+ All Categories
Home > Documents > Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel...

Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel...

Date post: 19-Jan-2016
Category:
Upload: dustin-evans
View: 217 times
Download: 0 times
Share this document with a friend
Popular Tags:
29
Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO France Jerôme Margueron IPNO France Phase diagram of stellar matter and its impact on astrophysics
Transcript
Page 1: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

Francesca Gulminelli - LPC Caen, France

Collaboration:Adriana Raduta IFIN BucharestMicaela Oertel LUTH Meudon FrancePanagiota Papakonstantinou IPNO FranceJerôme Margueron IPNO France

Phase diagram of stellar matter and its impact on

astrophysics

Page 2: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

2/27

A

yp 1/2@~10T 12K~r r0

Supernova remnant and neutron star in Puppis A (ROSAT x-ray)

yp 1/5@~6T K~r r0

corecrust

yp 1/3@~10T 11K~r r0

Dense matter is abundantly produced in a core-collapse supernova event leading to a neutron star (or black hole)

Time

A.Fantina, PhD thesis, 2011

Page 3: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

3/27

Phases  of dense matter in neutron stars

Baryon density

G.Watanabe et al, PRL 2009

pasta

QGP?

Page 4: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

4/27

20

20

0 M

eV

1 5?Density /r r0

Tem

pera

ture

QGP

Gas Liquid

Hadronic matter

Phases of dense matter in heavy-ion collisions

LHC

RHIC

FAIR

GANIL

Page 5: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

5/27

20

20

0 M

eV

1 5?Density /r r0

Tem

pera

ture

QGP

Gas Liquid

Hadronic matter

Phases of dense matter in heavy-ion collisions

Page 6: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

This talk: Stellar matter versus nuclear matter phase diagram

The sub-saturation regime : Coulomb effects and dishomogeneous phases

The super-saturation regime: Hyperonic matter & strangeness phase transition

T

rBp

asta

QGP???

Page 7: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

This talk: Stellar matter versus nuclear matter phase diagram

The sub-saturation regime : Coulomb effects and dishomogeneous phases

The super-saturation regime: Hyperonic matter & strangeness phase transition

T

rBp

asta

QGP???

G Lcoex

Page 8: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

Coulomb effects

Nuclear matter is uncharged, while in stellar matter the proton charge is screened by a ~ uniform electron background

T. Maruyama et al. PRC 72, 015802 (2005)

Den

sité

/ fm

-3

0.08

0.06

0.04

0.02

0

r = 0.04 fm-3 r = 0.08 fm-3 r = 0.05 fm-3 r = 0.02 fm-3

pne

0 5 10Rayon / fm

0 50 5 100 5 10

Density /r r0

Tem

pera

ture

Page 9: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

Nuclear matter is uncharged, while in stellar matter the proton charge is screened by a ~ uniform electron background

The low density phase is a Wigner cristal

Density /r r0

Tem

pera

ture

Coulomb effects

Page 10: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

Nuclear matter is uncharged, while in stellar matter the proton charge is screened by a ~ uniform electron background

The low density phase is a Wigner cristal Phase coexistence i.e. macroscopic density dishomogeneities,

would imply a macroscopic charge => a diverging energy density

Coulomb effectsDensity /r r0

Tem

pera

ture

Page 11: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

Nuclear matter is uncharged, while in stellar matter the proton charge is screened by a ~ uniform electron background

The low density phase is a Wigner cristal Phase coexistence i.e. macroscopic density dishomogeneities,

would imply a macroscopic charge =>a diverging energy density

Dishomogeneities occur on a microscopic scale only: a continuous transition through a cluster phase (inner crust)

Coulomb effectsDensity /r r0

Tem

pera

ture

Page 12: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

Nuclear matter is uncharged, while in stellar matter the proton charge is screened by a ~ uniform electron background

The low density phase is a Wigner cristal Phase coexistence i.e. macroscopic density dishomogeneities,

would imply a macroscopic charge =>a diverging energy density

Dishomogeneities occur on a microscopic scale only: a continuous transition through a cluster phase (inner crust)

Illustration via a phenomenological model

Coulomb effectsDensity /r r0

Tem

pera

ture

Page 13: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

The extended NSE model Mixture of nucleons, clusters

of all sizes, photons, electrons, positrons, neutrinos

Nucleons treated in the Skyrme-HF approximation with realistic effective interactions

Nuclei form a statistical ensemble of excited clusters interacting via Coulomb and excluded volume

Thermodynamic consistency between the different components

, , ,p lep e n NT y T T

22

* *ˆ ˆ, , exp

3 3pN n

n n p sp mfn p

V VT h h

T m m

{ } 4

3/ 2 ,

, ,!

( )2

A

A

Ay p

nA

Nn A A

e yAAy T

A N n AyY A

Tn

m TV V g T e

,

;

nucleons clusi i

nucleons clus nucleons clusi i i

i n p

P P P

A.Raduta,F.G.,PRC 82:065801 (2010) PRC 85:025803 (2012)

Page 14: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

The extended NSE model A.Raduta,F.G.,PRC 82:065801 (2010) PRC 85:025803 (2012) No plateau in the EoS

B

mI=1.6MeV =T 1.6 MeV

Page 15: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

The extended NSE model A.Raduta,F.G.,PRC 82:065801 (2010) PRC 85:025803 (2012) No plateau in the EoS

Thermodynamics very different from a first order phase transition

Inaccessible in the standard grand-canonical NSE

Large distribution of cluster size

B

S. R. Souza, et al,, Astrophys. J. 707, 1495 (2009),M. Hempel and J. Schaffner-Bielich, Nucl. Phys. A 837, 210 (2010) S. I. Blinnikov, et al, Astronomy & Astrophysics 535, A37 (2011). …………(among others)………

mI=1.6MeV =T 1.6 MeV

Page 16: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

The extended NSE model A.Raduta,F.G.,PRC 82:065801 (2010) PRC 85:025803 (2012) No plateau in the EoS

Thermodynamics very different from a first order phase transition

Inaccessible in the standard grand-canonical NSE

Large distribution of cluster size

Page 17: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

The extended NSE model A.Raduta,F.G.,PRC 82:065801 (2010) PRC 85:025803 (2012) No plateau in the EoS

Thermodynamics very different from a first order phase transition

Inaccessible in the standard grand-canonical NSE

Large distribution of cluster size

Important for e-capture and n-dynamics

Page 18: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

Towards a quantitative EoS

The nuclear cluster energy functional is modified by the external nucleon gas

Does excluded volume account for this effect ?

M.Hempel et al PRC 84, 055804 (2011)

In medium effects calculated from a HF calculation in the WS cell

Application to the NSE model in progress

P.Papakonstantinou, et al., in preparation

𝑒𝑛𝑢𝑐𝑙 (𝐴 ,δ )= (𝑎𝑉𝑚(𝜌)+𝑎𝑠𝑦𝑚

𝑚 (𝜌)𝛿2 ) 𝐴+(𝑎𝑠𝑦𝑚

𝑚 (𝜌)+𝑎𝑠𝑑𝑚 (𝜌)𝛿2 ) 𝐴2/3

Page 19: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

This talk: Stellar matter versus nuclear matter phase diagram

The sub-saturation regime : Coulomb effects and dishomogeneous phases

The super-saturation regime: Hyperonic matter & strangeness phase transition

T

rBp

asta

QGP???

Page 20: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

Hyperons in dense stellar matter Hypernuclei: L

potential attractive at low density

Hyperon d.o.f tend to soften the EoS

Still compatible with 2Mo NS if the hyperon-hyperon coupling is strongly repulsive at high density

M.Oertel et al, http://arxiv.org/abs/1202.2679

I.Vidana et al, Europhys.Lett.94:11002,2011

Page 21: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

Strangeness phase transition Attractive - N L and - L L

interaction at low rB

, repulsive at high rB

e(r) has a minimum =>dilute/dense PT ? e(rL) has a minimum

=> non-strange/strange PT ? Illustration with a simple

model: n- L equilibrium in the HF approximation; energy functional from Balberg & Gal

S.Balberg A.Gal NPA 625(1997)435

YL=

rn=0.45 fm-3

rn=0.3 fm-3

rn=0.15 fm-3

rr rS(fm-3)

Page 22: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

n- L phase diagram different first and second

order phase transitions I: L’s in neutron matter II: n-L liquid-gas III: neutrons in L matter

F.G.,A.Raduta and M.Oertel, in preparation

Page 23: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

n- L phase diagram different first and second

order phase transitions I: L’s in neutron matter II: n-L liquid-gas III: neutrons in L matter

F.G.,A.Raduta and M.Oertel, in preparation

m S

=0

Page 24: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

n- L phase diagram different first and second

order phase transitions I: L’s in neutron matter II: n-L liquid-gas III: neutrons in L matter

=> Coexisting hyperon-rich & hyperon-poor regions along the physical trajectory mS=0

F.G.,A.Raduta and M.Oertel, in preparation

m S

=0

mS

=0

Page 25: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

n- L phase diagram different first and second

order phase transitions I: L’s in neutron matter II: n-L liquid-gas III: neutrons in L matter

=> Coexisting hyperon-rich & hyperon-poor regions along the physical trajectory mS=0

=> Explores a critical point at T>0: n opacity?

F.G.,A.Raduta and M.Oertel, in preparation

m S

=0

crit

ical p

oin

t

J.Margueron et al, PRC70 (2004) 028801

mS

=0

Page 26: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

Conclusion: Stellar matter phase diagram

The sub-saturation regime : Coulomb effects and phase transition quenching A specific thermodynamics Wide distribution of clusters Important for e-capture and n -interaction

The super-saturation regime: A possible strangeness phase transition Consequences on EoS, NS mass, n - transport ? Constraints on Y-N and Y-Y interaction needed

Page 27: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.
Page 28: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

28/27

Frustration and dishomogeneous phases

Frustration is a generic phenomenon in physics

It occurs whenever matter is subject to opposite interactions (here: nuclear & coulomb) on comparable length scales

Global variations of the order parameter (here: density) are replaced by local variations

=>Phase coexistence is quenched

=>dishomogeneous phases arise

=>Ensemble equivalence is violated q

T

Tcr

dishomogeneousphase

P.Viot G.Tarjus PRE2001

Page 29: Francesca Gulminelli - LPC Caen, France Collaboration: Adriana Raduta IFIN Bucharest Micaela Oertel LUTH Meudon France Panagiota Papakonstantinou IPNO.

Example: frustrated Ising ferromagnets

P.Viot G.Tarjus PRE2001

Fe,

2 2

avec 0

N

N

s sq'H s sr

M s

i ji j

i j i j ij

ii

• Frustration in soft-matter: diblock copolymer melts, cross linked

copolymer mixtures, interpenetrating networks, oil-water surfactant mixtures• Frustration in magnetism: ultrathin magnetic films• Frustration in glasses: doped Mott insulator, supercooled liquids

q

T

Tcr

dishomogeneousphase


Recommended