+ All Categories
Home > Documents > Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. ·...

Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. ·...

Date post: 21-Jan-2021
Category:
Upload: others
View: 20 times
Download: 1 times
Share this document with a friend
73
Image Comm. Lab EE/NTHU 1 Chapter 4 Image Enhancement in the Frequency Domain Chapter 4 Image Enhancement in the Frequency Domain Fourier Series Fourier Transform Discrete Fourier Transform Fourier Transform for Image Enhancement • Implementation
Transcript
Page 1: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 1

Chapter 4Image Enhancement in the

Frequency Domain

Chapter 4Image Enhancement in the

Frequency Domain

• Fourier Series• Fourier Transform• Discrete Fourier Transform• Fourier Transform for Image Enhancement• Implementation

Page 2: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 2

Chapter 4.1 BackgroundChapter 4.1 Background

Page 3: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 3

4.2 Fourier Transform in theFrequency Domain

• Fourier transform F(u) of f(x) is defined as

• The inverse Fourier Transform is

• DFT for Discrete function f(x), x=0,1,..M-1for u=0,1,..M-1

• Inverse DFT

∫∞

∞−

−= dxexfuF uxj π2)()(

∫∞

∞−= dueuFxf uxj π2)()(

∑−

=

−=1

0

/2)(1)(M

x

MuxjexfM

uF π

∑−

=

−=1

0

/2)()(M

u

MuxeuFxf π

Page 4: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 4

4.2 Fourier Transform in theFrequency Domain

• Example (1-D DFT, Fig.4.2)• f(x) sampled K points or f(x) sampled 2K points • More samples in time domain (higher resolution) →

Lower resolution in frequency domain.• Scaling property of DFT

f(ax, by)⇔ F (u/a, v/b)/|ab|• Sampling : f(x)=f(x0+∆x), ∆x is the time resolution • f(x) → F(u)=F(u+ ∆u), ∆u is the freq. resolution.• ∆u=1/(M∆x)

Page 5: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 5

4.2 Fourier Transform in theFrequency Domain

4.2 Fourier Transform in theFrequency Domain

Page 6: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 6

• For discrete case (DFT: Discrete Fourier Transform)• f(x), x=0,…M-1• f(x0), f(x0+Δx)……….f(x0+(M-1)Δx)

f(x)= .f(x0+xΔx)• F(u) , u=0,…M-1• F(u0), F(u0+Δu)……….f(u0+(M-1)Δu)

F(u)= .F(u0+uΔu)Δu= 1/MΔx

4.2 Fourier Transform in theFrequency Domain

4.2 Fourier Transform in theFrequency Domain

Page 7: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 7

4.2.2 The Two-dimensional Discrete Fourier Transform(DFT)

• 2D-DFT of f(x, y) of size M×N

• Inverse 2-D DFT

• Magnitude and Phase of F(u, v)=R(u, v) + jI(u,v)|F(u, v)|=(R2(u, v)+I2(u, v))1/2

φ(u, v)=tan-1(I(u,v)/R(u,v))• Power Spectrum

P(u,v)=|F(u,v)|2=R2(u, v)+I2(u,v)

∑∑−

=

=

+−=1

0

1

0

)//(2),(1),(M

x

N

y

NvyMuxjeyxfMN

vuF π

∑∑−

=

=

+=1

0

1

0

)//(2),(),(M

u

N

v

NvyMuxjevuFyxf π

Page 8: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 8

4.2.2 The Two-dimensional Discrete Fourier Transform(DFT)

• Modulation in space domain f(x, y)(-1)xy

• F(u,v) will be shifted to (M/2, N/2)F(u-M/2, v-N/2)

• The center of (u, v), u=1,…M, v=1,…Nu=(M/2)+1, v=(N/2)+1

• Average of f(x,y) ∑∑−

=

=

=1

0

1

0),(100

M

x

N

yyxf

MN),F(

Page 9: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 9

4.2.2 The Two-dimensional Discrete Fourier Transform(DFT)

• For real f(x,y)F(u, v)=F*(-u, -v)|F(u, v)|=|F(-u, -v)|

• Samples in the space domain and frequency domain Δu= 1/MΔx

Δv= 1/NΔy

Page 10: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 10

4.2.2 The Two-dimensional Discrete Fourier Transform(DFT)

4.2.2 The Two-dimensional Discrete Fourier Transform(DFT)

Page 11: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 11

4.2.3 Filtering in the Frequency Domain4.2.3 Filtering in the Frequency Domain

Page 12: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 12

4.2.3 Filtering in the Frequency Domain

Filtering in Frequency domain steps:1) Multiply the input image by (-1)x+y

2) Compute DFT of the input image and get F(u, v)3) Multiply F(u,v) by a filter function H(u,v)

G(u,v)=F(u,v)H(u,v)4) Computer the inverse DFT of G(u,v), i.e.,F-1{G(u,v)}5) Obtain the real part of the g(x,y)6) Multiply g(x,y) with (-1)x+y

Page 13: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 13

4.2.3 Filtering in the Frequency Domain4.2.3 Filtering in the Frequency Domain

Page 14: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 14

4.2.3 Filtering in the Frequency Domain4.2.3 Filtering in the Frequency Domain

Notch filter: H(u, v)=0 if (u, v)=(M/2, N/2), H(u, v)=1 otherwise

u, v

H(u, v)

M/2, N/2

Page 15: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 15

4.2.3 Filtering in the Frequency Domain4.2.3 Filtering in the Frequency Domain

Page 16: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 16

4.2.3 Filtering in the Frequency Domain4.2.3 Filtering in the Frequency Domain

Page 17: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 17

4.2.4 Filtering in spatial and frequency domains

• Convolution in time domain

• f(x, y)*h(x, y)⇔ F(u, v)H(u, v)i.e., f(x, y)*h(x, y)=F-1{F(u, v)H(u, v)}

• Convolution in freq domain• F(u, v)*H(u, v) ⇔ f(x, y)h(x, y)

i.e., F{f(x, y)h(x, y)}=F(u, v)*H(u,v)

∑∑−

=

=

−−=∗1

0

1

0),(),(1),(,(

M

m

N

nnymxhnmf

MNyxhy)xf

h(x, y)f(x, y) g(x, y)

Page 18: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 18

4.2.4 Filtering in spatial and frequency domains

• An impulse of strength A, located at coordinates (x0, y0), is denoted as Aδ(x-x0, y-y0 )

• An unit impulse is defined as δ(x, y). i.e., δ(x, y)=1 only when x=0, y=0, δ(x, y)=0 otherwise.

• For function s(x, y) (a) sampled at (0, 0) is denoted asΣxΣys(x, y)δ(x, y) = s(0, 0), (b) sampled at (x0, y0), is ΣxΣys(x, y)δ(x–x0, y–y0) = s(x0, y0),

• The Fourier transform of δ(x, y ) is

MNeyx

MNvuF

M

x

N

y

NvyMuxj 1),(1),(1

0

1

0

)//(2 == ∑∑−

=

=

+− πδ

Page 19: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 19

4.2.4 Filtering in spatial and frequency domains

• If we let f(x, y)= δ(x, y) then

• δ(x,y)*h(x,y)⇔ F {δ(x, y)}H(u,v) h(x,y)⇔ H(u,v)

• Gaussian filters – lowpass filtering

• Difference of two Gaussian filters –highpass filtering

22 2/)( σuAeuH −=22222)( xuAexh σπσπ −=

22

221

2 2/2/)( σσ uu BeAeuH −− −=

),(1),(),(1),(,(1

0

1

0

yxhMN

nymxhnmMN

yxhy)xfM

m

N

n

=−−=∗ ∑∑−

=

=

δ

Page 20: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 20

4.2.4 Filtering in spatial and frequency domains4.2.4 Filtering in spatial and frequency domains

Page 21: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 21

4.3 Smoothing Frequency-Domain Filters

• Freq-Domain Filtering:G(u,v)=H(u,v)F(u,v)

• Filter H(u,v)• Ideal filter• Butterworth filter• Gaussian Filter

Page 22: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 22

4.3.1 Ideal Low pass filter

• H(u, v) with Sharp cut-off at cut-off frequency D0 , i.e., H(u, v)=1 if D(u, v)≤D0

=0 if D(u, v)>D0

• For image of size M x N, the center is at (u, v)=(M/2, N/2). The distance from any point to the center is

D(u, v)=[(u-M/2)2+(v-N/2)2]1/2

• Cut off frequency is D0

• Total power:

∑∑−

=

=

=1

0

1

0),(

M

u

N

vT vuPP

Page 23: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 23

4.3.1 Ideal Low pass filter4.3.1 Ideal Low pass filter

Page 24: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 24

4.3.1 Ideal Low pass filter4.3.1 Ideal Low pass filter

Page 25: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 25

4.3.1 Ideal Low pass filter4.3.1 Ideal Low pass filter

Page 26: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 26

4.3.1 Ideal Low pass filter4.3.1 Ideal Low pass filter

Page 27: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 27

4.3.2 Butterworth Lowpass Filter (BLPF)

• Butterworth filter has no sharp cutoff

• At cutoff frequency D0: H(u, v)=0.5

nDvuDvuH 2

0 ]/),([11),(

+=

Page 28: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 28

4.3.2 Butterworth Lowpass Filter4.3.2 Butterworth Lowpass Filter

Page 29: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 29

4.3.2 Butterworth Lowpass Filter4.3.2 Butterworth Lowpass Filter

Page 30: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 30

4.3.2 Butterworth Lowpass Filter4.3.2 Butterworth Lowpass Filter

Page 31: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 31

4.3.3 Gaussian Lowpass Filter (GLPF)

• Gaussian low-pass filter (GLPF)

• Let σ=D0

• When D(u, v)=D0 , H(u, v)=0.667

22 2/),(),( σvuDevuH −=

20

2 2/),(),( DvuDevuH −=

Page 32: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 32

4.3.3 Gaussian Lowpass Filter4.3.3 Gaussian Lowpass Filter

Page 33: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 33

4.3.3 Gaussian Lowpass Filter4.3.3 Gaussian Lowpass Filter

Page 34: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 34

4.3.4 Other Lowpass filtering examples4.3.4 Other Lowpass filtering examples

Page 35: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 35

4.3.4 Other Lowpass filtering examples4.3.4 Other Lowpass filtering examples

Page 36: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 36

4.3.4 Other Lowpass filtering examples4.3.4 Other Lowpass filtering examples

Page 37: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 37

4.4 Sharpening Frequency-Domain Filter

• Highpass filtering:Hhp(u,v)=1-Hlp(u,v)

• Given a lowpass filter Hlp(u,v), find the spatial representation of the highpass filter

(1) Compute the inverse DFT of Hlp(u, v)(2) Multiply the real part of the result with (-1)x+y

Page 38: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 38

4.4 Sharpening Frequency-Domain Filter4.4 Sharpening Frequency-Domain Filter

Page 39: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 39

4.4 Sharpening Frequency-Domain Filter4.4 Sharpening Frequency-Domain Filter

Page 40: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 40

4.4.1 Ideal Highpass Filter (IHPF)

• H(u, v)=0 if D(u, v)≤D0

=1 if D(u, v)>D0

• The center is at (u, v)=(M/2, N/2) D(u, v)=[(u-M/2)2+(v-N/2)2]1/2

• Cut off frequency is D0

Page 41: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 41

4.4.1 Ideal Highpass Filter (IHPF)4.4.1 Ideal Highpass Filter (IHPF)

Page 42: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 42

4.4.2 Butterworth Highpass Filter (BHPF)

• Butterworth filter has no sharp cutoff

• At cutoff frequency D0: H(u, v)=0.5

nvuDDvuH 2

0 )],(/[11),(

+=

Page 43: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 43

4.4.2 Butterworth Highpass Filter (BHPF)4.4.2 Butterworth Highpass Filter (BHPF)

IHPF

Page 44: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 44

4.4.3 Gaussian Highpass Filter (GHPF)

• Gaussian Highpass filter (GHPF)

• Let σ=D0

• When D(u, v)=D0 , H(u, v)=0.667

22 2/),(1),( σvuDevuH −−=20

2 2/),(1),( DvuDevuH −−=

Page 45: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 45

4.4.3 Gaussian Highpass Filter4.4.3 Gaussian Highpass Filter

Page 46: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 46

4.4.4 Laplacian in the Frequency Domain

• Fourier property:

• H(u, v) = –(u2+v2)• If F(u, v) has been centered by f(x, y)(-1)x+y

then H(u, v)= –[(u-M/2)2+(v-N/2)2]

)()()( uFjudx

xfd nn

n

=⎥⎦

⎤⎢⎣

⎡F

),()(

),()(),()(),(),(

22 vuFvu

vuFjvvuFjudy

yxfddx

yxfd nnn

n

n

n

+−=

+=⎥⎦

⎤⎢⎣

⎡+F

[ ] ),(),(),()(),( 222 vuFvuHvuFvuyxf =+−=∇F

Page 47: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 47

4.4.4 Laplacian in the Frequency Domain

• Laplacian filtering

• Enhanced image g(x, y)=f(x, y)-∇2f(x, y)• G(u,v)=F(u,v)H(u, v)

H(u,v)= 1–[(u-M/2)2+(v-N/2)2]• g(x,y)= {[1 –((u-M/2)2+(v-N/2)2)]F(u,v)}

)},(])2/()2/[({),( 222 vuFNvMuyxf −+−−=∇ -1F

-1F

Page 48: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 48

4.4.4 Laplacian in the Frequency Domain4.4.4 Laplacian in the Frequency Domain

Page 49: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 49

4.4.4 Laplacian in the Frequency Domain4.4.4 Laplacian in the Frequency Domain

Page 50: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 50

4.4.5 Unsharp masking High-boost filtering and High frequency emphasis filtering

• Highpass filtered image: fhp(x, y)=f(x, y)-flp(x, y)• High-boost image: fhb(x, y)=Af(x, y)-flp(x, y)

or fhb(x, y)=(A-1)f(x, y)-fhp(x, y)• In Freq. Domain: Fhp(u, v)= F(u, v)-Flp(u, v)

The highpass filter: Hhp(u, v)= 1-Hlp(u, v)The high-boost filter: Hhb(u, v)= (A-1)+Hhp(u, v), A≥1

• High frequency emphasis filter:Hhfe(u, v) = a+bHhp(u, v) where a≥0, b>aa=0.25~0.5, b=1.5~2.0

Page 51: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 51

4.4.5 Unsharp masking High-boost filtering and High frequency emphasis filtering

4.4.5 Unsharp masking High-boost filtering and High frequency emphasis filtering

Page 52: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 52

4.4.5 Unsharp masking High-boost filtering and High frequency emphasis filtering

4.4.5 Unsharp masking High-boost filtering and High frequency emphasis filtering

Page 53: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 53

4.5 Homomorphic Filtering

• Improve image by simultaneous gray-level range compression and contrast enhancement

f(x, y)=i(x, y)r(x, y)where i(x, y)=illumination, r(x, y)=reflectance

• i(x, y)and r(x, y) are not separable• Define z(x, y)=ln{f(x, y)}=ln{i(x, y)}+ln{r(x, y)}• F{z(x, y)}=F{ln f(x, y)}=F{ln i(x, y)}+F{ln r(x, y)}

or Z(u, v)=Fi(u, v)+Fr(u, v)• Applying filter H(u, v) :

S(u, v)=H(u, v)Z(u, v)=H(u, v)Fi(u, v)+H(u, v)Fr(u, v)

Page 54: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 54

4.5 Homomorphic Filtering

• S(x, y)=F-1{S(u, v)}=F-1{H(u, v)Fi(u, v)}+F-1{H(u, v)Fr(u, v)}=i’(x, y)+r’(x, y)

• g(x, y)=es(x, y)= ei’(x, y) ·er’(x, y)=i0(x, y)r0(x, y)• The illumination component is characterized by

slow spatial variation• The reflectance component tends to vary abruptly

especially at the junction of dissimilar objects.• Homomorphic filter H(u, v) affects the low and

high frequency components in a different ways.

54

Page 55: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 55

4.5 Homomorphic Filtering4.5 Homomorphic Filtering

LDvuDc

LH evuH γγγ +−−= − ]1)[(),( )/),(( 20

2

Page 56: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 56

4.5 Homomorphic Filtering4.5 Homomorphic Filtering

Page 57: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 57

4.6 Implmentation

• Translation

• DistributivityF[f1 (x, y)+f2 (x, y)]= F[f1 (x, y)]+F[f2 (x, y)]

• Scalingaf(x, y)⇔ aF (u, v) and f(ax, by)⇔ F (u/a, v/b)/|ab|

• Rotation (in polar coordinate, f(x, y) →f(r, θ), F(u, v)→F(ω,φ)).

f(r, θ+ θ0)⇔ F (ω,φ+ θ0)

),(),( 00)//(2 00 vvuuFeyxf NyvMxuj −−⇔+π

)//(200

00),(),( NvyMuxjevuFyyxxf +−⇔−− π

Page 58: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 58

4.6 Implmentation

• Periodicity and conjugate symmetryF(u, v)=F(u+M, v)=F(u, v+N)=F(u+M, v+N).f(x, y)=f(x+M, y)=f(x, y+N)=f(x+M, y+N).

• DFT is conjugate symmetry, i.e.F(u, v)=F*(-u, -v)F(u, v)=|F(-u, -v)|

• The values of F(u, v), u, v=(M/2)+1 ~ M-1 are reflection of the values of F(u, v), u, v=(M/2)-1 ~ 0

Page 59: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 59

4.6 Implmentation4.6 Implmentation

Page 60: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 60

4.6 Implmentation

• Separability

∑ ∑−

=

=

=

−−

=

=

1

0

)/(2

1

0

1

0

)/(2)/(2

),(1

),(11),(

N

y

Nvyj

N

y

M

x

MuxjNvyj

eyuFMN

eyxfM

eN

vuF

π

ππ

u

y x

x u

f(x, y) )/(2 Muxje π− F(u, y)

y

Page 61: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 61

4.6 Implmentation4.6 Implmentation

F(u, y)

Page 62: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 62

4.6 Implmentation

• Computing Inverse DFT using forward DFT• The DFT and Inverse DFT are

• Take complex conjugate on both side and divide MN as

∑∑−

=

=

+−=1

0

1

0

)//(2),(1),(M

x

N

y

NvyMuxjeyxfMN

vuF π

∑∑−

=

=

+=1

0

1

0

)//(2),(),(M

u

N

v

NvyMuxjevuFyxf π

∑∑−

=

=

+−=1

0

1

0

)//(2** ),(1),(1 M

u

N

v

NvyMuxjevuFMN

yxfMN

π

Complex conjugate

DFT Complex conjugate

F(u, v) f(x, y)IDFT

Page 63: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 63

4.6 Implmentation4.6 Implmentation

∑−

=

−=∗1

0

)()(1)((M

m

mxhmfM

xhx)f

The periodic property of DFT

Page 64: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 64

fe(x)=f(x), 0≤x≤A-1 fe(x)=0, A≤x≤P he(x)=h(x), 0≤x≤B-1 he(x)=0, B≤x≤P

f(x)*h(x),→ fe(x)*he(x)

length P=A+B-1

4.6 Implmentation4.6 Implmentation

Page 65: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 65

4.6 Implmentation4.6 Implmentation

Page 66: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 66

4.6 Implmentation4.6 Implmentation

Page 67: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 67

4.6.4 The Convolution and Correlation Theorems

• Convolution

f(x, y) ∗ h(x, y)⇔F(u, v)H(u, v)f(x, y)h(x, y)⇔F(u, v)∗H(u, v)

• Correlationf(x, y)°h(x, y)=

• f(x, y)°h(x, y) ⇔F*(u, v)H(u, v)f*(x, y) h(x, y) ⇔F(u, v)°H(u, v)

• Autocorrelation: f(x, y)°f(x, y) ⇔ |F(u, v)|2

1 1

0 0

1 M N

m nf ( x, y )h( x m, y n )

MN

− −∗

= =

+ +∑∑

1 1

0 0

1 M N

m nf ( x, y )* h( x, y ) f ( x, y )h( x m, y n )

MN

− −∗

= =

= − −∑∑

Page 68: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 68

4.6.4 The Correlation4.6.4 The Correlation

Page 69: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 69

4.6 Implmentation4.6 Implmentation

Page 70: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 70

4.6 Implmentation4.6 Implmentation

Page 71: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 71

4.6 Implmentation4.6 Implmentation

Page 72: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 72

4.6 Implmentation4.6 Implmentation

Page 73: Fourier Series • Fourier Transform • Discrete Fourier Transform • … · 2006. 2. 24. · Image Comm. Lab EE/NTHU4 4.2 Fourier Transform in the Frequency Domain • Example

Image Comm. Lab EE/NTHU 73

4.6 Implmentation – Fast Fourier Transform4.6 Implmentation – Fast Fourier Transform


Recommended