+ All Categories
Home > Documents > F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

Date post: 06-Apr-2018
Category:
Upload: nestorr50
View: 222 times
Download: 0 times
Share this document with a friend

of 41

Transcript
  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    1/41

    COSMIC MICROWAVEBACKGROUND

    HISTORY, STATUS& PERSPECTIVES

    F. R. BOUCHET

    INSTITUT DASTROPHYSIQUE DE PARIS, CNRS

    1965

    1990

    19992002 2008

    1917

    2020?

    1943

    1969

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 2

    MENUCosmology has been covered by Silk & Uzan. See in particular Uzan forperturbation theory, which will be discussed in depth by MukhanovInflation & DM also, cf. StarobinskyI will therefore mostly focus on other aspects concerning the CMB

    The CMB Introduction & Historical overviewSpectrumAnisotropies

    WMAPPlanck & beyondTime permitting:

    Secondary fluctuations (Gravitational effects & Thomson (re-) scattering)Component separation

    Practical statistics (Estimating C(l), Higher order, E/B separation)Some useful web sites:

    http://background.uchicago.edu/~whu (Wayne Hu)http://www.astro.ucla.edu/~wright/cosmolog.htm (Ned Wright)http://space.mit.edu/home/tegmark (Max Tegmark)http://cosmologist.info (Anthony Challinor)http://www.planck.fr (Planck/HFI Consortium site)

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    2/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 3

    CMB NUMERICAL DOMINATION (~93%)

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 5

    STANDARD BB REMINDER 1/2

    At early times, matter & radiation are in quasi-perfect thermalequilibrium > BB distributionIf deviations are created, then free-free interactions providethermalisation at all z > 3 x 10 7.Afterwards, the ff interaction time scale -1 becomes longerthan the expansion timescale H -1 : this process is frozen .Elastic (Thomson) scattering interaction has a mean free path = 8.3 H-1/[x e(1+z)]. As long as the plasma is ionized, xe =1 at z >1100, the universe is opaque.

    At t

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    3/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 6

    z=1z=3z=20

    z=1000

    z: Big Bang z=1500

    H Ato m protonelectron

    photonOne of the 3 pillars of the standard model

    z 80

    CMB & LAST SCATERING SURFACE

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 7

    STANDARD BB REMINDER 2/2

    Expected temperature can be evaluated simply from basicphysics.Alpher, Beth, Gamow (48) showed that chemical elements could

    have formed in the expanding BB, although forgetting thatradiation dominates over matter, which was corrected byGamow the same year & further corrected for a numericalerror by Alpher & Herman, who finally predicted T ~5K.Indeed, to get ~25% He, need to synthesize D first, which canonly happen at T ~109K, when the fusion can take place butwithout immediate photo-dissociation (1MeV ~1010K).Then H-1 ~200s, and substantial production (H -1 ~1/[nB pn>Dv] ,ie the Gamow condition) requires a baryon density n B~1018cm-3,to be compared to today, ~10 -7cm-3, which then fixes 1+z NS ~ 2x 108.Therefore T CMB= 109/(1+zNS) ~5K !

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    4/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 8From a Ned Wright talk

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 9From a Ned Wright talk

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    5/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 10From a Ned Wright talk

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 11

    Penzias et Wilson antenna(Physics Nobel prize winners in 1978)

    Cosmic Background predicted by Gamow in 1948 , and by Ralph Alpher & Robert Herman in 1950 . Serendipitously observed in 1965 par Arno Penzias and Robert Wilson at the Murray Hill Centre (NJ) of the Bell Telephone Laboratories as A source of excess noise in a radio Receiver . Joint interpretation article in Physical Review by Dicke, Peebles, Roll, Wilkinson(Princeton), contacted via Bernie Burke.

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    6/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 12

    A LONG MARCH ENSUESMany ground-based and mountain-top measurements filled in the0.3-20 cm wavelength range, giving T = 2.730.08 K.

    Reworking and reobservingthe CN lines gave 2.780.10 K at 2.64mm. (Thaddeus, 1972, ARAA, 10, 305-334), 2.730.05 K (Oph)and 2.750.04 K (Per) by M.B. Kaiser & EL Wright (1990)Big excesses over blackbody seen or not seenby different rocket and balloon experiments.

    2000 MJy/sr excess at 0.8 mm seenby Houck & Harwit(1969, ApJL, 157, L45)No excess seen by MIT group(Muehlner& Weiss 1972)Woody & Richards 2 mm excess in rocket(Phys. Rev. Lett. 42, 925 929 -1979)Berkeley-Nagoya rocket experiment(Matsumoto et al. 1988, ApJ, 329,567)with TB= 2.80 K at 1.1 mm; 2.96 Kat 0.7 mm & 3.18 K at 0.5 mm.

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 13

    IN PARALLELOriginal COBE design was for a Deltarocket

    COBE was directed to use the shuttle andthe design was actually nearly completedin Jan 1986.

    Then the Challenger blew up on launchSo back to a Delta

    The shuttle version of COBE weighed5,000 kg and also needed a 700 kg vacuumpump in the shuttle bay.It was the full shuttle payload fromVandenberg AFB. A > 500 M$ launch.Redesigned to fit on a Delta implied

    The mass went down to 2300 kg.The launch cost went down to about 30M$.No science was lost, but the scheduletook a 2 year hit.

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    7/41

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    8/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 17

    EARLY FIRAS RESULTS

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 18

    FINAL SPECTRUM

    400 : les barres derreurs ont tmultiplies par 400 pour les rendre

    visibles par rapport lpaisseurdu trait montrant un corps noir

    parfait 2,728K

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    9/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 19

    TIGHT CONTRAINTS RESULTCompton scatterings of by hot edepletes low E (Rayleigh-Jeans, h/kT 105, y > 1 (in standard BB), theplasma can reach statistical equilibrium.But when z < 107, there is no photonproduction, therefore nothermodynamical equilibrium; leads to aBose-Einstein spectrum characterisedby a chemical potential Very late energy release, at z

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    10/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 23

    Chaquepoint estune galaxiecomme laNotre. Laplus proche,M31, est ~2,5 Mal.Il faut 2,7milliardsdannes la lumiredunegalaxie surle cercle

    vert pourquelle nousparvienne.

    LE MONDE LOINTAIN DES GALAXIES!

    NOUS

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 24

    Inflation ?t = 10-32 sT = 1016 GeV

    Surface des derniresdiffusions ( sur e)t = 370 000 ansT = 0,3 eV = 3000 K

    Grandes structuresdu voisinage t=13,7 GansT=2,725 K

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    11/41

    F . R

    . B o u c h e t , C

    C P P @

    N Y U

    , 2 0 0 4 / 0 5 / 1 7

    F . R

    . B o u c h e t , C

    C P P @

    N Y U

    , 2 0 0 4 / 0 5 / 1 7

    t

    t

    k

    Given initial conditions (type & statistics,e.g. Adiabatic fluctuations only, Gaussianwith P(k) = A k n), and an energy census of the Universe (cosmological parameters, ),one can compute the temporal evolution of each and every (linear) mode and obtain

    the evolved matter power spectrum,or its transfer function at LSS (dependingmostly on sound speed history at M < M J).

    Idem for the radiation Transfer Function .

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 28

    Initial CMBCalculations

    Matter calculations

    PRECISION COSMOLOGY

    First numerical CMB calculation (to go through recombination)

    1965+5

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    12/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 29

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 30

    CDM & scale-invariant initial conditions in some detail:ApJ, 1984, L45-48 & L 39-43 (Inflation is 1982)

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    13/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 31

    1987: Detailed Statistics

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 32

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    14/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 33

    SINCE THENAngular power spectra C(l) became the norm

    T(n) = lm alm Ylm(n) ; alm = d T Y*lm

    =llmmC(l) (If statistical isotropy) = Cpp= (2l+1)/4pi C(l) Pl(np, np)\hat C(l) =1/(2l+1) m |a lm| 2

    K 0 calculationsElegant reformulations, introduce E & B to representpolarisation, many gauges (or absence of)Precision of predictions increased ( < 1 %)Speed also (tremendously).Off the shelf codes: CMBFAST [Seljack & Zaldarriaga 96],CAMB [Lewis et al. 2000] & CMBSLOW [Riazuelo],CMBEASY, etc

    With further options, e.g. lensing correction, isocurvaturemodes, reionisation (still ongoing)Detailed degeneracy studies

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 34

    OSCILLATIONS ACOUSTIQUES

    MJ

    Echelledu degr

    M > M J non affectes

    M < M J oscille

    temps SDD

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    15/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 35

    OSCILLATIONS ACOUSTIQUES

    temps

    MJM > M J non affectes

    M < M J oscille

    Echelle de

    ~ 1 degr

    SDD

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 37

    Sachs-Wolfe

    Doppler SW Intgr(ISW=transit travers GSU)

    SilkDamping

    COSMOMTRIE : SPECTRE DE PUISSANCE ANGULAIRE

    DES ANISOTROPIES DE TEMPRATURE

    Hauteurdes vagues/ longueurdonde l

    NB1 : Ici, cas restreintde fluctuationsScalairesuniquement(sinon il existe un termeadditionnel)NB2 : SW & ISW sontanti-corrls

    ( 1/ ) Fig. Riazuelo

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    16/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 39

    RECAPWe can (maybe) compute properties of Initial conditions, or at least parametrizethem > As, ns, At, ntPerturbation theory

    Linear regime (As ~10-5

    ) > can conveniently analyse Fourier modes independentlyWell understood physicsThomson elastic scatterings, coupling of electron and photonsRecombination (simplest = Saha equilibrium)General relativity, in linear regimeStatistical mechanics Boltzmann eq. for angular distribution of photons

    Few scales involvedSound wave travel distance ~c st- determines when starts to oscillate (pressure support)Diffusion damping length Ndiff 1/2..- determines smallest surviving fluctuations (in baryons-photon fluids)Time from big bang to last scattering (~300Mpc comoving; ~300 000 years) determines physical size of largest overdensity (or underdensity)Distance of last scattering from us (~14Gpc comoving; 14 Gyr)- determines angular size seen by usThickness of last scattering (~Hubble time, 100Mpc)- determines line of sight averaging- determines amount of polarization (later)

    Interplay of several related effects allows rich phenomenology > opportunities

    Intrinsic (compressed photons > hotter)SW (redshift to clim out of potential wells at LSDoppler (from oscillating e b fluid)ISW (from evolving potential on los Om .NE.1)+ smaller (second order effects) lensing, SZ, etc

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 40

    INITIAL CONDITIONS DEPENDENCE

    FomT

    m

    kswbst

    NB: there is now a fairnumber of off-the-shellcodes with variousadvantages:-CMBFAST > cmbfast.org-CAMB > camb.info-CMBEASY > cmbeasy.org-CMBSLOW-COSMICS

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    17/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 41

    POWER SPECTRUM SHAPE ANDCOSMOLOGICAL PARAMETERS

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 42

    CENSUS

    Baryons Darkmatter

    NeutrinoFraction w in p=w

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    18/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 44

    CMB IS A RICH INFORMATION MINE

    Initial conditionsWhat types of perturbations, power spectra, distribution function (Gaussian?); => learn aboutinflation or alternatives.(distribution of T; power as function of scale; polarization and correlation)

    What and how much stuffMatter densities ( b, cdm);; neutrino mass(details of peak shapes, amount of small scale damping)

    Geometry and topologyglobal curvature K of universe; topology(angular size of perturbations; repeated patterns in the sky)

    EvolutionExpansion rate as function of time; reionization- Hubble constant H 0 ; dark energy evolution w = pressure/density(angular size of perturbations; l < 50 large scale power; polarizationr)

    AstrophysicsS-Z effect (clusters), foregrounds, etc.

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 45

    += m lmobs

    l alC 2||

    121

    )|( obsll C C P

    122

    ||2

    2

    +

    lC

    C lobsl

    Cosmic Variance

    Use estimator for variance:

    - inverse gamma distribution(+ noise, sky cut, etc).

    WMAP low l

    l

    d.o.f.12with~ 2 +lC obsl

    Cosmic variance gives fundamental limit on how much we can learn from CMB

    Assume a lm gaussian:

    COSMIC VARIANCE: ONLY ONE SKY

    From Challinor

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    19/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 46

    GEOMETRICAL DEGENERACYAngular diameter distance controls the mapping from k to lModels with same R (and IC & matter content - b & c)

    Have very similar spectra, but at Low l (SW)

    Constant R lines

    values

    Efstathiou & Bond 1999

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 47

    FISHER MATRIX GUIDELINESMicrowave sky = primary + secondary + foregroundsMeasured sky = Microwave sky + random errors +systematic errors.Theory T i = f ( p, ,IC j)Constraining theory with data : P(T|D) L(D|T) P(T)Fisher matrix, , encodes the power of the dataAssume we succeed in isolating only primary fluctuationsand noise..

    Quantifies the (remaining) obstacles ( i>= F

    ii

    -1/2):Degeneracies within the pDegeneracies within the IC, and IC vs. pCosmic variance (one sky), noise (i.e. sensitivity), resolution

    F ij = T j T i 2 ln L

    F ij = Xl

    2(2l + 1) f sky[C l + C N exp 2b(l

    2)] 2 T j

    C l T j

    C l

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    20/41

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    21/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 50

    Carte diffrence ( chelles < 1 deg):Oscillations acoustiques aux petites chelles< ct quand t=370 000 ans (~150Mpc aujourdhui).Permet de recenser le contenu

    Carte lisse (suppression des chelles < 1 deg) :Fluctuations Quantiques imprimes

    quand lage de lUnivers tait danslintervalle [10 -43 , 10 -12 ] seconds

    Plan Galactique

    CE QUON VEUT OBSERVER

    PAUSEAPRES

    1H+15MN

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    22/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 53

    TERRATERRA

    INCOGNITA INCOGNITA

    1992 state

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 54

    DMR (DIFFERENTIALMICROWAVERADIOMTERS)

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    23/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 55

    By 1994,Scott & WhiteGive 95% CLthat Doppler Peak ispresent9407073

    NB: 1996 is the year of the

    selection- by NASA of WMAP (againstFIRE & PSI) and-by ESA of COBRAS/SAMBAas M3 of Horizon 2000+(to become Planck)

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 56

    LATE 1999 STATE

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    24/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 57

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 58

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    25/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 59

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 60 Bouchet et al. 2000

    Bouchet & Bennett 1988

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    26/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 61

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 62

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    27/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 64

    VSA , may 2002

    Compares well with BOOM, MAXIMA, DASI

    VSA III, Scott et al. astroph/0205380SA III, Scott et al. astroph/0205380

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 65SASA -IV,V, Rubinoubino-Martin et al. astroph/0205367artin et al. astroph/0205367

    And appears quantitativelyquantitatively consistent with BOOM, MAX & DASI

    (All using DMR + similar prior)

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    28/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 66

    CBI(also May 2002)

    Mason et al. astroph/0205384ason et al. astroph/0205384

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 67

    2 contoursFor DMR

    +CBI

    BOOMDASI

    MAXIMAPREVIOUS( Boom NA+ TOCO +

    17 < Apr 99)and

    ALL (filled)(& inner 1 )

    Left panelsadditionallyinclude an LSS prior (constrainton 8 & eff )

    NB: all panelsmade for the weak-h prior (i.e. 0.45 0.1) ns & b panelsadd k =0 hatched regionsnot searched

    Sieversieverset al. astroph/0205387t al. astroph/0205387

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    29/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 68

    France

    Italy

    U.K.

    U.S.A.

    CESR, CRTBT, CSNSM, IAP, IAS,ISN, LAL, LAOG, PCC/CdF, OMP, SPP/CEA

    Univ. La Sapienza (Rome), IROE CNR

    QMW (London Cardiff)

    CALTECH, JPL, Univ. Of Minnesota

    RussiaLandau Ins. of Theoretical Physics

    http://www.archeops.org

    P.I. A. Benoit (CRTBT)

    THE ARCHEOPSCOLLABORATION

    F . R . B o u c h e t , C

    C P P @

    N Y U

    , 2 0 0 4 / 0 5 / 1 7

    F . R . B o u c h e t , C

    C P P @

    N Y U

    , 2 0 0 4 / 0 5 / 1 7

    CAPP2003, JUNE 11TH 2003 F. R. BOUCHET, IAP, ON BEHALF OF THE ARCHEOPS COLLABORATION 69

    Archeops Maps First submillimetric maps at 15 arcmin resolution, 30% skyPointing reconstruction with stellar sensor ( rm s < 1.2 arcmin)

    545 GHz0.55 mm

    353 GHz0.85 mmPolarized

    143 GHz2.1 mm

    217 GHz1.4 mm

    217 GHz217 GHz

    143 GHz143 GHz

    Lin-Log Scale

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    30/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 70

    END OF 2002 STATUS

    Octobre 2002

    Benoit et al 2003, A & A, 399, L25

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 73

    THOMSONSCATTERINGS

    ARE POLARISED

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    31/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 74

    POLARISATION

    Before recombination, successive scatterings destroy polarization and theradiation arrives at recombination unpolarizedDuring recombination, Gradients in the velocity field can produce a quadrupole inthe rest frame of the scattering electron

    Fig. de Bernardis

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 75

    POLARISATION

    Before recombination, successive scatterings destroy polarization and theradiation arrives at recombination unpolarizedDuring recombination, Gradients in the velocity field can produce a quadrupole inthe rest frame of the scattering electron

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    32/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 76

    POLARISATION

    Before recombination, successive scatterings destroy polarization and theradiation arrives at recombination unpolarizedDuring recombination, Gradients in the velocity field can produce a quadrupole inthe rest frame of the scattering electron

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 77

    POLARISATION

    Before recombination, successive scatterings destroy polarization and theradiation arrives at recombination unpolarizedDuring recombination, Gradients in the velocity field can produce a quadrupole inthe rest frame of the scattering electron

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    33/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 78

    Tensorial perturbations, i.e. gravity waves, also producequadrupole anisotropies. A (faint) stochastic background of

    such waves is a generic feature of inflation models.

    This component of a CMB polarisation field is called byanalogy the B (or curl) componentVelocity fields (Curl-less) cannot produce B-modes.

    Weak Lensing by foreground Large Scale structures afterrecombination can, but with a predictable amplitude from TT Any full sky (polar) map can be decomposed in E & B modes

    POLARISATION

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 79

    From observations, one usually deduces the StokesParameters Q and U (assuming no circular polarization V)This description is not invariant under rotation of thecoordinate system:

    But the description in terms of the scalar and pseudo-scalarfields E and B is rotationally invariant

    Four independent power spectra can be measured, the othersbeing zero by symmetry:

    CTT , CTE, CEE, CBB

    POLARISATION

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    34/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 80

    3 observables : T, E, B

    Les modes Bne peuventpas tre gnrs pardes fluctuationsprimordiales scalaires

    SPECTRES DE PUISSANCE DU RCF

    ( 1/ )

    E < 0 E > 0

    B < 0 B > 0

    E < 0 E > 0

    B < 0B < 0 B > 0

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 81

    MOTIFS POLARISS ATTENDUS

    w w w . a s

    t r o . c a

    l t e c h . e d u / ~ l g g

    / b i c e p_

    f r o n t . h

    t m

    T ~ 100 K, E ~ 4 K B ~ 0.3 K

    T/S - 0.28

    E < 0 E > 0

    B < 0 B > 0

    E < 0 E > 0

    B < 0B < 0 B > 0

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    35/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 82

    T E

    T+ E+ B+

    LENTILLAGE DU CMB

    Les grandes structures transforment du E en B

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 83

    3 observables : T, E, B

    Les modes Bne peuventpas tre gnrs pardes fluctuationsprimordiales scalairesmais lentillage par lesgrandes structurestransforme du E en B

    SPECTRES DE PUISSANCE DU RCF

    ( 1/ )

    ~5K.arcmin

    E < 0 E > 0

    B < 0 B > 0

    E < 0 E > 0

    B < 0B < 0 B > 0

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    36/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 84

    Fom

    FomT

    m

    ks

    T

    m

    kswbst

    wbst

    B

    f

    M

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 85

    WHAT CAN WE LEARN FROM POLARISATION?

    Consistency check of the paradigm (may also include evolution or lack of- of physical constants)Check whether there are super-horizon perturbationsImprovement in parameter constraints (lifting degeneracies, eg,ns vs tau) and on features in the primordial spectrumIsocurvature perturbations (see later)

    Reionization historyHelp with lensing reconstruction of los-projected matterdensity properties (P kk)

    Gravitation wave from inflation existence, maybe n T (and indirectly on inflaton potential)

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    37/41

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    38/41

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 89Window functions for E & B

    Acceptable modelsfrom T analysis

    5 away from (0,0) in E,B plane

    WindowX model

    DASI BANDPOWER ANALYSIS

    2002

    F.R. BOUCHET, IAP, CNRS, 27-28/11/07 GENERAL RELATIVITY TRIMESTER @ IHP 90

    END OF 2002 POLARISATION KNOWLEDGE

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    39/41

    F . R

    . B o u c h e t

    @ C

    D F , 2 0 0 4 / 0 6 / 0 8

    F . R

    . B o u c h e t

    @ C

    D F , 2 0 0 4 / 0 6 / 0 8

    Concordancemodel: LCDM

    F . R

    . B o u c h e t

    @ C

    D F , 2 0 0 4 / 0 6 / 0 8

    F . R

    . B o u c h e t

    @ C

    D F , 2 0 0 4 / 0 6 / 0 8

    C (` ) = R + W (k)P ?(k)d ln k

    kW (k)

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    40/41

    F . R

    . B o u c h e t

    @ C

    D F , 2 0 0 4 / 0 6 / 0 8

    F . R

    . B o u c h e t

    @ C

    D F , 2 0 0 4 / 0 6 / 0 8

    Tegmark & Zaldarriaga, astroph/0207047

    h 2 m = 0 .12, h2 b = 0 .021, = 0 .71, h = 0 .7, = 0 .05 ( zr = 8) , 8 = 0 .815

    values plotted at P ?id / P (k, z) = P ?(k) T 2(k, z)k P ?id = R

    + W i(k) d ln k

    di

    USING THE CONCORDANCE MODEL PARAMETERS

    F . R

    . B o u c h e t

    @ C

    D F , 2 0 0 4 / 0 6 / 0 8

    F . R

    . B o u c h e t

    @ C

    D F , 2 0 0 4 / 0 6 / 0 8

    Wrong b

    T e g m a r

    k & Z a l d a r r i a g a , a s t r o p

    h / 0 2 0 7 0 4 7

  • 8/3/2019 F.R. Bouchet- Cosmic Microwave Background: History, Status and Perspectives

    41/41

    NOW, LETSTURN TO WMAP

    RESULTS


Recommended