+ All Categories
Home > Documents > Fourier Series and Fourier Transformslampx.tugraz.at/~hadley/ss2/lectures20/ft.pdf · 2020. 10....

Fourier Series and Fourier Transformslampx.tugraz.at/~hadley/ss2/lectures20/ft.pdf · 2020. 10....

Date post: 03-Feb-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
28
Institute of Solid State Physics Technische Universität Graz Fourier Series and Fourier Transforms
Transcript
  • Institute of Solid State PhysicsTechnische Universität Graz

    Fourier Series and Fourier Transforms

  • Fourier series in 2-D and 3-D

    Electrons in a crystal move in a 3-D periodic potential.

    X-rays scatter from the periodic electron density.

  • Expanding a 1-d function in a Fourier series

    xAny periodic function can be represented as a Fourier series.

    f(x)

    01

    ( ) cos(2 / ) sin(2 / )p pp

    f x f c px a s px a

    a

    2 pGa

    cos sin2 2

    ix ix ix ixe e e ex xi

    ( ) iGxGG

    f x f e

    *

    -G Gf fFor real functions:

    2 2p p

    G

    c sf i

    reciprocal lattice vector

  • Institute of Solid State Physics

    Fourier series in 1-D, 2-D, or 3-D Technische Universität Graz

    In two or three dimensions, a periodic function can be thought of as a pattern repeated on a Bravais lattice. It can be written as a Fourier series

    ( ) iG rGG

    f r f e

    Reciprocal lattice vectors (depend on the Bravais lattice)

    Structure factors (complex numbers)

    2 - ... 1,0,1,... G vb v ba

    In 1-D:

  • Reciprocal space (Reziproker Raum)k-space (k-Raum)

    p k

    2k

    k-space is the space of all wave-vectors.

    A k-vector points in the direction a wave is propagating.

    wavelength: momentum:

    kx

    kz

    kyG

  • ( ) iG rGG

    f r f e

    Any periodic function can be written as a Fourier series

    Structure factor

    Reciprocal lattice vector G

    vi integers

    1 1 2 2 3 3G b b b

    2 3 3 1 1 2

    1 2 31 2 3 1 2 3 1 2 3

    2 , 2 , 2a a a a a ab b ba a a a a a a a a

    kx

    ky

    Reciprocal lattice (Reziprokes Gitter)

    2i j ija b

  • Determine the structure factors

    Multiply by e-iG'r and integrate over a unit cell

    ( ) iG rGG

    f r f e

    'Gf V

    -

    1 ( ) iG rG cellf f r e drV

    The structure factor is proportional to the Fourier transform of the pattern that gets repeated on the Bravais lattice, evaluated at that G-vector.

    ''

    unit cell

    ( ) i G G riG r GGunit cell

    f r e dr f e dr

    Only G = G' is non zero.

  • Plane waves (Ebene Wellen)

    exp expik r r ik r

    Most functions can be expressed in terms of plane waves

    A k-vector points in the direction a wave is propagating.

    2k cos sinik re k r i k r

    ( ) ik rf r F k e dk

  • Fourier transforms

    Most functions can be expressed in terms of plane waves

    ( ) ik rf r F k e dk

    1 ( )2

    ik rdF k f r e dr

    This can be inverted for F(k)

    http://lamp.tu-graz.ac.at/~hadley/ss1/crystaldiffraction/ft/ft.php

    Fourier transform of f(r)

  • Fourier transforms

    / 2

    / 2

    sin / 212

    aikx

    a

    kaF k e dx

    k

    f x

    Fourier transform:

    sin / 2 ikxkaf x e dkk

    Inverse transform:

    0

    0

    1 10 02 2sin / 2 Si( ) Si( )

    kikx

    k

    ka k x k xf x e dkk

    Transmitted pulse:

    Sine integral

    a

  • Notations for Fourier Transforms

    d = number of dimensions 1,2,3a,b = constants

  • Notations for Fourier Transforms

    f(r) is built of plane waves

  • Notations for Fourier Transforms

    Matlab

  • Notations for Fourier Transforms

    Mathematica

  • Notations for Fourier Transforms

    Engineering literature, usually on the 1-d case is considered.

  • Properties of Fourier transforms

  • Convolution (Faltung)

    ( )* ( ) ( ) ( )f r g r f r g r r dr

  • http://lamp.tu-graz.ac.at/~hadley/ss1/crystaldiffraction/ft/ft.php

  • http://lampx.tugraz.at/~hadley/num/ch3/3.3a.php

  • The reciprocal lattice is the Fourier transform of the real space lattice

    crystal = Bravais_lattice(r) * unit_cell(r)

    F(crystal) = F(Bravais_lattice(r))F(unit_cell(r))

    k

    a2

    reciprocal

  • Cubes on a bcc lattice

    ( ) iG rGG

    f r f e

    Multiply by and integrate over a primitive unit cell.iG re

    3

    unit cell

    ( ) iG r Gf r e d r f V

    http://lamp.tu-graz.ac.at/~hadley/ss1/crystaldiffraction/fourier.php

  • Cubes on a bcc lattice

    31 ( ) expcellGf f r iG r d rV

    fG is the Fourier transform of fcell evaluated at G.fcell is zero outside the primitive unit cell.

    3

    unit cell

    ( ) iG r Gf r e d r f V

    V is the volume of the primitive unit cell.

    4 4 4

    33

    4 4 4

    1 2( )exp exp exp exp

    a a a

    cell x y zGa a a

    Cf f r iG r d r iG x iG y iG z dxdydzV a

    Volume of conventional u.c. a3. Two Bravais points per conventional u.c.

  • Cubes on a bcc lattice

    The Fourier series for any rectangular cuboid with dimensions Lx×Ly×Lz repeated on any three-dimensional Bravais lattice is:

    3

    16 sin sin sin4 4 4

    yx z

    Gx y z

    G aG a G aCf

    a G G G

    8 sin sin sin

    2 2 2( ) exp

    y yx x z z

    G x y z

    G LG L G LCf r iG r

    VG G G

    4 4 4

    4 44

    2sinexp cos sin 4exp

    a a a x

    x x xx

    a aa x x x

    G aiG x G x i G x

    iG x dxiG iG G

  • http://lampx.tugraz.at/~hadley/ss1/crystaldiffraction/fourier.php

  • Spheres on an fcc lattice

    ( ) iG rGG

    f r f e

    3 3sphere

    1 ( ) exp exp .cellGCf f r iG r d r iG r d r

    V V

    Integrate over

    iG re

    2

    0 0

    2

    0 0

    exp( ) sin

    cos cos sin cos sin

    R

    G

    R

    Cf iG r r drd dV

    C G r i G r r drd dV

    20 0

    2 cos cos sin cos sinR

    G

    Cf G r i G r r drdV

    Multiply by and integrate over a primitive unit cell.

  • Spheres on an fcc lattice

    cos cos sin cos sin and

    sin cos cos cos sin ,

    d G r G r G rdd G r G r G r

    d

    Integrate over

    0

    sin4 RG

    G rCf rdrV G

    20 0

    2 cos cos sin cos sinR

    G

    Cf G r i G r r drdV

    Both terms are perfect differentials

    0 0

    2 sin cos cos cosR

    G

    Cf G r i G r drV

    0

  • Spheres on any lattice

    Integrate over r

    0

    sin4 RG

    G rCf rdrV G

    34 sin cos .G Cf G R G R G RV G

    The Fourier series for non-overlapping spheres on any three-dimensional Bravais lattice is:

    3sin cos4( ) exp .

    G

    G R G R G RCf r iG rV G

  • Molecular orbital potential

    2

    0

    1( )4

    jr j

    ZeU rr r

    The Fourier series for any molecular orbital potential is:

    Volume of the primitive unit cell

    22

    0

    exp( )

    G

    iG rZeU rV G

    position of atom j


Recommended