = minus1

b(1minus eminusb(Tminust)) (1322)

and

A(T minus t) = 4abminus 3σ2

4b3 + σ2 minus 2ab2b2 (T minus t) + σ2 minus ab

b3eminusb(Tminust)minus σ2

4b3 eminus2b(Tminust)

(1323)

Analytical solution of the Vasicek PDE

In order to solve the PDE (1319) analytically we may look for a solution ofthe form

F (t x) = eA(Tminust)+xC(Tminust) (1324)

where A(middot) and C(middot) are functions to be determined under the conditionsA(0) = 0 and C(0) = 0 Substituting (1324) into the PDE (1312) with theVasicek coefficients micro(t x) = (aminus bx) and σ(t x) = σ shows that

x eA(Tminust)+xC(Tminust) = minus(Aprime(T minus t)minus xC prime(T minus t)) eA(Tminust)+xC(Tminust)

+(aminus bx)C(T minus t) eA(Tminust)+xC(Tminust)

+12σ

2C2(T minus t) eA(Tminust)+xC(Tminust)

ie

x = minusAprime(T minus t) + xC prime(T minus t) + (aminus bx)C(T minus t) + 12σ

2C2(T minus t)

By identification of terms for x = 0 and x 6= 0 this yields the system ofRiccati and linear differential equations

Aprime(s) = aC(s) + σ2

2 C2(s)

C prime(s) = 1 + bC(s)

which can be solved to recover the above value of P (t T ) = F (t rt)

427

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Vasicek Bond Price Simulations

In this section we consider again the Vasicek model in which the short rate(rt)tisinR+ is solution to (131) Figure 137 presents a random simulation oft 7minusrarr P (t T ) in the same Vasicek model The graph of the correspondingdeterministic zero coupon bond price obtained for a = b = σ = 0 is alsoshown on the Figure 137

03

04

05

06

07

08

09

1

11

0 5 10 15 20

Fig 137 Graphs of t 7rarr F (t rt) = P (t T ) vs t 7rarr eminusr0(Tminust)

Figure 138 presents a random simulation of t 7minusrarr P (t T ) for a (non-zero)coupon bond with price Pc(t T ) = ec(Tminust)P (t T ) and coupon rate c gt 00 6 t 6 T

10000

10200

10400

10600

10800

0 5 10 15 20

Fig 138 Graph of t 7rarr F (t rt) = P (t T ) for a bond with a 23 coupon

The simulation of Figure 138 can be compared to the coupon bond marketdata of Figure 139 below

428

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 139 Bond price graph with maturity 011808 and coupon rate 625

See Exercise 133 for a bond pricing formula in the CIR model

Zero coupon bond price and yield data

The following zero coupon bond price was downloaded at EMMA fromthe Municipal Securities Rulemaking Board

ORANGE CNTY CALIF PENSION OBLIG CAP APPREC-TAXABLE-REF-SER A (CA)CUSIP 68428LBB9Dated Date 06121996 (June 12 1996)Maturity Date 09012016 (September 1st 2016)Interest Rate 00 Principal Amount at Issuance $26056000Initial Offering Price 19465

library(quantmod)bondprice lt- readtable(bond_data_Rtxtcolnames = c(DateHighPriceLowPrice

HighYieldLowYieldCountAmount))head(bondprice)time lt- asPOSIXct(bondprice$Date format = Y-m-d)price lt- xts(x = bondprice$HighPrice orderby = time)yield lt- xts(x = bondprice$HighYield orderby = time)chartSeries(priceupcol=bluetheme=white)chartSeries(yieldupcol=bluetheme=white)

429

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

2016-01-139908298982166615012200002015-12-2999183991831251251100002015-12-219795297952301430141100002015-12-179914198552123125156100002015-12-0798779877171417142100002015-12-04983639811826282282100002015-11-1898659865176817672200002015-11-1798306983062201222200002015-10-029865998514167150641000002015-09-099898210721071250002015-09-089888498043204311583300002015-07-20975059628345922992200002015-07-1698397983971461461250002015-07-15988729887210211021150002015-07-109768997689208420841300002015-06-1898123980231686163300002015-06-179884397034254313250002015-06-15983698299143113795850002015-06-0998016980161651651200002015-05-21978269772618321752500002015-05-189849498494119111912300002015-05-1598559835130311433300002015-05-129776997769175117511150002015-04-279834898348125112512400002015-04-249830398303128212821250002015-04-239760797607181318131650002015-04-1498649864111100002015-03-20983897981428114373850002015-03-199785197751159151836750002015-03-11981981391323600002015-02-27978297695156914832400002015-02-139858298357108309343750002015-02-119857698226116609343300002015-01-15983983106710671550002015-01-12989598950650652600002015-01-099898123212321600002014-12-11983197396155131600002014-12-109641696416214421442800002014-12-059804498044114811481500002014-12-049728897288159815981500002014-11-219782297822125125150002014-11-209642294353320733150002014-11-0797979964582014113861250002014-10-299650496504195619561150002014-10-1498149977841201123200002014-10-0797401974011396139611000002014-10-0397991970261598107353500002014-09-3097446962851991135842200002014-09-1997331972311455140221000002014-09-18964796419186221000002014-09-15969956732278161943000002014-09-119555952252823382200002014-08-199711995596223614495750002014-08-139528695286238623861300002014-08-069559395593220522051350002014-08-0197951977261114100341000002014-07-30976975122311742200002014-07-239603695036244919434500002014-07-1697494951246912526750002014-07-1497182969571461135141000002014-07-11956995572144208421000002014-05-209531495314212321232300002014-05-169372393723286628661300002014-04-299701396713143913052200002014-04-1695169516211521151200002014-04-07976339683313510042500002014-04-029577393974260718073750002014-02-2893293128932852200002014-02-2791759175348634861100002014-02-21956959269530417584400002014-02-189438593885251122992900002014-02-139310193101284228421450002013-11-159393262726271500002013-11-14915915320432041500002013-11-12925999171312127712200002013-10-319427294272210121013450002013-10-309232392323284828481100002013-10-299599942521011452200002013-10-259080790807342934291100002013-10-219161691491314230933750002013-08-0791008910083113112100002013-08-05894258942536813681150002013-07-229494394018216812800002013-07-1795167930262339162900002013-07-16951549515416161500002013-07-12944129441218518511000002013-06-28940049340421719663400002013-06-269471892567245417213500002013-06-11925692562422422120002013-06-05911119111129072907150002013-06-0495282952821528152862500002013-05-3195122951221547154712250002013-05-309429291069290718214280002013-05-2994969488516331652000002013-05-2492682926822352351100002013-05-2394488930732217174942100002013-05-219679193731199174950002013-05-169127691276280428041200002013-05-02916769015315126383270002013-04-24920999163926322483450002013-04-22920749161426322483540002013-04-179645941591810798550002013-04-159205491954250524722200002013-04-1191791725842584170002013-04-099635889785320810996570002013-03-12914491442602260218000002013-02-229164389323243250134830002013-02-0690290298529222400002012-11-29881528796434573399103200002012-11-2888176878843479338941200002012-11-279048790487268226821150002012-11-23890628906231063106150002012-11-13878737073707150002012-11-098472383048495644175200002012-10-3188798879313531351100002012-10-25907905261925612300002012-10-2490353903532662662400002012-10-168845888458319731972400002012-10-0290866900552724682300002012-10-0190148900472726712200002012-09-26882398779733513222500002012-09-249051390512255425542100002012-09-21905905255625561300002012-09-139103189907270923923750002012-08-0985188518400240023250002012-08-0886038333945513755410002012-08-0386486859863753605240002012-07-2785849404940192200002012-07-19876183625440732541800002012-07-18870738707334342350002012-07-178652286048368636092400002012-07-1685088840884254396131050002012-07-1386541865413543541150002012-06-29865728657235351400002012-06-2885258525387238721400002012-06-2187751868533431521100002012-06-208528984689401238431650002012-06-138643855937363521500002012-06-118386183861422142211750002012-05-258518485184380938091300002012-05-238386683866417841781300002012-05-2185331853313753751250002012-05-18838344094409150002012-05-178442484224405743750002012-04-05853283662410636541000002012-03-2988243851033692852530002012-03-2787258342141443112530002012-03-228495840753956371731350002012-03-02855855352535251100002012-03-018368583685400740071100002012-02-0787584664368529515750002012-01-2686645865853167315241500002012-01-2586458645323211610002012-01-248380754703409742540002012-01-2081188118458445841100002012-01-178245182351425342263650002012-01-128413781755440837746600002012-01-1181658094639443431650002012-01-0479575795754984981200002011-12-307875787551985198130002011-12-29764757647558245824130002011-12-088038580385468346831150002011-12-01798879884847992300002011-11-307969379693484848481150002011-11-01777560455491240002011-10-28788578854984981100002011-10-26767576755555551100002011-10-05777559725418280002011-08-2678119773195211521100002011-08-23774237742351695169170002011-08-2276576554065406170002011-07-278135881358414111300002011-06-227417415864586411300002011-04-267554575545532253221100002011-04-257481964916825555053400002011-04-206474163965853382983600002011-04-15767097545334500555000002011-04-087620176201511351131150002011-03-3174502745025525521150002011-03-17744347443455551400002011-03-167373586558651400002011-03-0374556745565435431500002011-03-017390373903558355831500002011-01-2871317713176156153200002011-01-2667256725723472332200002011-01-187300473004568756871600002011-01-1273719716560215561500002011-01-04735735552455242540002011-01-0371592713756055621200002010-12-2273173559855982300002010-12-1374185697646305533250002010-12-1073558735585455454800002010-12-0973547735475455452200002010-12-02658996589974087408150002010-12-017312570756124553241980002010-11-297508571889582650495290002010-11-19738738533653361150002010-11-10772797645452400002010-11-097674969503447934800002010-11-087914178641407240722400002010-11-037953178606397839782300002010-11-0277087770874524521350002010-10-068072779568371536714700002010-10-057906878277419741972700002010-10-04801793797379721100002010-10-018048978903371137113300002010-09-307717714453445321300002010-09-207888377821403440342400002010-09-177781277812426742672100002010-09-1476942769424454451250002010-09-097446274462500650061180002010-09-08732057320552965296150002010-09-03757527575247472100002010-09-02748317483149074907150002010-08-3176585748294896452800002010-08-307403974039507350731180002010-08-23765197651945452550002010-08-207463974639492149211550002010-08-167557454932470662100002010-08-117536575365473647361100002010-08-067425573255520652063300002010-07-26745787251535487651000002010-07-22740047245253500161750002010-07-2173417705936513384600002010-07-20707570655772577222000002010-07-077221172111537753772200002010-07-06720797207954544340002010-07-027293472068520152012160002010-06-307169934586856686900002010-06-29694269073609460942200002010-06-177140467856364551492000002010-06-1173567356500850081350002010-06-1072391713915275272500002010-06-09708647051570357032500002010-06-087281271524523516571050002010-06-077099270638566356632700002010-05-03720727107254775252100002010-04-016775661256568617731000002010-03-056765667556612661262400002010-03-03667566656366362400002010-02-1067946678600659966900002010-02-096586438683468343300002010-02-0866264874671167114800002010-01-066542565425649464942200002010-01-05708596310870465256500002009-12-157081570155521552154200002009-12-146565652965292200002009-11-1868569685695655652500002009-11-176717467174595259521400002009-11-1668526685265655652400002009-11-127039675255239417000002009-10-0170974642926063502952010002009-09-3070152605577397524460002009-09-29636296819681921200002009-09-0364605646056366361300002009-08-286190861908697269721300002009-08-19626561756774677431500002009-08-18614446083727221000002009-08-12621602573296884125900002009-07-216146561465697169711100002009-07-206033160307724572452200002009-06-265930159301742674261300002009-06-226112161121697269721250002009-06-175991959319739573952500002009-06-106088860888771180002009-06-0958685868752275221180002009-06-026096260962695569551250002009-05-225993959939717871781250002009-05-216204161692566842600002009-04-16609560956846842400002009-04-15604604696569651400002009-04-1462224622246546541100002009-04-0659868598687067061100002009-03-065656791279121250002009-03-0553983539838428421250002009-02-095770457554745741441450002009-02-06576925691776741431050002009-01-2855635556357887788712500002009-01-2258225582257257251250002009-01-215671556715760676061250002008-11-065720157201728972891150002008-10-166021959294655765572200002008-10-156095859283639563954500002008-10-0855454877877842000002008-07-3163623623515681568131500002008-07-186192961929661150002008-07-156361460368631456494600002008-07-1062562255918591821000002008-07-08642016170160225522100002008-07-0260567605676256251180002008-07-015859458594666766671180002008-06-2359589657665762300002008-06-20619936186592959293450002008-06-1661584598936631500002008-06-1358958865865821000002008-06-126094460944612761271150002008-05-156237562375578257821100002008-05-136137261372597659761100002008-04-2461086108664200002008-03-07626396157558085622000002008-02-2264256046012526662400002008-02-1164214642145255251400002008-02-0761756175571757171400002008-01-086385162951526152614600002008-01-04610716046590659063550002008-01-0359977592776146142100002007-10-18608446084456956921300002007-10-17613136131355995599150002007-10-1659655965591359131700002007-09-17610086100856561550002007-09-14594594590559052550002007-09-1260714607145655651200002007-09-1161458101615551661350002007-09-06608636075561256123750002007-08-2859514595145855851500002007-08-235994759947576257621110002007-08-205989958311606957622250002007-07-125942259422578857881250002007-07-115963459603575257462850002007-07-0958842588425895891950002007-07-02594085940857715771150002007-06-2759934590095665566541800002007-06-2659433582825754575431900002007-06-25598475875567456743600002007-06-225777577760696069150002007-06-2059275568356248578221050002007-06-1857214572146166616613000002007-05-255909659096576857681350002007-05-215959259592566356631550002007-05-15615236152353531150002007-05-1461514612535347532600002007-05-09602258955766576631950002007-05-01602846028455025502150002007-04-25612612532953291500002007-04-2461179585975802532852500002007-04-2359675585913591331500002007-04-1956556561986198150002007-03-2861658607520352032500002007-03-275953758877570357033750002007-02-2861125602575256525622000002007-02-2759953597535496549622000002007-02-265882258423566556653150002007-02-21585858085808150002007-02-085926959269555355531100002007-02-056019660196537853781300002007-02-025880658456562756272100002007-02-0159222592225555551500002007-01-316006358556853972200002007-01-265700357003594359431100002007-01-245791557915577857781100002007-01-236027560275534553451100002007-01-1660129601295365361400002007-01-115988659445467543400002007-01-05585157466582956374400002006-12-1859359579525707545352400002006-12-01573553617861783150002006-11-2160013600135353150002006-11-15583165831655915591150002006-09-07582215822155552450002006-09-065681256812575157511450002006-08-22577455675555855582400002006-08-1655709557095925921200002006-08-03565915486067573841200002006-07-3155135541356183599641000002006-07-27545585455861611100002006-07-2456094519225815814400002006-07-175624755372577157712200002006-07-115481954819602360231100002006-07-065479151686618602351700002006-07-055455456075607511000002006-06-2650571505716816681611000002006-06-16542552256476472400002006-06-1449319493197051705111000002006-05-155443854438662500002006-05-125218552185642264221500002006-04-255619456194565256521450002006-04-21545155316212621231350002006-04-125557455574574657461250002006-04-055663654525592355465650002006-04-035350353503610361031100002006-03-3055995599565156511100002006-03-285514955149579657961100002006-03-245473554735586758672100002006-03-23565563558755872200002006-03-21565565554655461100002006-03-135625549935855782300002006-02-1557671567715297529722000002006-02-1456219557945614561433000002006-02-08576576530153011350002006-01-26585585513151313300002006-01-2458558551255125150002006-01-235712557125535453541100002006-01-1757325732531353132700002006-01-125837558375513451341250002006-01-105717856552853273550002006-01-065375375935931200002006-01-0356394563945455451350002005-11-075656543754371350002005-10-075670756707528152811350002005-09-2058406584064977497711000002005-09-1356906569065211521111000002005-09-0758816572334897489731950002005-08-3156894565945249524921100002005-08-2559013590134851485111400002005-08-175678567852521400002005-08-165572854728553955393300002005-08-115483254832551755171400002005-07-22566685666851855185150002005-07-195757512551251180002005-07-1856103561035275271180002005-07-085621556215524152411800002005-07-0658755875483248321500002005-06-29589115652664841600002005-06-24567115671151425142150002005-06-2156006560065255251150002005-06-205449453949559255922300002005-06-1556035603524152411500002005-06-0158365565375144852350002005-05-2556497564975145141250002005-04-25564865548651512500002005-04-205494153788553955392500002005-04-075542155421525152512800002005-04-0553405525675723572332400002005-03-035490854908529152911200002005-03-0255149542254025252300002005-03-01551275340555335252600002005-02-28557455745155151250002005-02-25541925419254541250002005-02-245666455355001500122000002005-02-2353661536615483548311000002005-02-185572255722514151411300002005-02-155466454664530453041400002005-01-2751255125585558551250002005-01-265599155613513507227628000

N Privault

Date HighPrice LowPrice HighYield LowYield Count Amount1 2016-01-13 99082 98982 1666 1501 2 200002 2015-12-29 99183 99183 1250 1250 1 100003 2015-12-21 97952 97952 3014 3014 1 100004 2015-12-17 99141 98550 2123 1251 5 6100005 2015-12-07 98770 98770 1714 1714 2 100006 2015-12-04 98363 98118 2628 2280 2 10000

50

60

70

80

90

100

price [2005minus01minus262016minus01minus13]

Last 99082

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1310 Orange Cnty Calif bond prices

The next Figure 1311 plots the bond yield y(t T ) defined as

y(t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)y(tT ) 0 6 t 6 T

2

4

6

8

yield [2005minus01minus262016minus01minus13]

Last 1666

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1311 Orange Cnty Calif bond yields

Bond pricing in the Dothan model

In the Dothan [Dot78] model the short term interest rate process (rt)tisinR+ ismodeled according to a geometric Brownian motion

drt = micrortdt+ σrtdBt (1325)430

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

where the volatility σ gt 0 and the drift micro isin R are constant parameters and(Bt)tisinR+ is a standard Brownian motion In this model the short term inter-est rate rt remains always positive while the proportional volatility term σrtaccounts for the sensitivity of the volatility of interest rate changes to thelevel of the rate rt

On the other hand the Dothan model is the only lognormal short ratemodel that allows for an analytical formula for the zero coupon bond price

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

For convenience of notation we let p = 1minus 2microσ2 and rewrite (1325) as

drt = (1minus p)σ2

2 rtdt+ σrtdBt

with solutionrt = r0 eσBtminuspσ

2t2 t isin R+ (1326)

By the Markov property of (rt)tisinR+ the bond price P (t T ) is a functionF (t rt) of rt and time t isin [0 T ]

P (t T ) = F (t rt) = IElowast[

eminusr Ttrsds

∣∣∣ rt] 0 6 t 6 T (1327)

By computation of the conditional expectation (1327) using (106) we easilyobtain the following result cf Proposition 12 of [PP11] where the functionθ(v t) is defined in (104)

Proposition 133 The zero-coupon bond price P (t T ) = F (t rt) is givenfor all p isin R by

F (t x) (1328)

= eminusσ2p2(Tminust)8

winfin0

winfin0

eminusux exp(minus2(1 + z2)σ2u

(4zσ2u

σ2(T minus t)

4

)du

u

dz

zp+1

x gt 0

Proof By Proposition 101 cf [Yor92] Proposition 2 the probability distri-bution of the time integral

w Tminust

0eσBsminuspσ

2s2ds is given by

P(w Tminust

0eσBsminuspσ

2s2ds isin dy)

=winfinminusinfin

P(w t

0eσBsminuspσ

2s2ds isin dy Bt minus pσt2 isin dz)

431

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 11: Forward Rate Modeling

Forward Rate Modeling

Martingale property of discounted bond prices

The following proposition shows that Assumption (A) of Chapter 12 is sat-isfied in other words the bond price process t 7minusrarr P (t T ) can be used as anumeacuteraireProposition 131 The discounted bond price process

t 7minusrarr P (t T ) = eminusr t

0 rsdsP (t T )

is a martingale under PlowastProof By (139) we have

eminusr t

0 rsdsP (t T ) = eminusr t

0 rsds IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r t0 rsds eminus

r Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r T0 rsds

∣∣∣ Ft] and this suffices to conclude since by the ldquotower propertyrdquo (1739) of condi-tional expectations any process (Xt)tisinR+ of the form t 7minusrarr Xt = IElowast[F | Ft]F isin L1(Ω) is a martingale cf Relation (61)

Path integrals

In physics the Feynman path integral

ψ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(i

~S(x(middot))

)where ~ is the Planck constant and S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 minus V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 minus V (x(timinus1)))∆ti

solves the Schroumldinger equation

i~partψ

partt(x t) = minus ~2

2mpart2ψ

partx2 (x t) + V (x(t))ψ(x t)

After the Wick rotation t 7rarr minusit the function

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

) 421

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

solves the heat equation

~partφ

partt(x t) = minus ~2

2mpart2φ

partx2 (x t) + V (x(t))φ(x t)

Given the action

S(x(middot)) =w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

we can rewrite the Euclidean path integral as

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

)=

wx(0)=x x(t)=y

Dx(middot) exp(minus 1

2~

Nsumi=1

(x(ti)minus x(timinus1))2

2∆timinus 1

~

Nsumi=1

V (x(timinus1)))

= IElowast[exp

(minus1~

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

]

This type of path integral computation

φ(y t) = IElowast[exp

(minus

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

] (1310)

is particularly useful for bond pricing as (1310) can be interpreted as theprice of a bond with short term interest rate process (rt)tisinR+ = (V (Bt)))tisinR+

conditionally to the value of the endpoint Bt = y cf (1331) below It can alsobe useful for exotic option pricing cf Chapter 10 and for risk managementThe path integral (1310) can be estimated either by closed-form expressionsusing Partial Differential Equations (PDEs) or probability densities by ap-proximations such as (conditional) Moment matching or by Monte Carloestimation from the paths of a Brownian bridge as shown in Figure 136

422

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 136 Brownian bridge

Bond pricing PDE

We assume from now on that the underlying short rate process is solution tothe stochastic differential equation

drt = micro(t rt)dt+ σ(t rt)dBt (1311)

where (Bt)tisinR+ is a standard Brownian motion under Plowast Note that specify-ing the dynamics of (rt)tisinR+ under the historical probability measure P willalso lead to a notion of market price of risk (MPoR) for the modeling of shortrates

Since all solutions of stochastic differential equations such as (1311) havethe Markov property cf eg Theorem V-32 of [Pro04] the arbitrage priceP (t T ) can be rewritten as a function F (t rt) of rt ie

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] = IElowast[

eminusr Ttrsds

∣∣∣ rt] = F (t rt)

and depends on rt only instead of depending on all information available inFt up to time t meaning that the pricing problem can now be formulated asa search for the function F (t x)

Proposition 132 (Bond pricing PDE) The bond pricing PDE for P (t T ) =F (t rt) is written as

xF (t x) = partF

partt(t x) + micro(t x)partF

partx(t x) + 1

2σ2(t x)part

2F

partx2 (t x) (1312)

423

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

t isin R+ x isin R subject to the terminal condition

F (T x) = 1 x isin R (1313)

Proof By Itocircrsquos formula we have

d(

eminusr t

0 rsdsP (t T ))

= minusrt eminusr t

0 rsdsP (t T )dt+ eminusr t

0 rsdsdP (t T )

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdsdF (t rt)

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdspartF

partx(t rt)(micro(t rt)dt+ σ(t rt)dBt)

+ eminusr t

0 rsds

(12σ

2(t rt)part2F

partx2 (t rt) + partF

partt(t rt)

)dt

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

+ eminusr t

0 rsds

(minusrtF (t rt) + micro(t rt)

partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

)dt

(1314)

Given that t 7minusrarr eminusr t

0 rsdsP (t T ) is a martingale the above expression(1314) should only contain terms in dBt (cf Corollary II-1 page 72 of[Pro04]) and all terms in dt should vanish inside (1314) This leads to theidentities

rtF (t rt)

= micro(t rt)partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

d(

eminusr t

0 rsdsP (t T ))

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

(1315a)

(1315b)

which recover (1312) Condition (1313) is due to the fact that P (T T ) = $1

In the case of an interest rate process modeled by (136) we have

micro(t x) = η(t) + λ(t)x and σ(t x) =radicδ(t) + γ(t)x

hence (1312) yields the (time dependent) affine PDE

xF (t x) = partF

partt(t x) + (η(t) + λ(t)x)partF

partx(t x) + 1

2(δ(t) + γ(t)x)part2F

partx2 (t x)

(1316)

t isin R+ x isin R By (1315b) the above proposition also shows that

424

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

dP (t T )P (t T ) = 1

P (t T )d(

er t

0 rsds eminusr t

0 rsdsP (t T ))

= 1P (t T )

(rtP (t T )dt+ e

r t0 rsdsd

(eminus

r t0 rsdsP (t T )

))= rtdt+ 1

P (t T ) er t

0 rsdsd(

eminusr t

0 rsdsP (t T ))

= rtdt+ 1F (t rt)

partF

partx(t rt)σ(t rt)dBt

= rtdt+ σ(t rt)part logFpartx

(t rt)dBt (1317)

In the Vasicek casedrt = (aminus brt)dt+ σdWt

the bond price takes the form

F (t rt) = P (t T ) = eA(Tminust)+rtC(Tminust)

where A(middot) and C(middot) are functions of time cf (1321) below and (1317)yields

dP (t T )P (t T ) = rtdtminus

σ

b(1minus eminusb(Tminust))dWt (1318)

since F (t x) = eA(Tminust)+xC(Tminust)

Note that more generally all affine short rate models as defined in Rela-tion (136) including the Vasicek model will yield a bond pricing formula ofthe form

P (t T ) = eA(Tminust)+rtC(Tminust)

cf eg sect 324 of [BM06]

Probabilistic solution of the Vasicek PDE

Next we solve the PDE (1312) written with micro(t x) = aminusbx and σ(t x) = σin the Vasicek [Vaš77] model

drt = (aminus brt)dt+ σdBt

as xF (t x) = partF

partt(t x) + (aminus bx)partF

partx(t x) + σ2

2part2F

partx2 (t x)

F (T x) = 1(1319)

by a direct computation of the conditional expectation

425

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

F (t rt) = P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] (1320)

Recall that in this model the short rate (rt)tisinR+ has the expression

rt = g(t) +w t

0h(t s)dBs = r0 eminusbt + a

b(1minus eminusbt) + σ

w t

0eminusb(tminuss)dBs

whereg(t) = r0 eminusbt + a

b(1minus eminusbt) t isin R+

andh(t s) = σ eminusb(tminuss) 0 6 s 6 t

are deterministic functions

Letting uort = max(u t) using the fact that Wiener integrals are Gaussianrandom variables and the Gaussian moment generating function we have

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r Tt

(g(s)+r s

0 h(su)dBu)ds∣∣∣ Ft]

= exp(minus

w T

tg(s)ds

)IElowast[

eminusr Tt

r s0 h(su)dBuds

∣∣∣ Ft]= exp

(minus

w T

tg(s)ds

)IElowast[

eminusr T

0r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

uorth(s u)dsdBu

)IElowast[

eminusr Tt

r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu + 1

2w T

t

(w T

uh(s u)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

w t

0

w T

teminusb(sminusu)dsdBu

)times exp

(σ2

2w T

t

(w T

ueminusb(sminusu)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

b(1minus eminusb(Tminust))

w t

0eminusb(tminusu)dBu

)times exp

(σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)

426

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= exp(minusrtb

(1minus eminusb(Tminust)) + 1b

(1minus eminusb(Tminust))(r0 eminusbt + a

b(1minus eminusbt)

))times exp

(minus

w T

t

(r0 eminusbs + a

b(1minus eminusbs)

)ds+ σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)= eA(Tminust)+rtC(Tminust) (1321)

whereC(T minus t) = minus1

b(1minus eminusb(Tminust)) (1322)

and

A(T minus t) = 4abminus 3σ2

4b3 + σ2 minus 2ab2b2 (T minus t) + σ2 minus ab

b3eminusb(Tminust)minus σ2

4b3 eminus2b(Tminust)

(1323)

Analytical solution of the Vasicek PDE

In order to solve the PDE (1319) analytically we may look for a solution ofthe form

F (t x) = eA(Tminust)+xC(Tminust) (1324)

where A(middot) and C(middot) are functions to be determined under the conditionsA(0) = 0 and C(0) = 0 Substituting (1324) into the PDE (1312) with theVasicek coefficients micro(t x) = (aminus bx) and σ(t x) = σ shows that

x eA(Tminust)+xC(Tminust) = minus(Aprime(T minus t)minus xC prime(T minus t)) eA(Tminust)+xC(Tminust)

+(aminus bx)C(T minus t) eA(Tminust)+xC(Tminust)

+12σ

2C2(T minus t) eA(Tminust)+xC(Tminust)

ie

x = minusAprime(T minus t) + xC prime(T minus t) + (aminus bx)C(T minus t) + 12σ

2C2(T minus t)

By identification of terms for x = 0 and x 6= 0 this yields the system ofRiccati and linear differential equations

Aprime(s) = aC(s) + σ2

2 C2(s)

C prime(s) = 1 + bC(s)

which can be solved to recover the above value of P (t T ) = F (t rt)

427

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Vasicek Bond Price Simulations

In this section we consider again the Vasicek model in which the short rate(rt)tisinR+ is solution to (131) Figure 137 presents a random simulation oft 7minusrarr P (t T ) in the same Vasicek model The graph of the correspondingdeterministic zero coupon bond price obtained for a = b = σ = 0 is alsoshown on the Figure 137

03

04

05

06

07

08

09

1

11

0 5 10 15 20

Fig 137 Graphs of t 7rarr F (t rt) = P (t T ) vs t 7rarr eminusr0(Tminust)

Figure 138 presents a random simulation of t 7minusrarr P (t T ) for a (non-zero)coupon bond with price Pc(t T ) = ec(Tminust)P (t T ) and coupon rate c gt 00 6 t 6 T

10000

10200

10400

10600

10800

0 5 10 15 20

Fig 138 Graph of t 7rarr F (t rt) = P (t T ) for a bond with a 23 coupon

The simulation of Figure 138 can be compared to the coupon bond marketdata of Figure 139 below

428

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 139 Bond price graph with maturity 011808 and coupon rate 625

See Exercise 133 for a bond pricing formula in the CIR model

Zero coupon bond price and yield data

The following zero coupon bond price was downloaded at EMMA fromthe Municipal Securities Rulemaking Board

ORANGE CNTY CALIF PENSION OBLIG CAP APPREC-TAXABLE-REF-SER A (CA)CUSIP 68428LBB9Dated Date 06121996 (June 12 1996)Maturity Date 09012016 (September 1st 2016)Interest Rate 00 Principal Amount at Issuance $26056000Initial Offering Price 19465

library(quantmod)bondprice lt- readtable(bond_data_Rtxtcolnames = c(DateHighPriceLowPrice

HighYieldLowYieldCountAmount))head(bondprice)time lt- asPOSIXct(bondprice$Date format = Y-m-d)price lt- xts(x = bondprice$HighPrice orderby = time)yield lt- xts(x = bondprice$HighYield orderby = time)chartSeries(priceupcol=bluetheme=white)chartSeries(yieldupcol=bluetheme=white)

429

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

2016-01-139908298982166615012200002015-12-2999183991831251251100002015-12-219795297952301430141100002015-12-179914198552123125156100002015-12-0798779877171417142100002015-12-04983639811826282282100002015-11-1898659865176817672200002015-11-1798306983062201222200002015-10-029865998514167150641000002015-09-099898210721071250002015-09-089888498043204311583300002015-07-20975059628345922992200002015-07-1698397983971461461250002015-07-15988729887210211021150002015-07-109768997689208420841300002015-06-1898123980231686163300002015-06-179884397034254313250002015-06-15983698299143113795850002015-06-0998016980161651651200002015-05-21978269772618321752500002015-05-189849498494119111912300002015-05-1598559835130311433300002015-05-129776997769175117511150002015-04-279834898348125112512400002015-04-249830398303128212821250002015-04-239760797607181318131650002015-04-1498649864111100002015-03-20983897981428114373850002015-03-199785197751159151836750002015-03-11981981391323600002015-02-27978297695156914832400002015-02-139858298357108309343750002015-02-119857698226116609343300002015-01-15983983106710671550002015-01-12989598950650652600002015-01-099898123212321600002014-12-11983197396155131600002014-12-109641696416214421442800002014-12-059804498044114811481500002014-12-049728897288159815981500002014-11-219782297822125125150002014-11-209642294353320733150002014-11-0797979964582014113861250002014-10-299650496504195619561150002014-10-1498149977841201123200002014-10-0797401974011396139611000002014-10-0397991970261598107353500002014-09-3097446962851991135842200002014-09-1997331972311455140221000002014-09-18964796419186221000002014-09-15969956732278161943000002014-09-119555952252823382200002014-08-199711995596223614495750002014-08-139528695286238623861300002014-08-069559395593220522051350002014-08-0197951977261114100341000002014-07-30976975122311742200002014-07-239603695036244919434500002014-07-1697494951246912526750002014-07-1497182969571461135141000002014-07-11956995572144208421000002014-05-209531495314212321232300002014-05-169372393723286628661300002014-04-299701396713143913052200002014-04-1695169516211521151200002014-04-07976339683313510042500002014-04-029577393974260718073750002014-02-2893293128932852200002014-02-2791759175348634861100002014-02-21956959269530417584400002014-02-189438593885251122992900002014-02-139310193101284228421450002013-11-159393262726271500002013-11-14915915320432041500002013-11-12925999171312127712200002013-10-319427294272210121013450002013-10-309232392323284828481100002013-10-299599942521011452200002013-10-259080790807342934291100002013-10-219161691491314230933750002013-08-0791008910083113112100002013-08-05894258942536813681150002013-07-229494394018216812800002013-07-1795167930262339162900002013-07-16951549515416161500002013-07-12944129441218518511000002013-06-28940049340421719663400002013-06-269471892567245417213500002013-06-11925692562422422120002013-06-05911119111129072907150002013-06-0495282952821528152862500002013-05-3195122951221547154712250002013-05-309429291069290718214280002013-05-2994969488516331652000002013-05-2492682926822352351100002013-05-2394488930732217174942100002013-05-219679193731199174950002013-05-169127691276280428041200002013-05-02916769015315126383270002013-04-24920999163926322483450002013-04-22920749161426322483540002013-04-179645941591810798550002013-04-159205491954250524722200002013-04-1191791725842584170002013-04-099635889785320810996570002013-03-12914491442602260218000002013-02-229164389323243250134830002013-02-0690290298529222400002012-11-29881528796434573399103200002012-11-2888176878843479338941200002012-11-279048790487268226821150002012-11-23890628906231063106150002012-11-13878737073707150002012-11-098472383048495644175200002012-10-3188798879313531351100002012-10-25907905261925612300002012-10-2490353903532662662400002012-10-168845888458319731972400002012-10-0290866900552724682300002012-10-0190148900472726712200002012-09-26882398779733513222500002012-09-249051390512255425542100002012-09-21905905255625561300002012-09-139103189907270923923750002012-08-0985188518400240023250002012-08-0886038333945513755410002012-08-0386486859863753605240002012-07-2785849404940192200002012-07-19876183625440732541800002012-07-18870738707334342350002012-07-178652286048368636092400002012-07-1685088840884254396131050002012-07-1386541865413543541150002012-06-29865728657235351400002012-06-2885258525387238721400002012-06-2187751868533431521100002012-06-208528984689401238431650002012-06-138643855937363521500002012-06-118386183861422142211750002012-05-258518485184380938091300002012-05-238386683866417841781300002012-05-2185331853313753751250002012-05-18838344094409150002012-05-178442484224405743750002012-04-05853283662410636541000002012-03-2988243851033692852530002012-03-2787258342141443112530002012-03-228495840753956371731350002012-03-02855855352535251100002012-03-018368583685400740071100002012-02-0787584664368529515750002012-01-2686645865853167315241500002012-01-2586458645323211610002012-01-248380754703409742540002012-01-2081188118458445841100002012-01-178245182351425342263650002012-01-128413781755440837746600002012-01-1181658094639443431650002012-01-0479575795754984981200002011-12-307875787551985198130002011-12-29764757647558245824130002011-12-088038580385468346831150002011-12-01798879884847992300002011-11-307969379693484848481150002011-11-01777560455491240002011-10-28788578854984981100002011-10-26767576755555551100002011-10-05777559725418280002011-08-2678119773195211521100002011-08-23774237742351695169170002011-08-2276576554065406170002011-07-278135881358414111300002011-06-227417415864586411300002011-04-267554575545532253221100002011-04-257481964916825555053400002011-04-206474163965853382983600002011-04-15767097545334500555000002011-04-087620176201511351131150002011-03-3174502745025525521150002011-03-17744347443455551400002011-03-167373586558651400002011-03-0374556745565435431500002011-03-017390373903558355831500002011-01-2871317713176156153200002011-01-2667256725723472332200002011-01-187300473004568756871600002011-01-1273719716560215561500002011-01-04735735552455242540002011-01-0371592713756055621200002010-12-2273173559855982300002010-12-1374185697646305533250002010-12-1073558735585455454800002010-12-0973547735475455452200002010-12-02658996589974087408150002010-12-017312570756124553241980002010-11-297508571889582650495290002010-11-19738738533653361150002010-11-10772797645452400002010-11-097674969503447934800002010-11-087914178641407240722400002010-11-037953178606397839782300002010-11-0277087770874524521350002010-10-068072779568371536714700002010-10-057906878277419741972700002010-10-04801793797379721100002010-10-018048978903371137113300002010-09-307717714453445321300002010-09-207888377821403440342400002010-09-177781277812426742672100002010-09-1476942769424454451250002010-09-097446274462500650061180002010-09-08732057320552965296150002010-09-03757527575247472100002010-09-02748317483149074907150002010-08-3176585748294896452800002010-08-307403974039507350731180002010-08-23765197651945452550002010-08-207463974639492149211550002010-08-167557454932470662100002010-08-117536575365473647361100002010-08-067425573255520652063300002010-07-26745787251535487651000002010-07-22740047245253500161750002010-07-2173417705936513384600002010-07-20707570655772577222000002010-07-077221172111537753772200002010-07-06720797207954544340002010-07-027293472068520152012160002010-06-307169934586856686900002010-06-29694269073609460942200002010-06-177140467856364551492000002010-06-1173567356500850081350002010-06-1072391713915275272500002010-06-09708647051570357032500002010-06-087281271524523516571050002010-06-077099270638566356632700002010-05-03720727107254775252100002010-04-016775661256568617731000002010-03-056765667556612661262400002010-03-03667566656366362400002010-02-1067946678600659966900002010-02-096586438683468343300002010-02-0866264874671167114800002010-01-066542565425649464942200002010-01-05708596310870465256500002009-12-157081570155521552154200002009-12-146565652965292200002009-11-1868569685695655652500002009-11-176717467174595259521400002009-11-1668526685265655652400002009-11-127039675255239417000002009-10-0170974642926063502952010002009-09-3070152605577397524460002009-09-29636296819681921200002009-09-0364605646056366361300002009-08-286190861908697269721300002009-08-19626561756774677431500002009-08-18614446083727221000002009-08-12621602573296884125900002009-07-216146561465697169711100002009-07-206033160307724572452200002009-06-265930159301742674261300002009-06-226112161121697269721250002009-06-175991959319739573952500002009-06-106088860888771180002009-06-0958685868752275221180002009-06-026096260962695569551250002009-05-225993959939717871781250002009-05-216204161692566842600002009-04-16609560956846842400002009-04-15604604696569651400002009-04-1462224622246546541100002009-04-0659868598687067061100002009-03-065656791279121250002009-03-0553983539838428421250002009-02-095770457554745741441450002009-02-06576925691776741431050002009-01-2855635556357887788712500002009-01-2258225582257257251250002009-01-215671556715760676061250002008-11-065720157201728972891150002008-10-166021959294655765572200002008-10-156095859283639563954500002008-10-0855454877877842000002008-07-3163623623515681568131500002008-07-186192961929661150002008-07-156361460368631456494600002008-07-1062562255918591821000002008-07-08642016170160225522100002008-07-0260567605676256251180002008-07-015859458594666766671180002008-06-2359589657665762300002008-06-20619936186592959293450002008-06-1661584598936631500002008-06-1358958865865821000002008-06-126094460944612761271150002008-05-156237562375578257821100002008-05-136137261372597659761100002008-04-2461086108664200002008-03-07626396157558085622000002008-02-2264256046012526662400002008-02-1164214642145255251400002008-02-0761756175571757171400002008-01-086385162951526152614600002008-01-04610716046590659063550002008-01-0359977592776146142100002007-10-18608446084456956921300002007-10-17613136131355995599150002007-10-1659655965591359131700002007-09-17610086100856561550002007-09-14594594590559052550002007-09-1260714607145655651200002007-09-1161458101615551661350002007-09-06608636075561256123750002007-08-2859514595145855851500002007-08-235994759947576257621110002007-08-205989958311606957622250002007-07-125942259422578857881250002007-07-115963459603575257462850002007-07-0958842588425895891950002007-07-02594085940857715771150002007-06-2759934590095665566541800002007-06-2659433582825754575431900002007-06-25598475875567456743600002007-06-225777577760696069150002007-06-2059275568356248578221050002007-06-1857214572146166616613000002007-05-255909659096576857681350002007-05-215959259592566356631550002007-05-15615236152353531150002007-05-1461514612535347532600002007-05-09602258955766576631950002007-05-01602846028455025502150002007-04-25612612532953291500002007-04-2461179585975802532852500002007-04-2359675585913591331500002007-04-1956556561986198150002007-03-2861658607520352032500002007-03-275953758877570357033750002007-02-2861125602575256525622000002007-02-2759953597535496549622000002007-02-265882258423566556653150002007-02-21585858085808150002007-02-085926959269555355531100002007-02-056019660196537853781300002007-02-025880658456562756272100002007-02-0159222592225555551500002007-01-316006358556853972200002007-01-265700357003594359431100002007-01-245791557915577857781100002007-01-236027560275534553451100002007-01-1660129601295365361400002007-01-115988659445467543400002007-01-05585157466582956374400002006-12-1859359579525707545352400002006-12-01573553617861783150002006-11-2160013600135353150002006-11-15583165831655915591150002006-09-07582215822155552450002006-09-065681256812575157511450002006-08-22577455675555855582400002006-08-1655709557095925921200002006-08-03565915486067573841200002006-07-3155135541356183599641000002006-07-27545585455861611100002006-07-2456094519225815814400002006-07-175624755372577157712200002006-07-115481954819602360231100002006-07-065479151686618602351700002006-07-055455456075607511000002006-06-2650571505716816681611000002006-06-16542552256476472400002006-06-1449319493197051705111000002006-05-155443854438662500002006-05-125218552185642264221500002006-04-255619456194565256521450002006-04-21545155316212621231350002006-04-125557455574574657461250002006-04-055663654525592355465650002006-04-035350353503610361031100002006-03-3055995599565156511100002006-03-285514955149579657961100002006-03-245473554735586758672100002006-03-23565563558755872200002006-03-21565565554655461100002006-03-135625549935855782300002006-02-1557671567715297529722000002006-02-1456219557945614561433000002006-02-08576576530153011350002006-01-26585585513151313300002006-01-2458558551255125150002006-01-235712557125535453541100002006-01-1757325732531353132700002006-01-125837558375513451341250002006-01-105717856552853273550002006-01-065375375935931200002006-01-0356394563945455451350002005-11-075656543754371350002005-10-075670756707528152811350002005-09-2058406584064977497711000002005-09-1356906569065211521111000002005-09-0758816572334897489731950002005-08-3156894565945249524921100002005-08-2559013590134851485111400002005-08-175678567852521400002005-08-165572854728553955393300002005-08-115483254832551755171400002005-07-22566685666851855185150002005-07-195757512551251180002005-07-1856103561035275271180002005-07-085621556215524152411800002005-07-0658755875483248321500002005-06-29589115652664841600002005-06-24567115671151425142150002005-06-2156006560065255251150002005-06-205449453949559255922300002005-06-1556035603524152411500002005-06-0158365565375144852350002005-05-2556497564975145141250002005-04-25564865548651512500002005-04-205494153788553955392500002005-04-075542155421525152512800002005-04-0553405525675723572332400002005-03-035490854908529152911200002005-03-0255149542254025252300002005-03-01551275340555335252600002005-02-28557455745155151250002005-02-25541925419254541250002005-02-245666455355001500122000002005-02-2353661536615483548311000002005-02-185572255722514151411300002005-02-155466454664530453041400002005-01-2751255125585558551250002005-01-265599155613513507227628000

N Privault

Date HighPrice LowPrice HighYield LowYield Count Amount1 2016-01-13 99082 98982 1666 1501 2 200002 2015-12-29 99183 99183 1250 1250 1 100003 2015-12-21 97952 97952 3014 3014 1 100004 2015-12-17 99141 98550 2123 1251 5 6100005 2015-12-07 98770 98770 1714 1714 2 100006 2015-12-04 98363 98118 2628 2280 2 10000

50

60

70

80

90

100

price [2005minus01minus262016minus01minus13]

Last 99082

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1310 Orange Cnty Calif bond prices

The next Figure 1311 plots the bond yield y(t T ) defined as

y(t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)y(tT ) 0 6 t 6 T

2

4

6

8

yield [2005minus01minus262016minus01minus13]

Last 1666

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1311 Orange Cnty Calif bond yields

Bond pricing in the Dothan model

In the Dothan [Dot78] model the short term interest rate process (rt)tisinR+ ismodeled according to a geometric Brownian motion

drt = micrortdt+ σrtdBt (1325)430

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

where the volatility σ gt 0 and the drift micro isin R are constant parameters and(Bt)tisinR+ is a standard Brownian motion In this model the short term inter-est rate rt remains always positive while the proportional volatility term σrtaccounts for the sensitivity of the volatility of interest rate changes to thelevel of the rate rt

On the other hand the Dothan model is the only lognormal short ratemodel that allows for an analytical formula for the zero coupon bond price

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

For convenience of notation we let p = 1minus 2microσ2 and rewrite (1325) as

drt = (1minus p)σ2

2 rtdt+ σrtdBt

with solutionrt = r0 eσBtminuspσ

2t2 t isin R+ (1326)

By the Markov property of (rt)tisinR+ the bond price P (t T ) is a functionF (t rt) of rt and time t isin [0 T ]

P (t T ) = F (t rt) = IElowast[

eminusr Ttrsds

∣∣∣ rt] 0 6 t 6 T (1327)

By computation of the conditional expectation (1327) using (106) we easilyobtain the following result cf Proposition 12 of [PP11] where the functionθ(v t) is defined in (104)

Proposition 133 The zero-coupon bond price P (t T ) = F (t rt) is givenfor all p isin R by

F (t x) (1328)

= eminusσ2p2(Tminust)8

winfin0

winfin0

eminusux exp(minus2(1 + z2)σ2u

(4zσ2u

σ2(T minus t)

4

)du

u

dz

zp+1

x gt 0

Proof By Proposition 101 cf [Yor92] Proposition 2 the probability distri-bution of the time integral

w Tminust

0eσBsminuspσ

2s2ds is given by

P(w Tminust

0eσBsminuspσ

2s2ds isin dy)

=winfinminusinfin

P(w t

0eσBsminuspσ

2s2ds isin dy Bt minus pσt2 isin dz)

431

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 12: Forward Rate Modeling

N Privault

where S(x(middot)) is the action

S(x(middot)) =w t

0L(x(s) x(s) s)ds =

w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

solves the heat equation

~partφ

partt(x t) = minus ~2

2mpart2φ

partx2 (x t) + V (x(t))φ(x t)

Given the action

S(x(middot)) =w t

0

(12m(x(s))2 + V (x(s))

)ds

Nsumi=1

((x(ti)minus x(timinus1))2

2(ti minus timinus1)2 + V (x(timinus1)))∆ti

we can rewrite the Euclidean path integral as

φ(y t) =wx(0)=x x(t)=y

Dx(middot) exp(minus1~S(x(middot))

)=

wx(0)=x x(t)=y

Dx(middot) exp(minus 1

2~

Nsumi=1

(x(ti)minus x(timinus1))2

2∆timinus 1

~

Nsumi=1

V (x(timinus1)))

= IElowast[exp

(minus1~

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

]

This type of path integral computation

φ(y t) = IElowast[exp

(minus

w t

0V (Bs)ds

) ∣∣∣B0 = xBt = y

] (1310)

is particularly useful for bond pricing as (1310) can be interpreted as theprice of a bond with short term interest rate process (rt)tisinR+ = (V (Bt)))tisinR+

conditionally to the value of the endpoint Bt = y cf (1331) below It can alsobe useful for exotic option pricing cf Chapter 10 and for risk managementThe path integral (1310) can be estimated either by closed-form expressionsusing Partial Differential Equations (PDEs) or probability densities by ap-proximations such as (conditional) Moment matching or by Monte Carloestimation from the paths of a Brownian bridge as shown in Figure 136

422

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 136 Brownian bridge

Bond pricing PDE

We assume from now on that the underlying short rate process is solution tothe stochastic differential equation

drt = micro(t rt)dt+ σ(t rt)dBt (1311)

where (Bt)tisinR+ is a standard Brownian motion under Plowast Note that specify-ing the dynamics of (rt)tisinR+ under the historical probability measure P willalso lead to a notion of market price of risk (MPoR) for the modeling of shortrates

Since all solutions of stochastic differential equations such as (1311) havethe Markov property cf eg Theorem V-32 of [Pro04] the arbitrage priceP (t T ) can be rewritten as a function F (t rt) of rt ie

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] = IElowast[

eminusr Ttrsds

∣∣∣ rt] = F (t rt)

and depends on rt only instead of depending on all information available inFt up to time t meaning that the pricing problem can now be formulated asa search for the function F (t x)

Proposition 132 (Bond pricing PDE) The bond pricing PDE for P (t T ) =F (t rt) is written as

xF (t x) = partF

partt(t x) + micro(t x)partF

partx(t x) + 1

2σ2(t x)part

2F

partx2 (t x) (1312)

423

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

t isin R+ x isin R subject to the terminal condition

F (T x) = 1 x isin R (1313)

Proof By Itocircrsquos formula we have

d(

eminusr t

0 rsdsP (t T ))

= minusrt eminusr t

0 rsdsP (t T )dt+ eminusr t

0 rsdsdP (t T )

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdsdF (t rt)

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdspartF

partx(t rt)(micro(t rt)dt+ σ(t rt)dBt)

+ eminusr t

0 rsds

(12σ

2(t rt)part2F

partx2 (t rt) + partF

partt(t rt)

)dt

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

+ eminusr t

0 rsds

(minusrtF (t rt) + micro(t rt)

partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

)dt

(1314)

Given that t 7minusrarr eminusr t

0 rsdsP (t T ) is a martingale the above expression(1314) should only contain terms in dBt (cf Corollary II-1 page 72 of[Pro04]) and all terms in dt should vanish inside (1314) This leads to theidentities

rtF (t rt)

= micro(t rt)partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

d(

eminusr t

0 rsdsP (t T ))

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

(1315a)

(1315b)

which recover (1312) Condition (1313) is due to the fact that P (T T ) = $1

In the case of an interest rate process modeled by (136) we have

micro(t x) = η(t) + λ(t)x and σ(t x) =radicδ(t) + γ(t)x

hence (1312) yields the (time dependent) affine PDE

xF (t x) = partF

partt(t x) + (η(t) + λ(t)x)partF

partx(t x) + 1

2(δ(t) + γ(t)x)part2F

partx2 (t x)

(1316)

t isin R+ x isin R By (1315b) the above proposition also shows that

424

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

dP (t T )P (t T ) = 1

P (t T )d(

er t

0 rsds eminusr t

0 rsdsP (t T ))

= 1P (t T )

(rtP (t T )dt+ e

r t0 rsdsd

(eminus

r t0 rsdsP (t T )

))= rtdt+ 1

P (t T ) er t

0 rsdsd(

eminusr t

0 rsdsP (t T ))

= rtdt+ 1F (t rt)

partF

partx(t rt)σ(t rt)dBt

= rtdt+ σ(t rt)part logFpartx

(t rt)dBt (1317)

In the Vasicek casedrt = (aminus brt)dt+ σdWt

the bond price takes the form

F (t rt) = P (t T ) = eA(Tminust)+rtC(Tminust)

where A(middot) and C(middot) are functions of time cf (1321) below and (1317)yields

dP (t T )P (t T ) = rtdtminus

σ

b(1minus eminusb(Tminust))dWt (1318)

since F (t x) = eA(Tminust)+xC(Tminust)

Note that more generally all affine short rate models as defined in Rela-tion (136) including the Vasicek model will yield a bond pricing formula ofthe form

P (t T ) = eA(Tminust)+rtC(Tminust)

cf eg sect 324 of [BM06]

Probabilistic solution of the Vasicek PDE

Next we solve the PDE (1312) written with micro(t x) = aminusbx and σ(t x) = σin the Vasicek [Vaš77] model

drt = (aminus brt)dt+ σdBt

as xF (t x) = partF

partt(t x) + (aminus bx)partF

partx(t x) + σ2

2part2F

partx2 (t x)

F (T x) = 1(1319)

by a direct computation of the conditional expectation

425

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

F (t rt) = P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] (1320)

Recall that in this model the short rate (rt)tisinR+ has the expression

rt = g(t) +w t

0h(t s)dBs = r0 eminusbt + a

b(1minus eminusbt) + σ

w t

0eminusb(tminuss)dBs

whereg(t) = r0 eminusbt + a

b(1minus eminusbt) t isin R+

andh(t s) = σ eminusb(tminuss) 0 6 s 6 t

are deterministic functions

Letting uort = max(u t) using the fact that Wiener integrals are Gaussianrandom variables and the Gaussian moment generating function we have

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r Tt

(g(s)+r s

0 h(su)dBu)ds∣∣∣ Ft]

= exp(minus

w T

tg(s)ds

)IElowast[

eminusr Tt

r s0 h(su)dBuds

∣∣∣ Ft]= exp

(minus

w T

tg(s)ds

)IElowast[

eminusr T

0r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

uorth(s u)dsdBu

)IElowast[

eminusr Tt

r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu + 1

2w T

t

(w T

uh(s u)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

w t

0

w T

teminusb(sminusu)dsdBu

)times exp

(σ2

2w T

t

(w T

ueminusb(sminusu)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

b(1minus eminusb(Tminust))

w t

0eminusb(tminusu)dBu

)times exp

(σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)

426

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= exp(minusrtb

(1minus eminusb(Tminust)) + 1b

(1minus eminusb(Tminust))(r0 eminusbt + a

b(1minus eminusbt)

))times exp

(minus

w T

t

(r0 eminusbs + a

b(1minus eminusbs)

)ds+ σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)= eA(Tminust)+rtC(Tminust) (1321)

whereC(T minus t) = minus1

b(1minus eminusb(Tminust)) (1322)

and

A(T minus t) = 4abminus 3σ2

4b3 + σ2 minus 2ab2b2 (T minus t) + σ2 minus ab

b3eminusb(Tminust)minus σ2

4b3 eminus2b(Tminust)

(1323)

Analytical solution of the Vasicek PDE

In order to solve the PDE (1319) analytically we may look for a solution ofthe form

F (t x) = eA(Tminust)+xC(Tminust) (1324)

where A(middot) and C(middot) are functions to be determined under the conditionsA(0) = 0 and C(0) = 0 Substituting (1324) into the PDE (1312) with theVasicek coefficients micro(t x) = (aminus bx) and σ(t x) = σ shows that

x eA(Tminust)+xC(Tminust) = minus(Aprime(T minus t)minus xC prime(T minus t)) eA(Tminust)+xC(Tminust)

+(aminus bx)C(T minus t) eA(Tminust)+xC(Tminust)

+12σ

2C2(T minus t) eA(Tminust)+xC(Tminust)

ie

x = minusAprime(T minus t) + xC prime(T minus t) + (aminus bx)C(T minus t) + 12σ

2C2(T minus t)

By identification of terms for x = 0 and x 6= 0 this yields the system ofRiccati and linear differential equations

Aprime(s) = aC(s) + σ2

2 C2(s)

C prime(s) = 1 + bC(s)

which can be solved to recover the above value of P (t T ) = F (t rt)

427

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Vasicek Bond Price Simulations

In this section we consider again the Vasicek model in which the short rate(rt)tisinR+ is solution to (131) Figure 137 presents a random simulation oft 7minusrarr P (t T ) in the same Vasicek model The graph of the correspondingdeterministic zero coupon bond price obtained for a = b = σ = 0 is alsoshown on the Figure 137

03

04

05

06

07

08

09

1

11

0 5 10 15 20

Fig 137 Graphs of t 7rarr F (t rt) = P (t T ) vs t 7rarr eminusr0(Tminust)

Figure 138 presents a random simulation of t 7minusrarr P (t T ) for a (non-zero)coupon bond with price Pc(t T ) = ec(Tminust)P (t T ) and coupon rate c gt 00 6 t 6 T

10000

10200

10400

10600

10800

0 5 10 15 20

Fig 138 Graph of t 7rarr F (t rt) = P (t T ) for a bond with a 23 coupon

The simulation of Figure 138 can be compared to the coupon bond marketdata of Figure 139 below

428

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 139 Bond price graph with maturity 011808 and coupon rate 625

See Exercise 133 for a bond pricing formula in the CIR model

Zero coupon bond price and yield data

The following zero coupon bond price was downloaded at EMMA fromthe Municipal Securities Rulemaking Board

ORANGE CNTY CALIF PENSION OBLIG CAP APPREC-TAXABLE-REF-SER A (CA)CUSIP 68428LBB9Dated Date 06121996 (June 12 1996)Maturity Date 09012016 (September 1st 2016)Interest Rate 00 Principal Amount at Issuance $26056000Initial Offering Price 19465

library(quantmod)bondprice lt- readtable(bond_data_Rtxtcolnames = c(DateHighPriceLowPrice

HighYieldLowYieldCountAmount))head(bondprice)time lt- asPOSIXct(bondprice$Date format = Y-m-d)price lt- xts(x = bondprice$HighPrice orderby = time)yield lt- xts(x = bondprice$HighYield orderby = time)chartSeries(priceupcol=bluetheme=white)chartSeries(yieldupcol=bluetheme=white)

429

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

2016-01-139908298982166615012200002015-12-2999183991831251251100002015-12-219795297952301430141100002015-12-179914198552123125156100002015-12-0798779877171417142100002015-12-04983639811826282282100002015-11-1898659865176817672200002015-11-1798306983062201222200002015-10-029865998514167150641000002015-09-099898210721071250002015-09-089888498043204311583300002015-07-20975059628345922992200002015-07-1698397983971461461250002015-07-15988729887210211021150002015-07-109768997689208420841300002015-06-1898123980231686163300002015-06-179884397034254313250002015-06-15983698299143113795850002015-06-0998016980161651651200002015-05-21978269772618321752500002015-05-189849498494119111912300002015-05-1598559835130311433300002015-05-129776997769175117511150002015-04-279834898348125112512400002015-04-249830398303128212821250002015-04-239760797607181318131650002015-04-1498649864111100002015-03-20983897981428114373850002015-03-199785197751159151836750002015-03-11981981391323600002015-02-27978297695156914832400002015-02-139858298357108309343750002015-02-119857698226116609343300002015-01-15983983106710671550002015-01-12989598950650652600002015-01-099898123212321600002014-12-11983197396155131600002014-12-109641696416214421442800002014-12-059804498044114811481500002014-12-049728897288159815981500002014-11-219782297822125125150002014-11-209642294353320733150002014-11-0797979964582014113861250002014-10-299650496504195619561150002014-10-1498149977841201123200002014-10-0797401974011396139611000002014-10-0397991970261598107353500002014-09-3097446962851991135842200002014-09-1997331972311455140221000002014-09-18964796419186221000002014-09-15969956732278161943000002014-09-119555952252823382200002014-08-199711995596223614495750002014-08-139528695286238623861300002014-08-069559395593220522051350002014-08-0197951977261114100341000002014-07-30976975122311742200002014-07-239603695036244919434500002014-07-1697494951246912526750002014-07-1497182969571461135141000002014-07-11956995572144208421000002014-05-209531495314212321232300002014-05-169372393723286628661300002014-04-299701396713143913052200002014-04-1695169516211521151200002014-04-07976339683313510042500002014-04-029577393974260718073750002014-02-2893293128932852200002014-02-2791759175348634861100002014-02-21956959269530417584400002014-02-189438593885251122992900002014-02-139310193101284228421450002013-11-159393262726271500002013-11-14915915320432041500002013-11-12925999171312127712200002013-10-319427294272210121013450002013-10-309232392323284828481100002013-10-299599942521011452200002013-10-259080790807342934291100002013-10-219161691491314230933750002013-08-0791008910083113112100002013-08-05894258942536813681150002013-07-229494394018216812800002013-07-1795167930262339162900002013-07-16951549515416161500002013-07-12944129441218518511000002013-06-28940049340421719663400002013-06-269471892567245417213500002013-06-11925692562422422120002013-06-05911119111129072907150002013-06-0495282952821528152862500002013-05-3195122951221547154712250002013-05-309429291069290718214280002013-05-2994969488516331652000002013-05-2492682926822352351100002013-05-2394488930732217174942100002013-05-219679193731199174950002013-05-169127691276280428041200002013-05-02916769015315126383270002013-04-24920999163926322483450002013-04-22920749161426322483540002013-04-179645941591810798550002013-04-159205491954250524722200002013-04-1191791725842584170002013-04-099635889785320810996570002013-03-12914491442602260218000002013-02-229164389323243250134830002013-02-0690290298529222400002012-11-29881528796434573399103200002012-11-2888176878843479338941200002012-11-279048790487268226821150002012-11-23890628906231063106150002012-11-13878737073707150002012-11-098472383048495644175200002012-10-3188798879313531351100002012-10-25907905261925612300002012-10-2490353903532662662400002012-10-168845888458319731972400002012-10-0290866900552724682300002012-10-0190148900472726712200002012-09-26882398779733513222500002012-09-249051390512255425542100002012-09-21905905255625561300002012-09-139103189907270923923750002012-08-0985188518400240023250002012-08-0886038333945513755410002012-08-0386486859863753605240002012-07-2785849404940192200002012-07-19876183625440732541800002012-07-18870738707334342350002012-07-178652286048368636092400002012-07-1685088840884254396131050002012-07-1386541865413543541150002012-06-29865728657235351400002012-06-2885258525387238721400002012-06-2187751868533431521100002012-06-208528984689401238431650002012-06-138643855937363521500002012-06-118386183861422142211750002012-05-258518485184380938091300002012-05-238386683866417841781300002012-05-2185331853313753751250002012-05-18838344094409150002012-05-178442484224405743750002012-04-05853283662410636541000002012-03-2988243851033692852530002012-03-2787258342141443112530002012-03-228495840753956371731350002012-03-02855855352535251100002012-03-018368583685400740071100002012-02-0787584664368529515750002012-01-2686645865853167315241500002012-01-2586458645323211610002012-01-248380754703409742540002012-01-2081188118458445841100002012-01-178245182351425342263650002012-01-128413781755440837746600002012-01-1181658094639443431650002012-01-0479575795754984981200002011-12-307875787551985198130002011-12-29764757647558245824130002011-12-088038580385468346831150002011-12-01798879884847992300002011-11-307969379693484848481150002011-11-01777560455491240002011-10-28788578854984981100002011-10-26767576755555551100002011-10-05777559725418280002011-08-2678119773195211521100002011-08-23774237742351695169170002011-08-2276576554065406170002011-07-278135881358414111300002011-06-227417415864586411300002011-04-267554575545532253221100002011-04-257481964916825555053400002011-04-206474163965853382983600002011-04-15767097545334500555000002011-04-087620176201511351131150002011-03-3174502745025525521150002011-03-17744347443455551400002011-03-167373586558651400002011-03-0374556745565435431500002011-03-017390373903558355831500002011-01-2871317713176156153200002011-01-2667256725723472332200002011-01-187300473004568756871600002011-01-1273719716560215561500002011-01-04735735552455242540002011-01-0371592713756055621200002010-12-2273173559855982300002010-12-1374185697646305533250002010-12-1073558735585455454800002010-12-0973547735475455452200002010-12-02658996589974087408150002010-12-017312570756124553241980002010-11-297508571889582650495290002010-11-19738738533653361150002010-11-10772797645452400002010-11-097674969503447934800002010-11-087914178641407240722400002010-11-037953178606397839782300002010-11-0277087770874524521350002010-10-068072779568371536714700002010-10-057906878277419741972700002010-10-04801793797379721100002010-10-018048978903371137113300002010-09-307717714453445321300002010-09-207888377821403440342400002010-09-177781277812426742672100002010-09-1476942769424454451250002010-09-097446274462500650061180002010-09-08732057320552965296150002010-09-03757527575247472100002010-09-02748317483149074907150002010-08-3176585748294896452800002010-08-307403974039507350731180002010-08-23765197651945452550002010-08-207463974639492149211550002010-08-167557454932470662100002010-08-117536575365473647361100002010-08-067425573255520652063300002010-07-26745787251535487651000002010-07-22740047245253500161750002010-07-2173417705936513384600002010-07-20707570655772577222000002010-07-077221172111537753772200002010-07-06720797207954544340002010-07-027293472068520152012160002010-06-307169934586856686900002010-06-29694269073609460942200002010-06-177140467856364551492000002010-06-1173567356500850081350002010-06-1072391713915275272500002010-06-09708647051570357032500002010-06-087281271524523516571050002010-06-077099270638566356632700002010-05-03720727107254775252100002010-04-016775661256568617731000002010-03-056765667556612661262400002010-03-03667566656366362400002010-02-1067946678600659966900002010-02-096586438683468343300002010-02-0866264874671167114800002010-01-066542565425649464942200002010-01-05708596310870465256500002009-12-157081570155521552154200002009-12-146565652965292200002009-11-1868569685695655652500002009-11-176717467174595259521400002009-11-1668526685265655652400002009-11-127039675255239417000002009-10-0170974642926063502952010002009-09-3070152605577397524460002009-09-29636296819681921200002009-09-0364605646056366361300002009-08-286190861908697269721300002009-08-19626561756774677431500002009-08-18614446083727221000002009-08-12621602573296884125900002009-07-216146561465697169711100002009-07-206033160307724572452200002009-06-265930159301742674261300002009-06-226112161121697269721250002009-06-175991959319739573952500002009-06-106088860888771180002009-06-0958685868752275221180002009-06-026096260962695569551250002009-05-225993959939717871781250002009-05-216204161692566842600002009-04-16609560956846842400002009-04-15604604696569651400002009-04-1462224622246546541100002009-04-0659868598687067061100002009-03-065656791279121250002009-03-0553983539838428421250002009-02-095770457554745741441450002009-02-06576925691776741431050002009-01-2855635556357887788712500002009-01-2258225582257257251250002009-01-215671556715760676061250002008-11-065720157201728972891150002008-10-166021959294655765572200002008-10-156095859283639563954500002008-10-0855454877877842000002008-07-3163623623515681568131500002008-07-186192961929661150002008-07-156361460368631456494600002008-07-1062562255918591821000002008-07-08642016170160225522100002008-07-0260567605676256251180002008-07-015859458594666766671180002008-06-2359589657665762300002008-06-20619936186592959293450002008-06-1661584598936631500002008-06-1358958865865821000002008-06-126094460944612761271150002008-05-156237562375578257821100002008-05-136137261372597659761100002008-04-2461086108664200002008-03-07626396157558085622000002008-02-2264256046012526662400002008-02-1164214642145255251400002008-02-0761756175571757171400002008-01-086385162951526152614600002008-01-04610716046590659063550002008-01-0359977592776146142100002007-10-18608446084456956921300002007-10-17613136131355995599150002007-10-1659655965591359131700002007-09-17610086100856561550002007-09-14594594590559052550002007-09-1260714607145655651200002007-09-1161458101615551661350002007-09-06608636075561256123750002007-08-2859514595145855851500002007-08-235994759947576257621110002007-08-205989958311606957622250002007-07-125942259422578857881250002007-07-115963459603575257462850002007-07-0958842588425895891950002007-07-02594085940857715771150002007-06-2759934590095665566541800002007-06-2659433582825754575431900002007-06-25598475875567456743600002007-06-225777577760696069150002007-06-2059275568356248578221050002007-06-1857214572146166616613000002007-05-255909659096576857681350002007-05-215959259592566356631550002007-05-15615236152353531150002007-05-1461514612535347532600002007-05-09602258955766576631950002007-05-01602846028455025502150002007-04-25612612532953291500002007-04-2461179585975802532852500002007-04-2359675585913591331500002007-04-1956556561986198150002007-03-2861658607520352032500002007-03-275953758877570357033750002007-02-2861125602575256525622000002007-02-2759953597535496549622000002007-02-265882258423566556653150002007-02-21585858085808150002007-02-085926959269555355531100002007-02-056019660196537853781300002007-02-025880658456562756272100002007-02-0159222592225555551500002007-01-316006358556853972200002007-01-265700357003594359431100002007-01-245791557915577857781100002007-01-236027560275534553451100002007-01-1660129601295365361400002007-01-115988659445467543400002007-01-05585157466582956374400002006-12-1859359579525707545352400002006-12-01573553617861783150002006-11-2160013600135353150002006-11-15583165831655915591150002006-09-07582215822155552450002006-09-065681256812575157511450002006-08-22577455675555855582400002006-08-1655709557095925921200002006-08-03565915486067573841200002006-07-3155135541356183599641000002006-07-27545585455861611100002006-07-2456094519225815814400002006-07-175624755372577157712200002006-07-115481954819602360231100002006-07-065479151686618602351700002006-07-055455456075607511000002006-06-2650571505716816681611000002006-06-16542552256476472400002006-06-1449319493197051705111000002006-05-155443854438662500002006-05-125218552185642264221500002006-04-255619456194565256521450002006-04-21545155316212621231350002006-04-125557455574574657461250002006-04-055663654525592355465650002006-04-035350353503610361031100002006-03-3055995599565156511100002006-03-285514955149579657961100002006-03-245473554735586758672100002006-03-23565563558755872200002006-03-21565565554655461100002006-03-135625549935855782300002006-02-1557671567715297529722000002006-02-1456219557945614561433000002006-02-08576576530153011350002006-01-26585585513151313300002006-01-2458558551255125150002006-01-235712557125535453541100002006-01-1757325732531353132700002006-01-125837558375513451341250002006-01-105717856552853273550002006-01-065375375935931200002006-01-0356394563945455451350002005-11-075656543754371350002005-10-075670756707528152811350002005-09-2058406584064977497711000002005-09-1356906569065211521111000002005-09-0758816572334897489731950002005-08-3156894565945249524921100002005-08-2559013590134851485111400002005-08-175678567852521400002005-08-165572854728553955393300002005-08-115483254832551755171400002005-07-22566685666851855185150002005-07-195757512551251180002005-07-1856103561035275271180002005-07-085621556215524152411800002005-07-0658755875483248321500002005-06-29589115652664841600002005-06-24567115671151425142150002005-06-2156006560065255251150002005-06-205449453949559255922300002005-06-1556035603524152411500002005-06-0158365565375144852350002005-05-2556497564975145141250002005-04-25564865548651512500002005-04-205494153788553955392500002005-04-075542155421525152512800002005-04-0553405525675723572332400002005-03-035490854908529152911200002005-03-0255149542254025252300002005-03-01551275340555335252600002005-02-28557455745155151250002005-02-25541925419254541250002005-02-245666455355001500122000002005-02-2353661536615483548311000002005-02-185572255722514151411300002005-02-155466454664530453041400002005-01-2751255125585558551250002005-01-265599155613513507227628000

N Privault

Date HighPrice LowPrice HighYield LowYield Count Amount1 2016-01-13 99082 98982 1666 1501 2 200002 2015-12-29 99183 99183 1250 1250 1 100003 2015-12-21 97952 97952 3014 3014 1 100004 2015-12-17 99141 98550 2123 1251 5 6100005 2015-12-07 98770 98770 1714 1714 2 100006 2015-12-04 98363 98118 2628 2280 2 10000

50

60

70

80

90

100

price [2005minus01minus262016minus01minus13]

Last 99082

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1310 Orange Cnty Calif bond prices

The next Figure 1311 plots the bond yield y(t T ) defined as

y(t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)y(tT ) 0 6 t 6 T

2

4

6

8

yield [2005minus01minus262016minus01minus13]

Last 1666

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1311 Orange Cnty Calif bond yields

Bond pricing in the Dothan model

In the Dothan [Dot78] model the short term interest rate process (rt)tisinR+ ismodeled according to a geometric Brownian motion

drt = micrortdt+ σrtdBt (1325)430

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

where the volatility σ gt 0 and the drift micro isin R are constant parameters and(Bt)tisinR+ is a standard Brownian motion In this model the short term inter-est rate rt remains always positive while the proportional volatility term σrtaccounts for the sensitivity of the volatility of interest rate changes to thelevel of the rate rt

On the other hand the Dothan model is the only lognormal short ratemodel that allows for an analytical formula for the zero coupon bond price

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

For convenience of notation we let p = 1minus 2microσ2 and rewrite (1325) as

drt = (1minus p)σ2

2 rtdt+ σrtdBt

with solutionrt = r0 eσBtminuspσ

2t2 t isin R+ (1326)

By the Markov property of (rt)tisinR+ the bond price P (t T ) is a functionF (t rt) of rt and time t isin [0 T ]

P (t T ) = F (t rt) = IElowast[

eminusr Ttrsds

∣∣∣ rt] 0 6 t 6 T (1327)

By computation of the conditional expectation (1327) using (106) we easilyobtain the following result cf Proposition 12 of [PP11] where the functionθ(v t) is defined in (104)

Proposition 133 The zero-coupon bond price P (t T ) = F (t rt) is givenfor all p isin R by

F (t x) (1328)

= eminusσ2p2(Tminust)8

winfin0

winfin0

eminusux exp(minus2(1 + z2)σ2u

(4zσ2u

σ2(T minus t)

4

)du

u

dz

zp+1

x gt 0

Proof By Proposition 101 cf [Yor92] Proposition 2 the probability distri-bution of the time integral

w Tminust

0eσBsminuspσ

2s2ds is given by

P(w Tminust

0eσBsminuspσ

2s2ds isin dy)

=winfinminusinfin

P(w t

0eσBsminuspσ

2s2ds isin dy Bt minus pσt2 isin dz)

431

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 13: Forward Rate Modeling

Forward Rate Modeling

Fig 136 Brownian bridge

Bond pricing PDE

We assume from now on that the underlying short rate process is solution tothe stochastic differential equation

drt = micro(t rt)dt+ σ(t rt)dBt (1311)

where (Bt)tisinR+ is a standard Brownian motion under Plowast Note that specify-ing the dynamics of (rt)tisinR+ under the historical probability measure P willalso lead to a notion of market price of risk (MPoR) for the modeling of shortrates

Since all solutions of stochastic differential equations such as (1311) havethe Markov property cf eg Theorem V-32 of [Pro04] the arbitrage priceP (t T ) can be rewritten as a function F (t rt) of rt ie

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] = IElowast[

eminusr Ttrsds

∣∣∣ rt] = F (t rt)

and depends on rt only instead of depending on all information available inFt up to time t meaning that the pricing problem can now be formulated asa search for the function F (t x)

Proposition 132 (Bond pricing PDE) The bond pricing PDE for P (t T ) =F (t rt) is written as

xF (t x) = partF

partt(t x) + micro(t x)partF

partx(t x) + 1

2σ2(t x)part

2F

partx2 (t x) (1312)

423

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

t isin R+ x isin R subject to the terminal condition

F (T x) = 1 x isin R (1313)

Proof By Itocircrsquos formula we have

d(

eminusr t

0 rsdsP (t T ))

= minusrt eminusr t

0 rsdsP (t T )dt+ eminusr t

0 rsdsdP (t T )

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdsdF (t rt)

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdspartF

partx(t rt)(micro(t rt)dt+ σ(t rt)dBt)

+ eminusr t

0 rsds

(12σ

2(t rt)part2F

partx2 (t rt) + partF

partt(t rt)

)dt

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

+ eminusr t

0 rsds

(minusrtF (t rt) + micro(t rt)

partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

)dt

(1314)

Given that t 7minusrarr eminusr t

0 rsdsP (t T ) is a martingale the above expression(1314) should only contain terms in dBt (cf Corollary II-1 page 72 of[Pro04]) and all terms in dt should vanish inside (1314) This leads to theidentities

rtF (t rt)

= micro(t rt)partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

d(

eminusr t

0 rsdsP (t T ))

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

(1315a)

(1315b)

which recover (1312) Condition (1313) is due to the fact that P (T T ) = $1

In the case of an interest rate process modeled by (136) we have

micro(t x) = η(t) + λ(t)x and σ(t x) =radicδ(t) + γ(t)x

hence (1312) yields the (time dependent) affine PDE

xF (t x) = partF

partt(t x) + (η(t) + λ(t)x)partF

partx(t x) + 1

2(δ(t) + γ(t)x)part2F

partx2 (t x)

(1316)

t isin R+ x isin R By (1315b) the above proposition also shows that

424

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

dP (t T )P (t T ) = 1

P (t T )d(

er t

0 rsds eminusr t

0 rsdsP (t T ))

= 1P (t T )

(rtP (t T )dt+ e

r t0 rsdsd

(eminus

r t0 rsdsP (t T )

))= rtdt+ 1

P (t T ) er t

0 rsdsd(

eminusr t

0 rsdsP (t T ))

= rtdt+ 1F (t rt)

partF

partx(t rt)σ(t rt)dBt

= rtdt+ σ(t rt)part logFpartx

(t rt)dBt (1317)

In the Vasicek casedrt = (aminus brt)dt+ σdWt

the bond price takes the form

F (t rt) = P (t T ) = eA(Tminust)+rtC(Tminust)

where A(middot) and C(middot) are functions of time cf (1321) below and (1317)yields

dP (t T )P (t T ) = rtdtminus

σ

b(1minus eminusb(Tminust))dWt (1318)

since F (t x) = eA(Tminust)+xC(Tminust)

Note that more generally all affine short rate models as defined in Rela-tion (136) including the Vasicek model will yield a bond pricing formula ofthe form

P (t T ) = eA(Tminust)+rtC(Tminust)

cf eg sect 324 of [BM06]

Probabilistic solution of the Vasicek PDE

Next we solve the PDE (1312) written with micro(t x) = aminusbx and σ(t x) = σin the Vasicek [Vaš77] model

drt = (aminus brt)dt+ σdBt

as xF (t x) = partF

partt(t x) + (aminus bx)partF

partx(t x) + σ2

2part2F

partx2 (t x)

F (T x) = 1(1319)

by a direct computation of the conditional expectation

425

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

F (t rt) = P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] (1320)

Recall that in this model the short rate (rt)tisinR+ has the expression

rt = g(t) +w t

0h(t s)dBs = r0 eminusbt + a

b(1minus eminusbt) + σ

w t

0eminusb(tminuss)dBs

whereg(t) = r0 eminusbt + a

b(1minus eminusbt) t isin R+

andh(t s) = σ eminusb(tminuss) 0 6 s 6 t

are deterministic functions

Letting uort = max(u t) using the fact that Wiener integrals are Gaussianrandom variables and the Gaussian moment generating function we have

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r Tt

(g(s)+r s

0 h(su)dBu)ds∣∣∣ Ft]

= exp(minus

w T

tg(s)ds

)IElowast[

eminusr Tt

r s0 h(su)dBuds

∣∣∣ Ft]= exp

(minus

w T

tg(s)ds

)IElowast[

eminusr T

0r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

uorth(s u)dsdBu

)IElowast[

eminusr Tt

r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu + 1

2w T

t

(w T

uh(s u)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

w t

0

w T

teminusb(sminusu)dsdBu

)times exp

(σ2

2w T

t

(w T

ueminusb(sminusu)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

b(1minus eminusb(Tminust))

w t

0eminusb(tminusu)dBu

)times exp

(σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)

426

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= exp(minusrtb

(1minus eminusb(Tminust)) + 1b

(1minus eminusb(Tminust))(r0 eminusbt + a

b(1minus eminusbt)

))times exp

(minus

w T

t

(r0 eminusbs + a

b(1minus eminusbs)

)ds+ σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)= eA(Tminust)+rtC(Tminust) (1321)

whereC(T minus t) = minus1

b(1minus eminusb(Tminust)) (1322)

and

A(T minus t) = 4abminus 3σ2

4b3 + σ2 minus 2ab2b2 (T minus t) + σ2 minus ab

b3eminusb(Tminust)minus σ2

4b3 eminus2b(Tminust)

(1323)

Analytical solution of the Vasicek PDE

In order to solve the PDE (1319) analytically we may look for a solution ofthe form

F (t x) = eA(Tminust)+xC(Tminust) (1324)

where A(middot) and C(middot) are functions to be determined under the conditionsA(0) = 0 and C(0) = 0 Substituting (1324) into the PDE (1312) with theVasicek coefficients micro(t x) = (aminus bx) and σ(t x) = σ shows that

x eA(Tminust)+xC(Tminust) = minus(Aprime(T minus t)minus xC prime(T minus t)) eA(Tminust)+xC(Tminust)

+(aminus bx)C(T minus t) eA(Tminust)+xC(Tminust)

+12σ

2C2(T minus t) eA(Tminust)+xC(Tminust)

ie

x = minusAprime(T minus t) + xC prime(T minus t) + (aminus bx)C(T minus t) + 12σ

2C2(T minus t)

By identification of terms for x = 0 and x 6= 0 this yields the system ofRiccati and linear differential equations

Aprime(s) = aC(s) + σ2

2 C2(s)

C prime(s) = 1 + bC(s)

which can be solved to recover the above value of P (t T ) = F (t rt)

427

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Vasicek Bond Price Simulations

In this section we consider again the Vasicek model in which the short rate(rt)tisinR+ is solution to (131) Figure 137 presents a random simulation oft 7minusrarr P (t T ) in the same Vasicek model The graph of the correspondingdeterministic zero coupon bond price obtained for a = b = σ = 0 is alsoshown on the Figure 137

03

04

05

06

07

08

09

1

11

0 5 10 15 20

Fig 137 Graphs of t 7rarr F (t rt) = P (t T ) vs t 7rarr eminusr0(Tminust)

Figure 138 presents a random simulation of t 7minusrarr P (t T ) for a (non-zero)coupon bond with price Pc(t T ) = ec(Tminust)P (t T ) and coupon rate c gt 00 6 t 6 T

10000

10200

10400

10600

10800

0 5 10 15 20

Fig 138 Graph of t 7rarr F (t rt) = P (t T ) for a bond with a 23 coupon

The simulation of Figure 138 can be compared to the coupon bond marketdata of Figure 139 below

428

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 139 Bond price graph with maturity 011808 and coupon rate 625

See Exercise 133 for a bond pricing formula in the CIR model

Zero coupon bond price and yield data

The following zero coupon bond price was downloaded at EMMA fromthe Municipal Securities Rulemaking Board

ORANGE CNTY CALIF PENSION OBLIG CAP APPREC-TAXABLE-REF-SER A (CA)CUSIP 68428LBB9Dated Date 06121996 (June 12 1996)Maturity Date 09012016 (September 1st 2016)Interest Rate 00 Principal Amount at Issuance $26056000Initial Offering Price 19465

library(quantmod)bondprice lt- readtable(bond_data_Rtxtcolnames = c(DateHighPriceLowPrice

HighYieldLowYieldCountAmount))head(bondprice)time lt- asPOSIXct(bondprice$Date format = Y-m-d)price lt- xts(x = bondprice$HighPrice orderby = time)yield lt- xts(x = bondprice$HighYield orderby = time)chartSeries(priceupcol=bluetheme=white)chartSeries(yieldupcol=bluetheme=white)

429

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

2016-01-139908298982166615012200002015-12-2999183991831251251100002015-12-219795297952301430141100002015-12-179914198552123125156100002015-12-0798779877171417142100002015-12-04983639811826282282100002015-11-1898659865176817672200002015-11-1798306983062201222200002015-10-029865998514167150641000002015-09-099898210721071250002015-09-089888498043204311583300002015-07-20975059628345922992200002015-07-1698397983971461461250002015-07-15988729887210211021150002015-07-109768997689208420841300002015-06-1898123980231686163300002015-06-179884397034254313250002015-06-15983698299143113795850002015-06-0998016980161651651200002015-05-21978269772618321752500002015-05-189849498494119111912300002015-05-1598559835130311433300002015-05-129776997769175117511150002015-04-279834898348125112512400002015-04-249830398303128212821250002015-04-239760797607181318131650002015-04-1498649864111100002015-03-20983897981428114373850002015-03-199785197751159151836750002015-03-11981981391323600002015-02-27978297695156914832400002015-02-139858298357108309343750002015-02-119857698226116609343300002015-01-15983983106710671550002015-01-12989598950650652600002015-01-099898123212321600002014-12-11983197396155131600002014-12-109641696416214421442800002014-12-059804498044114811481500002014-12-049728897288159815981500002014-11-219782297822125125150002014-11-209642294353320733150002014-11-0797979964582014113861250002014-10-299650496504195619561150002014-10-1498149977841201123200002014-10-0797401974011396139611000002014-10-0397991970261598107353500002014-09-3097446962851991135842200002014-09-1997331972311455140221000002014-09-18964796419186221000002014-09-15969956732278161943000002014-09-119555952252823382200002014-08-199711995596223614495750002014-08-139528695286238623861300002014-08-069559395593220522051350002014-08-0197951977261114100341000002014-07-30976975122311742200002014-07-239603695036244919434500002014-07-1697494951246912526750002014-07-1497182969571461135141000002014-07-11956995572144208421000002014-05-209531495314212321232300002014-05-169372393723286628661300002014-04-299701396713143913052200002014-04-1695169516211521151200002014-04-07976339683313510042500002014-04-029577393974260718073750002014-02-2893293128932852200002014-02-2791759175348634861100002014-02-21956959269530417584400002014-02-189438593885251122992900002014-02-139310193101284228421450002013-11-159393262726271500002013-11-14915915320432041500002013-11-12925999171312127712200002013-10-319427294272210121013450002013-10-309232392323284828481100002013-10-299599942521011452200002013-10-259080790807342934291100002013-10-219161691491314230933750002013-08-0791008910083113112100002013-08-05894258942536813681150002013-07-229494394018216812800002013-07-1795167930262339162900002013-07-16951549515416161500002013-07-12944129441218518511000002013-06-28940049340421719663400002013-06-269471892567245417213500002013-06-11925692562422422120002013-06-05911119111129072907150002013-06-0495282952821528152862500002013-05-3195122951221547154712250002013-05-309429291069290718214280002013-05-2994969488516331652000002013-05-2492682926822352351100002013-05-2394488930732217174942100002013-05-219679193731199174950002013-05-169127691276280428041200002013-05-02916769015315126383270002013-04-24920999163926322483450002013-04-22920749161426322483540002013-04-179645941591810798550002013-04-159205491954250524722200002013-04-1191791725842584170002013-04-099635889785320810996570002013-03-12914491442602260218000002013-02-229164389323243250134830002013-02-0690290298529222400002012-11-29881528796434573399103200002012-11-2888176878843479338941200002012-11-279048790487268226821150002012-11-23890628906231063106150002012-11-13878737073707150002012-11-098472383048495644175200002012-10-3188798879313531351100002012-10-25907905261925612300002012-10-2490353903532662662400002012-10-168845888458319731972400002012-10-0290866900552724682300002012-10-0190148900472726712200002012-09-26882398779733513222500002012-09-249051390512255425542100002012-09-21905905255625561300002012-09-139103189907270923923750002012-08-0985188518400240023250002012-08-0886038333945513755410002012-08-0386486859863753605240002012-07-2785849404940192200002012-07-19876183625440732541800002012-07-18870738707334342350002012-07-178652286048368636092400002012-07-1685088840884254396131050002012-07-1386541865413543541150002012-06-29865728657235351400002012-06-2885258525387238721400002012-06-2187751868533431521100002012-06-208528984689401238431650002012-06-138643855937363521500002012-06-118386183861422142211750002012-05-258518485184380938091300002012-05-238386683866417841781300002012-05-2185331853313753751250002012-05-18838344094409150002012-05-178442484224405743750002012-04-05853283662410636541000002012-03-2988243851033692852530002012-03-2787258342141443112530002012-03-228495840753956371731350002012-03-02855855352535251100002012-03-018368583685400740071100002012-02-0787584664368529515750002012-01-2686645865853167315241500002012-01-2586458645323211610002012-01-248380754703409742540002012-01-2081188118458445841100002012-01-178245182351425342263650002012-01-128413781755440837746600002012-01-1181658094639443431650002012-01-0479575795754984981200002011-12-307875787551985198130002011-12-29764757647558245824130002011-12-088038580385468346831150002011-12-01798879884847992300002011-11-307969379693484848481150002011-11-01777560455491240002011-10-28788578854984981100002011-10-26767576755555551100002011-10-05777559725418280002011-08-2678119773195211521100002011-08-23774237742351695169170002011-08-2276576554065406170002011-07-278135881358414111300002011-06-227417415864586411300002011-04-267554575545532253221100002011-04-257481964916825555053400002011-04-206474163965853382983600002011-04-15767097545334500555000002011-04-087620176201511351131150002011-03-3174502745025525521150002011-03-17744347443455551400002011-03-167373586558651400002011-03-0374556745565435431500002011-03-017390373903558355831500002011-01-2871317713176156153200002011-01-2667256725723472332200002011-01-187300473004568756871600002011-01-1273719716560215561500002011-01-04735735552455242540002011-01-0371592713756055621200002010-12-2273173559855982300002010-12-1374185697646305533250002010-12-1073558735585455454800002010-12-0973547735475455452200002010-12-02658996589974087408150002010-12-017312570756124553241980002010-11-297508571889582650495290002010-11-19738738533653361150002010-11-10772797645452400002010-11-097674969503447934800002010-11-087914178641407240722400002010-11-037953178606397839782300002010-11-0277087770874524521350002010-10-068072779568371536714700002010-10-057906878277419741972700002010-10-04801793797379721100002010-10-018048978903371137113300002010-09-307717714453445321300002010-09-207888377821403440342400002010-09-177781277812426742672100002010-09-1476942769424454451250002010-09-097446274462500650061180002010-09-08732057320552965296150002010-09-03757527575247472100002010-09-02748317483149074907150002010-08-3176585748294896452800002010-08-307403974039507350731180002010-08-23765197651945452550002010-08-207463974639492149211550002010-08-167557454932470662100002010-08-117536575365473647361100002010-08-067425573255520652063300002010-07-26745787251535487651000002010-07-22740047245253500161750002010-07-2173417705936513384600002010-07-20707570655772577222000002010-07-077221172111537753772200002010-07-06720797207954544340002010-07-027293472068520152012160002010-06-307169934586856686900002010-06-29694269073609460942200002010-06-177140467856364551492000002010-06-1173567356500850081350002010-06-1072391713915275272500002010-06-09708647051570357032500002010-06-087281271524523516571050002010-06-077099270638566356632700002010-05-03720727107254775252100002010-04-016775661256568617731000002010-03-056765667556612661262400002010-03-03667566656366362400002010-02-1067946678600659966900002010-02-096586438683468343300002010-02-0866264874671167114800002010-01-066542565425649464942200002010-01-05708596310870465256500002009-12-157081570155521552154200002009-12-146565652965292200002009-11-1868569685695655652500002009-11-176717467174595259521400002009-11-1668526685265655652400002009-11-127039675255239417000002009-10-0170974642926063502952010002009-09-3070152605577397524460002009-09-29636296819681921200002009-09-0364605646056366361300002009-08-286190861908697269721300002009-08-19626561756774677431500002009-08-18614446083727221000002009-08-12621602573296884125900002009-07-216146561465697169711100002009-07-206033160307724572452200002009-06-265930159301742674261300002009-06-226112161121697269721250002009-06-175991959319739573952500002009-06-106088860888771180002009-06-0958685868752275221180002009-06-026096260962695569551250002009-05-225993959939717871781250002009-05-216204161692566842600002009-04-16609560956846842400002009-04-15604604696569651400002009-04-1462224622246546541100002009-04-0659868598687067061100002009-03-065656791279121250002009-03-0553983539838428421250002009-02-095770457554745741441450002009-02-06576925691776741431050002009-01-2855635556357887788712500002009-01-2258225582257257251250002009-01-215671556715760676061250002008-11-065720157201728972891150002008-10-166021959294655765572200002008-10-156095859283639563954500002008-10-0855454877877842000002008-07-3163623623515681568131500002008-07-186192961929661150002008-07-156361460368631456494600002008-07-1062562255918591821000002008-07-08642016170160225522100002008-07-0260567605676256251180002008-07-015859458594666766671180002008-06-2359589657665762300002008-06-20619936186592959293450002008-06-1661584598936631500002008-06-1358958865865821000002008-06-126094460944612761271150002008-05-156237562375578257821100002008-05-136137261372597659761100002008-04-2461086108664200002008-03-07626396157558085622000002008-02-2264256046012526662400002008-02-1164214642145255251400002008-02-0761756175571757171400002008-01-086385162951526152614600002008-01-04610716046590659063550002008-01-0359977592776146142100002007-10-18608446084456956921300002007-10-17613136131355995599150002007-10-1659655965591359131700002007-09-17610086100856561550002007-09-14594594590559052550002007-09-1260714607145655651200002007-09-1161458101615551661350002007-09-06608636075561256123750002007-08-2859514595145855851500002007-08-235994759947576257621110002007-08-205989958311606957622250002007-07-125942259422578857881250002007-07-115963459603575257462850002007-07-0958842588425895891950002007-07-02594085940857715771150002007-06-2759934590095665566541800002007-06-2659433582825754575431900002007-06-25598475875567456743600002007-06-225777577760696069150002007-06-2059275568356248578221050002007-06-1857214572146166616613000002007-05-255909659096576857681350002007-05-215959259592566356631550002007-05-15615236152353531150002007-05-1461514612535347532600002007-05-09602258955766576631950002007-05-01602846028455025502150002007-04-25612612532953291500002007-04-2461179585975802532852500002007-04-2359675585913591331500002007-04-1956556561986198150002007-03-2861658607520352032500002007-03-275953758877570357033750002007-02-2861125602575256525622000002007-02-2759953597535496549622000002007-02-265882258423566556653150002007-02-21585858085808150002007-02-085926959269555355531100002007-02-056019660196537853781300002007-02-025880658456562756272100002007-02-0159222592225555551500002007-01-316006358556853972200002007-01-265700357003594359431100002007-01-245791557915577857781100002007-01-236027560275534553451100002007-01-1660129601295365361400002007-01-115988659445467543400002007-01-05585157466582956374400002006-12-1859359579525707545352400002006-12-01573553617861783150002006-11-2160013600135353150002006-11-15583165831655915591150002006-09-07582215822155552450002006-09-065681256812575157511450002006-08-22577455675555855582400002006-08-1655709557095925921200002006-08-03565915486067573841200002006-07-3155135541356183599641000002006-07-27545585455861611100002006-07-2456094519225815814400002006-07-175624755372577157712200002006-07-115481954819602360231100002006-07-065479151686618602351700002006-07-055455456075607511000002006-06-2650571505716816681611000002006-06-16542552256476472400002006-06-1449319493197051705111000002006-05-155443854438662500002006-05-125218552185642264221500002006-04-255619456194565256521450002006-04-21545155316212621231350002006-04-125557455574574657461250002006-04-055663654525592355465650002006-04-035350353503610361031100002006-03-3055995599565156511100002006-03-285514955149579657961100002006-03-245473554735586758672100002006-03-23565563558755872200002006-03-21565565554655461100002006-03-135625549935855782300002006-02-1557671567715297529722000002006-02-1456219557945614561433000002006-02-08576576530153011350002006-01-26585585513151313300002006-01-2458558551255125150002006-01-235712557125535453541100002006-01-1757325732531353132700002006-01-125837558375513451341250002006-01-105717856552853273550002006-01-065375375935931200002006-01-0356394563945455451350002005-11-075656543754371350002005-10-075670756707528152811350002005-09-2058406584064977497711000002005-09-1356906569065211521111000002005-09-0758816572334897489731950002005-08-3156894565945249524921100002005-08-2559013590134851485111400002005-08-175678567852521400002005-08-165572854728553955393300002005-08-115483254832551755171400002005-07-22566685666851855185150002005-07-195757512551251180002005-07-1856103561035275271180002005-07-085621556215524152411800002005-07-0658755875483248321500002005-06-29589115652664841600002005-06-24567115671151425142150002005-06-2156006560065255251150002005-06-205449453949559255922300002005-06-1556035603524152411500002005-06-0158365565375144852350002005-05-2556497564975145141250002005-04-25564865548651512500002005-04-205494153788553955392500002005-04-075542155421525152512800002005-04-0553405525675723572332400002005-03-035490854908529152911200002005-03-0255149542254025252300002005-03-01551275340555335252600002005-02-28557455745155151250002005-02-25541925419254541250002005-02-245666455355001500122000002005-02-2353661536615483548311000002005-02-185572255722514151411300002005-02-155466454664530453041400002005-01-2751255125585558551250002005-01-265599155613513507227628000

N Privault

Date HighPrice LowPrice HighYield LowYield Count Amount1 2016-01-13 99082 98982 1666 1501 2 200002 2015-12-29 99183 99183 1250 1250 1 100003 2015-12-21 97952 97952 3014 3014 1 100004 2015-12-17 99141 98550 2123 1251 5 6100005 2015-12-07 98770 98770 1714 1714 2 100006 2015-12-04 98363 98118 2628 2280 2 10000

50

60

70

80

90

100

price [2005minus01minus262016minus01minus13]

Last 99082

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1310 Orange Cnty Calif bond prices

The next Figure 1311 plots the bond yield y(t T ) defined as

y(t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)y(tT ) 0 6 t 6 T

2

4

6

8

yield [2005minus01minus262016minus01minus13]

Last 1666

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1311 Orange Cnty Calif bond yields

Bond pricing in the Dothan model

In the Dothan [Dot78] model the short term interest rate process (rt)tisinR+ ismodeled according to a geometric Brownian motion

drt = micrortdt+ σrtdBt (1325)430

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

where the volatility σ gt 0 and the drift micro isin R are constant parameters and(Bt)tisinR+ is a standard Brownian motion In this model the short term inter-est rate rt remains always positive while the proportional volatility term σrtaccounts for the sensitivity of the volatility of interest rate changes to thelevel of the rate rt

On the other hand the Dothan model is the only lognormal short ratemodel that allows for an analytical formula for the zero coupon bond price

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

For convenience of notation we let p = 1minus 2microσ2 and rewrite (1325) as

drt = (1minus p)σ2

2 rtdt+ σrtdBt

with solutionrt = r0 eσBtminuspσ

2t2 t isin R+ (1326)

By the Markov property of (rt)tisinR+ the bond price P (t T ) is a functionF (t rt) of rt and time t isin [0 T ]

P (t T ) = F (t rt) = IElowast[

eminusr Ttrsds

∣∣∣ rt] 0 6 t 6 T (1327)

By computation of the conditional expectation (1327) using (106) we easilyobtain the following result cf Proposition 12 of [PP11] where the functionθ(v t) is defined in (104)

Proposition 133 The zero-coupon bond price P (t T ) = F (t rt) is givenfor all p isin R by

F (t x) (1328)

= eminusσ2p2(Tminust)8

winfin0

winfin0

eminusux exp(minus2(1 + z2)σ2u

(4zσ2u

σ2(T minus t)

4

)du

u

dz

zp+1

x gt 0

Proof By Proposition 101 cf [Yor92] Proposition 2 the probability distri-bution of the time integral

w Tminust

0eσBsminuspσ

2s2ds is given by

P(w Tminust

0eσBsminuspσ

2s2ds isin dy)

=winfinminusinfin

P(w t

0eσBsminuspσ

2s2ds isin dy Bt minus pσt2 isin dz)

431

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 14: Forward Rate Modeling

N Privault

t isin R+ x isin R subject to the terminal condition

F (T x) = 1 x isin R (1313)

Proof By Itocircrsquos formula we have

d(

eminusr t

0 rsdsP (t T ))

= minusrt eminusr t

0 rsdsP (t T )dt+ eminusr t

0 rsdsdP (t T )

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdsdF (t rt)

= minusrt eminusr t

0 rsdsF (t rt)dt+ eminusr t

0 rsdspartF

partx(t rt)(micro(t rt)dt+ σ(t rt)dBt)

+ eminusr t

0 rsds

(12σ

2(t rt)part2F

partx2 (t rt) + partF

partt(t rt)

)dt

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

+ eminusr t

0 rsds

(minusrtF (t rt) + micro(t rt)

partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

)dt

(1314)

Given that t 7minusrarr eminusr t

0 rsdsP (t T ) is a martingale the above expression(1314) should only contain terms in dBt (cf Corollary II-1 page 72 of[Pro04]) and all terms in dt should vanish inside (1314) This leads to theidentities

rtF (t rt)

= micro(t rt)partF

partx(t rt) + 1

2σ2(t rt)

part2F

partx2 (t rt) + partF

partt(t rt)

d(

eminusr t

0 rsdsP (t T ))

= eminusr t

0 rsdsσ(t rt)partF

partx(t rt)dBt

(1315a)

(1315b)

which recover (1312) Condition (1313) is due to the fact that P (T T ) = $1

In the case of an interest rate process modeled by (136) we have

micro(t x) = η(t) + λ(t)x and σ(t x) =radicδ(t) + γ(t)x

hence (1312) yields the (time dependent) affine PDE

xF (t x) = partF

partt(t x) + (η(t) + λ(t)x)partF

partx(t x) + 1

2(δ(t) + γ(t)x)part2F

partx2 (t x)

(1316)

t isin R+ x isin R By (1315b) the above proposition also shows that

424

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

dP (t T )P (t T ) = 1

P (t T )d(

er t

0 rsds eminusr t

0 rsdsP (t T ))

= 1P (t T )

(rtP (t T )dt+ e

r t0 rsdsd

(eminus

r t0 rsdsP (t T )

))= rtdt+ 1

P (t T ) er t

0 rsdsd(

eminusr t

0 rsdsP (t T ))

= rtdt+ 1F (t rt)

partF

partx(t rt)σ(t rt)dBt

= rtdt+ σ(t rt)part logFpartx

(t rt)dBt (1317)

In the Vasicek casedrt = (aminus brt)dt+ σdWt

the bond price takes the form

F (t rt) = P (t T ) = eA(Tminust)+rtC(Tminust)

where A(middot) and C(middot) are functions of time cf (1321) below and (1317)yields

dP (t T )P (t T ) = rtdtminus

σ

b(1minus eminusb(Tminust))dWt (1318)

since F (t x) = eA(Tminust)+xC(Tminust)

Note that more generally all affine short rate models as defined in Rela-tion (136) including the Vasicek model will yield a bond pricing formula ofthe form

P (t T ) = eA(Tminust)+rtC(Tminust)

cf eg sect 324 of [BM06]

Probabilistic solution of the Vasicek PDE

Next we solve the PDE (1312) written with micro(t x) = aminusbx and σ(t x) = σin the Vasicek [Vaš77] model

drt = (aminus brt)dt+ σdBt

as xF (t x) = partF

partt(t x) + (aminus bx)partF

partx(t x) + σ2

2part2F

partx2 (t x)

F (T x) = 1(1319)

by a direct computation of the conditional expectation

425

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

F (t rt) = P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] (1320)

Recall that in this model the short rate (rt)tisinR+ has the expression

rt = g(t) +w t

0h(t s)dBs = r0 eminusbt + a

b(1minus eminusbt) + σ

w t

0eminusb(tminuss)dBs

whereg(t) = r0 eminusbt + a

b(1minus eminusbt) t isin R+

andh(t s) = σ eminusb(tminuss) 0 6 s 6 t

are deterministic functions

Letting uort = max(u t) using the fact that Wiener integrals are Gaussianrandom variables and the Gaussian moment generating function we have

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r Tt

(g(s)+r s

0 h(su)dBu)ds∣∣∣ Ft]

= exp(minus

w T

tg(s)ds

)IElowast[

eminusr Tt

r s0 h(su)dBuds

∣∣∣ Ft]= exp

(minus

w T

tg(s)ds

)IElowast[

eminusr T

0r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

uorth(s u)dsdBu

)IElowast[

eminusr Tt

r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu + 1

2w T

t

(w T

uh(s u)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

w t

0

w T

teminusb(sminusu)dsdBu

)times exp

(σ2

2w T

t

(w T

ueminusb(sminusu)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

b(1minus eminusb(Tminust))

w t

0eminusb(tminusu)dBu

)times exp

(σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)

426

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= exp(minusrtb

(1minus eminusb(Tminust)) + 1b

(1minus eminusb(Tminust))(r0 eminusbt + a

b(1minus eminusbt)

))times exp

(minus

w T

t

(r0 eminusbs + a

b(1minus eminusbs)

)ds+ σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)= eA(Tminust)+rtC(Tminust) (1321)

whereC(T minus t) = minus1

b(1minus eminusb(Tminust)) (1322)

and

A(T minus t) = 4abminus 3σ2

4b3 + σ2 minus 2ab2b2 (T minus t) + σ2 minus ab

b3eminusb(Tminust)minus σ2

4b3 eminus2b(Tminust)

(1323)

Analytical solution of the Vasicek PDE

In order to solve the PDE (1319) analytically we may look for a solution ofthe form

F (t x) = eA(Tminust)+xC(Tminust) (1324)

where A(middot) and C(middot) are functions to be determined under the conditionsA(0) = 0 and C(0) = 0 Substituting (1324) into the PDE (1312) with theVasicek coefficients micro(t x) = (aminus bx) and σ(t x) = σ shows that

x eA(Tminust)+xC(Tminust) = minus(Aprime(T minus t)minus xC prime(T minus t)) eA(Tminust)+xC(Tminust)

+(aminus bx)C(T minus t) eA(Tminust)+xC(Tminust)

+12σ

2C2(T minus t) eA(Tminust)+xC(Tminust)

ie

x = minusAprime(T minus t) + xC prime(T minus t) + (aminus bx)C(T minus t) + 12σ

2C2(T minus t)

By identification of terms for x = 0 and x 6= 0 this yields the system ofRiccati and linear differential equations

Aprime(s) = aC(s) + σ2

2 C2(s)

C prime(s) = 1 + bC(s)

which can be solved to recover the above value of P (t T ) = F (t rt)

427

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Vasicek Bond Price Simulations

In this section we consider again the Vasicek model in which the short rate(rt)tisinR+ is solution to (131) Figure 137 presents a random simulation oft 7minusrarr P (t T ) in the same Vasicek model The graph of the correspondingdeterministic zero coupon bond price obtained for a = b = σ = 0 is alsoshown on the Figure 137

03

04

05

06

07

08

09

1

11

0 5 10 15 20

Fig 137 Graphs of t 7rarr F (t rt) = P (t T ) vs t 7rarr eminusr0(Tminust)

Figure 138 presents a random simulation of t 7minusrarr P (t T ) for a (non-zero)coupon bond with price Pc(t T ) = ec(Tminust)P (t T ) and coupon rate c gt 00 6 t 6 T

10000

10200

10400

10600

10800

0 5 10 15 20

Fig 138 Graph of t 7rarr F (t rt) = P (t T ) for a bond with a 23 coupon

The simulation of Figure 138 can be compared to the coupon bond marketdata of Figure 139 below

428

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 139 Bond price graph with maturity 011808 and coupon rate 625

See Exercise 133 for a bond pricing formula in the CIR model

Zero coupon bond price and yield data

The following zero coupon bond price was downloaded at EMMA fromthe Municipal Securities Rulemaking Board

ORANGE CNTY CALIF PENSION OBLIG CAP APPREC-TAXABLE-REF-SER A (CA)CUSIP 68428LBB9Dated Date 06121996 (June 12 1996)Maturity Date 09012016 (September 1st 2016)Interest Rate 00 Principal Amount at Issuance $26056000Initial Offering Price 19465

library(quantmod)bondprice lt- readtable(bond_data_Rtxtcolnames = c(DateHighPriceLowPrice

HighYieldLowYieldCountAmount))head(bondprice)time lt- asPOSIXct(bondprice$Date format = Y-m-d)price lt- xts(x = bondprice$HighPrice orderby = time)yield lt- xts(x = bondprice$HighYield orderby = time)chartSeries(priceupcol=bluetheme=white)chartSeries(yieldupcol=bluetheme=white)

429

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

2016-01-139908298982166615012200002015-12-2999183991831251251100002015-12-219795297952301430141100002015-12-179914198552123125156100002015-12-0798779877171417142100002015-12-04983639811826282282100002015-11-1898659865176817672200002015-11-1798306983062201222200002015-10-029865998514167150641000002015-09-099898210721071250002015-09-089888498043204311583300002015-07-20975059628345922992200002015-07-1698397983971461461250002015-07-15988729887210211021150002015-07-109768997689208420841300002015-06-1898123980231686163300002015-06-179884397034254313250002015-06-15983698299143113795850002015-06-0998016980161651651200002015-05-21978269772618321752500002015-05-189849498494119111912300002015-05-1598559835130311433300002015-05-129776997769175117511150002015-04-279834898348125112512400002015-04-249830398303128212821250002015-04-239760797607181318131650002015-04-1498649864111100002015-03-20983897981428114373850002015-03-199785197751159151836750002015-03-11981981391323600002015-02-27978297695156914832400002015-02-139858298357108309343750002015-02-119857698226116609343300002015-01-15983983106710671550002015-01-12989598950650652600002015-01-099898123212321600002014-12-11983197396155131600002014-12-109641696416214421442800002014-12-059804498044114811481500002014-12-049728897288159815981500002014-11-219782297822125125150002014-11-209642294353320733150002014-11-0797979964582014113861250002014-10-299650496504195619561150002014-10-1498149977841201123200002014-10-0797401974011396139611000002014-10-0397991970261598107353500002014-09-3097446962851991135842200002014-09-1997331972311455140221000002014-09-18964796419186221000002014-09-15969956732278161943000002014-09-119555952252823382200002014-08-199711995596223614495750002014-08-139528695286238623861300002014-08-069559395593220522051350002014-08-0197951977261114100341000002014-07-30976975122311742200002014-07-239603695036244919434500002014-07-1697494951246912526750002014-07-1497182969571461135141000002014-07-11956995572144208421000002014-05-209531495314212321232300002014-05-169372393723286628661300002014-04-299701396713143913052200002014-04-1695169516211521151200002014-04-07976339683313510042500002014-04-029577393974260718073750002014-02-2893293128932852200002014-02-2791759175348634861100002014-02-21956959269530417584400002014-02-189438593885251122992900002014-02-139310193101284228421450002013-11-159393262726271500002013-11-14915915320432041500002013-11-12925999171312127712200002013-10-319427294272210121013450002013-10-309232392323284828481100002013-10-299599942521011452200002013-10-259080790807342934291100002013-10-219161691491314230933750002013-08-0791008910083113112100002013-08-05894258942536813681150002013-07-229494394018216812800002013-07-1795167930262339162900002013-07-16951549515416161500002013-07-12944129441218518511000002013-06-28940049340421719663400002013-06-269471892567245417213500002013-06-11925692562422422120002013-06-05911119111129072907150002013-06-0495282952821528152862500002013-05-3195122951221547154712250002013-05-309429291069290718214280002013-05-2994969488516331652000002013-05-2492682926822352351100002013-05-2394488930732217174942100002013-05-219679193731199174950002013-05-169127691276280428041200002013-05-02916769015315126383270002013-04-24920999163926322483450002013-04-22920749161426322483540002013-04-179645941591810798550002013-04-159205491954250524722200002013-04-1191791725842584170002013-04-099635889785320810996570002013-03-12914491442602260218000002013-02-229164389323243250134830002013-02-0690290298529222400002012-11-29881528796434573399103200002012-11-2888176878843479338941200002012-11-279048790487268226821150002012-11-23890628906231063106150002012-11-13878737073707150002012-11-098472383048495644175200002012-10-3188798879313531351100002012-10-25907905261925612300002012-10-2490353903532662662400002012-10-168845888458319731972400002012-10-0290866900552724682300002012-10-0190148900472726712200002012-09-26882398779733513222500002012-09-249051390512255425542100002012-09-21905905255625561300002012-09-139103189907270923923750002012-08-0985188518400240023250002012-08-0886038333945513755410002012-08-0386486859863753605240002012-07-2785849404940192200002012-07-19876183625440732541800002012-07-18870738707334342350002012-07-178652286048368636092400002012-07-1685088840884254396131050002012-07-1386541865413543541150002012-06-29865728657235351400002012-06-2885258525387238721400002012-06-2187751868533431521100002012-06-208528984689401238431650002012-06-138643855937363521500002012-06-118386183861422142211750002012-05-258518485184380938091300002012-05-238386683866417841781300002012-05-2185331853313753751250002012-05-18838344094409150002012-05-178442484224405743750002012-04-05853283662410636541000002012-03-2988243851033692852530002012-03-2787258342141443112530002012-03-228495840753956371731350002012-03-02855855352535251100002012-03-018368583685400740071100002012-02-0787584664368529515750002012-01-2686645865853167315241500002012-01-2586458645323211610002012-01-248380754703409742540002012-01-2081188118458445841100002012-01-178245182351425342263650002012-01-128413781755440837746600002012-01-1181658094639443431650002012-01-0479575795754984981200002011-12-307875787551985198130002011-12-29764757647558245824130002011-12-088038580385468346831150002011-12-01798879884847992300002011-11-307969379693484848481150002011-11-01777560455491240002011-10-28788578854984981100002011-10-26767576755555551100002011-10-05777559725418280002011-08-2678119773195211521100002011-08-23774237742351695169170002011-08-2276576554065406170002011-07-278135881358414111300002011-06-227417415864586411300002011-04-267554575545532253221100002011-04-257481964916825555053400002011-04-206474163965853382983600002011-04-15767097545334500555000002011-04-087620176201511351131150002011-03-3174502745025525521150002011-03-17744347443455551400002011-03-167373586558651400002011-03-0374556745565435431500002011-03-017390373903558355831500002011-01-2871317713176156153200002011-01-2667256725723472332200002011-01-187300473004568756871600002011-01-1273719716560215561500002011-01-04735735552455242540002011-01-0371592713756055621200002010-12-2273173559855982300002010-12-1374185697646305533250002010-12-1073558735585455454800002010-12-0973547735475455452200002010-12-02658996589974087408150002010-12-017312570756124553241980002010-11-297508571889582650495290002010-11-19738738533653361150002010-11-10772797645452400002010-11-097674969503447934800002010-11-087914178641407240722400002010-11-037953178606397839782300002010-11-0277087770874524521350002010-10-068072779568371536714700002010-10-057906878277419741972700002010-10-04801793797379721100002010-10-018048978903371137113300002010-09-307717714453445321300002010-09-207888377821403440342400002010-09-177781277812426742672100002010-09-1476942769424454451250002010-09-097446274462500650061180002010-09-08732057320552965296150002010-09-03757527575247472100002010-09-02748317483149074907150002010-08-3176585748294896452800002010-08-307403974039507350731180002010-08-23765197651945452550002010-08-207463974639492149211550002010-08-167557454932470662100002010-08-117536575365473647361100002010-08-067425573255520652063300002010-07-26745787251535487651000002010-07-22740047245253500161750002010-07-2173417705936513384600002010-07-20707570655772577222000002010-07-077221172111537753772200002010-07-06720797207954544340002010-07-027293472068520152012160002010-06-307169934586856686900002010-06-29694269073609460942200002010-06-177140467856364551492000002010-06-1173567356500850081350002010-06-1072391713915275272500002010-06-09708647051570357032500002010-06-087281271524523516571050002010-06-077099270638566356632700002010-05-03720727107254775252100002010-04-016775661256568617731000002010-03-056765667556612661262400002010-03-03667566656366362400002010-02-1067946678600659966900002010-02-096586438683468343300002010-02-0866264874671167114800002010-01-066542565425649464942200002010-01-05708596310870465256500002009-12-157081570155521552154200002009-12-146565652965292200002009-11-1868569685695655652500002009-11-176717467174595259521400002009-11-1668526685265655652400002009-11-127039675255239417000002009-10-0170974642926063502952010002009-09-3070152605577397524460002009-09-29636296819681921200002009-09-0364605646056366361300002009-08-286190861908697269721300002009-08-19626561756774677431500002009-08-18614446083727221000002009-08-12621602573296884125900002009-07-216146561465697169711100002009-07-206033160307724572452200002009-06-265930159301742674261300002009-06-226112161121697269721250002009-06-175991959319739573952500002009-06-106088860888771180002009-06-0958685868752275221180002009-06-026096260962695569551250002009-05-225993959939717871781250002009-05-216204161692566842600002009-04-16609560956846842400002009-04-15604604696569651400002009-04-1462224622246546541100002009-04-0659868598687067061100002009-03-065656791279121250002009-03-0553983539838428421250002009-02-095770457554745741441450002009-02-06576925691776741431050002009-01-2855635556357887788712500002009-01-2258225582257257251250002009-01-215671556715760676061250002008-11-065720157201728972891150002008-10-166021959294655765572200002008-10-156095859283639563954500002008-10-0855454877877842000002008-07-3163623623515681568131500002008-07-186192961929661150002008-07-156361460368631456494600002008-07-1062562255918591821000002008-07-08642016170160225522100002008-07-0260567605676256251180002008-07-015859458594666766671180002008-06-2359589657665762300002008-06-20619936186592959293450002008-06-1661584598936631500002008-06-1358958865865821000002008-06-126094460944612761271150002008-05-156237562375578257821100002008-05-136137261372597659761100002008-04-2461086108664200002008-03-07626396157558085622000002008-02-2264256046012526662400002008-02-1164214642145255251400002008-02-0761756175571757171400002008-01-086385162951526152614600002008-01-04610716046590659063550002008-01-0359977592776146142100002007-10-18608446084456956921300002007-10-17613136131355995599150002007-10-1659655965591359131700002007-09-17610086100856561550002007-09-14594594590559052550002007-09-1260714607145655651200002007-09-1161458101615551661350002007-09-06608636075561256123750002007-08-2859514595145855851500002007-08-235994759947576257621110002007-08-205989958311606957622250002007-07-125942259422578857881250002007-07-115963459603575257462850002007-07-0958842588425895891950002007-07-02594085940857715771150002007-06-2759934590095665566541800002007-06-2659433582825754575431900002007-06-25598475875567456743600002007-06-225777577760696069150002007-06-2059275568356248578221050002007-06-1857214572146166616613000002007-05-255909659096576857681350002007-05-215959259592566356631550002007-05-15615236152353531150002007-05-1461514612535347532600002007-05-09602258955766576631950002007-05-01602846028455025502150002007-04-25612612532953291500002007-04-2461179585975802532852500002007-04-2359675585913591331500002007-04-1956556561986198150002007-03-2861658607520352032500002007-03-275953758877570357033750002007-02-2861125602575256525622000002007-02-2759953597535496549622000002007-02-265882258423566556653150002007-02-21585858085808150002007-02-085926959269555355531100002007-02-056019660196537853781300002007-02-025880658456562756272100002007-02-0159222592225555551500002007-01-316006358556853972200002007-01-265700357003594359431100002007-01-245791557915577857781100002007-01-236027560275534553451100002007-01-1660129601295365361400002007-01-115988659445467543400002007-01-05585157466582956374400002006-12-1859359579525707545352400002006-12-01573553617861783150002006-11-2160013600135353150002006-11-15583165831655915591150002006-09-07582215822155552450002006-09-065681256812575157511450002006-08-22577455675555855582400002006-08-1655709557095925921200002006-08-03565915486067573841200002006-07-3155135541356183599641000002006-07-27545585455861611100002006-07-2456094519225815814400002006-07-175624755372577157712200002006-07-115481954819602360231100002006-07-065479151686618602351700002006-07-055455456075607511000002006-06-2650571505716816681611000002006-06-16542552256476472400002006-06-1449319493197051705111000002006-05-155443854438662500002006-05-125218552185642264221500002006-04-255619456194565256521450002006-04-21545155316212621231350002006-04-125557455574574657461250002006-04-055663654525592355465650002006-04-035350353503610361031100002006-03-3055995599565156511100002006-03-285514955149579657961100002006-03-245473554735586758672100002006-03-23565563558755872200002006-03-21565565554655461100002006-03-135625549935855782300002006-02-1557671567715297529722000002006-02-1456219557945614561433000002006-02-08576576530153011350002006-01-26585585513151313300002006-01-2458558551255125150002006-01-235712557125535453541100002006-01-1757325732531353132700002006-01-125837558375513451341250002006-01-105717856552853273550002006-01-065375375935931200002006-01-0356394563945455451350002005-11-075656543754371350002005-10-075670756707528152811350002005-09-2058406584064977497711000002005-09-1356906569065211521111000002005-09-0758816572334897489731950002005-08-3156894565945249524921100002005-08-2559013590134851485111400002005-08-175678567852521400002005-08-165572854728553955393300002005-08-115483254832551755171400002005-07-22566685666851855185150002005-07-195757512551251180002005-07-1856103561035275271180002005-07-085621556215524152411800002005-07-0658755875483248321500002005-06-29589115652664841600002005-06-24567115671151425142150002005-06-2156006560065255251150002005-06-205449453949559255922300002005-06-1556035603524152411500002005-06-0158365565375144852350002005-05-2556497564975145141250002005-04-25564865548651512500002005-04-205494153788553955392500002005-04-075542155421525152512800002005-04-0553405525675723572332400002005-03-035490854908529152911200002005-03-0255149542254025252300002005-03-01551275340555335252600002005-02-28557455745155151250002005-02-25541925419254541250002005-02-245666455355001500122000002005-02-2353661536615483548311000002005-02-185572255722514151411300002005-02-155466454664530453041400002005-01-2751255125585558551250002005-01-265599155613513507227628000

N Privault

Date HighPrice LowPrice HighYield LowYield Count Amount1 2016-01-13 99082 98982 1666 1501 2 200002 2015-12-29 99183 99183 1250 1250 1 100003 2015-12-21 97952 97952 3014 3014 1 100004 2015-12-17 99141 98550 2123 1251 5 6100005 2015-12-07 98770 98770 1714 1714 2 100006 2015-12-04 98363 98118 2628 2280 2 10000

50

60

70

80

90

100

price [2005minus01minus262016minus01minus13]

Last 99082

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1310 Orange Cnty Calif bond prices

The next Figure 1311 plots the bond yield y(t T ) defined as

y(t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)y(tT ) 0 6 t 6 T

2

4

6

8

yield [2005minus01minus262016minus01minus13]

Last 1666

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1311 Orange Cnty Calif bond yields

Bond pricing in the Dothan model

In the Dothan [Dot78] model the short term interest rate process (rt)tisinR+ ismodeled according to a geometric Brownian motion

drt = micrortdt+ σrtdBt (1325)430

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

where the volatility σ gt 0 and the drift micro isin R are constant parameters and(Bt)tisinR+ is a standard Brownian motion In this model the short term inter-est rate rt remains always positive while the proportional volatility term σrtaccounts for the sensitivity of the volatility of interest rate changes to thelevel of the rate rt

On the other hand the Dothan model is the only lognormal short ratemodel that allows for an analytical formula for the zero coupon bond price

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

For convenience of notation we let p = 1minus 2microσ2 and rewrite (1325) as

drt = (1minus p)σ2

2 rtdt+ σrtdBt

with solutionrt = r0 eσBtminuspσ

2t2 t isin R+ (1326)

By the Markov property of (rt)tisinR+ the bond price P (t T ) is a functionF (t rt) of rt and time t isin [0 T ]

P (t T ) = F (t rt) = IElowast[

eminusr Ttrsds

∣∣∣ rt] 0 6 t 6 T (1327)

By computation of the conditional expectation (1327) using (106) we easilyobtain the following result cf Proposition 12 of [PP11] where the functionθ(v t) is defined in (104)

Proposition 133 The zero-coupon bond price P (t T ) = F (t rt) is givenfor all p isin R by

F (t x) (1328)

= eminusσ2p2(Tminust)8

winfin0

winfin0

eminusux exp(minus2(1 + z2)σ2u

(4zσ2u

σ2(T minus t)

4

)du

u

dz

zp+1

x gt 0

Proof By Proposition 101 cf [Yor92] Proposition 2 the probability distri-bution of the time integral

w Tminust

0eσBsminuspσ

2s2ds is given by

P(w Tminust

0eσBsminuspσ

2s2ds isin dy)

=winfinminusinfin

P(w t

0eσBsminuspσ

2s2ds isin dy Bt minus pσt2 isin dz)

431

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 15: Forward Rate Modeling

Forward Rate Modeling

dP (t T )P (t T ) = 1

P (t T )d(

er t

0 rsds eminusr t

0 rsdsP (t T ))

= 1P (t T )

(rtP (t T )dt+ e

r t0 rsdsd

(eminus

r t0 rsdsP (t T )

))= rtdt+ 1

P (t T ) er t

0 rsdsd(

eminusr t

0 rsdsP (t T ))

= rtdt+ 1F (t rt)

partF

partx(t rt)σ(t rt)dBt

= rtdt+ σ(t rt)part logFpartx

(t rt)dBt (1317)

In the Vasicek casedrt = (aminus brt)dt+ σdWt

the bond price takes the form

F (t rt) = P (t T ) = eA(Tminust)+rtC(Tminust)

where A(middot) and C(middot) are functions of time cf (1321) below and (1317)yields

dP (t T )P (t T ) = rtdtminus

σ

b(1minus eminusb(Tminust))dWt (1318)

since F (t x) = eA(Tminust)+xC(Tminust)

Note that more generally all affine short rate models as defined in Rela-tion (136) including the Vasicek model will yield a bond pricing formula ofthe form

P (t T ) = eA(Tminust)+rtC(Tminust)

cf eg sect 324 of [BM06]

Probabilistic solution of the Vasicek PDE

Next we solve the PDE (1312) written with micro(t x) = aminusbx and σ(t x) = σin the Vasicek [Vaš77] model

drt = (aminus brt)dt+ σdBt

as xF (t x) = partF

partt(t x) + (aminus bx)partF

partx(t x) + σ2

2part2F

partx2 (t x)

F (T x) = 1(1319)

by a direct computation of the conditional expectation

425

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

F (t rt) = P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] (1320)

Recall that in this model the short rate (rt)tisinR+ has the expression

rt = g(t) +w t

0h(t s)dBs = r0 eminusbt + a

b(1minus eminusbt) + σ

w t

0eminusb(tminuss)dBs

whereg(t) = r0 eminusbt + a

b(1minus eminusbt) t isin R+

andh(t s) = σ eminusb(tminuss) 0 6 s 6 t

are deterministic functions

Letting uort = max(u t) using the fact that Wiener integrals are Gaussianrandom variables and the Gaussian moment generating function we have

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r Tt

(g(s)+r s

0 h(su)dBu)ds∣∣∣ Ft]

= exp(minus

w T

tg(s)ds

)IElowast[

eminusr Tt

r s0 h(su)dBuds

∣∣∣ Ft]= exp

(minus

w T

tg(s)ds

)IElowast[

eminusr T

0r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

uorth(s u)dsdBu

)IElowast[

eminusr Tt

r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu + 1

2w T

t

(w T

uh(s u)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

w t

0

w T

teminusb(sminusu)dsdBu

)times exp

(σ2

2w T

t

(w T

ueminusb(sminusu)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

b(1minus eminusb(Tminust))

w t

0eminusb(tminusu)dBu

)times exp

(σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)

426

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= exp(minusrtb

(1minus eminusb(Tminust)) + 1b

(1minus eminusb(Tminust))(r0 eminusbt + a

b(1minus eminusbt)

))times exp

(minus

w T

t

(r0 eminusbs + a

b(1minus eminusbs)

)ds+ σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)= eA(Tminust)+rtC(Tminust) (1321)

whereC(T minus t) = minus1

b(1minus eminusb(Tminust)) (1322)

and

A(T minus t) = 4abminus 3σ2

4b3 + σ2 minus 2ab2b2 (T minus t) + σ2 minus ab

b3eminusb(Tminust)minus σ2

4b3 eminus2b(Tminust)

(1323)

Analytical solution of the Vasicek PDE

In order to solve the PDE (1319) analytically we may look for a solution ofthe form

F (t x) = eA(Tminust)+xC(Tminust) (1324)

where A(middot) and C(middot) are functions to be determined under the conditionsA(0) = 0 and C(0) = 0 Substituting (1324) into the PDE (1312) with theVasicek coefficients micro(t x) = (aminus bx) and σ(t x) = σ shows that

x eA(Tminust)+xC(Tminust) = minus(Aprime(T minus t)minus xC prime(T minus t)) eA(Tminust)+xC(Tminust)

+(aminus bx)C(T minus t) eA(Tminust)+xC(Tminust)

+12σ

2C2(T minus t) eA(Tminust)+xC(Tminust)

ie

x = minusAprime(T minus t) + xC prime(T minus t) + (aminus bx)C(T minus t) + 12σ

2C2(T minus t)

By identification of terms for x = 0 and x 6= 0 this yields the system ofRiccati and linear differential equations

Aprime(s) = aC(s) + σ2

2 C2(s)

C prime(s) = 1 + bC(s)

which can be solved to recover the above value of P (t T ) = F (t rt)

427

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Vasicek Bond Price Simulations

In this section we consider again the Vasicek model in which the short rate(rt)tisinR+ is solution to (131) Figure 137 presents a random simulation oft 7minusrarr P (t T ) in the same Vasicek model The graph of the correspondingdeterministic zero coupon bond price obtained for a = b = σ = 0 is alsoshown on the Figure 137

03

04

05

06

07

08

09

1

11

0 5 10 15 20

Fig 137 Graphs of t 7rarr F (t rt) = P (t T ) vs t 7rarr eminusr0(Tminust)

Figure 138 presents a random simulation of t 7minusrarr P (t T ) for a (non-zero)coupon bond with price Pc(t T ) = ec(Tminust)P (t T ) and coupon rate c gt 00 6 t 6 T

10000

10200

10400

10600

10800

0 5 10 15 20

Fig 138 Graph of t 7rarr F (t rt) = P (t T ) for a bond with a 23 coupon

The simulation of Figure 138 can be compared to the coupon bond marketdata of Figure 139 below

428

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 139 Bond price graph with maturity 011808 and coupon rate 625

See Exercise 133 for a bond pricing formula in the CIR model

Zero coupon bond price and yield data

The following zero coupon bond price was downloaded at EMMA fromthe Municipal Securities Rulemaking Board

ORANGE CNTY CALIF PENSION OBLIG CAP APPREC-TAXABLE-REF-SER A (CA)CUSIP 68428LBB9Dated Date 06121996 (June 12 1996)Maturity Date 09012016 (September 1st 2016)Interest Rate 00 Principal Amount at Issuance $26056000Initial Offering Price 19465

library(quantmod)bondprice lt- readtable(bond_data_Rtxtcolnames = c(DateHighPriceLowPrice

HighYieldLowYieldCountAmount))head(bondprice)time lt- asPOSIXct(bondprice$Date format = Y-m-d)price lt- xts(x = bondprice$HighPrice orderby = time)yield lt- xts(x = bondprice$HighYield orderby = time)chartSeries(priceupcol=bluetheme=white)chartSeries(yieldupcol=bluetheme=white)

429

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

2016-01-139908298982166615012200002015-12-2999183991831251251100002015-12-219795297952301430141100002015-12-179914198552123125156100002015-12-0798779877171417142100002015-12-04983639811826282282100002015-11-1898659865176817672200002015-11-1798306983062201222200002015-10-029865998514167150641000002015-09-099898210721071250002015-09-089888498043204311583300002015-07-20975059628345922992200002015-07-1698397983971461461250002015-07-15988729887210211021150002015-07-109768997689208420841300002015-06-1898123980231686163300002015-06-179884397034254313250002015-06-15983698299143113795850002015-06-0998016980161651651200002015-05-21978269772618321752500002015-05-189849498494119111912300002015-05-1598559835130311433300002015-05-129776997769175117511150002015-04-279834898348125112512400002015-04-249830398303128212821250002015-04-239760797607181318131650002015-04-1498649864111100002015-03-20983897981428114373850002015-03-199785197751159151836750002015-03-11981981391323600002015-02-27978297695156914832400002015-02-139858298357108309343750002015-02-119857698226116609343300002015-01-15983983106710671550002015-01-12989598950650652600002015-01-099898123212321600002014-12-11983197396155131600002014-12-109641696416214421442800002014-12-059804498044114811481500002014-12-049728897288159815981500002014-11-219782297822125125150002014-11-209642294353320733150002014-11-0797979964582014113861250002014-10-299650496504195619561150002014-10-1498149977841201123200002014-10-0797401974011396139611000002014-10-0397991970261598107353500002014-09-3097446962851991135842200002014-09-1997331972311455140221000002014-09-18964796419186221000002014-09-15969956732278161943000002014-09-119555952252823382200002014-08-199711995596223614495750002014-08-139528695286238623861300002014-08-069559395593220522051350002014-08-0197951977261114100341000002014-07-30976975122311742200002014-07-239603695036244919434500002014-07-1697494951246912526750002014-07-1497182969571461135141000002014-07-11956995572144208421000002014-05-209531495314212321232300002014-05-169372393723286628661300002014-04-299701396713143913052200002014-04-1695169516211521151200002014-04-07976339683313510042500002014-04-029577393974260718073750002014-02-2893293128932852200002014-02-2791759175348634861100002014-02-21956959269530417584400002014-02-189438593885251122992900002014-02-139310193101284228421450002013-11-159393262726271500002013-11-14915915320432041500002013-11-12925999171312127712200002013-10-319427294272210121013450002013-10-309232392323284828481100002013-10-299599942521011452200002013-10-259080790807342934291100002013-10-219161691491314230933750002013-08-0791008910083113112100002013-08-05894258942536813681150002013-07-229494394018216812800002013-07-1795167930262339162900002013-07-16951549515416161500002013-07-12944129441218518511000002013-06-28940049340421719663400002013-06-269471892567245417213500002013-06-11925692562422422120002013-06-05911119111129072907150002013-06-0495282952821528152862500002013-05-3195122951221547154712250002013-05-309429291069290718214280002013-05-2994969488516331652000002013-05-2492682926822352351100002013-05-2394488930732217174942100002013-05-219679193731199174950002013-05-169127691276280428041200002013-05-02916769015315126383270002013-04-24920999163926322483450002013-04-22920749161426322483540002013-04-179645941591810798550002013-04-159205491954250524722200002013-04-1191791725842584170002013-04-099635889785320810996570002013-03-12914491442602260218000002013-02-229164389323243250134830002013-02-0690290298529222400002012-11-29881528796434573399103200002012-11-2888176878843479338941200002012-11-279048790487268226821150002012-11-23890628906231063106150002012-11-13878737073707150002012-11-098472383048495644175200002012-10-3188798879313531351100002012-10-25907905261925612300002012-10-2490353903532662662400002012-10-168845888458319731972400002012-10-0290866900552724682300002012-10-0190148900472726712200002012-09-26882398779733513222500002012-09-249051390512255425542100002012-09-21905905255625561300002012-09-139103189907270923923750002012-08-0985188518400240023250002012-08-0886038333945513755410002012-08-0386486859863753605240002012-07-2785849404940192200002012-07-19876183625440732541800002012-07-18870738707334342350002012-07-178652286048368636092400002012-07-1685088840884254396131050002012-07-1386541865413543541150002012-06-29865728657235351400002012-06-2885258525387238721400002012-06-2187751868533431521100002012-06-208528984689401238431650002012-06-138643855937363521500002012-06-118386183861422142211750002012-05-258518485184380938091300002012-05-238386683866417841781300002012-05-2185331853313753751250002012-05-18838344094409150002012-05-178442484224405743750002012-04-05853283662410636541000002012-03-2988243851033692852530002012-03-2787258342141443112530002012-03-228495840753956371731350002012-03-02855855352535251100002012-03-018368583685400740071100002012-02-0787584664368529515750002012-01-2686645865853167315241500002012-01-2586458645323211610002012-01-248380754703409742540002012-01-2081188118458445841100002012-01-178245182351425342263650002012-01-128413781755440837746600002012-01-1181658094639443431650002012-01-0479575795754984981200002011-12-307875787551985198130002011-12-29764757647558245824130002011-12-088038580385468346831150002011-12-01798879884847992300002011-11-307969379693484848481150002011-11-01777560455491240002011-10-28788578854984981100002011-10-26767576755555551100002011-10-05777559725418280002011-08-2678119773195211521100002011-08-23774237742351695169170002011-08-2276576554065406170002011-07-278135881358414111300002011-06-227417415864586411300002011-04-267554575545532253221100002011-04-257481964916825555053400002011-04-206474163965853382983600002011-04-15767097545334500555000002011-04-087620176201511351131150002011-03-3174502745025525521150002011-03-17744347443455551400002011-03-167373586558651400002011-03-0374556745565435431500002011-03-017390373903558355831500002011-01-2871317713176156153200002011-01-2667256725723472332200002011-01-187300473004568756871600002011-01-1273719716560215561500002011-01-04735735552455242540002011-01-0371592713756055621200002010-12-2273173559855982300002010-12-1374185697646305533250002010-12-1073558735585455454800002010-12-0973547735475455452200002010-12-02658996589974087408150002010-12-017312570756124553241980002010-11-297508571889582650495290002010-11-19738738533653361150002010-11-10772797645452400002010-11-097674969503447934800002010-11-087914178641407240722400002010-11-037953178606397839782300002010-11-0277087770874524521350002010-10-068072779568371536714700002010-10-057906878277419741972700002010-10-04801793797379721100002010-10-018048978903371137113300002010-09-307717714453445321300002010-09-207888377821403440342400002010-09-177781277812426742672100002010-09-1476942769424454451250002010-09-097446274462500650061180002010-09-08732057320552965296150002010-09-03757527575247472100002010-09-02748317483149074907150002010-08-3176585748294896452800002010-08-307403974039507350731180002010-08-23765197651945452550002010-08-207463974639492149211550002010-08-167557454932470662100002010-08-117536575365473647361100002010-08-067425573255520652063300002010-07-26745787251535487651000002010-07-22740047245253500161750002010-07-2173417705936513384600002010-07-20707570655772577222000002010-07-077221172111537753772200002010-07-06720797207954544340002010-07-027293472068520152012160002010-06-307169934586856686900002010-06-29694269073609460942200002010-06-177140467856364551492000002010-06-1173567356500850081350002010-06-1072391713915275272500002010-06-09708647051570357032500002010-06-087281271524523516571050002010-06-077099270638566356632700002010-05-03720727107254775252100002010-04-016775661256568617731000002010-03-056765667556612661262400002010-03-03667566656366362400002010-02-1067946678600659966900002010-02-096586438683468343300002010-02-0866264874671167114800002010-01-066542565425649464942200002010-01-05708596310870465256500002009-12-157081570155521552154200002009-12-146565652965292200002009-11-1868569685695655652500002009-11-176717467174595259521400002009-11-1668526685265655652400002009-11-127039675255239417000002009-10-0170974642926063502952010002009-09-3070152605577397524460002009-09-29636296819681921200002009-09-0364605646056366361300002009-08-286190861908697269721300002009-08-19626561756774677431500002009-08-18614446083727221000002009-08-12621602573296884125900002009-07-216146561465697169711100002009-07-206033160307724572452200002009-06-265930159301742674261300002009-06-226112161121697269721250002009-06-175991959319739573952500002009-06-106088860888771180002009-06-0958685868752275221180002009-06-026096260962695569551250002009-05-225993959939717871781250002009-05-216204161692566842600002009-04-16609560956846842400002009-04-15604604696569651400002009-04-1462224622246546541100002009-04-0659868598687067061100002009-03-065656791279121250002009-03-0553983539838428421250002009-02-095770457554745741441450002009-02-06576925691776741431050002009-01-2855635556357887788712500002009-01-2258225582257257251250002009-01-215671556715760676061250002008-11-065720157201728972891150002008-10-166021959294655765572200002008-10-156095859283639563954500002008-10-0855454877877842000002008-07-3163623623515681568131500002008-07-186192961929661150002008-07-156361460368631456494600002008-07-1062562255918591821000002008-07-08642016170160225522100002008-07-0260567605676256251180002008-07-015859458594666766671180002008-06-2359589657665762300002008-06-20619936186592959293450002008-06-1661584598936631500002008-06-1358958865865821000002008-06-126094460944612761271150002008-05-156237562375578257821100002008-05-136137261372597659761100002008-04-2461086108664200002008-03-07626396157558085622000002008-02-2264256046012526662400002008-02-1164214642145255251400002008-02-0761756175571757171400002008-01-086385162951526152614600002008-01-04610716046590659063550002008-01-0359977592776146142100002007-10-18608446084456956921300002007-10-17613136131355995599150002007-10-1659655965591359131700002007-09-17610086100856561550002007-09-14594594590559052550002007-09-1260714607145655651200002007-09-1161458101615551661350002007-09-06608636075561256123750002007-08-2859514595145855851500002007-08-235994759947576257621110002007-08-205989958311606957622250002007-07-125942259422578857881250002007-07-115963459603575257462850002007-07-0958842588425895891950002007-07-02594085940857715771150002007-06-2759934590095665566541800002007-06-2659433582825754575431900002007-06-25598475875567456743600002007-06-225777577760696069150002007-06-2059275568356248578221050002007-06-1857214572146166616613000002007-05-255909659096576857681350002007-05-215959259592566356631550002007-05-15615236152353531150002007-05-1461514612535347532600002007-05-09602258955766576631950002007-05-01602846028455025502150002007-04-25612612532953291500002007-04-2461179585975802532852500002007-04-2359675585913591331500002007-04-1956556561986198150002007-03-2861658607520352032500002007-03-275953758877570357033750002007-02-2861125602575256525622000002007-02-2759953597535496549622000002007-02-265882258423566556653150002007-02-21585858085808150002007-02-085926959269555355531100002007-02-056019660196537853781300002007-02-025880658456562756272100002007-02-0159222592225555551500002007-01-316006358556853972200002007-01-265700357003594359431100002007-01-245791557915577857781100002007-01-236027560275534553451100002007-01-1660129601295365361400002007-01-115988659445467543400002007-01-05585157466582956374400002006-12-1859359579525707545352400002006-12-01573553617861783150002006-11-2160013600135353150002006-11-15583165831655915591150002006-09-07582215822155552450002006-09-065681256812575157511450002006-08-22577455675555855582400002006-08-1655709557095925921200002006-08-03565915486067573841200002006-07-3155135541356183599641000002006-07-27545585455861611100002006-07-2456094519225815814400002006-07-175624755372577157712200002006-07-115481954819602360231100002006-07-065479151686618602351700002006-07-055455456075607511000002006-06-2650571505716816681611000002006-06-16542552256476472400002006-06-1449319493197051705111000002006-05-155443854438662500002006-05-125218552185642264221500002006-04-255619456194565256521450002006-04-21545155316212621231350002006-04-125557455574574657461250002006-04-055663654525592355465650002006-04-035350353503610361031100002006-03-3055995599565156511100002006-03-285514955149579657961100002006-03-245473554735586758672100002006-03-23565563558755872200002006-03-21565565554655461100002006-03-135625549935855782300002006-02-1557671567715297529722000002006-02-1456219557945614561433000002006-02-08576576530153011350002006-01-26585585513151313300002006-01-2458558551255125150002006-01-235712557125535453541100002006-01-1757325732531353132700002006-01-125837558375513451341250002006-01-105717856552853273550002006-01-065375375935931200002006-01-0356394563945455451350002005-11-075656543754371350002005-10-075670756707528152811350002005-09-2058406584064977497711000002005-09-1356906569065211521111000002005-09-0758816572334897489731950002005-08-3156894565945249524921100002005-08-2559013590134851485111400002005-08-175678567852521400002005-08-165572854728553955393300002005-08-115483254832551755171400002005-07-22566685666851855185150002005-07-195757512551251180002005-07-1856103561035275271180002005-07-085621556215524152411800002005-07-0658755875483248321500002005-06-29589115652664841600002005-06-24567115671151425142150002005-06-2156006560065255251150002005-06-205449453949559255922300002005-06-1556035603524152411500002005-06-0158365565375144852350002005-05-2556497564975145141250002005-04-25564865548651512500002005-04-205494153788553955392500002005-04-075542155421525152512800002005-04-0553405525675723572332400002005-03-035490854908529152911200002005-03-0255149542254025252300002005-03-01551275340555335252600002005-02-28557455745155151250002005-02-25541925419254541250002005-02-245666455355001500122000002005-02-2353661536615483548311000002005-02-185572255722514151411300002005-02-155466454664530453041400002005-01-2751255125585558551250002005-01-265599155613513507227628000

N Privault

Date HighPrice LowPrice HighYield LowYield Count Amount1 2016-01-13 99082 98982 1666 1501 2 200002 2015-12-29 99183 99183 1250 1250 1 100003 2015-12-21 97952 97952 3014 3014 1 100004 2015-12-17 99141 98550 2123 1251 5 6100005 2015-12-07 98770 98770 1714 1714 2 100006 2015-12-04 98363 98118 2628 2280 2 10000

50

60

70

80

90

100

price [2005minus01minus262016minus01minus13]

Last 99082

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1310 Orange Cnty Calif bond prices

The next Figure 1311 plots the bond yield y(t T ) defined as

y(t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)y(tT ) 0 6 t 6 T

2

4

6

8

yield [2005minus01minus262016minus01minus13]

Last 1666

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1311 Orange Cnty Calif bond yields

Bond pricing in the Dothan model

In the Dothan [Dot78] model the short term interest rate process (rt)tisinR+ ismodeled according to a geometric Brownian motion

drt = micrortdt+ σrtdBt (1325)430

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

where the volatility σ gt 0 and the drift micro isin R are constant parameters and(Bt)tisinR+ is a standard Brownian motion In this model the short term inter-est rate rt remains always positive while the proportional volatility term σrtaccounts for the sensitivity of the volatility of interest rate changes to thelevel of the rate rt

On the other hand the Dothan model is the only lognormal short ratemodel that allows for an analytical formula for the zero coupon bond price

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

For convenience of notation we let p = 1minus 2microσ2 and rewrite (1325) as

drt = (1minus p)σ2

2 rtdt+ σrtdBt

with solutionrt = r0 eσBtminuspσ

2t2 t isin R+ (1326)

By the Markov property of (rt)tisinR+ the bond price P (t T ) is a functionF (t rt) of rt and time t isin [0 T ]

P (t T ) = F (t rt) = IElowast[

eminusr Ttrsds

∣∣∣ rt] 0 6 t 6 T (1327)

By computation of the conditional expectation (1327) using (106) we easilyobtain the following result cf Proposition 12 of [PP11] where the functionθ(v t) is defined in (104)

Proposition 133 The zero-coupon bond price P (t T ) = F (t rt) is givenfor all p isin R by

F (t x) (1328)

= eminusσ2p2(Tminust)8

winfin0

winfin0

eminusux exp(minus2(1 + z2)σ2u

(4zσ2u

σ2(T minus t)

4

)du

u

dz

zp+1

x gt 0

Proof By Proposition 101 cf [Yor92] Proposition 2 the probability distri-bution of the time integral

w Tminust

0eσBsminuspσ

2s2ds is given by

P(w Tminust

0eσBsminuspσ

2s2ds isin dy)

=winfinminusinfin

P(w t

0eσBsminuspσ

2s2ds isin dy Bt minus pσt2 isin dz)

431

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 16: Forward Rate Modeling

N Privault

F (t rt) = P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] (1320)

Recall that in this model the short rate (rt)tisinR+ has the expression

rt = g(t) +w t

0h(t s)dBs = r0 eminusbt + a

b(1minus eminusbt) + σ

w t

0eminusb(tminuss)dBs

whereg(t) = r0 eminusbt + a

b(1minus eminusbt) t isin R+

andh(t s) = σ eminusb(tminuss) 0 6 s 6 t

are deterministic functions

Letting uort = max(u t) using the fact that Wiener integrals are Gaussianrandom variables and the Gaussian moment generating function we have

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft]= IElowast

[eminus

r Tt

(g(s)+r s

0 h(su)dBu)ds∣∣∣ Ft]

= exp(minus

w T

tg(s)ds

)IElowast[

eminusr Tt

r s0 h(su)dBuds

∣∣∣ Ft]= exp

(minus

w T

tg(s)ds

)IElowast[

eminusr T

0r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

uorth(s u)dsdBu

)IElowast[

eminusr Tt

r Tuort h(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

∣∣∣ Ft]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu

)IElowast[

eminusr Tt

r Tuh(su)dsdBu

]= exp

(minus

w T

tg(s)dsminus

w t

0

w T

th(s u)dsdBu + 1

2w T

t

(w T

uh(s u)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

w t

0

w T

teminusb(sminusu)dsdBu

)times exp

(σ2

2w T

t

(w T

ueminusb(sminusu)ds

)2du

)

= exp(minus

w T

t(r0 eminusbs + a

b(1minus eminusbs))dsminus σ

b(1minus eminusb(Tminust))

w t

0eminusb(tminusu)dBu

)times exp

(σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)

426

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= exp(minusrtb

(1minus eminusb(Tminust)) + 1b

(1minus eminusb(Tminust))(r0 eminusbt + a

b(1minus eminusbt)

))times exp

(minus

w T

t

(r0 eminusbs + a

b(1minus eminusbs)

)ds+ σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)= eA(Tminust)+rtC(Tminust) (1321)

whereC(T minus t) = minus1

b(1minus eminusb(Tminust)) (1322)

and

A(T minus t) = 4abminus 3σ2

4b3 + σ2 minus 2ab2b2 (T minus t) + σ2 minus ab

b3eminusb(Tminust)minus σ2

4b3 eminus2b(Tminust)

(1323)

Analytical solution of the Vasicek PDE

In order to solve the PDE (1319) analytically we may look for a solution ofthe form

F (t x) = eA(Tminust)+xC(Tminust) (1324)

where A(middot) and C(middot) are functions to be determined under the conditionsA(0) = 0 and C(0) = 0 Substituting (1324) into the PDE (1312) with theVasicek coefficients micro(t x) = (aminus bx) and σ(t x) = σ shows that

x eA(Tminust)+xC(Tminust) = minus(Aprime(T minus t)minus xC prime(T minus t)) eA(Tminust)+xC(Tminust)

+(aminus bx)C(T minus t) eA(Tminust)+xC(Tminust)

+12σ

2C2(T minus t) eA(Tminust)+xC(Tminust)

ie

x = minusAprime(T minus t) + xC prime(T minus t) + (aminus bx)C(T minus t) + 12σ

2C2(T minus t)

By identification of terms for x = 0 and x 6= 0 this yields the system ofRiccati and linear differential equations

Aprime(s) = aC(s) + σ2

2 C2(s)

C prime(s) = 1 + bC(s)

which can be solved to recover the above value of P (t T ) = F (t rt)

427

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Vasicek Bond Price Simulations

In this section we consider again the Vasicek model in which the short rate(rt)tisinR+ is solution to (131) Figure 137 presents a random simulation oft 7minusrarr P (t T ) in the same Vasicek model The graph of the correspondingdeterministic zero coupon bond price obtained for a = b = σ = 0 is alsoshown on the Figure 137

03

04

05

06

07

08

09

1

11

0 5 10 15 20

Fig 137 Graphs of t 7rarr F (t rt) = P (t T ) vs t 7rarr eminusr0(Tminust)

Figure 138 presents a random simulation of t 7minusrarr P (t T ) for a (non-zero)coupon bond with price Pc(t T ) = ec(Tminust)P (t T ) and coupon rate c gt 00 6 t 6 T

10000

10200

10400

10600

10800

0 5 10 15 20

Fig 138 Graph of t 7rarr F (t rt) = P (t T ) for a bond with a 23 coupon

The simulation of Figure 138 can be compared to the coupon bond marketdata of Figure 139 below

428

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 139 Bond price graph with maturity 011808 and coupon rate 625

See Exercise 133 for a bond pricing formula in the CIR model

Zero coupon bond price and yield data

The following zero coupon bond price was downloaded at EMMA fromthe Municipal Securities Rulemaking Board

ORANGE CNTY CALIF PENSION OBLIG CAP APPREC-TAXABLE-REF-SER A (CA)CUSIP 68428LBB9Dated Date 06121996 (June 12 1996)Maturity Date 09012016 (September 1st 2016)Interest Rate 00 Principal Amount at Issuance $26056000Initial Offering Price 19465

library(quantmod)bondprice lt- readtable(bond_data_Rtxtcolnames = c(DateHighPriceLowPrice

HighYieldLowYieldCountAmount))head(bondprice)time lt- asPOSIXct(bondprice$Date format = Y-m-d)price lt- xts(x = bondprice$HighPrice orderby = time)yield lt- xts(x = bondprice$HighYield orderby = time)chartSeries(priceupcol=bluetheme=white)chartSeries(yieldupcol=bluetheme=white)

429

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

2016-01-139908298982166615012200002015-12-2999183991831251251100002015-12-219795297952301430141100002015-12-179914198552123125156100002015-12-0798779877171417142100002015-12-04983639811826282282100002015-11-1898659865176817672200002015-11-1798306983062201222200002015-10-029865998514167150641000002015-09-099898210721071250002015-09-089888498043204311583300002015-07-20975059628345922992200002015-07-1698397983971461461250002015-07-15988729887210211021150002015-07-109768997689208420841300002015-06-1898123980231686163300002015-06-179884397034254313250002015-06-15983698299143113795850002015-06-0998016980161651651200002015-05-21978269772618321752500002015-05-189849498494119111912300002015-05-1598559835130311433300002015-05-129776997769175117511150002015-04-279834898348125112512400002015-04-249830398303128212821250002015-04-239760797607181318131650002015-04-1498649864111100002015-03-20983897981428114373850002015-03-199785197751159151836750002015-03-11981981391323600002015-02-27978297695156914832400002015-02-139858298357108309343750002015-02-119857698226116609343300002015-01-15983983106710671550002015-01-12989598950650652600002015-01-099898123212321600002014-12-11983197396155131600002014-12-109641696416214421442800002014-12-059804498044114811481500002014-12-049728897288159815981500002014-11-219782297822125125150002014-11-209642294353320733150002014-11-0797979964582014113861250002014-10-299650496504195619561150002014-10-1498149977841201123200002014-10-0797401974011396139611000002014-10-0397991970261598107353500002014-09-3097446962851991135842200002014-09-1997331972311455140221000002014-09-18964796419186221000002014-09-15969956732278161943000002014-09-119555952252823382200002014-08-199711995596223614495750002014-08-139528695286238623861300002014-08-069559395593220522051350002014-08-0197951977261114100341000002014-07-30976975122311742200002014-07-239603695036244919434500002014-07-1697494951246912526750002014-07-1497182969571461135141000002014-07-11956995572144208421000002014-05-209531495314212321232300002014-05-169372393723286628661300002014-04-299701396713143913052200002014-04-1695169516211521151200002014-04-07976339683313510042500002014-04-029577393974260718073750002014-02-2893293128932852200002014-02-2791759175348634861100002014-02-21956959269530417584400002014-02-189438593885251122992900002014-02-139310193101284228421450002013-11-159393262726271500002013-11-14915915320432041500002013-11-12925999171312127712200002013-10-319427294272210121013450002013-10-309232392323284828481100002013-10-299599942521011452200002013-10-259080790807342934291100002013-10-219161691491314230933750002013-08-0791008910083113112100002013-08-05894258942536813681150002013-07-229494394018216812800002013-07-1795167930262339162900002013-07-16951549515416161500002013-07-12944129441218518511000002013-06-28940049340421719663400002013-06-269471892567245417213500002013-06-11925692562422422120002013-06-05911119111129072907150002013-06-0495282952821528152862500002013-05-3195122951221547154712250002013-05-309429291069290718214280002013-05-2994969488516331652000002013-05-2492682926822352351100002013-05-2394488930732217174942100002013-05-219679193731199174950002013-05-169127691276280428041200002013-05-02916769015315126383270002013-04-24920999163926322483450002013-04-22920749161426322483540002013-04-179645941591810798550002013-04-159205491954250524722200002013-04-1191791725842584170002013-04-099635889785320810996570002013-03-12914491442602260218000002013-02-229164389323243250134830002013-02-0690290298529222400002012-11-29881528796434573399103200002012-11-2888176878843479338941200002012-11-279048790487268226821150002012-11-23890628906231063106150002012-11-13878737073707150002012-11-098472383048495644175200002012-10-3188798879313531351100002012-10-25907905261925612300002012-10-2490353903532662662400002012-10-168845888458319731972400002012-10-0290866900552724682300002012-10-0190148900472726712200002012-09-26882398779733513222500002012-09-249051390512255425542100002012-09-21905905255625561300002012-09-139103189907270923923750002012-08-0985188518400240023250002012-08-0886038333945513755410002012-08-0386486859863753605240002012-07-2785849404940192200002012-07-19876183625440732541800002012-07-18870738707334342350002012-07-178652286048368636092400002012-07-1685088840884254396131050002012-07-1386541865413543541150002012-06-29865728657235351400002012-06-2885258525387238721400002012-06-2187751868533431521100002012-06-208528984689401238431650002012-06-138643855937363521500002012-06-118386183861422142211750002012-05-258518485184380938091300002012-05-238386683866417841781300002012-05-2185331853313753751250002012-05-18838344094409150002012-05-178442484224405743750002012-04-05853283662410636541000002012-03-2988243851033692852530002012-03-2787258342141443112530002012-03-228495840753956371731350002012-03-02855855352535251100002012-03-018368583685400740071100002012-02-0787584664368529515750002012-01-2686645865853167315241500002012-01-2586458645323211610002012-01-248380754703409742540002012-01-2081188118458445841100002012-01-178245182351425342263650002012-01-128413781755440837746600002012-01-1181658094639443431650002012-01-0479575795754984981200002011-12-307875787551985198130002011-12-29764757647558245824130002011-12-088038580385468346831150002011-12-01798879884847992300002011-11-307969379693484848481150002011-11-01777560455491240002011-10-28788578854984981100002011-10-26767576755555551100002011-10-05777559725418280002011-08-2678119773195211521100002011-08-23774237742351695169170002011-08-2276576554065406170002011-07-278135881358414111300002011-06-227417415864586411300002011-04-267554575545532253221100002011-04-257481964916825555053400002011-04-206474163965853382983600002011-04-15767097545334500555000002011-04-087620176201511351131150002011-03-3174502745025525521150002011-03-17744347443455551400002011-03-167373586558651400002011-03-0374556745565435431500002011-03-017390373903558355831500002011-01-2871317713176156153200002011-01-2667256725723472332200002011-01-187300473004568756871600002011-01-1273719716560215561500002011-01-04735735552455242540002011-01-0371592713756055621200002010-12-2273173559855982300002010-12-1374185697646305533250002010-12-1073558735585455454800002010-12-0973547735475455452200002010-12-02658996589974087408150002010-12-017312570756124553241980002010-11-297508571889582650495290002010-11-19738738533653361150002010-11-10772797645452400002010-11-097674969503447934800002010-11-087914178641407240722400002010-11-037953178606397839782300002010-11-0277087770874524521350002010-10-068072779568371536714700002010-10-057906878277419741972700002010-10-04801793797379721100002010-10-018048978903371137113300002010-09-307717714453445321300002010-09-207888377821403440342400002010-09-177781277812426742672100002010-09-1476942769424454451250002010-09-097446274462500650061180002010-09-08732057320552965296150002010-09-03757527575247472100002010-09-02748317483149074907150002010-08-3176585748294896452800002010-08-307403974039507350731180002010-08-23765197651945452550002010-08-207463974639492149211550002010-08-167557454932470662100002010-08-117536575365473647361100002010-08-067425573255520652063300002010-07-26745787251535487651000002010-07-22740047245253500161750002010-07-2173417705936513384600002010-07-20707570655772577222000002010-07-077221172111537753772200002010-07-06720797207954544340002010-07-027293472068520152012160002010-06-307169934586856686900002010-06-29694269073609460942200002010-06-177140467856364551492000002010-06-1173567356500850081350002010-06-1072391713915275272500002010-06-09708647051570357032500002010-06-087281271524523516571050002010-06-077099270638566356632700002010-05-03720727107254775252100002010-04-016775661256568617731000002010-03-056765667556612661262400002010-03-03667566656366362400002010-02-1067946678600659966900002010-02-096586438683468343300002010-02-0866264874671167114800002010-01-066542565425649464942200002010-01-05708596310870465256500002009-12-157081570155521552154200002009-12-146565652965292200002009-11-1868569685695655652500002009-11-176717467174595259521400002009-11-1668526685265655652400002009-11-127039675255239417000002009-10-0170974642926063502952010002009-09-3070152605577397524460002009-09-29636296819681921200002009-09-0364605646056366361300002009-08-286190861908697269721300002009-08-19626561756774677431500002009-08-18614446083727221000002009-08-12621602573296884125900002009-07-216146561465697169711100002009-07-206033160307724572452200002009-06-265930159301742674261300002009-06-226112161121697269721250002009-06-175991959319739573952500002009-06-106088860888771180002009-06-0958685868752275221180002009-06-026096260962695569551250002009-05-225993959939717871781250002009-05-216204161692566842600002009-04-16609560956846842400002009-04-15604604696569651400002009-04-1462224622246546541100002009-04-0659868598687067061100002009-03-065656791279121250002009-03-0553983539838428421250002009-02-095770457554745741441450002009-02-06576925691776741431050002009-01-2855635556357887788712500002009-01-2258225582257257251250002009-01-215671556715760676061250002008-11-065720157201728972891150002008-10-166021959294655765572200002008-10-156095859283639563954500002008-10-0855454877877842000002008-07-3163623623515681568131500002008-07-186192961929661150002008-07-156361460368631456494600002008-07-1062562255918591821000002008-07-08642016170160225522100002008-07-0260567605676256251180002008-07-015859458594666766671180002008-06-2359589657665762300002008-06-20619936186592959293450002008-06-1661584598936631500002008-06-1358958865865821000002008-06-126094460944612761271150002008-05-156237562375578257821100002008-05-136137261372597659761100002008-04-2461086108664200002008-03-07626396157558085622000002008-02-2264256046012526662400002008-02-1164214642145255251400002008-02-0761756175571757171400002008-01-086385162951526152614600002008-01-04610716046590659063550002008-01-0359977592776146142100002007-10-18608446084456956921300002007-10-17613136131355995599150002007-10-1659655965591359131700002007-09-17610086100856561550002007-09-14594594590559052550002007-09-1260714607145655651200002007-09-1161458101615551661350002007-09-06608636075561256123750002007-08-2859514595145855851500002007-08-235994759947576257621110002007-08-205989958311606957622250002007-07-125942259422578857881250002007-07-115963459603575257462850002007-07-0958842588425895891950002007-07-02594085940857715771150002007-06-2759934590095665566541800002007-06-2659433582825754575431900002007-06-25598475875567456743600002007-06-225777577760696069150002007-06-2059275568356248578221050002007-06-1857214572146166616613000002007-05-255909659096576857681350002007-05-215959259592566356631550002007-05-15615236152353531150002007-05-1461514612535347532600002007-05-09602258955766576631950002007-05-01602846028455025502150002007-04-25612612532953291500002007-04-2461179585975802532852500002007-04-2359675585913591331500002007-04-1956556561986198150002007-03-2861658607520352032500002007-03-275953758877570357033750002007-02-2861125602575256525622000002007-02-2759953597535496549622000002007-02-265882258423566556653150002007-02-21585858085808150002007-02-085926959269555355531100002007-02-056019660196537853781300002007-02-025880658456562756272100002007-02-0159222592225555551500002007-01-316006358556853972200002007-01-265700357003594359431100002007-01-245791557915577857781100002007-01-236027560275534553451100002007-01-1660129601295365361400002007-01-115988659445467543400002007-01-05585157466582956374400002006-12-1859359579525707545352400002006-12-01573553617861783150002006-11-2160013600135353150002006-11-15583165831655915591150002006-09-07582215822155552450002006-09-065681256812575157511450002006-08-22577455675555855582400002006-08-1655709557095925921200002006-08-03565915486067573841200002006-07-3155135541356183599641000002006-07-27545585455861611100002006-07-2456094519225815814400002006-07-175624755372577157712200002006-07-115481954819602360231100002006-07-065479151686618602351700002006-07-055455456075607511000002006-06-2650571505716816681611000002006-06-16542552256476472400002006-06-1449319493197051705111000002006-05-155443854438662500002006-05-125218552185642264221500002006-04-255619456194565256521450002006-04-21545155316212621231350002006-04-125557455574574657461250002006-04-055663654525592355465650002006-04-035350353503610361031100002006-03-3055995599565156511100002006-03-285514955149579657961100002006-03-245473554735586758672100002006-03-23565563558755872200002006-03-21565565554655461100002006-03-135625549935855782300002006-02-1557671567715297529722000002006-02-1456219557945614561433000002006-02-08576576530153011350002006-01-26585585513151313300002006-01-2458558551255125150002006-01-235712557125535453541100002006-01-1757325732531353132700002006-01-125837558375513451341250002006-01-105717856552853273550002006-01-065375375935931200002006-01-0356394563945455451350002005-11-075656543754371350002005-10-075670756707528152811350002005-09-2058406584064977497711000002005-09-1356906569065211521111000002005-09-0758816572334897489731950002005-08-3156894565945249524921100002005-08-2559013590134851485111400002005-08-175678567852521400002005-08-165572854728553955393300002005-08-115483254832551755171400002005-07-22566685666851855185150002005-07-195757512551251180002005-07-1856103561035275271180002005-07-085621556215524152411800002005-07-0658755875483248321500002005-06-29589115652664841600002005-06-24567115671151425142150002005-06-2156006560065255251150002005-06-205449453949559255922300002005-06-1556035603524152411500002005-06-0158365565375144852350002005-05-2556497564975145141250002005-04-25564865548651512500002005-04-205494153788553955392500002005-04-075542155421525152512800002005-04-0553405525675723572332400002005-03-035490854908529152911200002005-03-0255149542254025252300002005-03-01551275340555335252600002005-02-28557455745155151250002005-02-25541925419254541250002005-02-245666455355001500122000002005-02-2353661536615483548311000002005-02-185572255722514151411300002005-02-155466454664530453041400002005-01-2751255125585558551250002005-01-265599155613513507227628000

N Privault

Date HighPrice LowPrice HighYield LowYield Count Amount1 2016-01-13 99082 98982 1666 1501 2 200002 2015-12-29 99183 99183 1250 1250 1 100003 2015-12-21 97952 97952 3014 3014 1 100004 2015-12-17 99141 98550 2123 1251 5 6100005 2015-12-07 98770 98770 1714 1714 2 100006 2015-12-04 98363 98118 2628 2280 2 10000

50

60

70

80

90

100

price [2005minus01minus262016minus01minus13]

Last 99082

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1310 Orange Cnty Calif bond prices

The next Figure 1311 plots the bond yield y(t T ) defined as

y(t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)y(tT ) 0 6 t 6 T

2

4

6

8

yield [2005minus01minus262016minus01minus13]

Last 1666

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1311 Orange Cnty Calif bond yields

Bond pricing in the Dothan model

In the Dothan [Dot78] model the short term interest rate process (rt)tisinR+ ismodeled according to a geometric Brownian motion

drt = micrortdt+ σrtdBt (1325)430

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

where the volatility σ gt 0 and the drift micro isin R are constant parameters and(Bt)tisinR+ is a standard Brownian motion In this model the short term inter-est rate rt remains always positive while the proportional volatility term σrtaccounts for the sensitivity of the volatility of interest rate changes to thelevel of the rate rt

On the other hand the Dothan model is the only lognormal short ratemodel that allows for an analytical formula for the zero coupon bond price

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

For convenience of notation we let p = 1minus 2microσ2 and rewrite (1325) as

drt = (1minus p)σ2

2 rtdt+ σrtdBt

with solutionrt = r0 eσBtminuspσ

2t2 t isin R+ (1326)

By the Markov property of (rt)tisinR+ the bond price P (t T ) is a functionF (t rt) of rt and time t isin [0 T ]

P (t T ) = F (t rt) = IElowast[

eminusr Ttrsds

∣∣∣ rt] 0 6 t 6 T (1327)

By computation of the conditional expectation (1327) using (106) we easilyobtain the following result cf Proposition 12 of [PP11] where the functionθ(v t) is defined in (104)

Proposition 133 The zero-coupon bond price P (t T ) = F (t rt) is givenfor all p isin R by

F (t x) (1328)

= eminusσ2p2(Tminust)8

winfin0

winfin0

eminusux exp(minus2(1 + z2)σ2u

(4zσ2u

σ2(T minus t)

4

)du

u

dz

zp+1

x gt 0

Proof By Proposition 101 cf [Yor92] Proposition 2 the probability distri-bution of the time integral

w Tminust

0eσBsminuspσ

2s2ds is given by

P(w Tminust

0eσBsminuspσ

2s2ds isin dy)

=winfinminusinfin

P(w t

0eσBsminuspσ

2s2ds isin dy Bt minus pσt2 isin dz)

431

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 17: Forward Rate Modeling

Forward Rate Modeling

= exp(minusrtb

(1minus eminusb(Tminust)) + 1b

(1minus eminusb(Tminust))(r0 eminusbt + a

b(1minus eminusbt)

))times exp

(minus

w T

t

(r0 eminusbs + a

b(1minus eminusbs)

)ds+ σ2

2w T

te2bu

(eminusbu minus eminusbT

b

)2

du

)= eA(Tminust)+rtC(Tminust) (1321)

whereC(T minus t) = minus1

b(1minus eminusb(Tminust)) (1322)

and

A(T minus t) = 4abminus 3σ2

4b3 + σ2 minus 2ab2b2 (T minus t) + σ2 minus ab

b3eminusb(Tminust)minus σ2

4b3 eminus2b(Tminust)

(1323)

Analytical solution of the Vasicek PDE

In order to solve the PDE (1319) analytically we may look for a solution ofthe form

F (t x) = eA(Tminust)+xC(Tminust) (1324)

where A(middot) and C(middot) are functions to be determined under the conditionsA(0) = 0 and C(0) = 0 Substituting (1324) into the PDE (1312) with theVasicek coefficients micro(t x) = (aminus bx) and σ(t x) = σ shows that

x eA(Tminust)+xC(Tminust) = minus(Aprime(T minus t)minus xC prime(T minus t)) eA(Tminust)+xC(Tminust)

+(aminus bx)C(T minus t) eA(Tminust)+xC(Tminust)

+12σ

2C2(T minus t) eA(Tminust)+xC(Tminust)

ie

x = minusAprime(T minus t) + xC prime(T minus t) + (aminus bx)C(T minus t) + 12σ

2C2(T minus t)

By identification of terms for x = 0 and x 6= 0 this yields the system ofRiccati and linear differential equations

Aprime(s) = aC(s) + σ2

2 C2(s)

C prime(s) = 1 + bC(s)

which can be solved to recover the above value of P (t T ) = F (t rt)

427

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Vasicek Bond Price Simulations

In this section we consider again the Vasicek model in which the short rate(rt)tisinR+ is solution to (131) Figure 137 presents a random simulation oft 7minusrarr P (t T ) in the same Vasicek model The graph of the correspondingdeterministic zero coupon bond price obtained for a = b = σ = 0 is alsoshown on the Figure 137

03

04

05

06

07

08

09

1

11

0 5 10 15 20

Fig 137 Graphs of t 7rarr F (t rt) = P (t T ) vs t 7rarr eminusr0(Tminust)

Figure 138 presents a random simulation of t 7minusrarr P (t T ) for a (non-zero)coupon bond with price Pc(t T ) = ec(Tminust)P (t T ) and coupon rate c gt 00 6 t 6 T

10000

10200

10400

10600

10800

0 5 10 15 20

Fig 138 Graph of t 7rarr F (t rt) = P (t T ) for a bond with a 23 coupon

The simulation of Figure 138 can be compared to the coupon bond marketdata of Figure 139 below

428

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 139 Bond price graph with maturity 011808 and coupon rate 625

See Exercise 133 for a bond pricing formula in the CIR model

Zero coupon bond price and yield data

The following zero coupon bond price was downloaded at EMMA fromthe Municipal Securities Rulemaking Board

ORANGE CNTY CALIF PENSION OBLIG CAP APPREC-TAXABLE-REF-SER A (CA)CUSIP 68428LBB9Dated Date 06121996 (June 12 1996)Maturity Date 09012016 (September 1st 2016)Interest Rate 00 Principal Amount at Issuance $26056000Initial Offering Price 19465

library(quantmod)bondprice lt- readtable(bond_data_Rtxtcolnames = c(DateHighPriceLowPrice

HighYieldLowYieldCountAmount))head(bondprice)time lt- asPOSIXct(bondprice$Date format = Y-m-d)price lt- xts(x = bondprice$HighPrice orderby = time)yield lt- xts(x = bondprice$HighYield orderby = time)chartSeries(priceupcol=bluetheme=white)chartSeries(yieldupcol=bluetheme=white)

429

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

2016-01-139908298982166615012200002015-12-2999183991831251251100002015-12-219795297952301430141100002015-12-179914198552123125156100002015-12-0798779877171417142100002015-12-04983639811826282282100002015-11-1898659865176817672200002015-11-1798306983062201222200002015-10-029865998514167150641000002015-09-099898210721071250002015-09-089888498043204311583300002015-07-20975059628345922992200002015-07-1698397983971461461250002015-07-15988729887210211021150002015-07-109768997689208420841300002015-06-1898123980231686163300002015-06-179884397034254313250002015-06-15983698299143113795850002015-06-0998016980161651651200002015-05-21978269772618321752500002015-05-189849498494119111912300002015-05-1598559835130311433300002015-05-129776997769175117511150002015-04-279834898348125112512400002015-04-249830398303128212821250002015-04-239760797607181318131650002015-04-1498649864111100002015-03-20983897981428114373850002015-03-199785197751159151836750002015-03-11981981391323600002015-02-27978297695156914832400002015-02-139858298357108309343750002015-02-119857698226116609343300002015-01-15983983106710671550002015-01-12989598950650652600002015-01-099898123212321600002014-12-11983197396155131600002014-12-109641696416214421442800002014-12-059804498044114811481500002014-12-049728897288159815981500002014-11-219782297822125125150002014-11-209642294353320733150002014-11-0797979964582014113861250002014-10-299650496504195619561150002014-10-1498149977841201123200002014-10-0797401974011396139611000002014-10-0397991970261598107353500002014-09-3097446962851991135842200002014-09-1997331972311455140221000002014-09-18964796419186221000002014-09-15969956732278161943000002014-09-119555952252823382200002014-08-199711995596223614495750002014-08-139528695286238623861300002014-08-069559395593220522051350002014-08-0197951977261114100341000002014-07-30976975122311742200002014-07-239603695036244919434500002014-07-1697494951246912526750002014-07-1497182969571461135141000002014-07-11956995572144208421000002014-05-209531495314212321232300002014-05-169372393723286628661300002014-04-299701396713143913052200002014-04-1695169516211521151200002014-04-07976339683313510042500002014-04-029577393974260718073750002014-02-2893293128932852200002014-02-2791759175348634861100002014-02-21956959269530417584400002014-02-189438593885251122992900002014-02-139310193101284228421450002013-11-159393262726271500002013-11-14915915320432041500002013-11-12925999171312127712200002013-10-319427294272210121013450002013-10-309232392323284828481100002013-10-299599942521011452200002013-10-259080790807342934291100002013-10-219161691491314230933750002013-08-0791008910083113112100002013-08-05894258942536813681150002013-07-229494394018216812800002013-07-1795167930262339162900002013-07-16951549515416161500002013-07-12944129441218518511000002013-06-28940049340421719663400002013-06-269471892567245417213500002013-06-11925692562422422120002013-06-05911119111129072907150002013-06-0495282952821528152862500002013-05-3195122951221547154712250002013-05-309429291069290718214280002013-05-2994969488516331652000002013-05-2492682926822352351100002013-05-2394488930732217174942100002013-05-219679193731199174950002013-05-169127691276280428041200002013-05-02916769015315126383270002013-04-24920999163926322483450002013-04-22920749161426322483540002013-04-179645941591810798550002013-04-159205491954250524722200002013-04-1191791725842584170002013-04-099635889785320810996570002013-03-12914491442602260218000002013-02-229164389323243250134830002013-02-0690290298529222400002012-11-29881528796434573399103200002012-11-2888176878843479338941200002012-11-279048790487268226821150002012-11-23890628906231063106150002012-11-13878737073707150002012-11-098472383048495644175200002012-10-3188798879313531351100002012-10-25907905261925612300002012-10-2490353903532662662400002012-10-168845888458319731972400002012-10-0290866900552724682300002012-10-0190148900472726712200002012-09-26882398779733513222500002012-09-249051390512255425542100002012-09-21905905255625561300002012-09-139103189907270923923750002012-08-0985188518400240023250002012-08-0886038333945513755410002012-08-0386486859863753605240002012-07-2785849404940192200002012-07-19876183625440732541800002012-07-18870738707334342350002012-07-178652286048368636092400002012-07-1685088840884254396131050002012-07-1386541865413543541150002012-06-29865728657235351400002012-06-2885258525387238721400002012-06-2187751868533431521100002012-06-208528984689401238431650002012-06-138643855937363521500002012-06-118386183861422142211750002012-05-258518485184380938091300002012-05-238386683866417841781300002012-05-2185331853313753751250002012-05-18838344094409150002012-05-178442484224405743750002012-04-05853283662410636541000002012-03-2988243851033692852530002012-03-2787258342141443112530002012-03-228495840753956371731350002012-03-02855855352535251100002012-03-018368583685400740071100002012-02-0787584664368529515750002012-01-2686645865853167315241500002012-01-2586458645323211610002012-01-248380754703409742540002012-01-2081188118458445841100002012-01-178245182351425342263650002012-01-128413781755440837746600002012-01-1181658094639443431650002012-01-0479575795754984981200002011-12-307875787551985198130002011-12-29764757647558245824130002011-12-088038580385468346831150002011-12-01798879884847992300002011-11-307969379693484848481150002011-11-01777560455491240002011-10-28788578854984981100002011-10-26767576755555551100002011-10-05777559725418280002011-08-2678119773195211521100002011-08-23774237742351695169170002011-08-2276576554065406170002011-07-278135881358414111300002011-06-227417415864586411300002011-04-267554575545532253221100002011-04-257481964916825555053400002011-04-206474163965853382983600002011-04-15767097545334500555000002011-04-087620176201511351131150002011-03-3174502745025525521150002011-03-17744347443455551400002011-03-167373586558651400002011-03-0374556745565435431500002011-03-017390373903558355831500002011-01-2871317713176156153200002011-01-2667256725723472332200002011-01-187300473004568756871600002011-01-1273719716560215561500002011-01-04735735552455242540002011-01-0371592713756055621200002010-12-2273173559855982300002010-12-1374185697646305533250002010-12-1073558735585455454800002010-12-0973547735475455452200002010-12-02658996589974087408150002010-12-017312570756124553241980002010-11-297508571889582650495290002010-11-19738738533653361150002010-11-10772797645452400002010-11-097674969503447934800002010-11-087914178641407240722400002010-11-037953178606397839782300002010-11-0277087770874524521350002010-10-068072779568371536714700002010-10-057906878277419741972700002010-10-04801793797379721100002010-10-018048978903371137113300002010-09-307717714453445321300002010-09-207888377821403440342400002010-09-177781277812426742672100002010-09-1476942769424454451250002010-09-097446274462500650061180002010-09-08732057320552965296150002010-09-03757527575247472100002010-09-02748317483149074907150002010-08-3176585748294896452800002010-08-307403974039507350731180002010-08-23765197651945452550002010-08-207463974639492149211550002010-08-167557454932470662100002010-08-117536575365473647361100002010-08-067425573255520652063300002010-07-26745787251535487651000002010-07-22740047245253500161750002010-07-2173417705936513384600002010-07-20707570655772577222000002010-07-077221172111537753772200002010-07-06720797207954544340002010-07-027293472068520152012160002010-06-307169934586856686900002010-06-29694269073609460942200002010-06-177140467856364551492000002010-06-1173567356500850081350002010-06-1072391713915275272500002010-06-09708647051570357032500002010-06-087281271524523516571050002010-06-077099270638566356632700002010-05-03720727107254775252100002010-04-016775661256568617731000002010-03-056765667556612661262400002010-03-03667566656366362400002010-02-1067946678600659966900002010-02-096586438683468343300002010-02-0866264874671167114800002010-01-066542565425649464942200002010-01-05708596310870465256500002009-12-157081570155521552154200002009-12-146565652965292200002009-11-1868569685695655652500002009-11-176717467174595259521400002009-11-1668526685265655652400002009-11-127039675255239417000002009-10-0170974642926063502952010002009-09-3070152605577397524460002009-09-29636296819681921200002009-09-0364605646056366361300002009-08-286190861908697269721300002009-08-19626561756774677431500002009-08-18614446083727221000002009-08-12621602573296884125900002009-07-216146561465697169711100002009-07-206033160307724572452200002009-06-265930159301742674261300002009-06-226112161121697269721250002009-06-175991959319739573952500002009-06-106088860888771180002009-06-0958685868752275221180002009-06-026096260962695569551250002009-05-225993959939717871781250002009-05-216204161692566842600002009-04-16609560956846842400002009-04-15604604696569651400002009-04-1462224622246546541100002009-04-0659868598687067061100002009-03-065656791279121250002009-03-0553983539838428421250002009-02-095770457554745741441450002009-02-06576925691776741431050002009-01-2855635556357887788712500002009-01-2258225582257257251250002009-01-215671556715760676061250002008-11-065720157201728972891150002008-10-166021959294655765572200002008-10-156095859283639563954500002008-10-0855454877877842000002008-07-3163623623515681568131500002008-07-186192961929661150002008-07-156361460368631456494600002008-07-1062562255918591821000002008-07-08642016170160225522100002008-07-0260567605676256251180002008-07-015859458594666766671180002008-06-2359589657665762300002008-06-20619936186592959293450002008-06-1661584598936631500002008-06-1358958865865821000002008-06-126094460944612761271150002008-05-156237562375578257821100002008-05-136137261372597659761100002008-04-2461086108664200002008-03-07626396157558085622000002008-02-2264256046012526662400002008-02-1164214642145255251400002008-02-0761756175571757171400002008-01-086385162951526152614600002008-01-04610716046590659063550002008-01-0359977592776146142100002007-10-18608446084456956921300002007-10-17613136131355995599150002007-10-1659655965591359131700002007-09-17610086100856561550002007-09-14594594590559052550002007-09-1260714607145655651200002007-09-1161458101615551661350002007-09-06608636075561256123750002007-08-2859514595145855851500002007-08-235994759947576257621110002007-08-205989958311606957622250002007-07-125942259422578857881250002007-07-115963459603575257462850002007-07-0958842588425895891950002007-07-02594085940857715771150002007-06-2759934590095665566541800002007-06-2659433582825754575431900002007-06-25598475875567456743600002007-06-225777577760696069150002007-06-2059275568356248578221050002007-06-1857214572146166616613000002007-05-255909659096576857681350002007-05-215959259592566356631550002007-05-15615236152353531150002007-05-1461514612535347532600002007-05-09602258955766576631950002007-05-01602846028455025502150002007-04-25612612532953291500002007-04-2461179585975802532852500002007-04-2359675585913591331500002007-04-1956556561986198150002007-03-2861658607520352032500002007-03-275953758877570357033750002007-02-2861125602575256525622000002007-02-2759953597535496549622000002007-02-265882258423566556653150002007-02-21585858085808150002007-02-085926959269555355531100002007-02-056019660196537853781300002007-02-025880658456562756272100002007-02-0159222592225555551500002007-01-316006358556853972200002007-01-265700357003594359431100002007-01-245791557915577857781100002007-01-236027560275534553451100002007-01-1660129601295365361400002007-01-115988659445467543400002007-01-05585157466582956374400002006-12-1859359579525707545352400002006-12-01573553617861783150002006-11-2160013600135353150002006-11-15583165831655915591150002006-09-07582215822155552450002006-09-065681256812575157511450002006-08-22577455675555855582400002006-08-1655709557095925921200002006-08-03565915486067573841200002006-07-3155135541356183599641000002006-07-27545585455861611100002006-07-2456094519225815814400002006-07-175624755372577157712200002006-07-115481954819602360231100002006-07-065479151686618602351700002006-07-055455456075607511000002006-06-2650571505716816681611000002006-06-16542552256476472400002006-06-1449319493197051705111000002006-05-155443854438662500002006-05-125218552185642264221500002006-04-255619456194565256521450002006-04-21545155316212621231350002006-04-125557455574574657461250002006-04-055663654525592355465650002006-04-035350353503610361031100002006-03-3055995599565156511100002006-03-285514955149579657961100002006-03-245473554735586758672100002006-03-23565563558755872200002006-03-21565565554655461100002006-03-135625549935855782300002006-02-1557671567715297529722000002006-02-1456219557945614561433000002006-02-08576576530153011350002006-01-26585585513151313300002006-01-2458558551255125150002006-01-235712557125535453541100002006-01-1757325732531353132700002006-01-125837558375513451341250002006-01-105717856552853273550002006-01-065375375935931200002006-01-0356394563945455451350002005-11-075656543754371350002005-10-075670756707528152811350002005-09-2058406584064977497711000002005-09-1356906569065211521111000002005-09-0758816572334897489731950002005-08-3156894565945249524921100002005-08-2559013590134851485111400002005-08-175678567852521400002005-08-165572854728553955393300002005-08-115483254832551755171400002005-07-22566685666851855185150002005-07-195757512551251180002005-07-1856103561035275271180002005-07-085621556215524152411800002005-07-0658755875483248321500002005-06-29589115652664841600002005-06-24567115671151425142150002005-06-2156006560065255251150002005-06-205449453949559255922300002005-06-1556035603524152411500002005-06-0158365565375144852350002005-05-2556497564975145141250002005-04-25564865548651512500002005-04-205494153788553955392500002005-04-075542155421525152512800002005-04-0553405525675723572332400002005-03-035490854908529152911200002005-03-0255149542254025252300002005-03-01551275340555335252600002005-02-28557455745155151250002005-02-25541925419254541250002005-02-245666455355001500122000002005-02-2353661536615483548311000002005-02-185572255722514151411300002005-02-155466454664530453041400002005-01-2751255125585558551250002005-01-265599155613513507227628000

N Privault

Date HighPrice LowPrice HighYield LowYield Count Amount1 2016-01-13 99082 98982 1666 1501 2 200002 2015-12-29 99183 99183 1250 1250 1 100003 2015-12-21 97952 97952 3014 3014 1 100004 2015-12-17 99141 98550 2123 1251 5 6100005 2015-12-07 98770 98770 1714 1714 2 100006 2015-12-04 98363 98118 2628 2280 2 10000

50

60

70

80

90

100

price [2005minus01minus262016minus01minus13]

Last 99082

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1310 Orange Cnty Calif bond prices

The next Figure 1311 plots the bond yield y(t T ) defined as

y(t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)y(tT ) 0 6 t 6 T

2

4

6

8

yield [2005minus01minus262016minus01minus13]

Last 1666

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1311 Orange Cnty Calif bond yields

Bond pricing in the Dothan model

In the Dothan [Dot78] model the short term interest rate process (rt)tisinR+ ismodeled according to a geometric Brownian motion

drt = micrortdt+ σrtdBt (1325)430

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

where the volatility σ gt 0 and the drift micro isin R are constant parameters and(Bt)tisinR+ is a standard Brownian motion In this model the short term inter-est rate rt remains always positive while the proportional volatility term σrtaccounts for the sensitivity of the volatility of interest rate changes to thelevel of the rate rt

On the other hand the Dothan model is the only lognormal short ratemodel that allows for an analytical formula for the zero coupon bond price

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

For convenience of notation we let p = 1minus 2microσ2 and rewrite (1325) as

drt = (1minus p)σ2

2 rtdt+ σrtdBt

with solutionrt = r0 eσBtminuspσ

2t2 t isin R+ (1326)

By the Markov property of (rt)tisinR+ the bond price P (t T ) is a functionF (t rt) of rt and time t isin [0 T ]

P (t T ) = F (t rt) = IElowast[

eminusr Ttrsds

∣∣∣ rt] 0 6 t 6 T (1327)

By computation of the conditional expectation (1327) using (106) we easilyobtain the following result cf Proposition 12 of [PP11] where the functionθ(v t) is defined in (104)

Proposition 133 The zero-coupon bond price P (t T ) = F (t rt) is givenfor all p isin R by

F (t x) (1328)

= eminusσ2p2(Tminust)8

winfin0

winfin0

eminusux exp(minus2(1 + z2)σ2u

(4zσ2u

σ2(T minus t)

4

)du

u

dz

zp+1

x gt 0

Proof By Proposition 101 cf [Yor92] Proposition 2 the probability distri-bution of the time integral

w Tminust

0eσBsminuspσ

2s2ds is given by

P(w Tminust

0eσBsminuspσ

2s2ds isin dy)

=winfinminusinfin

P(w t

0eσBsminuspσ

2s2ds isin dy Bt minus pσt2 isin dz)

431

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 18: Forward Rate Modeling

N Privault

Vasicek Bond Price Simulations

In this section we consider again the Vasicek model in which the short rate(rt)tisinR+ is solution to (131) Figure 137 presents a random simulation oft 7minusrarr P (t T ) in the same Vasicek model The graph of the correspondingdeterministic zero coupon bond price obtained for a = b = σ = 0 is alsoshown on the Figure 137

03

04

05

06

07

08

09

1

11

0 5 10 15 20

Fig 137 Graphs of t 7rarr F (t rt) = P (t T ) vs t 7rarr eminusr0(Tminust)

Figure 138 presents a random simulation of t 7minusrarr P (t T ) for a (non-zero)coupon bond with price Pc(t T ) = ec(Tminust)P (t T ) and coupon rate c gt 00 6 t 6 T

10000

10200

10400

10600

10800

0 5 10 15 20

Fig 138 Graph of t 7rarr F (t rt) = P (t T ) for a bond with a 23 coupon

The simulation of Figure 138 can be compared to the coupon bond marketdata of Figure 139 below

428

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Fig 139 Bond price graph with maturity 011808 and coupon rate 625

See Exercise 133 for a bond pricing formula in the CIR model

Zero coupon bond price and yield data

The following zero coupon bond price was downloaded at EMMA fromthe Municipal Securities Rulemaking Board

ORANGE CNTY CALIF PENSION OBLIG CAP APPREC-TAXABLE-REF-SER A (CA)CUSIP 68428LBB9Dated Date 06121996 (June 12 1996)Maturity Date 09012016 (September 1st 2016)Interest Rate 00 Principal Amount at Issuance $26056000Initial Offering Price 19465

library(quantmod)bondprice lt- readtable(bond_data_Rtxtcolnames = c(DateHighPriceLowPrice

HighYieldLowYieldCountAmount))head(bondprice)time lt- asPOSIXct(bondprice$Date format = Y-m-d)price lt- xts(x = bondprice$HighPrice orderby = time)yield lt- xts(x = bondprice$HighYield orderby = time)chartSeries(priceupcol=bluetheme=white)chartSeries(yieldupcol=bluetheme=white)

429

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

2016-01-139908298982166615012200002015-12-2999183991831251251100002015-12-219795297952301430141100002015-12-179914198552123125156100002015-12-0798779877171417142100002015-12-04983639811826282282100002015-11-1898659865176817672200002015-11-1798306983062201222200002015-10-029865998514167150641000002015-09-099898210721071250002015-09-089888498043204311583300002015-07-20975059628345922992200002015-07-1698397983971461461250002015-07-15988729887210211021150002015-07-109768997689208420841300002015-06-1898123980231686163300002015-06-179884397034254313250002015-06-15983698299143113795850002015-06-0998016980161651651200002015-05-21978269772618321752500002015-05-189849498494119111912300002015-05-1598559835130311433300002015-05-129776997769175117511150002015-04-279834898348125112512400002015-04-249830398303128212821250002015-04-239760797607181318131650002015-04-1498649864111100002015-03-20983897981428114373850002015-03-199785197751159151836750002015-03-11981981391323600002015-02-27978297695156914832400002015-02-139858298357108309343750002015-02-119857698226116609343300002015-01-15983983106710671550002015-01-12989598950650652600002015-01-099898123212321600002014-12-11983197396155131600002014-12-109641696416214421442800002014-12-059804498044114811481500002014-12-049728897288159815981500002014-11-219782297822125125150002014-11-209642294353320733150002014-11-0797979964582014113861250002014-10-299650496504195619561150002014-10-1498149977841201123200002014-10-0797401974011396139611000002014-10-0397991970261598107353500002014-09-3097446962851991135842200002014-09-1997331972311455140221000002014-09-18964796419186221000002014-09-15969956732278161943000002014-09-119555952252823382200002014-08-199711995596223614495750002014-08-139528695286238623861300002014-08-069559395593220522051350002014-08-0197951977261114100341000002014-07-30976975122311742200002014-07-239603695036244919434500002014-07-1697494951246912526750002014-07-1497182969571461135141000002014-07-11956995572144208421000002014-05-209531495314212321232300002014-05-169372393723286628661300002014-04-299701396713143913052200002014-04-1695169516211521151200002014-04-07976339683313510042500002014-04-029577393974260718073750002014-02-2893293128932852200002014-02-2791759175348634861100002014-02-21956959269530417584400002014-02-189438593885251122992900002014-02-139310193101284228421450002013-11-159393262726271500002013-11-14915915320432041500002013-11-12925999171312127712200002013-10-319427294272210121013450002013-10-309232392323284828481100002013-10-299599942521011452200002013-10-259080790807342934291100002013-10-219161691491314230933750002013-08-0791008910083113112100002013-08-05894258942536813681150002013-07-229494394018216812800002013-07-1795167930262339162900002013-07-16951549515416161500002013-07-12944129441218518511000002013-06-28940049340421719663400002013-06-269471892567245417213500002013-06-11925692562422422120002013-06-05911119111129072907150002013-06-0495282952821528152862500002013-05-3195122951221547154712250002013-05-309429291069290718214280002013-05-2994969488516331652000002013-05-2492682926822352351100002013-05-2394488930732217174942100002013-05-219679193731199174950002013-05-169127691276280428041200002013-05-02916769015315126383270002013-04-24920999163926322483450002013-04-22920749161426322483540002013-04-179645941591810798550002013-04-159205491954250524722200002013-04-1191791725842584170002013-04-099635889785320810996570002013-03-12914491442602260218000002013-02-229164389323243250134830002013-02-0690290298529222400002012-11-29881528796434573399103200002012-11-2888176878843479338941200002012-11-279048790487268226821150002012-11-23890628906231063106150002012-11-13878737073707150002012-11-098472383048495644175200002012-10-3188798879313531351100002012-10-25907905261925612300002012-10-2490353903532662662400002012-10-168845888458319731972400002012-10-0290866900552724682300002012-10-0190148900472726712200002012-09-26882398779733513222500002012-09-249051390512255425542100002012-09-21905905255625561300002012-09-139103189907270923923750002012-08-0985188518400240023250002012-08-0886038333945513755410002012-08-0386486859863753605240002012-07-2785849404940192200002012-07-19876183625440732541800002012-07-18870738707334342350002012-07-178652286048368636092400002012-07-1685088840884254396131050002012-07-1386541865413543541150002012-06-29865728657235351400002012-06-2885258525387238721400002012-06-2187751868533431521100002012-06-208528984689401238431650002012-06-138643855937363521500002012-06-118386183861422142211750002012-05-258518485184380938091300002012-05-238386683866417841781300002012-05-2185331853313753751250002012-05-18838344094409150002012-05-178442484224405743750002012-04-05853283662410636541000002012-03-2988243851033692852530002012-03-2787258342141443112530002012-03-228495840753956371731350002012-03-02855855352535251100002012-03-018368583685400740071100002012-02-0787584664368529515750002012-01-2686645865853167315241500002012-01-2586458645323211610002012-01-248380754703409742540002012-01-2081188118458445841100002012-01-178245182351425342263650002012-01-128413781755440837746600002012-01-1181658094639443431650002012-01-0479575795754984981200002011-12-307875787551985198130002011-12-29764757647558245824130002011-12-088038580385468346831150002011-12-01798879884847992300002011-11-307969379693484848481150002011-11-01777560455491240002011-10-28788578854984981100002011-10-26767576755555551100002011-10-05777559725418280002011-08-2678119773195211521100002011-08-23774237742351695169170002011-08-2276576554065406170002011-07-278135881358414111300002011-06-227417415864586411300002011-04-267554575545532253221100002011-04-257481964916825555053400002011-04-206474163965853382983600002011-04-15767097545334500555000002011-04-087620176201511351131150002011-03-3174502745025525521150002011-03-17744347443455551400002011-03-167373586558651400002011-03-0374556745565435431500002011-03-017390373903558355831500002011-01-2871317713176156153200002011-01-2667256725723472332200002011-01-187300473004568756871600002011-01-1273719716560215561500002011-01-04735735552455242540002011-01-0371592713756055621200002010-12-2273173559855982300002010-12-1374185697646305533250002010-12-1073558735585455454800002010-12-0973547735475455452200002010-12-02658996589974087408150002010-12-017312570756124553241980002010-11-297508571889582650495290002010-11-19738738533653361150002010-11-10772797645452400002010-11-097674969503447934800002010-11-087914178641407240722400002010-11-037953178606397839782300002010-11-0277087770874524521350002010-10-068072779568371536714700002010-10-057906878277419741972700002010-10-04801793797379721100002010-10-018048978903371137113300002010-09-307717714453445321300002010-09-207888377821403440342400002010-09-177781277812426742672100002010-09-1476942769424454451250002010-09-097446274462500650061180002010-09-08732057320552965296150002010-09-03757527575247472100002010-09-02748317483149074907150002010-08-3176585748294896452800002010-08-307403974039507350731180002010-08-23765197651945452550002010-08-207463974639492149211550002010-08-167557454932470662100002010-08-117536575365473647361100002010-08-067425573255520652063300002010-07-26745787251535487651000002010-07-22740047245253500161750002010-07-2173417705936513384600002010-07-20707570655772577222000002010-07-077221172111537753772200002010-07-06720797207954544340002010-07-027293472068520152012160002010-06-307169934586856686900002010-06-29694269073609460942200002010-06-177140467856364551492000002010-06-1173567356500850081350002010-06-1072391713915275272500002010-06-09708647051570357032500002010-06-087281271524523516571050002010-06-077099270638566356632700002010-05-03720727107254775252100002010-04-016775661256568617731000002010-03-056765667556612661262400002010-03-03667566656366362400002010-02-1067946678600659966900002010-02-096586438683468343300002010-02-0866264874671167114800002010-01-066542565425649464942200002010-01-05708596310870465256500002009-12-157081570155521552154200002009-12-146565652965292200002009-11-1868569685695655652500002009-11-176717467174595259521400002009-11-1668526685265655652400002009-11-127039675255239417000002009-10-0170974642926063502952010002009-09-3070152605577397524460002009-09-29636296819681921200002009-09-0364605646056366361300002009-08-286190861908697269721300002009-08-19626561756774677431500002009-08-18614446083727221000002009-08-12621602573296884125900002009-07-216146561465697169711100002009-07-206033160307724572452200002009-06-265930159301742674261300002009-06-226112161121697269721250002009-06-175991959319739573952500002009-06-106088860888771180002009-06-0958685868752275221180002009-06-026096260962695569551250002009-05-225993959939717871781250002009-05-216204161692566842600002009-04-16609560956846842400002009-04-15604604696569651400002009-04-1462224622246546541100002009-04-0659868598687067061100002009-03-065656791279121250002009-03-0553983539838428421250002009-02-095770457554745741441450002009-02-06576925691776741431050002009-01-2855635556357887788712500002009-01-2258225582257257251250002009-01-215671556715760676061250002008-11-065720157201728972891150002008-10-166021959294655765572200002008-10-156095859283639563954500002008-10-0855454877877842000002008-07-3163623623515681568131500002008-07-186192961929661150002008-07-156361460368631456494600002008-07-1062562255918591821000002008-07-08642016170160225522100002008-07-0260567605676256251180002008-07-015859458594666766671180002008-06-2359589657665762300002008-06-20619936186592959293450002008-06-1661584598936631500002008-06-1358958865865821000002008-06-126094460944612761271150002008-05-156237562375578257821100002008-05-136137261372597659761100002008-04-2461086108664200002008-03-07626396157558085622000002008-02-2264256046012526662400002008-02-1164214642145255251400002008-02-0761756175571757171400002008-01-086385162951526152614600002008-01-04610716046590659063550002008-01-0359977592776146142100002007-10-18608446084456956921300002007-10-17613136131355995599150002007-10-1659655965591359131700002007-09-17610086100856561550002007-09-14594594590559052550002007-09-1260714607145655651200002007-09-1161458101615551661350002007-09-06608636075561256123750002007-08-2859514595145855851500002007-08-235994759947576257621110002007-08-205989958311606957622250002007-07-125942259422578857881250002007-07-115963459603575257462850002007-07-0958842588425895891950002007-07-02594085940857715771150002007-06-2759934590095665566541800002007-06-2659433582825754575431900002007-06-25598475875567456743600002007-06-225777577760696069150002007-06-2059275568356248578221050002007-06-1857214572146166616613000002007-05-255909659096576857681350002007-05-215959259592566356631550002007-05-15615236152353531150002007-05-1461514612535347532600002007-05-09602258955766576631950002007-05-01602846028455025502150002007-04-25612612532953291500002007-04-2461179585975802532852500002007-04-2359675585913591331500002007-04-1956556561986198150002007-03-2861658607520352032500002007-03-275953758877570357033750002007-02-2861125602575256525622000002007-02-2759953597535496549622000002007-02-265882258423566556653150002007-02-21585858085808150002007-02-085926959269555355531100002007-02-056019660196537853781300002007-02-025880658456562756272100002007-02-0159222592225555551500002007-01-316006358556853972200002007-01-265700357003594359431100002007-01-245791557915577857781100002007-01-236027560275534553451100002007-01-1660129601295365361400002007-01-115988659445467543400002007-01-05585157466582956374400002006-12-1859359579525707545352400002006-12-01573553617861783150002006-11-2160013600135353150002006-11-15583165831655915591150002006-09-07582215822155552450002006-09-065681256812575157511450002006-08-22577455675555855582400002006-08-1655709557095925921200002006-08-03565915486067573841200002006-07-3155135541356183599641000002006-07-27545585455861611100002006-07-2456094519225815814400002006-07-175624755372577157712200002006-07-115481954819602360231100002006-07-065479151686618602351700002006-07-055455456075607511000002006-06-2650571505716816681611000002006-06-16542552256476472400002006-06-1449319493197051705111000002006-05-155443854438662500002006-05-125218552185642264221500002006-04-255619456194565256521450002006-04-21545155316212621231350002006-04-125557455574574657461250002006-04-055663654525592355465650002006-04-035350353503610361031100002006-03-3055995599565156511100002006-03-285514955149579657961100002006-03-245473554735586758672100002006-03-23565563558755872200002006-03-21565565554655461100002006-03-135625549935855782300002006-02-1557671567715297529722000002006-02-1456219557945614561433000002006-02-08576576530153011350002006-01-26585585513151313300002006-01-2458558551255125150002006-01-235712557125535453541100002006-01-1757325732531353132700002006-01-125837558375513451341250002006-01-105717856552853273550002006-01-065375375935931200002006-01-0356394563945455451350002005-11-075656543754371350002005-10-075670756707528152811350002005-09-2058406584064977497711000002005-09-1356906569065211521111000002005-09-0758816572334897489731950002005-08-3156894565945249524921100002005-08-2559013590134851485111400002005-08-175678567852521400002005-08-165572854728553955393300002005-08-115483254832551755171400002005-07-22566685666851855185150002005-07-195757512551251180002005-07-1856103561035275271180002005-07-085621556215524152411800002005-07-0658755875483248321500002005-06-29589115652664841600002005-06-24567115671151425142150002005-06-2156006560065255251150002005-06-205449453949559255922300002005-06-1556035603524152411500002005-06-0158365565375144852350002005-05-2556497564975145141250002005-04-25564865548651512500002005-04-205494153788553955392500002005-04-075542155421525152512800002005-04-0553405525675723572332400002005-03-035490854908529152911200002005-03-0255149542254025252300002005-03-01551275340555335252600002005-02-28557455745155151250002005-02-25541925419254541250002005-02-245666455355001500122000002005-02-2353661536615483548311000002005-02-185572255722514151411300002005-02-155466454664530453041400002005-01-2751255125585558551250002005-01-265599155613513507227628000

N Privault

Date HighPrice LowPrice HighYield LowYield Count Amount1 2016-01-13 99082 98982 1666 1501 2 200002 2015-12-29 99183 99183 1250 1250 1 100003 2015-12-21 97952 97952 3014 3014 1 100004 2015-12-17 99141 98550 2123 1251 5 6100005 2015-12-07 98770 98770 1714 1714 2 100006 2015-12-04 98363 98118 2628 2280 2 10000

50

60

70

80

90

100

price [2005minus01minus262016minus01minus13]

Last 99082

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1310 Orange Cnty Calif bond prices

The next Figure 1311 plots the bond yield y(t T ) defined as

y(t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)y(tT ) 0 6 t 6 T

2

4

6

8

yield [2005minus01minus262016minus01minus13]

Last 1666

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1311 Orange Cnty Calif bond yields

Bond pricing in the Dothan model

In the Dothan [Dot78] model the short term interest rate process (rt)tisinR+ ismodeled according to a geometric Brownian motion

drt = micrortdt+ σrtdBt (1325)430

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

where the volatility σ gt 0 and the drift micro isin R are constant parameters and(Bt)tisinR+ is a standard Brownian motion In this model the short term inter-est rate rt remains always positive while the proportional volatility term σrtaccounts for the sensitivity of the volatility of interest rate changes to thelevel of the rate rt

On the other hand the Dothan model is the only lognormal short ratemodel that allows for an analytical formula for the zero coupon bond price

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

For convenience of notation we let p = 1minus 2microσ2 and rewrite (1325) as

drt = (1minus p)σ2

2 rtdt+ σrtdBt

with solutionrt = r0 eσBtminuspσ

2t2 t isin R+ (1326)

By the Markov property of (rt)tisinR+ the bond price P (t T ) is a functionF (t rt) of rt and time t isin [0 T ]

P (t T ) = F (t rt) = IElowast[

eminusr Ttrsds

∣∣∣ rt] 0 6 t 6 T (1327)

By computation of the conditional expectation (1327) using (106) we easilyobtain the following result cf Proposition 12 of [PP11] where the functionθ(v t) is defined in (104)

Proposition 133 The zero-coupon bond price P (t T ) = F (t rt) is givenfor all p isin R by

F (t x) (1328)

= eminusσ2p2(Tminust)8

winfin0

winfin0

eminusux exp(minus2(1 + z2)σ2u

(4zσ2u

σ2(T minus t)

4

)du

u

dz

zp+1

x gt 0

Proof By Proposition 101 cf [Yor92] Proposition 2 the probability distri-bution of the time integral

w Tminust

0eσBsminuspσ

2s2ds is given by

P(w Tminust

0eσBsminuspσ

2s2ds isin dy)

=winfinminusinfin

P(w t

0eσBsminuspσ

2s2ds isin dy Bt minus pσt2 isin dz)

431

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 19: Forward Rate Modeling

Forward Rate Modeling

Fig 139 Bond price graph with maturity 011808 and coupon rate 625

See Exercise 133 for a bond pricing formula in the CIR model

Zero coupon bond price and yield data

The following zero coupon bond price was downloaded at EMMA fromthe Municipal Securities Rulemaking Board

ORANGE CNTY CALIF PENSION OBLIG CAP APPREC-TAXABLE-REF-SER A (CA)CUSIP 68428LBB9Dated Date 06121996 (June 12 1996)Maturity Date 09012016 (September 1st 2016)Interest Rate 00 Principal Amount at Issuance $26056000Initial Offering Price 19465

library(quantmod)bondprice lt- readtable(bond_data_Rtxtcolnames = c(DateHighPriceLowPrice

HighYieldLowYieldCountAmount))head(bondprice)time lt- asPOSIXct(bondprice$Date format = Y-m-d)price lt- xts(x = bondprice$HighPrice orderby = time)yield lt- xts(x = bondprice$HighYield orderby = time)chartSeries(priceupcol=bluetheme=white)chartSeries(yieldupcol=bluetheme=white)

429

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

2016-01-139908298982166615012200002015-12-2999183991831251251100002015-12-219795297952301430141100002015-12-179914198552123125156100002015-12-0798779877171417142100002015-12-04983639811826282282100002015-11-1898659865176817672200002015-11-1798306983062201222200002015-10-029865998514167150641000002015-09-099898210721071250002015-09-089888498043204311583300002015-07-20975059628345922992200002015-07-1698397983971461461250002015-07-15988729887210211021150002015-07-109768997689208420841300002015-06-1898123980231686163300002015-06-179884397034254313250002015-06-15983698299143113795850002015-06-0998016980161651651200002015-05-21978269772618321752500002015-05-189849498494119111912300002015-05-1598559835130311433300002015-05-129776997769175117511150002015-04-279834898348125112512400002015-04-249830398303128212821250002015-04-239760797607181318131650002015-04-1498649864111100002015-03-20983897981428114373850002015-03-199785197751159151836750002015-03-11981981391323600002015-02-27978297695156914832400002015-02-139858298357108309343750002015-02-119857698226116609343300002015-01-15983983106710671550002015-01-12989598950650652600002015-01-099898123212321600002014-12-11983197396155131600002014-12-109641696416214421442800002014-12-059804498044114811481500002014-12-049728897288159815981500002014-11-219782297822125125150002014-11-209642294353320733150002014-11-0797979964582014113861250002014-10-299650496504195619561150002014-10-1498149977841201123200002014-10-0797401974011396139611000002014-10-0397991970261598107353500002014-09-3097446962851991135842200002014-09-1997331972311455140221000002014-09-18964796419186221000002014-09-15969956732278161943000002014-09-119555952252823382200002014-08-199711995596223614495750002014-08-139528695286238623861300002014-08-069559395593220522051350002014-08-0197951977261114100341000002014-07-30976975122311742200002014-07-239603695036244919434500002014-07-1697494951246912526750002014-07-1497182969571461135141000002014-07-11956995572144208421000002014-05-209531495314212321232300002014-05-169372393723286628661300002014-04-299701396713143913052200002014-04-1695169516211521151200002014-04-07976339683313510042500002014-04-029577393974260718073750002014-02-2893293128932852200002014-02-2791759175348634861100002014-02-21956959269530417584400002014-02-189438593885251122992900002014-02-139310193101284228421450002013-11-159393262726271500002013-11-14915915320432041500002013-11-12925999171312127712200002013-10-319427294272210121013450002013-10-309232392323284828481100002013-10-299599942521011452200002013-10-259080790807342934291100002013-10-219161691491314230933750002013-08-0791008910083113112100002013-08-05894258942536813681150002013-07-229494394018216812800002013-07-1795167930262339162900002013-07-16951549515416161500002013-07-12944129441218518511000002013-06-28940049340421719663400002013-06-269471892567245417213500002013-06-11925692562422422120002013-06-05911119111129072907150002013-06-0495282952821528152862500002013-05-3195122951221547154712250002013-05-309429291069290718214280002013-05-2994969488516331652000002013-05-2492682926822352351100002013-05-2394488930732217174942100002013-05-219679193731199174950002013-05-169127691276280428041200002013-05-02916769015315126383270002013-04-24920999163926322483450002013-04-22920749161426322483540002013-04-179645941591810798550002013-04-159205491954250524722200002013-04-1191791725842584170002013-04-099635889785320810996570002013-03-12914491442602260218000002013-02-229164389323243250134830002013-02-0690290298529222400002012-11-29881528796434573399103200002012-11-2888176878843479338941200002012-11-279048790487268226821150002012-11-23890628906231063106150002012-11-13878737073707150002012-11-098472383048495644175200002012-10-3188798879313531351100002012-10-25907905261925612300002012-10-2490353903532662662400002012-10-168845888458319731972400002012-10-0290866900552724682300002012-10-0190148900472726712200002012-09-26882398779733513222500002012-09-249051390512255425542100002012-09-21905905255625561300002012-09-139103189907270923923750002012-08-0985188518400240023250002012-08-0886038333945513755410002012-08-0386486859863753605240002012-07-2785849404940192200002012-07-19876183625440732541800002012-07-18870738707334342350002012-07-178652286048368636092400002012-07-1685088840884254396131050002012-07-1386541865413543541150002012-06-29865728657235351400002012-06-2885258525387238721400002012-06-2187751868533431521100002012-06-208528984689401238431650002012-06-138643855937363521500002012-06-118386183861422142211750002012-05-258518485184380938091300002012-05-238386683866417841781300002012-05-2185331853313753751250002012-05-18838344094409150002012-05-178442484224405743750002012-04-05853283662410636541000002012-03-2988243851033692852530002012-03-2787258342141443112530002012-03-228495840753956371731350002012-03-02855855352535251100002012-03-018368583685400740071100002012-02-0787584664368529515750002012-01-2686645865853167315241500002012-01-2586458645323211610002012-01-248380754703409742540002012-01-2081188118458445841100002012-01-178245182351425342263650002012-01-128413781755440837746600002012-01-1181658094639443431650002012-01-0479575795754984981200002011-12-307875787551985198130002011-12-29764757647558245824130002011-12-088038580385468346831150002011-12-01798879884847992300002011-11-307969379693484848481150002011-11-01777560455491240002011-10-28788578854984981100002011-10-26767576755555551100002011-10-05777559725418280002011-08-2678119773195211521100002011-08-23774237742351695169170002011-08-2276576554065406170002011-07-278135881358414111300002011-06-227417415864586411300002011-04-267554575545532253221100002011-04-257481964916825555053400002011-04-206474163965853382983600002011-04-15767097545334500555000002011-04-087620176201511351131150002011-03-3174502745025525521150002011-03-17744347443455551400002011-03-167373586558651400002011-03-0374556745565435431500002011-03-017390373903558355831500002011-01-2871317713176156153200002011-01-2667256725723472332200002011-01-187300473004568756871600002011-01-1273719716560215561500002011-01-04735735552455242540002011-01-0371592713756055621200002010-12-2273173559855982300002010-12-1374185697646305533250002010-12-1073558735585455454800002010-12-0973547735475455452200002010-12-02658996589974087408150002010-12-017312570756124553241980002010-11-297508571889582650495290002010-11-19738738533653361150002010-11-10772797645452400002010-11-097674969503447934800002010-11-087914178641407240722400002010-11-037953178606397839782300002010-11-0277087770874524521350002010-10-068072779568371536714700002010-10-057906878277419741972700002010-10-04801793797379721100002010-10-018048978903371137113300002010-09-307717714453445321300002010-09-207888377821403440342400002010-09-177781277812426742672100002010-09-1476942769424454451250002010-09-097446274462500650061180002010-09-08732057320552965296150002010-09-03757527575247472100002010-09-02748317483149074907150002010-08-3176585748294896452800002010-08-307403974039507350731180002010-08-23765197651945452550002010-08-207463974639492149211550002010-08-167557454932470662100002010-08-117536575365473647361100002010-08-067425573255520652063300002010-07-26745787251535487651000002010-07-22740047245253500161750002010-07-2173417705936513384600002010-07-20707570655772577222000002010-07-077221172111537753772200002010-07-06720797207954544340002010-07-027293472068520152012160002010-06-307169934586856686900002010-06-29694269073609460942200002010-06-177140467856364551492000002010-06-1173567356500850081350002010-06-1072391713915275272500002010-06-09708647051570357032500002010-06-087281271524523516571050002010-06-077099270638566356632700002010-05-03720727107254775252100002010-04-016775661256568617731000002010-03-056765667556612661262400002010-03-03667566656366362400002010-02-1067946678600659966900002010-02-096586438683468343300002010-02-0866264874671167114800002010-01-066542565425649464942200002010-01-05708596310870465256500002009-12-157081570155521552154200002009-12-146565652965292200002009-11-1868569685695655652500002009-11-176717467174595259521400002009-11-1668526685265655652400002009-11-127039675255239417000002009-10-0170974642926063502952010002009-09-3070152605577397524460002009-09-29636296819681921200002009-09-0364605646056366361300002009-08-286190861908697269721300002009-08-19626561756774677431500002009-08-18614446083727221000002009-08-12621602573296884125900002009-07-216146561465697169711100002009-07-206033160307724572452200002009-06-265930159301742674261300002009-06-226112161121697269721250002009-06-175991959319739573952500002009-06-106088860888771180002009-06-0958685868752275221180002009-06-026096260962695569551250002009-05-225993959939717871781250002009-05-216204161692566842600002009-04-16609560956846842400002009-04-15604604696569651400002009-04-1462224622246546541100002009-04-0659868598687067061100002009-03-065656791279121250002009-03-0553983539838428421250002009-02-095770457554745741441450002009-02-06576925691776741431050002009-01-2855635556357887788712500002009-01-2258225582257257251250002009-01-215671556715760676061250002008-11-065720157201728972891150002008-10-166021959294655765572200002008-10-156095859283639563954500002008-10-0855454877877842000002008-07-3163623623515681568131500002008-07-186192961929661150002008-07-156361460368631456494600002008-07-1062562255918591821000002008-07-08642016170160225522100002008-07-0260567605676256251180002008-07-015859458594666766671180002008-06-2359589657665762300002008-06-20619936186592959293450002008-06-1661584598936631500002008-06-1358958865865821000002008-06-126094460944612761271150002008-05-156237562375578257821100002008-05-136137261372597659761100002008-04-2461086108664200002008-03-07626396157558085622000002008-02-2264256046012526662400002008-02-1164214642145255251400002008-02-0761756175571757171400002008-01-086385162951526152614600002008-01-04610716046590659063550002008-01-0359977592776146142100002007-10-18608446084456956921300002007-10-17613136131355995599150002007-10-1659655965591359131700002007-09-17610086100856561550002007-09-14594594590559052550002007-09-1260714607145655651200002007-09-1161458101615551661350002007-09-06608636075561256123750002007-08-2859514595145855851500002007-08-235994759947576257621110002007-08-205989958311606957622250002007-07-125942259422578857881250002007-07-115963459603575257462850002007-07-0958842588425895891950002007-07-02594085940857715771150002007-06-2759934590095665566541800002007-06-2659433582825754575431900002007-06-25598475875567456743600002007-06-225777577760696069150002007-06-2059275568356248578221050002007-06-1857214572146166616613000002007-05-255909659096576857681350002007-05-215959259592566356631550002007-05-15615236152353531150002007-05-1461514612535347532600002007-05-09602258955766576631950002007-05-01602846028455025502150002007-04-25612612532953291500002007-04-2461179585975802532852500002007-04-2359675585913591331500002007-04-1956556561986198150002007-03-2861658607520352032500002007-03-275953758877570357033750002007-02-2861125602575256525622000002007-02-2759953597535496549622000002007-02-265882258423566556653150002007-02-21585858085808150002007-02-085926959269555355531100002007-02-056019660196537853781300002007-02-025880658456562756272100002007-02-0159222592225555551500002007-01-316006358556853972200002007-01-265700357003594359431100002007-01-245791557915577857781100002007-01-236027560275534553451100002007-01-1660129601295365361400002007-01-115988659445467543400002007-01-05585157466582956374400002006-12-1859359579525707545352400002006-12-01573553617861783150002006-11-2160013600135353150002006-11-15583165831655915591150002006-09-07582215822155552450002006-09-065681256812575157511450002006-08-22577455675555855582400002006-08-1655709557095925921200002006-08-03565915486067573841200002006-07-3155135541356183599641000002006-07-27545585455861611100002006-07-2456094519225815814400002006-07-175624755372577157712200002006-07-115481954819602360231100002006-07-065479151686618602351700002006-07-055455456075607511000002006-06-2650571505716816681611000002006-06-16542552256476472400002006-06-1449319493197051705111000002006-05-155443854438662500002006-05-125218552185642264221500002006-04-255619456194565256521450002006-04-21545155316212621231350002006-04-125557455574574657461250002006-04-055663654525592355465650002006-04-035350353503610361031100002006-03-3055995599565156511100002006-03-285514955149579657961100002006-03-245473554735586758672100002006-03-23565563558755872200002006-03-21565565554655461100002006-03-135625549935855782300002006-02-1557671567715297529722000002006-02-1456219557945614561433000002006-02-08576576530153011350002006-01-26585585513151313300002006-01-2458558551255125150002006-01-235712557125535453541100002006-01-1757325732531353132700002006-01-125837558375513451341250002006-01-105717856552853273550002006-01-065375375935931200002006-01-0356394563945455451350002005-11-075656543754371350002005-10-075670756707528152811350002005-09-2058406584064977497711000002005-09-1356906569065211521111000002005-09-0758816572334897489731950002005-08-3156894565945249524921100002005-08-2559013590134851485111400002005-08-175678567852521400002005-08-165572854728553955393300002005-08-115483254832551755171400002005-07-22566685666851855185150002005-07-195757512551251180002005-07-1856103561035275271180002005-07-085621556215524152411800002005-07-0658755875483248321500002005-06-29589115652664841600002005-06-24567115671151425142150002005-06-2156006560065255251150002005-06-205449453949559255922300002005-06-1556035603524152411500002005-06-0158365565375144852350002005-05-2556497564975145141250002005-04-25564865548651512500002005-04-205494153788553955392500002005-04-075542155421525152512800002005-04-0553405525675723572332400002005-03-035490854908529152911200002005-03-0255149542254025252300002005-03-01551275340555335252600002005-02-28557455745155151250002005-02-25541925419254541250002005-02-245666455355001500122000002005-02-2353661536615483548311000002005-02-185572255722514151411300002005-02-155466454664530453041400002005-01-2751255125585558551250002005-01-265599155613513507227628000

N Privault

Date HighPrice LowPrice HighYield LowYield Count Amount1 2016-01-13 99082 98982 1666 1501 2 200002 2015-12-29 99183 99183 1250 1250 1 100003 2015-12-21 97952 97952 3014 3014 1 100004 2015-12-17 99141 98550 2123 1251 5 6100005 2015-12-07 98770 98770 1714 1714 2 100006 2015-12-04 98363 98118 2628 2280 2 10000

50

60

70

80

90

100

price [2005minus01minus262016minus01minus13]

Last 99082

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1310 Orange Cnty Calif bond prices

The next Figure 1311 plots the bond yield y(t T ) defined as

y(t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)y(tT ) 0 6 t 6 T

2

4

6

8

yield [2005minus01minus262016minus01minus13]

Last 1666

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1311 Orange Cnty Calif bond yields

Bond pricing in the Dothan model

In the Dothan [Dot78] model the short term interest rate process (rt)tisinR+ ismodeled according to a geometric Brownian motion

drt = micrortdt+ σrtdBt (1325)430

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

where the volatility σ gt 0 and the drift micro isin R are constant parameters and(Bt)tisinR+ is a standard Brownian motion In this model the short term inter-est rate rt remains always positive while the proportional volatility term σrtaccounts for the sensitivity of the volatility of interest rate changes to thelevel of the rate rt

On the other hand the Dothan model is the only lognormal short ratemodel that allows for an analytical formula for the zero coupon bond price

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

For convenience of notation we let p = 1minus 2microσ2 and rewrite (1325) as

drt = (1minus p)σ2

2 rtdt+ σrtdBt

with solutionrt = r0 eσBtminuspσ

2t2 t isin R+ (1326)

By the Markov property of (rt)tisinR+ the bond price P (t T ) is a functionF (t rt) of rt and time t isin [0 T ]

P (t T ) = F (t rt) = IElowast[

eminusr Ttrsds

∣∣∣ rt] 0 6 t 6 T (1327)

By computation of the conditional expectation (1327) using (106) we easilyobtain the following result cf Proposition 12 of [PP11] where the functionθ(v t) is defined in (104)

Proposition 133 The zero-coupon bond price P (t T ) = F (t rt) is givenfor all p isin R by

F (t x) (1328)

= eminusσ2p2(Tminust)8

winfin0

winfin0

eminusux exp(minus2(1 + z2)σ2u

(4zσ2u

σ2(T minus t)

4

)du

u

dz

zp+1

x gt 0

Proof By Proposition 101 cf [Yor92] Proposition 2 the probability distri-bution of the time integral

w Tminust

0eσBsminuspσ

2s2ds is given by

P(w Tminust

0eσBsminuspσ

2s2ds isin dy)

=winfinminusinfin

P(w t

0eσBsminuspσ

2s2ds isin dy Bt minus pσt2 isin dz)

431

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 20: Forward Rate Modeling

N Privault

Date HighPrice LowPrice HighYield LowYield Count Amount1 2016-01-13 99082 98982 1666 1501 2 200002 2015-12-29 99183 99183 1250 1250 1 100003 2015-12-21 97952 97952 3014 3014 1 100004 2015-12-17 99141 98550 2123 1251 5 6100005 2015-12-07 98770 98770 1714 1714 2 100006 2015-12-04 98363 98118 2628 2280 2 10000

50

60

70

80

90

100

price [2005minus01minus262016minus01minus13]

Last 99082

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1310 Orange Cnty Calif bond prices

The next Figure 1311 plots the bond yield y(t T ) defined as

y(t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)y(tT ) 0 6 t 6 T

2

4

6

8

yield [2005minus01minus262016minus01minus13]

Last 1666

Jan 262005

Aug 032006

May 132008

Feb 082010

Mar 012011

Nov 092012

Dec 042014

Fig 1311 Orange Cnty Calif bond yields

Bond pricing in the Dothan model

In the Dothan [Dot78] model the short term interest rate process (rt)tisinR+ ismodeled according to a geometric Brownian motion

drt = micrortdt+ σrtdBt (1325)430

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

where the volatility σ gt 0 and the drift micro isin R are constant parameters and(Bt)tisinR+ is a standard Brownian motion In this model the short term inter-est rate rt remains always positive while the proportional volatility term σrtaccounts for the sensitivity of the volatility of interest rate changes to thelevel of the rate rt

On the other hand the Dothan model is the only lognormal short ratemodel that allows for an analytical formula for the zero coupon bond price

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

For convenience of notation we let p = 1minus 2microσ2 and rewrite (1325) as

drt = (1minus p)σ2

2 rtdt+ σrtdBt

with solutionrt = r0 eσBtminuspσ

2t2 t isin R+ (1326)

By the Markov property of (rt)tisinR+ the bond price P (t T ) is a functionF (t rt) of rt and time t isin [0 T ]

P (t T ) = F (t rt) = IElowast[

eminusr Ttrsds

∣∣∣ rt] 0 6 t 6 T (1327)

By computation of the conditional expectation (1327) using (106) we easilyobtain the following result cf Proposition 12 of [PP11] where the functionθ(v t) is defined in (104)

Proposition 133 The zero-coupon bond price P (t T ) = F (t rt) is givenfor all p isin R by

F (t x) (1328)

= eminusσ2p2(Tminust)8

winfin0

winfin0

eminusux exp(minus2(1 + z2)σ2u

(4zσ2u

σ2(T minus t)

4

)du

u

dz

zp+1

x gt 0

Proof By Proposition 101 cf [Yor92] Proposition 2 the probability distri-bution of the time integral

w Tminust

0eσBsminuspσ

2s2ds is given by

P(w Tminust

0eσBsminuspσ

2s2ds isin dy)

=winfinminusinfin

P(w t

0eσBsminuspσ

2s2ds isin dy Bt minus pσt2 isin dz)

431

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 21: Forward Rate Modeling

Forward Rate Modeling

where the volatility σ gt 0 and the drift micro isin R are constant parameters and(Bt)tisinR+ is a standard Brownian motion In this model the short term inter-est rate rt remains always positive while the proportional volatility term σrtaccounts for the sensitivity of the volatility of interest rate changes to thelevel of the rate rt

On the other hand the Dothan model is the only lognormal short ratemodel that allows for an analytical formula for the zero coupon bond price

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

For convenience of notation we let p = 1minus 2microσ2 and rewrite (1325) as

drt = (1minus p)σ2

2 rtdt+ σrtdBt

with solutionrt = r0 eσBtminuspσ

2t2 t isin R+ (1326)

By the Markov property of (rt)tisinR+ the bond price P (t T ) is a functionF (t rt) of rt and time t isin [0 T ]

P (t T ) = F (t rt) = IElowast[

eminusr Ttrsds

∣∣∣ rt] 0 6 t 6 T (1327)

By computation of the conditional expectation (1327) using (106) we easilyobtain the following result cf Proposition 12 of [PP11] where the functionθ(v t) is defined in (104)

Proposition 133 The zero-coupon bond price P (t T ) = F (t rt) is givenfor all p isin R by

F (t x) (1328)

= eminusσ2p2(Tminust)8

winfin0

winfin0

eminusux exp(minus2(1 + z2)σ2u

(4zσ2u

σ2(T minus t)

4

)du

u

dz

zp+1

x gt 0

Proof By Proposition 101 cf [Yor92] Proposition 2 the probability distri-bution of the time integral

w Tminust

0eσBsminuspσ

2s2ds is given by

P(w Tminust

0eσBsminuspσ

2s2ds isin dy)

=winfinminusinfin

P(w t

0eσBsminuspσ

2s2ds isin dy Bt minus pσt2 isin dz)

431

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 22: Forward Rate Modeling

N Privault

= σ

2winfinminusinfin

eminuspσz2minusp2σ2t8 exp

(minus21 + eσz

σ2y

(4 eσz2σ2y

σ2t

4

)dy

ydz

= eminusp2σ2(Tminust)8

winfin0

exp(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y y gt 0

where the exchange of integrals is justified by the Fubini theorem and thenonnegativity of integrands Hence by (106) and (1326) we find

F (t rt) = P (t T )

= IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minusrt

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

) ∣∣∣ Ft]= IElowast

[exp

(minusx

w T

teσ(BsminusBt)minusσ2p(sminust)2ds

)]x=rt

= IElowast[exp

(minusx

w Tminust

0eσBsminusσ

2ps2ds

)]x=rt

=winfin

0eminusrty P

(w Tminust

0eσBsminuspσ

2s2ds isin dy)

= eminusp2σ2(Tminust)8

winfin0

eminusrtywinfin

0exp

(minus21 + z2

σ2y

(4zσ2y

σ2(T minus t)

4

)dz

zp+1dy

y

The zero-coupon bond price P (t T ) = F (t rt) in the Dothan model can alsobe written for all p isin R as

F (t x) = (2x)p22π2σp

winfin0ueminusσ

2(p2+u2)t8 sinh(πu)∣∣∣Γ (minusp2 + i

u

2

)∣∣∣2Kiu

(radic8xσ

)du

+ (2x)p2σp

infinsumk=0

2(pminus 2k)+

k(pminus k) eσ2k(kminusp)t2Kpminus2k

(radic8xσ

) x gt 0 t gt 0

cf Corollary 22 of [PP10] see also [PU13] for numerical computations Zero-coupon bond prices in the Dothan model can also be computed by the con-ditional expression

IE[exp

(minus

w T

0rtdt

)]=

winfin0

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]dP(rT 6 z)

(1329)where rT has the lognormal distribution

dP(rT 6 z) = dP(r0eσBTminuspσ2T2 6 z) = 1

zradic

2πσ2Teminus(pσ2T2+log(zr0))2(2σ2T )

432

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 23: Forward Rate Modeling

Forward Rate Modeling

In Proposition 134 we note that the conditional Laplace transform

IE[exp

(minus

w T

0rtdt

) ∣∣∣rT = z

]cf (1310) above can be computed by a closed-form integral expression basedon the modified Bessel function of the second kind

Kζ(z) = zζ

2ζ+1

winfin0

exp(minusuminus z2

4u

)du

uζ+1 ζ isin R z isin C (1330)

cf eg [Wat95] page 183 provided that the real part R(z2) of z2 isin C ispositiveProposition 134 [PY16] Proposition 41 Taking r0 = 1 for all λ z gt 0we have

IE[exp

(minusλ

w T

0rsds

) ∣∣∣ rT = z

]= 4 eminusσ2T8

π32σ2p(z)

radicλ

T(1331)

timeswinfin

0e2(π2minusξ2)(σ2T ) sin

(4πξσ2T

)sinh(ξ)

K1

(radic8λradic

1 + 2radicz cosh ξ + zσ

)radic

1 + 2radicz cosh ξ + z

Note however that (1331) fails for small values of T and for this reasonthe integral can be estimated by a gamma approximation cf (1332) belowUnder the Gamma approximation we can approximate the conditional bondprice on the Dothan short rate rt as

IE[exp

(minusλ

w T

0rtdt

) ∣∣∣rT = z

] (1 + λθ(z))minusν(z)

where the parameters ν(z) and θ(z) are determined by conditional momentfitting to a gamma distribution as

θ(z) = Var[ΛT | ST = z]IE[ΛT | ST = z] ν(z) = (IE[ΛT | ST = z])2

Var[ΛT | ST = z] = IE[ΛT | ST = z]θ

cf [PY16] which yields

IE[exp

(minusλ

w T

0rsds

)]

winfin0

(1 + λθ(z))minusν(z)dP(rT 6 z) (1332)

Note that θ(z) is known in physics as the Fano factor which measures the dis-persion of the probability distribution of ΛT given that ST = z Figures 1312shows that the stratified gamma approximation (1332) matches the MonteCarlo estimate while the use of the integral expressions (1329) and (1331)leads to numerical instabilities

433

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 24: Forward Rate Modeling

N Privault

0

02

04

06

08

1

0 1 2 3 4 5 6 7 8 9 10T=

F(x

t)

t

stratified gammaMonte Carlo

integral expression

Fig 1312 Approximation of Dothan bond prices t 7rarr F (t x) with σ = 03 and T = 10

Related computations for yield options in the CIR model can also be foundin [PP17]

134 Forward Rates

A forward interest rate contract (or Forward Rate Agreement FRA) givesto its holder the possibility to lock an interest rate denoted by f(t T S) atpresent time t for a loan to be delivered over a future period of time [T S]with t 6 T 6 S The rate f(t T S) is called a forward interest rate WhenT = t the spot forward rate f(t t T ) is also called the yield

Figure 1313 presents a typical yield curve on the LIBOR (London InterbankOffered Rate) market with t =07 May 2003

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Forward interest rateTimeSerieNb 505AsOfDate 7shymaishy032D 2551W 2531M 2562M 2523M 2481Y 2342Y 2493Y 2794Y 3075Y 3316Y 3527Y 3718Y 3889Y 40210Y 41411Y 42312Y 43313Y 4414Y 44715Y 45420Y 47425Y 48330Y 486

Fig 1313 Forward rate graph T 7minusrarr f(t t T )

Maturity transformation ie the ability to transform short term borrowing(debt with short maturities such as deposits) into long term lending (credits

434

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 25: Forward Rate Modeling

Forward Rate Modeling

with very long maturities such as loans) is among the roles of banks Prof-itability is then dependent on the difference between long rates and shortrates

Another example of market data is given in the next Figure 1314 in whichthe red and blue curves refer respectively to July 21 and 22 of year 2011

Fig 1314 Market example of yield curves cf (1335)

Forward rates from bond prices

Let us determine the arbitrage or ldquofairrdquo value of the forward interest ratef(t T S) by implementing the Forward Rate Agreement using the instru-ments available in the market which are bonds priced at P (t T ) for variousmaturity dates T gt t

The loan can be realized using the available instruments (here bonds) on themarket by proceeding in two steps

1) At time t borrow the amount P (t S) by issuing (or short selling) onebond with maturity S which means refunding $1 at time S

2) Since the money is only needed at time T the rational investor willinvest the amount P (t S) over the period [t T ] by buying a (possibly frac-tional) quantity P (t S)P (t T ) of a bond with maturity T priced P (t T )at time t This will yield the amount

435

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 26: Forward Rate Modeling

N Privault

$1times P (t S)P (t T )

at time T gt 0

As a consequence the investor will actually receive P (t S)P (t T ) at timeT to refund $1 at time S

The corresponding forward rate f(t T S) is then given by the relation

P (t S)P (t T ) exp ((S minus T )f(t T S)) = $1 0 6 t 6 T 6 S (1333)

where we used exponential compounding which leads to the following defi-nition (1334)Definition 135 The forward rate f(t T S) at time t for a loan on [T S]is given by

f(t T S) = logP (t T )minus logP (t S)S minus T

(1334)

The spot forward rate f(t t T ) coincides with the yield given by

f(t t T ) = minus logP (t T )T minus t

or P (t T ) = eminus(Tminust)f(ttT ) 0 6 t 6 T(1335)

The instantaneous forward rate f(t T ) = f(t T T ) is defined by taking thelimit of f(t T S) as S T ie

f(t T ) = limST

f(t T S)

= minus limST

logP (t S)minus logP (t T )S minus T

= minus limε0

logP (t T + ε)minus logP (t T )ε

= minuspart logP (t T )partT

= minus 1P (t T )

partP (t T )partT

(1336)

The above equation (1336) can be viewed as a differential equation to besolved for logP (t T ) under the initial condition P (T T ) = 1 which yieldsthe following proposition436

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 27: Forward Rate Modeling

Forward Rate Modeling

Proposition 136 We have

P (t T ) = exp(minus

w T

tf(t s)ds

) 0 6 t 6 T (1337)

Proof We check that

logP (t T ) = logP (t T )minus logP (t t) =w T

t

part logP (t s)parts

ds = minusw T

tf(t s)ds

Proposition 136 also shows that

f(t t) = part

partT

w T

tf(t s)ds|T=t

= minus part

partTlogP (t T )|T=t

= minus 1P (t T ) |T=t

part

partTP (t T )|T=t

= minus part

partTIElowast[

eminusr Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rT eminus

r Ttrsds

∣∣∣ Ft]|T=t

= IElowast[rt | Ft]= rt

ie the short rate rt can be recovered from the instantaneous forward rateas

rt = f(t t) = limTt

f(t T )

As a consequence of (1333) and (1337) the forward rate f(t T S) 0 6 t 6T 6 S can be recovered from (1334) and the instantaneous forward ratef(t s) as

f(t T S) = logP (t T )minus logP (t S)S minus T

= minus 1S minus T

(w T

tf(t s)dsminus

w S

tf(t s)ds

)= 1S minus T

w S

Tf(t s)ds 0 6 t 6 T lt S (1338)

In particular the spot forward rate or yield f(t t T ) can be written as

437

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 28: Forward Rate Modeling

N Privault

f(t t T ) = minus logP (t T )T minus t

= 1T minus t

w T

tf(t s)ds 0 6 t lt T (1339)

Differentiation with respect to T of the above relation shows that the yieldf(t t T ) and the instantaneous forward rate f(t s) are linked by the relation

partf

partT(t t T ) = minus 1

(T minus t)2

w T

tf(t s)ds+ 1

T minus tf(t T ) 0 6 t lt T

from which it follows that

f(t T ) = 1T minus t

w T

tf(t s)ds+ (T minus t) partf

partT(t t T )

= f(t t T ) + (T minus t) partfpartT

(t t T ) 0 6 t lt T

Forward Swap Rates

The first interest rate swap occurred in 1981 between IBM and the WorldBank The vanilla interest rate swap makes it possible to exchange a se-quence of variable forward rates f(t Tk Tk+1) k = 1 2 nminus 1 against afixed rate κ over a time period [T1 Tn] Over the succession of time intervals[T1 T2) [T2 T3) [Tnminus1 Tn] defining a tenor structure see Section 141for details the combination of such exchanges will generate a cumulativediscounted cash flow(nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsdsf(t Tk Tk+1)

)minus

(nminus1sumk=1

κ(Tk+1 minus Tk) eminusr Tk+1t rsds

)

=nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

at time t = T0 in which we used simple (or linear) interest rate compoundingThis cash flow is used to make the contract fair and it can be priced at timet as

IElowast[nminus1sumk=1

(Tk+1 minus Tk) eminusr Tk+1t rsds(f(t Tk Tk+1)minus κ)

∣∣∣ Ft]

=nminus1sumk=1

(Tk+1 minus Tk)(f(t Tk Tk+1)minus κ) IElowast[

eminusr Tk+1t rsds

∣∣∣ Ft]438

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 29: Forward Rate Modeling

Forward Rate Modeling

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus κ

)

The swap rate S(t T1 Tn) is by definition the value of the rate κ that makesthe contract fair by making this cash flow vanish The next Proposition 137makes use of the annuity numeacuteraire

P (t T1 Tn) =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1) 0 6 t 6 T1 (1340)

which represents the present value at time t of future $1 receipts at timesT1 T2 Tn weighted by the time intervals Tk+1 minus Tk k = 1 2 nminus 1

Proposition 137 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

(1341)

Proof By definition S(t T1 Tn) is the fixed rate over [T1 Tn] that willbe agreed in exchange for the family of forward rates f(t Tk Tk+1) k =1 2 nminus 1 and it solves

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(f(t Tk Tk+1)minus S(t T1 Tn)

)= 0 (1342)

ie

0 =nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)

minusS(t T1 Tn)nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)

=nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)f(t Tk Tk+1)minus P (t T1 Tn)S(t T1 Tn)

which shows (1341) by solving for S(t T1 Tn)

The time intervals (Tk+1 minus Tk)k=12nminus1 in the definition (1340) of theannuity numeacuteraire can be replaced by coupon payments (ck+1)k=12nminus1occurring at times (Tk+1)k=12nminus1 in which case the annuity numeacuterairebecomes

439

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 30: Forward Rate Modeling

N Privault

P (t T1 Tn) =nminus1sumk=1

ck+1P (t Tk+1) 0 6 t 6 T1 (1343)

which represents the value at time t of the future coupon payments discountedaccording to the bond prices P (t Tk+1)k=12nminus1 This expression can alsobe used for amortizing swaps in which the value of the notional decreasesover time or for accreting swaps in which the value of the notional increasesover time

LIBOR Rates

Recall that the forward rate f(t T S) 0 6 t 6 T 6 S is defined usingexponential compounding from the relation

f(t T S) = minus logP (t S)minus logP (t T )S minus T

(1344)

In order to compute swaption prices one prefers to use forward rates as de-fined on the London InterBank Offered Rates (LIBOR) market instead of thestandard forward rates given by (1344)

The forward LIBOR L(t T S) for a loan on [T S] is defined using linearcompounding ie by replacing (1344) with the relation

1 + (S minus T )L(t T S) = P (t T )P (t S) 0 6 t 6 T

which yields the following definition

Definition 138 The forward LIBOR rate L(t T S) at time t for a loan on[T S] is given by

L(t T S) = 1S minus T

(P (t T )P (t S) minus 1

) 0 6 t 6 T lt S (1345)

Note that (1345) above yields the same formula for the (LIBOR) instanta-neous forward rate

L(t T ) = limST

L(t T S)

= limST

P (t S)minus P (t T )(S minus T )P (t S)

= limε0

P (t T + ε)minus P (t T )εP (t T + ε)

440

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 31: Forward Rate Modeling

Forward Rate Modeling

= 1P (t T ) lim

ε0

P (t T + ε)minus P (t T )ε

= minus 1P (t T )

partP (t T )partT

= minuspart logP (t T )partT

as (1336)

In addition Relation (1345) shows that the LIBOR rate can be viewedas a forward price Xt = XtNt with numeacuteraire Nt = (S minus T )P (t S) andXt = P (t T ) minus P (t S) according to Relation (127) of Chapter 12 As aconsequence from Proposition 124 the LIBOR rate (L(t T S))tisin[TS] is amartingale under the forward measure P defined by

dPdPlowast

= 1P (0 S) eminus

r S0 rtdt

LIBOR Swap Rates

The LIBOR swap rate S(t T1 Tn) satisfies the same relation as (1342) withthe forward rate f(t Tk Tk+1) replaced with the LIBOR rate L(t Tk Tk+1)ie

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)(L(t Tk Tk+1)minus S(t T1 Tn)) = 0

Proposition 139 The LIBOR swap rate S(t T1 Tn) is given by

S(t T1 Tn) = P (t T1)minus P (t Tn)P (t T1 Tn) 0 6 t 6 T1 (1346)

Proof By (1341) (1345) and a telescoping sum we have

S(t T1 Tn) = 1P (t T1 Tn)

nminus1sumk=1

(Tk+1 minus Tk)P (t Tk+1)L(t Tk Tk+1)

= 1P (t T1 Tn)

nminus1sumk=1

P (t Tk+1)(

P (t Tk)P (t Tk+1) minus 1

)

= 1P (t T1 Tn)

nminus1sumk=1

(P (t Tk)minus P (t Tk+1))

= P (t T1)minus P (t Tn)P (t T1 Tn) (1347)

441

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 32: Forward Rate Modeling

N Privault

Clearly a simple expression for the swap rate such as that of Proposition 139cannot be obtained using the standard (ie non-LIBOR) rates defined in(1344) Similarly it will not be available for amortizing or accreting swapsbecause the telescoping summation argument does not apply to the expression(1343) of the annuity numeraire

When n = 2 the swap rate S(t T1 T2) coincides with the forward rateL(t T1 T2)

S(t T1 T2) = L(t T1 T2) (1348)

and the bond prices P (t T1) can be recovered from the forward swap ratesS(t T1 Tn)

Similarly to the case of LIBOR rates Relation (1346) shows that theLIBOR swap rate can be viewed as a forward price with (annuity) numeacuteraireNt = P (t T1 Tn) and Xt = P (t T1) minus P (t Tn) Consequently the LIBORswap rate (S(t T1 Tn)tisin[TS] is a martingale under the forward measure Pdefined from (121) by

dPdPlowast

= P (T1 T1 Tn)P (0 T1 Tn) eminus

r T10 rtdt

Yield curve data

We refer to Chapter III-12 of [Cha14] on the R package ldquoYieldCurverdquo [Gui15]for the following code and further details on yield curve and interest ratemodeling using Rinstallpackages(YieldCurve)require(YieldCurve)data(FedYieldCurve)first(FedYieldCurve3 month)last(FedYieldCurve3 month)matFed=c(025051235710)n=50plot(matFed FedYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest rates

values)title(main=paste(Federal Reserve yield curve observed attime(FedYieldCurve[n] sep= ) ))grid()

The next Figure 1315 is plotted using this lowast which is adapted fromhttpwwwquantmodcomexampleschartSeries3dchartSeries3dalphaR

lowast Click to open or download

442

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Z lt- FedYieldCurve[seq(2nrow(FedYieldCurve)by=12)]cnames lt- colnames(Z)yred lt- colorRampPalette(c(yellowred))par(mar=c(3111))timeaxis lt- axTicksByTime(Z)pm lt- persp(z=Zx=(1NROW(Z))y=(1NCOL(Z))shade=030 ltheta=20theta=30col=rep(rep(yred(NCOL(Z)))each=(NROW(Z)-1))scale=F border=TRUEbox=FALSE)x_axis lt- seq(1 NROW(Z) lengthout=length(timeaxis))y_axis lt- seq(1 NCOL(Z) lengthout=NCOL(Z))xy0 lt- trans3d(x_axisy_axis[1]0pm)xy1 lt- trans3d(x_axisy_axis[1]-030pm)lines(trans3d(x_axisy_axis[1]0pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$y col=555555)text(xy1$x xy1$y labels=names(timeaxis) pos=1 offset=25cex=075 srt=0)xy0 lt- trans3d(x_axis[length(x_axis)] y_axis 0 pm)xy1 lt- trans3d(x_axis[length(x_axis)]+3 y_axis 0 pm)yz0 lt- trans3d(x_axis[length(x_axis)] y_axis coredata(Z)[NROW(Z)seq(1NCOL(Z))] pm) lines(trans3d(x_axis[length(x_axis)] y_axis 0 pm)col=555555)segments(xy0$xxy0$yxy1$xxy1$ycol=555555)text(xy1$x xy1$y labels=cnames pos=4 offset=5cex=075)segments(xy0$xxy0$yyz0$xyz0$y col=555555) z_axis lt- seq(trunc(min(Znarm=TRUE)) round(max(Z narm=TRUE)))xy0 lt- trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm)xy1 lt- trans3d(x_axis[length(x_axis)]+03 y_axis[length(y_axis)] z_axis pm)lines(trans3d(x_axis[length(x_axis)] y_axis[length(y_axis)] z_axis pm))segments(xy0$xxy0$yxy1$xxy1$y)text(xy1$x xy1$y labels=paste(z_axissep=) pos=1 offset=-5cex=075)par(mar=c(51414131))invisible(pm)

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 33: Forward Rate Modeling

Forward Rate Modeling

Jan1982

Jan1984

Jan1986

Jan1988

Jan1990

Jan1992

Jan1994

Jan1996

Jan1998 Jan

2000 Jan2002 Jan

2004 Jan2006 Jan

2008 Jan2010 Jan

2012 Jan2012

R_3MR_6MR_1YR_2YR_3YR_5YR_7YR_10Y0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig 1315 Federal Reserve yield curves from 1982 to 2012

European Central Bank (ECB) data can be similarly obtained

data(ECBYieldCurve)first(ECBYieldCurve3 month)last(ECBYieldCurve3 month)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)for (n in 200400) plot(matECB ECBYieldCurve[n] type=oxlab=Maturities structure in years ylab=Interest

rates valuesylim=c(3151))title(main=paste(European Central Bank yield curve observed attime(ECBYieldCurve[n] sep= )

))grid()Syssleep(05)

The next Figure 1316 represents the output of the above script

Fig 1316 European Central Bank yield curveslowast

lowast The animation works in Acrobat Reader on the entire pdf file

443

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 34: Forward Rate Modeling

N Privault

Decreasing yield curves can occur when central banks attempts to limitinflation by tightening interest rates In the next section we turn to the mod-eling of the market curves observed in Figure 1316

135 The HJM Model

From the beginning of this chapter we have started with the modeling ofthe short rate (rt)tisinR+ followed by its consequences on the pricing of bondsP (t T ) and on the expressions of the forward rates f(t T S) and L(t T S)

In this section we choose a different starting point and consider the prob-lem of directly modeling the instantaneous forward rate f(t T ) The graphgiven in Figure 1317 presents a possible random evolution of a forward in-terest rate curve using the Musiela convention ie we will write

g(x) = f(t t+ x) = f(t T )

under the substitution x = T minus t x gt 0 and represent a sample of theinstantaneous forward curve x 7minusrarr f(t t+ x) for each t isin R+

0 5

10 15

20 0

5

10

15

20

05 1

15 2

25 3

35 4

45 5

Forward rate

x

t

Fig 1317 Stochastic process of forward curves

In the Heath-Jarrow-Morton (HJM) model the instantaneous forward ratef(t T ) is modeled under Plowast by a stochastic differential equation of the form

dtf(t T ) = α(t T )dt+ σ(t T )dBt 0 6 t 6 T (1349)

where t 7minusrarr α(t T ) and t 7minusrarr σ(t T ) 0 6 t 6 T are allowed to be ran-dom (adapted) processes In the above equation the date T is fixed and thedifferential dt is with respect to t

Under basic Markovianity assumptions a HJM model with deterministiccoefficients α(t T ) and σ(t T ) will yield a short rate process (rt)tisinR+ of theform

444

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 35: Forward Rate Modeling

Forward Rate Modeling

drt = (a(t)minus b(t)rt)dt+ σ(t)dBt

cf sect 66 of [Pri12] which is the Hull-White model [HW90] with explicitsolution

rt = rs eminusr tsb(τ)dτ +

w t

seminus

r tub(τ)dτa(u)du+

w t

sσ(u) eminus

r tub(τ)dτdBu

0 6 s 6 t

The HJM Condition

How to ldquoencoderdquo absence of arbitrage in the defining HJM Equation (1349)is an important question Recall that under absence of arbitrage the bondprice P (t T ) has been constructed as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] = exp(minus

w T

tf(t s)ds

) (1350)

cf Proposition 136 hence the discounted bond price process is given by

t 7minusrarr exp(minus

w t

0rsds

)P (t T ) = exp

(minus

w t

0rsdsminus

w T

tf(t s)ds

)(1351)

is a martingale under Plowast by Proposition 131 and Relation (1337) in Propo-sition 136 This shows that Plowast is a risk-neutral measure and by the firstfundamental Theorem 57 of asset pricing we conclude that the market iswithout arbitrage opportunities

Proposition 1310 (HJM Condition [HJM92]) Under the condition

α(t T ) = σ(t T )w T

tσ(t s)ds t isin [0 T ] (1352)

which is known as the HJM absence of arbitrage condition the discountedbond price process (1351) is a martingale and the measure Plowast is risk-neutral

Proof Consider the spot forward rate or yield given from (1339) as

f(t t T ) = 1T minus t

w T

tf(t s)ds

and letXt =

w T

tf(t s)ds = minus logP (t T ) 0 6 t 6 T

with the relation

445

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 36: Forward Rate Modeling

N Privault

f(t t T ) = 1T minus t

w T

tf(t s)ds = Xt

T minus t 0 6 t 6 T (1353)

where the dynamics of t 7minusrarr f(t s) is given by (1349) We note that whenf(t s) = g(t)h(s) is a smooth function which satisfies the separation of vari-ables property we have the relation

dtw T

tg(t)h(s)ds = minusg(t)h(t)dt+ gprime(t)

w T

th(s)dsdt

which extends to f(t s) as

dtw T

tf(t s)ds = minusf(t t)dt+

w T

tdtf(t s)ds

which can be seen as a form of the Leibniz integral rule Therefore we have

dtXt = dtw T

tf(t s)ds

= minusf(t t)dt+w T

tdtf(t s)ds

= minusf(t t)dt+w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

= minusrtdt+(w T

tα(t s)ds

)dt+

(w T

tσ(t s)ds

)dBt

hence we have|dtXt|2 =

(w T

tσ(t s)ds

)2dt

Hence by Itocircrsquos calculus we have

dtP (t T ) = dt eminusXt

= minus eminusXtdtXt + 12 eminusXt(dtXt)2

= minus eminusXtdtXt + 12 eminusXt

(w T

tσ(t s)ds

)2dt

= minus eminusXt(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 eminusXt(w T

tσ(t s)ds

)2dt

and the discounted bond price satisfies

dt

(exp

(minus

w t

0rsds

)P (t T )

)

446

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 37: Forward Rate Modeling

Forward Rate Modeling

= minusrt exp(minus

w t

0rsdsminusXt

)dt+ exp

(minus

w t

0rsds

)dtP (t T )

= minusrt exp(minus

w t

0rsdsminusXt

)dtminus exp

(minus

w t

0rsdsminusXt

)dtXt

+12 exp

(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minusrt exp(minus

w t

0rsdsminusXt

)dt

minus exp(minus

w t

0rsdsminusXt

)(minusrtdt+

w T

tα(t s)dsdt+

w T

tσ(t s)dsdBt

)+1

2 exp(minus

w t

0rsdsminusXt

)(w T

tσ(t s)ds

)2dt

= minus exp(minus

w t

0rsdsminusXt

)w T

tσ(t s)dsdBt

minus exp(minus

w t

0rsdsminusXt

)(w T

tα(t s)dsdtminus 1

2

(w T

tσ(t s)ds

)2)dt

Thus the discounted bond price process

t 7minusrarr exp(minus

w t

0rsds

)P (t T )

will be a martingale provided that

w T

tα(t s)dsminus 1

2

(w T

tσ(t s)ds

)2= 0 0 6 t 6 T (1354)

Differentiating the above relation with respect to T we get

α(t T ) = σ(t T )w T

tσ(t s)ds

which is in fact equivalent to (1354)

136 Forward Vasicek Rates

In this section we consider the Vasicek model in which the short rate processis the solution (132) of (131) as illustrated in Figure 131

In the Vasicek model the forward rate is given by

f(t T S) = minus logP (t S)minus logP (t T )S minus T

447

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 38: Forward Rate Modeling

N Privault

= minusrt(C(S minus t)minus C(T minus t)) +A(S minus t)minusA(T minus t))S minus T

= minusσ2 minus 2ab

2b2

minus 1S minus T

((rtb

+ σ2 minus abb3

)(eminusb(Sminust) minus eminusb(Tminust)

)minus σ

2

4b3(

eminus2b(Sminust) minus eminus2b(Tminust))) and the spot forward rate or yield satisfies

f(t t T ) = minus logP (t T )T minus t

= minusrtC(T minus t) +A(T minus t)T minus t

= minusσ2 minus 2ab

2b2 + 1T minus t

((rtb

+ σ2 minus abb3

)(1minus eminusb(Tminust)) minus σ

2

4b3 (1minus eminus2b(Tminust)))

In this model the forward rate t 7minusrarr f(t T S) can be represented as inFigure 1318 with here ba gt r0

0005

00055

0006

00065

0007

00075

0008

00085

0009

00095

001

0 2 4 6 8 10

t

f(tTS)

Fig 1318 Forward rate process t 7minusrarr f(t T S)

Note that the forward rate cure t 7minusrarr f(t T S) appears flat for small valuesof t ie longer rates are more stable while shorter rates show higher volatilityor risk Similar features can be observed in Figure 1319 for the instantaneousshort rate given by

f(t T ) = minuspart logP (t T )partT

(1355)

= rt eminusb(Tminust) + a

b

(1minus eminusb(Tminust)

)minus σ2

2b2(1minus eminusb(Tminust)

)2

from which the relation limTt f(t T ) = rt can be easily recovered

The instantaneous forward rate t 7minusrarr f(t T ) can be represented as in Fig-ure 1319 with ba gt r0

448

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 39: Forward Rate Modeling

Forward Rate Modeling

0

002

004

006

008

01

012

014

0 2 4 6 8 10 12 14 16 18 20

t

f(tT)

Fig 1319 Instantaneous forward rate process t 7minusrarr f(t T )

The HJM coefficients in the Vasicek model are in fact deterministic andtaking a = 0 we have

dtf(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)dsdt+ σ eminusb(Tminust)dBt

ie

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ2 eminusb(Tminust) 1minus eminusb(Tminust)

b

and σ(t T ) = σ eminusb(Tminust) and the HJM condition reads

α(t T ) = σ2 eminusb(Tminust)w T

teb(tminuss)ds = σ(t T )

w T

tσ(t s)ds (1356)

Random simulations of the Vasicek instantaneous forward rates are providedin Figures 1320 and 1321

Fig 1320 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek modellowast

449

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 40: Forward Rate Modeling

N Privault

Fig 1321 Forward instantaneous curve x 7minusrarr f(0 x) in the Vasicek modellowast

For x = 0 the first ldquoslicerdquo of this surface is actually the short rate Vasicekprocess rt = f(t t) = f(t t + 0) which is represented in Figure 1322 usinganother discretization

003

0035

004

0045

005

0055

006

0065

007

0 5 10 15 20

Fig 1322 Short term interest rate curve t 7minusrarr rt in the Vasicek model

137 Modeling Issues

Parametrization of Forward Rates

In the Nelson-Siegel parametrization the instantaneous forward rate curvesare parametrized by 4 coefficients z1 z2 z3 z4 as

g(x) = z1 + (z2 + z3x) eminusxz4 x gt 0

An example of a graph obtained by the Nelson-Siegel parametrization is givenin Figure 1323 for z1 = 1 z2 = minus10 z3 = 100 z4 = 10lowast The animation works in Acrobat Reader on the entire pdf file

450

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 41: Forward Rate Modeling

Forward Rate Modeling

-10

-8

-6

-4

-2

0

2

4

0 02 04 06 08 1

z1+(z2+xz3)exp(-xz4)

Fig 1323 Graph of x 7minusrarr g(x) in the Nelson-Siegel model

The Svensson parametrization has the advantage to reproduce two humps in-stead of one the location and height of which can be chosen via 6 parametersz1 z2 z3 z4 z5 z6 as

g(x) = z1 + (z2 + z3x) eminusxz4 + z5x eminusxz6 x gt 0

A typical graph of a Svensson parametrization is given in Figure 1324 forz1 = 7 z2 = minus5 z3 = minus100 z4 = 10 z5 = minus12 z6 = minus1

2

25

3

35

4

45

5

0 5 10 15 20 25 30

lambda

x-gtz1+(z2+z3x)exp(-xz4)+z5xexp(-z6x)

Fig 1324 Graph of x 7minusrarr g(x) in the Svensson model

Figure 1325 presents a fit of the market data of Figure 1313 using a Svenssoncurve

451

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 42: Forward Rate Modeling

N Privault

2

25

3

35

4

45

5

0 5 10 15 20 25 30

years

Market dataSvensson curve

Fig 1325 Comparison of market data vs a Svensson curve

It can be shown cf sect 35 of [Bjouml04b] that the forward yield curves producedby the Vasicek model are included neither in the Nelson-Siegel space nor inthe Svensson space In addition the Vasicek yield curves do not appear tocorrectly model the market forward curves cf also Figure 1313 aboveIn the Vasicek model we have

partf

partT(t T ) =

(minusbrt + aminus σ2

b+ σ2

beminusb(Tminust)

)eminusb(Tminust)

and one can check that the sign of the derivatives of f can only change onceat most As a consequence the possible forward curves in the Vasicek modelare limited to one change of ldquoregimerdquo per curve as illustrated in Figure 1326for various values of rt and in Figure 1327

0

001

002

003

004

005

006

007

008

009

0 5 10 15 20

Fig 1326 Graphs of forward rates

452

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 43: Forward Rate Modeling

Forward Rate Modeling

0 2

4 6

8 10

x

0 5

10 15

20

t

002

003

004

005

006

007

008

009

Fig 1327 Forward instantaneous curve (t x) 7minusrarr f(t t+ x) in the Vasicek model

One may think of constructing an instantaneous rate process taking values inthe Svensson space however this type of modelization is not consistent withabsence of arbitrage and it can be proved that the HJM curves cannot livein the Nelson-Siegel or Svensson spaces cf sect35 of [Bjouml04b]

Another way to deal with the curve fitting problem is to use deterministicshifts for the fitting of one forward curve such as the initial curve at t = 0cf eg sect 82 of [Pri12]

Fitting the Nelson-Siegel and Svensson models to yield curve data

Recall that in the Nelson-Siegel parametrization the instantaneous forwardrate curves are parametrized by four coefficients z1 z2 z3 z4 as

f(t t+ y) = z1 + (z2 + z3y) eminusyz4 y gt 0 (1357)

Taking x = T minus t the yield f(t t T ) is given as

f(t t T ) = 1T minus t

w T

tf(t s)ds

= 1x

w x

0f(t t+ y)dy

= z1 + z2

x

w x

0eminusyz4dy + z3

x

w x

0y eminusyz4dy

= z1 + z21minus eminusxz4

xz4+ z3

1minus eminusxz4 + x eminusxz4

xz4

The expression (1357) can be represented in the parametrization

f(t t+ x) = z1 + (z2 + z3x) eminusxz4 = β0 + β1 eminusxλ + β2

λx eminusxλ x gt 0

453

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 44: Forward Rate Modeling

N Privault

cf [Cha14] with β0 = z1 β1 = z2 β2 = z3z4 λ = 1z4

require(YieldCurve)data(ECBYieldCurve)matECBlt-c(312 05 123456789101112131415161718192021222324252627282930)first(ECBYieldCurve 1 month)NelsonSiegel(first(ECBYieldCurve 1 month) matECB)

for (n in seq(from=70 to=290 by=10)) ECBNS lt- NelsonSiegel(ECBYieldCurve[n] matECB)ECBS lt- Svensson(ECBYieldCurve[n] matECB)ECBNSyieldcurve lt- NSrates(ECBNS matECB)ECBSyieldcurve lt- Srates(ECBS matECBSpot)plot(matECB asnumeric(ECBYieldCurve[n]) type=o lty=1 col=1ylab=Interest rates xlab=

Maturity in years ylim=c(3248))lines(matECB asnumeric(ECBNSyieldcurve) type=l lty=3col=2lwd=2)lines(matECB asnumeric(ECBSyieldcurve) type=l lty=2col=6lwd=2)title(main=paste(ECB yield curve observed attime(ECBYieldCurve[n] sep= )vs fitted yield

curve))legend(bottomright legend=c(ECB dataNelson-SiegelSvensson)col=c(126) lty=1 bg=

gray90)grid()Syssleep(05)

Fig 1328 ECB data vs fitted yield curvelowast

The Correlation Problem and a Two-Factor Model

The correlation problem is another issue of concern when using the affinemodels considered so far Let us compare three bond price simulations withmaturity T1 = 10 T2 = 20 and T3 = 30 based on the same Brownian pathas given in Figure 1329 Clearly the bond prices F (rt T1) = P (t T1) andlowast The animation works in Acrobat Reader on the entire pdf file454

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 45: Forward Rate Modeling

Forward Rate Modeling

F (rt T2) = P (t T2) with maturities T1 and T2 are linked by the relation

P (t T2) = P (t T1) exp(A(t T2)minusA(t T1)+rt(C(t T2)minusC(t T1))

) (1358)

meaning that bond prices with different maturities could be deduced fromeach other which is unrealistic

03

04

05

06

07

08

09

1

0 5 10 15 20 25 30

t

P(tT1)P(tT2)P(tT3)

Fig 1329 Graph of t 7minusrarr P (t T1)

In affine short rates models by (1358) logP (t T1) and logP (t T2) are linkedby the linear relationship

logP (t T2) = logP (t T1) +A(t T2)minusA(t T1) + rt(C(t T2)minus C(t T1))

= logP (t T1) +A(t T2)minusA(t T1) + (C(t T2)minus C(t T1)) logP (t T1)minus C(t T1)A(t T1)

=(

1 + C(t T2)minus C(t T1)A(t T1)

)logP (t T1)

+A(t T2)minusA(t T1)minus (C(t T2)minus C(t T1))C(t T1)A(t T1)

with constant coefficients which yields the perfect (positive or negative) cor-relation

Cor(logP (t T1) logP (t T2)) = plusmn1

depending on the sign of the coefficient 1 + (C(t T2)minusC(t T1))A(t T1) cfsect 83 of [Pri12]

A solution to the correlation problem is to consider a two-factor modelbased on two control processes (Xt)tisinR+ (Yt)tisinR+ which are solution of

dXt = micro1(tXt)dt+ σ1(tXt)dB(1)t

dYt = micro2(t Yt)dt+ σ2(t Yt)dB(2)t

(1359)

455

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 46: Forward Rate Modeling

N Privault

where (B(1)t )tisinR+ (B(2)

t )tisinR+ have correlated Brownian motion with

Cov(B(1)s B

(2)t ) = ρmin(s t) s t isin R+ (1360)

anddB

(1)t middot dB

(2)t = ρdt (1361)

for some correlation parameter ρ isin [minus1 1] In practice (B(1))tisinR+ and(B(2))tisinR+ can be constructed from two independent Brownian motions(W (1))tisinR+ and (W (2))tisinR+ by letting

B(1)t = W

(1)t

B(2)t = ρW

(1)t +

radic1minus ρ2W

(2)t t isin R+

and Relations (1360) and (1361) are easily satisfied from this construction

In two-factor models one chooses to build the short term interest rate rt via

rt = Xt + Yt t isin R+

By the previous standard arbitrage arguments we define the price of a bondwith maturity T as

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft]= IElowast

[exp

(minus

w T

trsds

) ∣∣∣ Xt Yt

]= IElowast

[exp

(minus

w T

t(Xs + Ys)ds

) ∣∣∣ Xt Yt

]= F (tXt Yt) (1362)

since the couple (Xt Yt)tisinR+ is Markovian Applying the Itocirc formula with

two variables to

t 7minusrarr F (tXt Yt) = P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] and using the fact that the discounted process

t 7minusrarr eminusr t

0 rsdsP (t T ) = IElowast[exp

(minus

w T

0rsds

) ∣∣∣ Ft]is an Ft-martingale under Plowast we can derive a PDE

456

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 47: Forward Rate Modeling

Forward Rate Modeling

minus(x+ y)F (t x y) + micro1(t x)partFpartx

(t x y) + micro2(t y)partFparty

(t x y)

+12σ

21(t x)part

2F

partx2 (t x y) + 12σ

22(t y)part

2F

party2 (t x y)

+ρσ1(t x)σ2(t y) part2F

partxparty(t x y) + partF

partt(tXt Yt) = 0 (1363)

on R2 for the bond price P (t T ) In the Vasicek modeldXt = minusaXtdt+ σdB

(1)t

dYt = minusbYtdt+ ηdB(2)t

this yields the solution F (t x y) of (1363) as

P (t T ) = F (tXt Yt) = F1(tXt)F2(t Yt) exp (Uρ(t T )) (1364)

where F1(tXt) and F2(t Yt) are the bond prices associated to Xt and Yt inthe Vasicek model and

Uρ(t T ) = ρση

ab

(T minus t+ eminusa(Tminust) minus 1

a+ eminusb(Tminust) minus 1

bminus eminus(a+b)(Tminust) minus 1

a+ b

)is a correlation term which vanishes when (B(1)

t )tisinR+ and (B(2)t )tisinR+ are in-

dependent ie when ρ = 0 cf [BM06] Chapter 4 Appendix A and sect 84 of[Pri12]

Partial differentiation of logP (t T ) with respect to T leads to the instanta-neous forward rate

f(t T ) = f1(t T ) + f2(t T )minus ρσηab

(1minus eminusa(Tminust))(1minus eminusb(Tminust)) (1365)

where f1(t T ) f2(t T ) are the instantaneous forward rates corresponding toXt and Yt respectively cf sect 84 of [Pri12]

An example of a forward rate curve obtained in this way is given in Fig-ure 1330

457

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 48: Forward Rate Modeling

N Privault

018

019

02

021

022

023

024

0 5 10 15 20 25 30 35 40

T

Fig 1330 Graph of forward rates in a two-factor model

Next in Figure 1331 we present a graph of the evolution of forward curvesin a two factor model

0 1

2 3

4 5

6 7

8

x 0

02 04

06 08

1 12

14

t

0215

022

0225

023

0235

024

Fig 1331 Random evolution of forward rates in a two-factor model

138 The BGM Model

The models (HJM affine etc) considered in the previous chapter sufferfrom various drawbacks such as nonpositivity of interest rates in Vasicekmodel and lack of closed-form solutions in more complex models The BGM[BGM97] model has the advantage of yielding positive interest rates and topermit to derive explicit formulas for the computation of prices for interestrate derivatives such as caps and swaptions on the LIBOR market

In the BGM model we consider two bond prices P (t T1) P (t T2) with ma-turities T1 T2 and the forward measure

dP2

dPlowast2= eminus

r T20 rsds

P (0 T2)

458

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 49: Forward Rate Modeling

Forward Rate Modeling

with numeraire P (t T2) cf (126) The forward LIBOR rate L(t T1 T2) ismodeled as a geometric Brownian motion under P2 ie

dL(t T1 T2)L(t T1 T2) = γ1(t)dB(2)

t (1366)

0 6 t 6 T1 i = 1 2 n minus 1 for some deterministic function γ1(t) withsolution

L(u T1 T2) = L(t T1 T2) exp(w u

tγ1(s)dB(2)

s minus12

w u

t|γ1|2(s)ds

)

ie for u = T1

L(T1 T1 T2) = L(t T1 T2) exp(w T1

tγ1(s)dB(2)

s minus12

w T1

t|γ1|2(s)ds

)

Since L(t T1 T2) is a geometric Brownian motion under P2 standard capletscan be priced at time t isin [0 T1] from the Black-Scholes formula

The following Graph 1332 summarizes the notions introduced in this chapter

459

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 50: Forward Rate Modeling

N Privault

Short rate1 rt

Short ratert = f(t t) = f(t t t)

Bond price2

P (t T ) = IElowast[eminus

r Tt rsds | Ft

]

LIBOR rate3

L(t T S) = P (tT )minusP (tS)(SminusT )P (tS)

Forward rate3

f(t T S) = logP (tT )minuslogP (tS)SminusT

Instantaneous forward rate4

f(t T ) = L(t T ) = limST f(t T S)= limST L(t T S)

Bond price

P (t T ) = eminusr Tt f(ts)ds

Bond priceP (t T ) = eminus(Tminust)f(ttT )

Instantaneous forward rate4

f(t T ) = L(t T ) = minuspart logP (tT )partT

Spot forward rate (yield)

f(t t T ) =r Tt f(t s)ds(T minus t)

1Can be modeled by Vasicek and other short rate models2Can be modeled from dP (t T )P (t T )3Can be modeled in the BGM model4Can be modeled in the HJM model

Fig 1332 Roadmap of stochastic interest rate modeling

460

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 51: Forward Rate Modeling

Forward Rate Modeling

Exercises

Exercise 131 Consider a tenor structure T1 T2 and a bond with maturityT2 and price given at time t isin [0 T2] by

P (t T2) = exp(minus

w T2

tf(t s)ds

) t isin [0 T2]

where the instantaneous yield curve f(t s) is parametrized as

f(t s) = r11[0T1](s) + r21[T1T2](s) s isin [t T2]

Find a formula to estimate the values of r1 and r2 from the data of P (0 T2)and P (T1 T2)

Same question for when f(t s) is parametrized as

f(t s) = r1s1[0T1](s) + (r1T1 + r2(sminus T1))1[T1T2](s) s isin [t T2]

Exercise 132 Let (Bt)tisinR+ denote a standard Brownian motion started at0 under the risk-neutral measure Plowast We consider a short term interest rateprocess (rt)tisinR+ in a Ho-Lee model with constant deterministic volatilitydefined by

drt = adt+ σdBt

where a isin R and σ gt 0 Let P (t T ) will denote the arbitrage price of azero-coupon bond in this model

P (t T ) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ Ft] 0 6 t 6 T (1367)

a) State the bond pricing PDE satisfied by the function F (t x) defined via

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣ rt = x

] 0 6 t 6 T

b) Compute the arbitrage price F (t rt) = P (t T ) from its expression (1367)as a conditional expectation

Hint One may use the integration by parts argumentw T

tBsds = TBT minus tBt minus

w T

tsdBs

= (T minus t)Bt + T (BT minusBt)minusw T

tsdBs

461

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 52: Forward Rate Modeling

N Privault

= (T minus t)Bt +w T

t(T minus s)dBs

and the Laplace transform identity IE[ eλX ] = eλ2η22 for X N (0 η2)c) Check that the function F (t x) computed in question (b) does satisfy the

PDE derived in question (a)d) Compute the forward rate f(t T S) in this model

From now on we let a = 0e) Compute the instantaneous forward rate f(t T ) in this modelf) Derive the stochastic equation satisfied by the instantaneous forward ratef(t T )

g) Check that the HJM absence of arbitrage condition is satisfied in thisequation

Exercise 133 Consider the CIR process (rt)tisinR+ solution of

drt = minusartdt+ σradicrtdBt

where a σ gt 0 are constants (Bt)tisinR+ is a standard Brownian motion startedat 0

a) Write down the bond pricing PDE for the function F (t x) given by

F (t x) = IElowast[exp

(minus

w T

trsds

) ∣∣∣rt = x

] 0 6 t 6 T

Hint Use Itocirc calculus and the fact that the discounted bond price is amartingale

b) Show that the PDE of Question (a) admits a solution of the formF (t x) = eA(Tminust)+xC(Tminust) where the functions A(s) and C(s) satisfyordinary differential equations to be also written down together with thevalues of A(0) and C(0)

Exercise 134 Convertible bonds Consider an underlying stock price process(St)tisinR+ given by

dSt = rStdt+ σStdB(1)t

and a short term interest rate process (rt)tisinR+ given by

drt = γ(t rt)dt+ η(t rt)dB(2)t

where (B(1)t )tisinR+ and (B(2)

t )tisinR+ are two correlated Brownian motions underthe risk-neutral measure Plowast with dB

(1)t middot dB(2)

t = ρdt A convertible bondis a corporate bond that can be exchanged into a quantity α gt 0 of the

462

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 53: Forward Rate Modeling

Forward Rate Modeling

underlying companyrsquos stock Sτ at a future time τ whichever has a highervalue where α is a conversion ratea) Find the payoff of the convertible bond at time τ b) Rewrite the convertible bond payoff at time τ as the linear combination

of P (τ T ) and a call option payoff on Sτ whose strike price is to bedetermined

c) Write down the corporate bond price at time t isin [0 τ ] as a functionC(t St rt) of the underlying asset price and interest rate using a dis-counted conditional expectation and show that the discounted corporatebond price

eminusr t

0 rsdsC(t St rt) t isin [0 τ ]

is a martingaled) Write down d

(eminus

r t0 rsdsC(t St rt)

)using the Itocirc formula and derive the

pricing PDE satisfied by the function C(t x y) together with its terminalcondition

e) Taking the bond price P (t T ) as a numeraire price the convertible bondas a European option with strike price K = 1 on an underlying assetpriced Zt = StP (t T ) t isin [0 τ ] under the forward measure IET

f) Assuming the bond price dynamics dP (t T ) = rtP (t T )dt+σB(t)P (t T )dBtdetermine the dynamics of the process (Zt)tisinR+ under the forward mea-sure IET

g) Assuming that (Zt)tisinR+ can be modeled as a geometric Brownian motionprice the corporate bond option using the Black-Scholes formula

Exercise 135 Given (Bt)tisinR+ a standard Brownian motion consider a HJMmodel given by

dtf(t T ) = σ2

2 T (T 2 minus t2)dt+ σTdBt (1368)

a) Show that the HJM condition is satisfied by (1368)b) Compute f(t T ) by solving (1368)

Hint We have f(t T ) = f(0 T ) +r t0 dsf(s T ) = middot middot middot

c) Compute the short rate rt = f(t t) from the result of Question (b)d) Show that the short rate rt satisfies a stochastic differential equation of

the formdrt = η(t)dt+ (rt minus f(0 t))ψ(t)dt+ ξ(t)dBt

where η(t) ψ(t) ξ(t) are deterministic functions to be determined

Exercise 136 Let (rt)tisinR+ denote a short term interest rate process Forany T gt 0 let P (t T ) denote the price at time t isin [0 T ] of a zero couponbond defined by the stochastic differential equation 463

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 54: Forward Rate Modeling

N Privault

dP (t T )P (t T ) = rtdt+ σTt dBt 0 6 t 6 T (1369)

under the terminal condition P (T T ) = 1 where (σTt )tisin[0T ] is an adaptedprocess We define the forward measure PT by

IElowast[dPTdPlowast

∣∣∣ Ft] = P (t T )P (0 T ) eminus

r t0 rsds 0 6 t 6 T

Recall thatBTt = Bt minus

w t

0σTs ds 0 6 t 6 T

is a standard Brownian motion under PT

a) Solve the stochastic differential equation (1369)b) Derive the stochastic differential equation satisfied by the discounted bond

price processt 7minusrarr eminus

r t0 rsdsP (t T ) 0 6 t 6 T

and show that it is a martingalec) Show that

IElowast[

eminusr T

0 rsds∣∣∣ Ft] = eminus

r t0 rsdsP (t T ) 0 6 t 6 T

d) Show that

P (t T ) = IElowast[

eminusr Ttrsds

∣∣∣ Ft] 0 6 t 6 T

e) Compute P (t S)P (t T ) 0 6 t 6 T show that it is a martingale underPT and that

P (T S) = P (t S)P (t T ) exp

(w T

t(σSs minus σTs )dBTs minus

12

w T

t(σSs minus σTs )2ds

)

f) Assuming that (σTt )tisin[0T ] and (σSt )tisin[0S] are deterministic functionscompute the price

IElowast[

eminusr Ttrsds (P (T S)minus κ)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minus κ)+

∣∣∣ Ft]of a bond option with strike price κ

Recall that if X is a centered Gaussian random variable with mean mt

and variance v2t given Ft we have

IE[( eX minusK)+ | Ft] = emt+v2t 2Φ

(vt2 + 1

vt(mt + v2

t 2minus logK))

464

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 55: Forward Rate Modeling

Forward Rate Modeling

minusKΦ(minusvt2 + 1

vt(mt + v2

t 2minus logK))

where Φ(x) x isin R denotes the Gaussian cumulative distribution function

Exercise 137 (Exercise 413 continued) Bridge model Assume that theprice P (t T ) of a zero coupon bond is modeled as

P (t T ) = eminusmicro(Tminust)+XTt t isin [0 T ]

where micro gt 0a) Show that the terminal condition P (T T ) = 1 is satisfiedb) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

c) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

d) Show that the limit limTt

f(t T ) does not exist in L2(Ω)e) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

f) Show using the results of Exercise 136-(d) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣ Ft] where (rT

t )tisin[0T ] is a process to be determinedg) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣∣∣ Ft]

= P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowasth) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT i) Compute the dynamics of XS

t and P (t S) under PT Hint Show that

465

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 56: Forward Rate Modeling

N Privault

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

j) Compute the bond option price

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣ Ft] = P (t T ) IET[(P (T S)minusK)+

∣∣∣ Ft] 0 6 t lt T lt S

Exercise 138 (Exercise 416 continued) Write down the bond pricing PDEfor the function

F (t x) = IElowast[

eminusr Ttrsds

∣∣∣ rt = x]

and show that in case α = 0 the corresponding bond price P (t T ) equals

P (t T ) = eminusB(Tminust)rt 0 6 t 6 T

whereB(x) = 2( eγx minus 1)

2γ + (β + γ)( eγx minus 1)

with γ =radicβ2 + 2σ2

Exercise 139 Consider a short rate process (rt)tisinR+ of the form rt = h(t) +Xt where h(t) is a deterministic function and (Xt)R+ is a Vasicek processstarted at X0 = 0a) Compute the price P (0 T ) at time t = 0 of a bond with maturity T using

h(t) and the function A(T ) defined in (1323) for the pricing of Vasicekbonds

b) Show how the function h(t) can be estimated from the market data of theinitial instantaneous forward rate curve f(0 t)

Exercise 1310a) Given two LIBOR spot rates L(t t T ) and L(t t S) compute the corre-

sponding LIBOR forward rate L(t T S)b) Assuming that L(t t T ) = 2 L(t t S) = 25 and t = 0 T = 1

S = 2T = 2 would you buy a LIBOR forward contract over [T 2T ] withrate L(0 T 2T ) if L(T T 2T ) remained at L(T T 2T ) = L(0 0 T ) = 2

Exercise 1311 Black-Derman-Toy model Consider a two-step interest ratemodel in which the short term interest rate r0 on [0 1] can turn into twopossible values ru1 = r0 emicro∆t+σ

radic∆t and rd1 = r0 emicro∆tminusσ

radic∆t on [1 2] with

equal probabilities 12 at time ∆t = 1 year and σ = 22 per year and twozero coupon bonds with prices P (0 1) and P (0 2) at time t = 0466

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 57: Forward Rate Modeling

Forward Rate Modeling

a) Write down the value of P (1 2) using ru1 and rd1 b) Write down the value of P (0 2) using ru1 rd1 and r0c) Estimate the value of r0 from the market price P (0 1) = 9174d) Estimatethe values of ru1 and rd1 from the market price P (0 2) = 8340

Exercise 1312 Consider a yield curve (f(t t T ))06t6T and a bond payingcoupons c1 c2 cn at times T1 T2 Tn until maturity Tn and priced as

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTk) 0 6 t 6 T1

where cn is inclusive of the last coupon payment and the nominal $1 valueof the bond Let f(t t Tn) denote the compounded yield to maturity definedby equating

P (t Tn) =nsumk=1

ck eminus(Tkminust)f(ttTn) 0 6 t 6 T1 (1370)

ie f(t t Tn) solves the equation

F (t f(t t Tn)) = P (t Tn) 0 6 t 6 T1

withF (t x) =

nsumk=1

ck eminus(Tkminust)x 0 6 t 6 T1

The bond duration D(t Tn) is the relative sensitivity of P (t Tn) with respectto f(t t Tn) defined as

D(t Tn) = minus 1P (t Tn)

partF

partx(t f(t t Tn)) 0 6 t 6 T1

The bond convexity C(t Tn) is defined as

C(t Tn) = 1P (t Tn)

part2F

partx2 (t f(t t Tn)) 0 6 t 6 T1

a) Compute the bond duration in case n = 1b) Show that the bond duration D(t Tn) can be interpreted as an average of

times to maturity weighted by the respective discounted bond payoffsc) Show that the bond convexity C(t Tn) satisfies

C(t Tn) = (D(t Tn))2 + (S(t Tn))2

where S(t Tn) measures the dispersion of the duration of the bond payoffsaround the portfolio duration D(t Tn)

467

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 58: Forward Rate Modeling

N Privault

d) Consider now the zero-coupon yield defined as

fα(t t Tn) = minus 1α(Tn minus t)

logP (t t+ α(Tn minus t))

where α isin (0 1) Compute the bond duration associated to the yieldfα(t t Tn) in affine bond pricing models of the form

P (t T ) = eA(Tminust)+rtB(Tminust) 0 6 t 6 T

e) [Wu00] Compute the bond duration associated to the yield fα(t t Tn) inthe Vasicek model in which B(T minus t) = (1minus eminusb(Tminust))b 0 6 t 6 T

Exercise 1313 Stochastic string model [SCS01] Consider an instantaneousforward rate f(t x) solution of

dtf(t x) = αx2dt+ σdtB(t x) (1371)

with a flat initial curve f(0 x) = r where x represents the time to maturityand (B(t x))(tx)isinR2

+is a standard Brownian sheet with covariance

IE[B(s x)B(t y)] = min(s t)timesmin(x y) s t x y isin R+

and initial conditions B(t 0) = B(0 x) = 0 for all t x isin R+

a) Solve the equation (1371) for f(t x)b) Compute the short term interest rate rt = f(t 0)c) Compute the value at time t isin [0 T ] of the bond price

P (t T ) = exp(minus

w Tminust

0f(t x)dx

)with maturity T

d) Compute the variance IE[(w Tminust

0B(t x)dx

)2]of the centered Gaussian

random variabler Tminust0 B(t x)dx

e) Compute the expected value IElowast[P (t T )]f) Find the value of α such that the discounted bond price

eminusrtP (t T ) = exp(minusrT minus α

3 t(T minus t)3 minus σ

w Tminust

0B(t x)dx

) t isin [0 T ]

satisfies eminusrt IElowast[P (t T )] = eminusrT

g) Compute the bond option price IElowast[exp

(minus

w T

0rsds

)(P (T S)minusK)+

]by the Black-Scholes formula knowing that

468

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 59: Forward Rate Modeling

Forward Rate Modeling

IE[(x em+XminusK)+] = x em+ v22 Φ(v+(m+log(xK))v)minusKΦ((m+log(xK))v)

when X is a centered Gaussian random variable with mean m = rτminusv22and variance v2

Exercise 1314 (Exercise 137 continued)

a) Compute the forward rate

f(t T S) = minus 1S minus T

(logP (t S)minus logP (t T ))

b) Compute the instantaneous forward rate

f(t T ) = minus limST

1S minus T

(logP (t S)minus logP (t T ))

c) Show that the limit limTt

f(t T ) does not exist in L2(Ω)d) Show that P (t T ) satisfies the stochastic differential equation

dP (t T )P (t T ) = σdBt + 1

2σ2dtminus logP (t T )

T minus tdt t isin [0 T ]

e) Show using the results of Exercise 136-(c) that

P (t T ) = IElowast[

eminusr TtrTs ds

∣∣∣Ft] where (rTt )tisin[0T ] is a process to be determined

f) Compute the conditional density

IElowast[dPTdPlowast

∣∣∣Ft] = P (t T )P (0 T ) eminus

r t0 r

Ts ds

of the forward measure PT with respect to Plowastg) Show that the process

Bt = Bt minus σt 0 6 t 6 T

is a standard Brownian motion under PT h) Compute the dynamics of XS

t and P (t S) under PT

Hint Show that

minusmicro(S minus T ) + σ(S minus T )w t

0

1S minus s

dBs = S minus TS minus t

logP (t S)

i) Compute the bond option price

469

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus
Page 60: Forward Rate Modeling

N Privault

IElowast[

eminusr TtrTs ds(P (T S)minusK)+

∣∣∣Ft] = P (t T ) IET[(P (T S)minusK)+ ∣∣Ft]

0 6 t lt T lt S

470

This version December 22 2017httpwwwntuedusghomenprivaultindexthtml

  • Forward Rate Modeling
    • Short Term Models and Mean Reversion
    • Calibration of the Vasicek model
    • Zero-Coupon and Coupon Bonds
    • Forward Rates
    • The HJM Model
    • Forward Vasicek Rates
    • Modeling Issues
    • The BGM Model
    • Exercises
          1. anm19
          2. anm20
          3. 20EndLeft
          4. 20StepLeft
          5. 20PauseLeft
          6. 20PlayLeft
          7. 20PlayPauseLeft
          8. 20PauseRight
          9. 20PlayRight
          10. 20PlayPauseRight
          11. 20StepRight
          12. 20EndRight
          13. 20Minus
          14. 20Reset
          15. 20Plus
          16. anm21
          17. 21EndLeft
          18. 21StepLeft
          19. 21PauseLeft
          20. 21PlayLeft
          21. 21PlayPauseLeft
          22. 21PauseRight
          23. 21PlayRight
          24. 21PlayPauseRight
          25. 21StepRight
          26. 21EndRight
          27. 21Minus
          28. 21Reset
          29. 21Plus
          30. anm22
          31. 22EndLeft
          32. 22StepLeft
          33. 22PauseLeft
          34. 22PlayLeft
          35. 22PlayPauseLeft
          36. 22PauseRight
          37. 22PlayRight
          38. 22PlayPauseRight
          39. 22StepRight
          40. 22EndRight
          41. 22Minus
          42. 22Reset
          43. 22Plus
          44. anm23
          45. 23EndLeft
          46. 23StepLeft
          47. 23PauseLeft
          48. 23PlayLeft
          49. 23PlayPauseLeft
          50. 23PauseRight
          51. 23PlayRight
          52. 23PlayPauseRight
          53. 23StepRight
          54. 23EndRight
          55. 23Minus
          56. 23Reset
          57. 23Plus

Recommended