+ All Categories
Home > Education > fourier transforms

fourier transforms

Date post: 14-Dec-2014
Category:
Upload: umang-gupta
View: 603 times
Download: 3 times
Share this document with a friend
Description:
 
Popular Tags:
40
Fourier Transform
Transcript
Page 1: fourier transforms

Fourier Transform

Page 2: fourier transforms

ContentIntroductionFourier IntegralFourier TransformProperties of Fourier TransformConvolutionParseval’s Theorem

Page 3: fourier transforms

Continuous-Time Fourier Transform

Introduction

Page 4: fourier transforms

The Topic

FourierSeries

FourierSeries

DiscreteFourier

Transform

DiscreteFourier

Transform

ContinuousFourier

Transform

ContinuousFourier

Transform

FourierTransform

FourierTransform

ContinuousTime

DiscreteTime

Per

iodi

cA

peri

odic

Page 5: fourier transforms

Review of Fourier Series

Deal with continuous-time periodic signals. Discrete frequency spectra.

A Periodic SignalA Periodic Signal

T 2T 3T

t

f(t)

Page 6: fourier transforms

Two Forms for Fourier Series

T

ntb

T

nta

atf

nn

nn

2sin

2cos

2)(

11

0

T

ntb

T

nta

atf

nn

nn

2sin

2cos

2)(

11

0SinusoidalForm

ComplexForm:

n

tjnnectf 0)(

n

tjnnectf 0)( dtetf

Tc

T

T

tjnn

2/

2/

0)(1

dttfT

aT

T2/

2/0 )(2

tdtntfT

aT

Tn 0

2/

2/cos)(

2

tdtntfT

bT

Tn 0

2/

2/sin)(

2

Page 7: fourier transforms

How to Deal with Aperiodic Signal?

A Periodic SignalA Periodic Signal

T

t

f(t)

If T, what happens?

Page 8: fourier transforms

Continuous-Time Fourier Transform

Fourier Integral

Page 9: fourier transforms

tjn

nnT ectf 0)(

Fourier Integral

n

tjnT

T

jnT edef

T00

2/

2/)(

1

dtetfT

cT

T

tjnTn

2/

2/

0)(1

T

20

2

1 0

T

n

tjnT

T

jnT edef 00

0

2/

2/)(

2

1

LetT

20

0 dT

n

tjnT

T

jnT edef 00

2/

2/)(

2

1

dedef tjjT )(

2

1

Page 10: fourier transforms

dedeftf tjj)(2

1)(

Fourier Integral

F(j)

dtetfjF tj

)()(

dejFtf tj)(2

1)( Synthesis

Analysis

Page 11: fourier transforms

Fourier Series vs. Fourier Integral

n

tjnnectf 0)(

n

tjnnectf 0)(

FourierSeries:

FourierIntegral:

dtetfT

cT

T

tjnTn

2/

2/

0)(1 dtetf

Tc

T

T

tjnTn

2/

2/

0)(1

dtetfjF tj

)()( dtetfjF tj

)()(

dejFtf tj)(2

1)(

dejFtf tj)(2

1)(

Period Function

Discrete Spectra

Non-PeriodFunction

Continuous Spectra

Page 12: fourier transforms

Continuous-Time Fourier Transform

Fourier Transform

Page 13: fourier transforms

Fourier Transform Pair

dtetfjF tj

)()( dtetfjF tj

)()(

dejFtf tj)(2

1)(

dejFtf tj)(2

1)( Synthesis

Analysis

Fourier Transform:

Inverse Fourier Transform:

Page 14: fourier transforms

Existence of the Fourier Transform

dttf |)(|

dttf |)(|

Sufficient Condition:

f(t) is absolutely integrable, i.e.,

Page 15: fourier transforms

dtetfjF tj

)()(

Continuous Spectra

)()()( jjFjFjF IR

)(|)(| jejF FR(j)

FI(j)

|F(j)|

()

MagnitudePhase

Page 16: fourier transforms

Example

1-1

1

t

f(t)

dtetfjF tj

)()( dte tj

1

1

1

1

1

tje

j

)(

jj eej

sin2

Page 17: fourier transforms

Example

1-1

1

t

f(t)

dtetfjF tj

)()( dte tj

1

1

1

1

1

tje

j

)(

jj eej

sin2

-10 -5 0 5 10-1

0

1

2

3

F(

)-10 -5 0 5 10

0

1

2

3

|F(

)|

-10 -5 0 5 100

2

4ar

g[F

()]

-10 -5 0 5 10-1

0

1

2

3

F(

)-10 -5 0 5 10

0

1

2

3

|F(

)|

-10 -5 0 5 100

2

4ar

g[F

()]

Page 18: fourier transforms

Example

dtetfjF tj

)()( dtee tjt

0

t

f(t)

et

dte tj

0

)(

j

1

Page 19: fourier transforms

Example

dtetfjF tj

)()( dtee tjt

0

t

f(t)

et

dte tj

0

)(

j

1

-10 -5 0 5 100

0.5

1

|F(j

)|

-10 -5 0 5 10-2

0

2

arg[

F(j

)]

=2

-10 -5 0 5 100

0.5

1

|F(j

)|

-10 -5 0 5 10-2

0

2

arg[

F(j

)]

=2

Page 20: fourier transforms

Continuous-Time Fourier Transform

Properties of

Fourier Transform

Page 21: fourier transforms

Notation

)()( jFtf F )()( jFtf F

)()]([ jFtfF )()]([ jFtfF

)()]([1 tfjF- F )()]([1 tfjF- F

Page 22: fourier transforms

Linearity

)()()()( 22112211 jFajFatfatfa F )()()()( 22112211 jFajFatfatfa F

!Home Work !!Home Work !

Page 23: fourier transforms

Time Scaling

a

jFa

atf||

1)( F

a

jFa

atf||

1)( F

!Home Work !!Home Work !

Page 24: fourier transforms

Time Reversal

jFtf F)( jFtf F)(

Pf) dtetftf tj

)()]([F dtetft

t

tj

)(

)()( tdetft

t

tj

)()( tdetft

t

tj

dtetft

t

tj

)( dtetft

t

tj

)(

dtetf tj

)( )( jF

Page 25: fourier transforms

Time Shifting

0)( 0tjejFttf F 0)( 0

tjejFttf F

Pf) dtettfttf tj

)()]([ 00F dtettft

t

tj

)( 0

)()( 0)(0

0

0 ttdetftt

tt

ttj

dtetfet

t

tjtj

)(0

dtetfe tjtj

)(0 tjejF 0)(

Page 26: fourier transforms

Frequency Shifting (Modulation)

00( ) ( )j tf t e F j F 00( ) ( )j tf t e F j F

Pf)dteetfetf tjtjtj

00 )(])([F

dtetf tj

)( 0)(

)( 0 jF

Page 27: fourier transforms

Symmetry Property

)(2)]([ fjtFF )(2)]([ fjtFF

Proof

dejFtf tj)()(2

dejFtf tj)()(2

dtejtFf tj

)()(2

Interchange symbols and t

)]([ jtFF

Page 28: fourier transforms

Fourier Transform for Real Functions

If f(t) is a real function, and F(j) = FR(j) + jFI(j)

F(j) = F*(j)

dtetfjF tj

)()(

dtetfjF tj

)()(* )( jF

Page 29: fourier transforms

Fourier Transform for Real FunctionsFourier Transform for Real Functions

If f(t) is a real function, and F(j) = FR(j) + jFI(j)

F(j) = F*(j)

FR(j) is even, and FI(j) is odd.

F R( j) = F R(j) F I( j) = F I(j)

Magnitude spectrum |F(j)| is even, and phase spectrum () is odd.

Page 30: fourier transforms

Fourier Transform for Real FunctionsFourier Transform for Real Functions

If f(t) is real and even

F(j) is real

If f(t) is real and odd

F(j) is pure imaginary

Pf))()( tftf

Pf)Even

)()( jFjF

)(*)( jFjFReal

)(*)( jFjF

)()( tftf Odd

)()( jFjF

)(*)( jFjFReal

)(*)( jFjF

Page 31: fourier transforms

Example:

)()]([ jFtfF ?]cos)([ 0 ttfF

Sol)

))((2

1cos)( 00

0tjtj eetfttf

])([2

1])([

2

1]cos)([ 00

0tjtj etfetfttf FFF

)]([2

1)]([

2

100 jFjF

Page 32: fourier transforms

Example:

d/2d/2

1

t

wd(t)

d/2d/2t

f(t)=wd(t)cos0t

2sin

2)]([)(

2/

2/

ddtetwjW

d

d

tjdd F

]cos)([)( 0ttwjF d F0

0

0

0 )(2

sin)(2

sin

dd

Page 33: fourier transforms

Example:

d/2d/2

1

t

wd(t)

d/2d/2t

f(t)=wd(t)cos0t

2sin

2)]([)(

2/

2/

ddtetwjW

d

d

tjdd F

]cos)([)( 0ttwjF d F0

0

0

0 )(2

sin)(2

sin

dd

-60 -40 -20 0 20 40 60-0.5

0

0.5

1

1.5

F(j

)

d=2

0=5

-60 -40 -20 0 20 40 60-0.5

0

0.5

1

1.5

F(j

)

d=2

0=5

Page 34: fourier transforms

Example:

t

attf

sin)( ?)( jF

Sol)

d/2d/2

1

t

wd(t)

2sin

2)(

djWd

)(22

sin2

)]([

dd w

td

tjtW FF

)(sin

)]([ 2

aw

t

attf FF

||1

||0

a

a

Answer is just opposite to as expected

Page 35: fourier transforms

Fourier Transform of f’(t)

0)(lim and )(

tfjFtft

F 0)(lim and )(

tfjFtft

F

Pf) dtetftf tj

)(')]('[F

dtetfjetf tjtj )()(

)()(' jFjtf F )()(' jFjtf F

)( jFj

Page 36: fourier transforms

Fourier Transform of f (n)(t)

0)(lim and )(

tfjFtft

F 0)(lim and )(

tfjFtft

F

)()()()( jFjtf nn F )()()()( jFjtf nn F

!Home Work !!Home Work !

Page 37: fourier transforms

Fourier Transform of f (n)(t)

0)(lim and )(

tfjFtft

F 0)(lim and )(

tfjFtft

F

)()()()( jFjtf nn F )()()()( jFjtf nn F

!Home Work !!Home Work !

Page 38: fourier transforms

Fourier Transform of Integral

00)( and )(

FdttfjFtf F 00)( and )(

FdttfjFtf F

jFj

dxxft 1

)(F

jFj

dxxft 1

)(F

Let dxxftt

)()( 0)(lim

t

t

)()()]([)]('[ jjjFtft FF

)(1

)(

jFj

j

Page 39: fourier transforms

The Derivative of Fourier Transform

d

jdFtjtf FF )]([

d

jdFtjtf FF )]([

Pf)dtetfjF tj

)()(

dtetfd

d

d

jdF tj

)()(

dtetf tj

)(

dtetjtf tj

)]([ )]([ tjtfF

Page 40: fourier transforms

!Thank You!!Thank You!


Recommended