+ All Categories
Home > Documents > Fracture initiation in confined incompressible materials · Fracture initiation in con ned...

Fracture initiation in confined incompressible materials · Fracture initiation in con ned...

Date post: 29-Jun-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
66
Fracture initiation in confined incompressible materials Duvan Henao Manrique Facultad de Matem´ aticas Pontificia Universidad Cat´ olica de Chile Institute for Mathematics and its Applications 27 Feb 2018 Duvan Henao Pontificia Universidad Cat´ olica de Chile
Transcript
  • Fracture initiationin confined incompressible materials

    Duvan Henao Manrique

    Facultad de Matemáticas

    Pontificia Universidad Católica de Chile

    Institute for Mathematics and its Applications27 Feb 2018

    Duvan Henao Pontificia Universidad Católica de Chile

  • I IMA

    I FONDECYT 1150038

    I Millennium Nucleus CAPDE NC130017

    I Xianmin Xu, Chinese Academy of Sciences

    I Carlos Mora-Corral, Universidad Autónoma de Madrid

    I Marco Barchiesi, Napoli Federico II

    I Sylvia Serfaty, Paris VI, NYU

    I V́ıctor Cañulef, PUC, UAM

    Duvan Henao Pontificia Universidad Católica de Chile

  • I IMA

    I FONDECYT 1150038

    I Millennium Nucleus CAPDE NC130017

    I Xianmin Xu, Chinese Academy of Sciences

    I Carlos Mora-Corral, Universidad Autónoma de Madrid

    I Marco Barchiesi, Napoli Federico II

    I Sylvia Serfaty, Paris VI, NYU

    I V́ıctor Cañulef, PUC, UAM

    Duvan Henao Pontificia Universidad Católica de Chile

  • I IMA

    I FONDECYT 1150038

    I Millennium Nucleus CAPDE NC130017

    I Xianmin Xu, Chinese Academy of Sciences

    I Carlos Mora-Corral, Universidad Autónoma de Madrid

    I Marco Barchiesi, Napoli Federico II

    I Sylvia Serfaty, Paris VI, NYU

    I V́ıctor Cañulef, PUC, UAM

    Duvan Henao Pontificia Universidad Católica de Chile

  • I IMA

    I FONDECYT 1150038

    I Millennium Nucleus CAPDE NC130017

    I Xianmin Xu, Chinese Academy of Sciences

    I Carlos Mora-Corral, Universidad Autónoma de Madrid

    I Marco Barchiesi, Napoli Federico II

    I Sylvia Serfaty, Paris VI, NYU

    I V́ıctor Cañulef, PUC, UAM

    Duvan Henao Pontificia Universidad Católica de Chile

  • I IMA

    I FONDECYT 1150038

    I Millennium Nucleus CAPDE NC130017

    I Xianmin Xu, Chinese Academy of Sciences

    I Carlos Mora-Corral, Universidad Autónoma de Madrid

    I Marco Barchiesi, Napoli Federico II

    I Sylvia Serfaty, Paris VI, NYU

    I V́ıctor Cañulef, PUC, UAM

    Duvan Henao Pontificia Universidad Católica de Chile

  • I IMA

    I FONDECYT 1150038

    I Millennium Nucleus CAPDE NC130017

    I Xianmin Xu, Chinese Academy of Sciences

    I Carlos Mora-Corral, Universidad Autónoma de Madrid

    I Marco Barchiesi, Napoli Federico II

    I Sylvia Serfaty, Paris VI

    , NYU

    I V́ıctor Cañulef, PUC, UAM

    Duvan Henao Pontificia Universidad Católica de Chile

  • I IMA

    I FONDECYT 1150038

    I Millennium Nucleus CAPDE NC130017

    I Xianmin Xu, Chinese Academy of Sciences

    I Carlos Mora-Corral, Universidad Autónoma de Madrid

    I Marco Barchiesi, Napoli Federico II

    I Sylvia Serfaty, Paris VI, NYU

    I V́ıctor Cañulef, PUC, UAM

    Duvan Henao Pontificia Universidad Católica de Chile

  • I IMA

    I FONDECYT 1150038

    I Millennium Nucleus CAPDE NC130017

    I Xianmin Xu, Chinese Academy of Sciences

    I Carlos Mora-Corral, Universidad Autónoma de Madrid

    I Marco Barchiesi, Napoli Federico II

    I Sylvia Serfaty, Paris VI, NYU

    I V́ıctor Cañulef, PUC

    , UAM

    Duvan Henao Pontificia Universidad Católica de Chile

  • I IMA

    I FONDECYT 1150038

    I Millennium Nucleus CAPDE NC130017

    I Xianmin Xu, Chinese Academy of Sciences

    I Carlos Mora-Corral, Universidad Autónoma de Madrid

    I Marco Barchiesi, Napoli Federico II

    I Sylvia Serfaty, Paris VI, NYU

    I V́ıctor Cañulef, PUC, UAM

    Duvan Henao Pontificia Universidad Católica de Chile

  • N. Petrinic, J. L. Curiel Sosa, C. R. Siviour, B. C. F. Elliot:Improved Predictive Modelling of Strain Localisation and Ductile

    Fracture in a Ti-64Al-4V Alloy Subjected to Impact Loading.

    J. Phys. IV France 134 (2006), 147–155.

    Duvan Henao Pontificia Universidad Católica de Chile

  • O. van der Sluis et al.: From fibrils to toughness: multi-scale mechanics of

    fibrillating interfaces in stretchable electronics. Materials 11 (2018), 231.

    Duvan Henao Pontificia Universidad Católica de Chile

  • 8 The European Physical Journal E

    has also been observed for other materials, such as vis-cous liquids [17–19], rubbers [20] and viscoelastic liquids(uncrosslinked polymer melt) [21] when their volume isforcedly expanded. These results are reviewed by Shulland Creton [22].

    Theoretical studies for the debonding process have alsobeen done. Gay and Leibler [23] discussed semiquantita-tively the effect of the surface roughness and air suctionin soft elastic materials on the stress-strain curves. Cre-ton and Lakrout [14], and Crosby et al. [24] developed atheoretical analysis for the cavitation condition based onfracture mechanics. Chikina and Gay [25] gave a scalingargument to predict the number of bubbles appearing inthe viscoelastic film as a function of defect density andseparation speed.

    Extensive works have been done for the dynamics ofsingle bubbles placed in a viscous medium [26], elasticmedium [27–30], and viscoelastic medium [31,32]. Theanalysis of these results has been applied to interpret theobserved growth kinetics of cavities [33,34]. Finite elementcalculation has been done [35] for a single bubble placedin a viscoelastic filament being stretched. Cavitation andfibrillation have also been observed in molecular-dynamicssimulation [36–38], where the polymer chains sandwichedbetween substrates or grafted on the substrate are sep-arated. Though the scale is quite different, the observedphenomena are quite similar to each other.

    In spite of these studies, it is still not clear how vis-coelasticity and multiple cavitation dynamics affect themechanical properties. Here we present a simple modelto calculate the stress-strain curve of a viscoelastic liquidin the debonding process. Though the model presentedhere is crude, it includes various effects which have notbeen included altogether in a single model but have beendiscussed individually in previous papers, such as the vis-coelasticity of the film, the cavity expansion, and the slip-page between the film and the substrate. We also believethat the descriptions in our model hold, as the first ap-proximation, for actual PSA which are viscoelastic solidsand show very complex deformations.

    2 The block model

    2.1 Outline of the model

    We consider a thin adhesive layer sandwiched between tworigid substrates, and discuss the process when the sub-strates are pulled apart with constant speed (see Fig. 1).Let H0 and L0 be the initial thickness and the length ofthe film. We assume that the film is thin, i.e., L0 ! H0.

    The debonding process involves a fairly complicateddynamics, i.e., defomation of the adhesives, expansion ofthe cavities, and slip of the adhesive at the interface [39].Our model is intended to describe all these processes. It isbased on the lubrication analysis of Newtonian fluids [40,41], but takes into account the various effects discussedabove in an approximate way.

    In this paper, we explain the model for the two-dimensional case assuming that the flow takes place only

    Fig. 1. Schematics of actual debonding process (left) andcorresponding model representations (right). (a) Initial state,(b) uniform deformation, (c) cavity expansion, and (d) fibrilla-tion are described. Final detachment of fibrils from the probeis omitted.

    in the xz plane shown in Figure 1. The extension to athree-dimensional system will be discussed in a separatepaper.

    In our model we divide the initial adhesive layer into Nrectangular blocks of equal size, and consider the transla-tion (slippage) and deformation of each block. We assumethat the deformation of each block is expressed by a super-position of the stretching in z-direction and Poiseulle-like(parabolic) deformation in x-direction. Therefore, the mo-tion of each block is characterized by two parameters: oneparameter, Xi, denotes the x coordinate of the center ofmass of the block i (i = −N/2, . . . , N/2), and the other pa-rameter, Ci, characterizes the magnitude of the parabolicdeformation. We shall call this model the block model.

    In the block model, the shape and the location of cav-ities are ignored. The effect of cavities are included onlythrough the relation between the volume change and pres-sure.

    To set up equations, we introduce the additional vari-able Pi which stands for the pressure in the region betweenthe block i−1 and i. The pressure Pi appears in two places,one is in the force balance equation for the block, and theother is in the equation controlling the size of cavities.

    We shall now set up equations for the block modelbased on this picture.

    2.2 Deformation of the block

    Let us focus our attention on a certain block i. Initially theblock has width W0 = L0/N and height H0. When the ad-hesive layer is stretched by a factor λ in z-direction, theheight and the width of the block change to H = λH0and W = λ−1W0, respectively. We denote each mate-rial point by the dimensionless coordinate (ξ, ζ) definedin Figure 2. If the block keeps the rectangular shape,the material point (ξ, ζ) will occupy the position (Xi +λ−1W0ξ,λH0(ζ + 1/2)). In reality, the block is deformed.We assume that the deformation is parabolic and that the

    Yamaguchi, Morita & Doi: Euro Phys. J. E 20 (2006) 7–17

    Yamaguchi, Morita & Doi: Euro Phys. J. E 21 (2006) 331–339

    Duvan Henao Pontificia Universidad Católica de Chile

  • Hydroxyl-terminated polybutadiene (HTPB)

    Courtesy of: Robert Nevière, SNPE Matériaux Energétiques,Centre de Recherches du Bouchet, France

    Duvan Henao Pontificia Universidad Católica de Chile

  • Sivaloganathan & Spector (JE ’00a, JE ’00b, JE ’02,PRSE ’02, SJAM ’03, SJAM ’06 - with Tilakraj - , . . . )

    u(x)

    u : Ω" ! R2

    x

    min

    ∫Ωε

    |Du|2 dx subject to det Du ≡ 1

    Duvan Henao Pontificia Universidad Católica de Chile

  • u(x)

    u : Ω" ! R2

    x

    min

    ∫Ωε

    |Du|2 dx subject to det Du ≡ 1

    Duvan Henao Pontificia Universidad Católica de Chile

  • λ = 1.076

    x u(x)

    Duvan Henao Pontificia Universidad Católica de Chile

  • λ = 1.33

    xu(x)

    Duvan Henao Pontificia Universidad Católica de Chile

  • λ = 2.7

    x u(x)

    Duvan Henao Pontificia Universidad Católica de Chile

  • Xu & H., M3AS (2011)

    Duvan Henao Pontificia Universidad Católica de Chile

  • Double cavitation 3

    −1 −0.5 0 0.5 1−1

    −0.8

    −0.6

    −0.4

    −0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    −2 −1 0 1 2−2

    −1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    2

    Body with pre-existing microcavities at (0, 0) and (0.3, 0).

    min

    {∫Ω

    W (∇u) dx :u ∈W 1,p(Ω;Rn)u(x) = λx on ∂DΩ

    δ = 0.01, λ = 2

    }

    Duvan Henao Pontificia Universidad Católica de Chile

  • Variational fracture

    Burke, Ortner & Süli ’10 Bourdin, Francfort & Marigo ’09

    Duvan Henao Pontificia Universidad Católica de Chile

  • Regularized model for cavitation and fracture

    −1 −0.5 0 0.5 1−1

    −0.8

    −0.6

    −0.4

    −0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    −1 −0.5 0 0.5 1

    −1

    −0.5

    0

    0.5

    1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Pre-existing microcavities at (0, 0) and (0.3, 0)

    λ = 1.4, δ = 0.01, ε = 0.005, η = 10−7

    min

    ∫Ω

    (v 2 + η)W (∇u) + ε|∇v |2 + (1− v)2

    4εdx

    Duvan Henao Pontificia Universidad Católica de Chile

  • Regularized model for cavitation and fracture

    −1 −0.5 0 0.5 1−1

    −0.8

    −0.6

    −0.4

    −0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    −1.5 −1 −0.5 0 0.5 1 1.5

    −1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Pre-existing microcavities at (0, 0) and (0.3, 0)

    λ = 1.5, δ = 0.01, ε = 0.005, η = 10−7

    min

    ∫Ω

    (v 2 + η)W (∇u) + ε|∇v |2 + (1− v)2

    4εdx

    Duvan Henao Pontificia Universidad Católica de Chile

  • Regularized model for cavitation and fracture

    −1 −0.5 0 0.5 1−1

    −0.8

    −0.6

    −0.4

    −0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    −1.5 −1 −0.5 0 0.5 1 1.5

    −1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Pre-existing microcavities at (0, 0) and (0.3, 0)

    λ = 1.6, δ = 0.01, ε = 0.005, η = 10−7

    min

    ∫Ω

    (v 2 + η)W (∇u) + ε|∇v |2 + (1− v)2

    4εdx

    Duvan Henao Pontificia Universidad Católica de Chile

  • Regularized model for cavitation and fracture

    −0.5 0 0.5

    −0.2

    −0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    −1.5 −1 −0.5 0 0.5 1 1.5

    −0.2

    −0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Ωδ = (−0.5, 0.5)× (0, 0.4) \3⋃

    i=1

    B((0, i10

    ), δ)

    u(x1, x2) = (λx1, x2), λ = 3, δ = 0.01, ε = 0.005, η = 10−7

    min

    ∫Ω

    (v 2 + η)W (∇u) + ε|∇v |2 + (1− v)2

    4εdx

    Duvan Henao Pontificia Universidad Católica de Chile

  • Regularized model for cavitation and fracture

    −0.5 0 0.5

    −0.2

    −0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    −2 −1 0 1 2

    −0.2

    −0.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    Ωδ = (−0.5, 0.5)× (0, 0.4) \3⋃

    i=1

    B((0, i10

    ), δ)

    u(x1, x2) = (λx1, x2), λ = 4, δ = 0.01, ε = 0.005, η = 10−7

    min

    ∫Ω

    (v 2 + η)W (∇u) + ε|∇v |2 + (1− v)2

    4εdx

    Duvan Henao Pontificia Universidad Católica de Chile

  • Fracture nucleation

    −1 −0.5 0 0.5 1−1

    −0.8

    −0.6

    −0.4

    −0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    −1.5 −1 −0.5 0 0.5 1 1.5

    −1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    Duvan Henao Pontificia Universidad Católica de Chile

  • Gent & Lindley ’59

    −0.5 0 0.50

    0.05

    0.1

    −0.5 0 0.50

    0.1

    0.2

    0.3

    0.4

    0

    0.5

    1

    −0.5 0 0.50

    0.05

    0.1

    −0.5 0 0.50

    0.1

    0.2

    0.3

    0.4

    0

    0.5

    1

    Duvan Henao Pontificia Universidad Católica de Chile

  • Gent & Lindley ’59

    −0.5 0 0.50

    0.05

    0.1

    −0.5 0 0.50

    0.1

    0.2

    0.3

    0.4

    0

    0.5

    1

    −0.5 0 0.50

    0.05

    0.1

    −0.5 0 0.50

    0.1

    0.2

    0.3

    0.4

    0

    0.5

    1

    Duvan Henao Pontificia Universidad Católica de Chile

  • Gent & Lindley ’59

    −0.5 0 0.50

    0.05

    0.1

    −0.5 0 0.50

    0.1

    0.2

    0.3

    0.4

    0

    0.5

    1

    −0.5 0 0.50

    0.01

    0.02

    0.03

    0.04

    0.05

    −0.5 0 0.50

    0.05

    0.1

    0.15

    0.2

    0.25

    0

    0.2

    0.4

    0.6

    0.8

    1

    −0.5 0 0.50

    0.005

    0.01

    0.015

    0.02

    0.025

    −0.5 0 0.50

    0.05

    0.1

    0

    0.2

    0.4

    0.6

    0.8

    1

    Duvan Henao Pontificia Universidad Católica de Chile

  • Gent & Lindley ’59

    −0.5 0 0.50

    0.05

    0.1

    −0.5 0 0.50

    0.1

    0.2

    0.3

    0.4

    0

    0.5

    1

    −0.5 0 0.50

    0.01

    0.02

    0.03

    0.04

    0.05

    −0.5 0 0.50

    0.05

    0.1

    0.15

    0.2

    0.25

    0

    0.2

    0.4

    0.6

    0.8

    1

    −0.5 0 0.50

    0.005

    0.01

    0.015

    0.02

    0.025

    −0.5 0 0.50

    0.05

    0.1

    0

    0.2

    0.4

    0.6

    0.8

    1

    Duvan Henao Pontificia Universidad Católica de Chile

  • Gent & Lindley ’59

    −0.5 0 0.50

    0.05

    0.1

    −0.5 0 0.50

    0.1

    0.2

    0.3

    0.4

    0

    0.5

    1

    −0.5 0 0.50

    0.01

    0.02

    0.03

    0.04

    0.05

    −0.5 0 0.50

    0.05

    0.1

    0.15

    0.2

    0.25

    0

    0.2

    0.4

    0.6

    0.8

    1

    −0.5 0 0.50

    0.005

    0.01

    0.015

    0.02

    0.025

    −0.5 0 0.50

    0.05

    0.1

    0

    0.2

    0.4

    0.6

    0.8

    1

    Duvan Henao Pontificia Universidad Católica de Chile

  • Rigid inclusion

    −0.2 −0.1 0 0.1 0.20

    0.1

    0.2

    0.3

    0.4

    0

    0.2

    0.4

    0.6

    0.8

    1

    −0.2 −0.1 0 0.1 0.20

    0.1

    0.2

    0.3

    0.4

    0

    0.2

    0.4

    0.6

    0.8

    1

    Duvan Henao Pontificia Universidad Católica de Chile

  • Rigid inclusion

    −0.2 −0.1 0 0.1 0.20

    0.1

    0.2

    0.3

    0.4

    0

    0.2

    0.4

    0.6

    0.8

    1

    −0.2 −0.1 0 0.1 0.20

    0.1

    0.2

    0.3

    0.4

    0

    0.2

    0.4

    0.6

    0.8

    1

    Duvan Henao Pontificia Universidad Católica de Chile

  • Rigid inclusion

    −0.2 −0.1 0 0.1 0.20

    0.1

    0.2

    0.3

    0.4

    0

    0.2

    0.4

    0.6

    0.8

    1

    −0.2 −0.1 0 0.1 0.20

    0.1

    0.2

    0.3

    0.4

    0

    0.2

    0.4

    0.6

    0.8

    1

    Duvan Henao Pontificia Universidad Católica de Chile

  • Rigid inclusion

    −0.2 −0.1 0 0.1 0.20

    0.1

    0.2

    0.3

    0.4

    0

    0.2

    0.4

    0.6

    0.8

    1

    −0.2 −0.1 0 0.1 0.20

    0.1

    0.2

    0.3

    0.4

    0

    0.2

    0.4

    0.6

    0.8

    1

    Duvan Henao Pontificia Universidad Católica de Chile

  • Two rigid inclusions

    −0.2 −0.1 0 0.1 0.20

    0.1

    0.2

    0.3

    0.4

    0

    0.2

    0.4

    0.6

    0.8

    1

    −0.2 −0.1 0 0.1 0.20

    0.1

    0.2

    0.3

    0.4

    0

    0.2

    0.4

    0.6

    0.8

    1

    Duvan Henao Pontificia Universidad Católica de Chile

  • Two rigid inclusions

    −0.2 −0.1 0 0.1 0.20

    0.1

    0.2

    0.3

    0.4

    0

    0.2

    0.4

    0.6

    0.8

    1

    −0.2 −0.1 0 0.1 0.20

    0.1

    0.2

    0.3

    0.4

    0

    0.2

    0.4

    0.6

    0.8

    1

    Duvan Henao Pontificia Universidad Católica de Chile

  • λ = 1.33

    xu(x)

    Duvan Henao Pontificia Universidad Católica de Chile

  • λ = 1.753

    x

    u(x)

    Duvan Henao Pontificia Universidad Católica de Chile

  • λ = 2.7

    x u(x)

    Duvan Henao Pontificia Universidad Católica de Chile

  • λ = 2.7

    x u(x)

    Duvan Henao Pontificia Universidad Católica de Chile

  • u(x)

    Fraenkel asymmetry

    D(E ) := minx∈R2

    |E4B(x, rE )||E |

    with πr 2E = |E |.

    Duvan Henao Pontificia Universidad Católica de Chile

  • Fusco, Maggi & Pratelli (AM ’08):The sharp quantitative isoperimetric inequality

    Per(E ) ≥√

    4π|E |(1 + C · D(E ))

    Duvan Henao Pontificia Universidad Católica de Chile

  • H. & Serfaty (CPAM ’13):Cavity interaction for a critical-exponent model

    R = dist({a1, . . . , am}, ∂Ω)

    ⇒∫

    Ωε

    |Du|2 − 12

    dx ≥m∑1

    vi · logR

    +m∑1

    viD2i log

    min{di ,√

    viD2i }ε

    − C

    Bounded renormalized energy. Only three possible scenarii.

    Duvan Henao Pontificia Universidad Católica de Chile

  • H. & Serfaty (CPAM ’13):Cavity interaction for a critical-exponent model

    R = dist({a1, . . . , am}, ∂Ω)

    ⇒∫

    Ωε

    |Du|2 − 12

    dx ≥m∑1

    vi · logR

    +m∑1

    viD2i log

    min{di ,√

    viD2i }ε

    − C

    Bounded renormalized energy. Only three possible scenarii.

    Duvan Henao Pontificia Universidad Católica de Chile

  • H. & Serfaty (CPAM ’13):Cavity interaction for a critical-exponent model

    R = dist({a1, . . . , am}, ∂Ω)

    ⇒∫

    Ωε

    |Du|2 − 12

    dx ≥m∑1

    vi · logR

    +m∑1

    viD2i log

    min{di ,√

    viD2i }ε

    − C

    Bounded renormalized energy. Only three possible scenarii.

    Duvan Henao Pontificia Universidad Católica de Chile

  • H. & Serfaty (CPAM ’13):Cavity interaction for a critical-exponent model

    R = dist({a1, . . . , am}, ∂Ω)

    ⇒∫

    Ωε

    |Du|2 − 12

    dx ≥m∑1

    vi · logR

    +m∑1

    viD2i log

    min{di ,√

    viD2i }ε

    − C

    Bounded renormalized energy. Only three possible scenarii.

    Duvan Henao Pontificia Universidad Católica de Chile

  • H. & Serfaty (CPAM ’13):Cavity interaction for a critical-exponent model

    R = dist({a1, . . . , am}, ∂Ω)

    ⇒∫

    Ωε

    |Du|2 − 12

    dx ≥m∑1

    vi · logR

    +m∑1

    viD2i log

    min{di ,√

    viD2i }ε

    − C

    Bounded renormalized energy.

    Only three possible scenarii.

    Duvan Henao Pontificia Universidad Católica de Chile

  • H. & Serfaty (CPAM ’13):Cavity interaction for a critical-exponent model

    R = dist({a1, . . . , am}, ∂Ω)

    ⇒∫

    Ωε

    |Du|2 − 12

    dx ≥m∑1

    vi · logR

    +m∑1

    viD2i log

    min{di ,√

    viD2i }ε

    − C

    Bounded renormalized energy. Only three possible scenarii.

    Duvan Henao Pontificia Universidad Católica de Chile

  • H. & Serfaty (CPAM ’13):Cavity interaction for a critical-exponent model

    Duvan Henao Pontificia Universidad Católica de Chile

  • H. & Serfaty ’13:

    B

    (√v2a1 +

    √v1a2√

    v1 +√

    v2,√

    4|a1 − a2|2 + 32(v1 + v2))⊂ Ω

    Duvan Henao Pontificia Universidad Católica de Chile

  • Cañulef & H. (in preparation):

    For v1 = v2 = · · · = vm, set

    σ =

    mπmin

    {mini

    (R0 − |ai |)2,mini 6=j

    ( |ai − aj |2

    )2}πR20

    .

    I This is the packing density of the largest disjoint collection ofthe form {B(ai , ρ) : i ∈ {1, . . . , n}} contained in B.

    I

    λ2 <1

    1− σ .

    Duvan Henao Pontificia Universidad Católica de Chile

  • Cañulef & H. (in preparation):

    For v1 = v2 = · · · = vm, set

    σ =

    mπmin

    {mini

    (R0 − |ai |)2,mini 6=j

    ( |ai − aj |2

    )2}πR20

    .

    I This is the packing density of the largest disjoint collection ofthe form {B(ai , ρ) : i ∈ {1, . . . , n}} contained in B.

    I

    λ2 <1

    1− σ .

    Duvan Henao Pontificia Universidad Católica de Chile

  • Cañulef & H. (in preparation):

    For v1 = v2 = · · · = vm, set

    σ =

    mπmin

    {mini

    (R0 − |ai |)2,mini 6=j

    ( |ai − aj |2

    )2}πR20

    .

    I This is the packing density of the largest disjoint collection ofthe form {B(ai , ρ) : i ∈ {1, . . . , n}} contained in B.

    I

    λ2 <1

    1− σ .

    Duvan Henao Pontificia Universidad Católica de Chile

  • I When m = 11 (Melissen GD ’94) the maximum packing densityis

    11(1 + 1sin π

    9

    )2 ≈ 0.7145;it yields

    λ <

    √(1 + sin π9 )

    2

    1 + 2 sin π9 − 10 sin2 π9≈ 1.8714

    Duvan Henao Pontificia Universidad Católica de Chile

  • I

    σ = min

    mini(

    1− |ai |R0)2

    vi∑vk

    ,mini 6=j

    |ai − aj |2

    R20

    (√vi∑vk

    +√

    vj∑vk

    )2 .

    I Both when σ ≥ 1 and in the case when σ < 1 and λ2 < 11−σ .

    Duvan Henao Pontificia Universidad Católica de Chile

  • I(

    B(ai , di ))ni=1

    disjoint

    I

    vi <1

    1−∑πd2k

    πR20

    · πd2i .

    Duvan Henao Pontificia Universidad Católica de Chile

  • Let m ∈ N, R0 > 0, and Ω := B(0,R0) ⊂ R2. We say that((ai )

    ni=1, (vi )

    ni=1

    )is an attainable configuration if ai ∈ Ω and vi > 0

    for all i ∈ {1, . . . ,m}, and there exist evolutionsI zi ∈ C 1([1, λ],R2) of the cavity centres, andI Li : [1, λ]→ [0,∞) of the cavity radii,

    such that

    m∑i=1

    πL2i (t) = (t2 − 1)πR20 ∀ t ∈ [1, λ]

    and for each i ∈ {1, . . . ,m}i) L2i belongs to C

    1([1, λ], [0,∞));ii) zi (1) = ai and Li (1) = 0;

    iii) πL2i (λ) = vi ; and

    iv) for all t ∈ [1, λ] the disks B(zi (t), Li (t)) are disjoint andcontained in B(0, tR0).

    Duvan Henao Pontificia Universidad Católica de Chile

  • Suppose(

    (ai )ni=1, (vi )

    ni=1

    )is attainable. Assume that for every ε the

    map uε minimizes∫

    Ωε|Du|2 dx among u satisfying

    I (INV)

    I u(x) = λx for x ∈ ∂Ω;I det Du ≡ 1;I and | imT(u,Bε(ai ))| = vi + O(ε2).

    Then there exists a C = C(n,R0, (ai )

    ni=1, (vi )

    ni=1

    )such that∫

    Ωε

    |Duε|22

    dx ≤ C +(

    m∑i=1

    vi

    )| log ε|.

    Moreover, there exists a subsequence (not relabelled) andu ∈ ⋂1≤p

  • {div v = 0 in E ,

    v(x) = g(x)ν(x) on ∂E ,(1)

    where

    E = B(z0, r0) \n⋃

    k=1

    B(zk , rk) ⊂ R2, (2)

    g ∈ C 1,α(

    n⋃k=0

    ∂B(zk , rk)

    )and

    ∫∂B0

    g =n∑

    k=1

    ∫∂B(zk ,rk )

    g . (3)

    Duvan Henao Pontificia Universidad Católica de Chile

  • ∀i ≥ 1 ri ≥ d ,∀i ≥ 1 B(zi , ri + d) ⊂ B(z0, r0), and

    mini ,j≥1i 6=j

    dist(B(zi , ri ),B(zj , rj)) ≥ 2d ,(4)

    for some generic length d .

    Duvan Henao Pontificia Universidad Católica de Chile

  • TheoremLet n ∈ N and 0 < δ < 1. There exists a universal constant C3(δ)such that whenever z1, ...zn ∈ R2 and d , r0, ..., rn > 0 satisfy dr0 ≥ δand (4), we have that for every g verifying (3) it is possible toconstruct a solution to (1) for which

    ‖v‖∞ ≤ C3

    ((( r0d

    )1+α+ B

    ( r0d2

    )3+ B2

    ( r0d3

    )3)‖g‖∞+

    (r 2α+10dα+1

    + Br 2+α0d5

    )[g ]0,α

    ),

    ‖Dv‖∞ ≤ C3(C1‖g‖∞ + C2[g ]0,α +

    rα0dα‖g ′‖∞ +

    r 2α0dα

    [g ′]0,α

    ),

    where

    B = B(E ) := |E | 12 CP(E )(

    d−12 CP(E ) + d

    12

    )n

    12 r

    12

    0 , (5)

    C1 = r1+α0 d

    −α−2 + Br 30 d−7 + B2r 30 d

    −10, andC2 = r

    2α+10 d

    −2−α + Br 2+α0 d−6.

    Duvan Henao Pontificia Universidad Católica de Chile

  • ∆φ = 0 in E ,∂φ∂ν

    = g(x) on ∂E ,(6)

    with∫E φ = 0 and then choosing v = Dφ+ D

    ⊥ψ whereD⊥ψ := (∂z2ψ,−∂z1ψ) is a divergence-free covector field that cancelsout the tangential parts of Dφ on ∂Bi , ∀i . Concretelyψ(z) = ϕ(z)− ζ

    (2dist(z,∂E)

    d

    )ϕ(q(z)) where ϕ is the solution to

    ∆ϕ = 0 in E ,∂ϕ∂ν

    =∂φ

    ∂τon ∂E ,

    (7)

    Duvan Henao Pontificia Universidad Católica de Chile

  • d

    dt

    ∫|Dx f (x , t)|2 dx =

    ∫Dx f (x , t) · Dx

    ∂f

    ∂t(x , t) dx

    =

    ∫Dx f (x , t) · ((Dy (vt + ṽt))(f (x , t))Dx f (x , t)),

    whence

    d

    dt

    ∫|Dx f (x , t)|2 dx ≤ (sup

    t‖Dvt + Dṽt‖L∞(E(t)))︸ ︷︷ ︸

    :=C

    ∫|Dx f (x , t)|2 dx .

    Duvan Henao Pontificia Universidad Católica de Chile


Recommended