+ All Categories
Home > Documents > Frédérick BORDRY

Frédérick BORDRY

Date post: 15-Jan-2016
Category:
Upload: lottie
View: 41 times
Download: 0 times
Share this document with a friend
Description:
LHC Inner Triplet Powering Strategy. LHC phase 0 - history - status LHC phase 1 - understanding - wishes. Frédérick BORDRY. Q3. Q1. Q2a. Q2b. Inner triplet. Identical in term of powering in the 4 points. Prototype low-  quadrupole. MQXA (KEK) Aperture 70 mm 205 T/m - PowerPoint PPT Presentation
24
k. Bordry LIUWG – 13-12-2007 Frédérick BORDRY LHC Inner Triplet Powering Strategy LHC phase 0 - history - status LHC phase 1 - understanding - wishes
Transcript
Page 1: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

Frédérick BORDRY

LHC Inner TripletPowering StrategyLHC Inner TripletPowering Strategy

LHC phase 0

- history

- status

LHC phase 1

- understanding

- wishes

Page 2: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

Inner triplet

Q1 Q2a Q3Q2b

Identical in term of powering in the 4 points

Page 3: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

Prototype low- quadrupole

MQXA (KEK)Aperture 70 mm205 T/mI = 6450 AIultimate = 7 kAL1= 91 mH(Stored energy: 2.3 MJ)

Page 4: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

Prototype MQXB being readied for cryostat insertion

MQXB (Fermilab)205 T/mI = 11390 A (Iultimate = 12290A)L2= 18.5 mH(Stored energy: 1.4 MJ)

Page 5: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

1 2 32

MQXA MQXAMQXB MQXB

12kA8kA

Vcv1

Vcv2

8kA

Vcv3

IF = = 11. 5 kA IK = 7 kAIK = 7 kA

MQXA (KEK)Aperture 70 mm205 T/mInom = 6450 A (Iultimate = 7 kA)L1= 91 mH(Stored energy: 2.3 MJ)

MQXB (Fermilab)Aperture 70 mm205 T/mInom = 11390 A (Iultimate = 12290A)L2= 18.5 mH(Stored energy: 1.4 MJ)

Page 6: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

1 2 32

12kA8kA

Vcv1Vcv2

MQXA MQXAMQXB MQXB

IF = = 11. 5 kA IK = 7 kAIK = 7 kA

Page 7: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

1 2 32

8kA 6kA

I2

Vcv1

Vcv2

I1

MQXA MQXAMQXB MQXB

IF = I1 + I2

= 11. 5 kAIK = I1

= 7 kA

IK = I1

= 7 kA

Page 8: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

I1Inner Triplet : nested power convertersInner Triplet : nested power converters

F11

F12

F21

F22

+

+

+

+

V1

V2

I2

I1

2

1.

2

1

1

1

1

11

1

1

1

2

1.

2

1

1

1.2

1

11

2

1

1

2

1

Vc

Vcv

LLL

LLi

i

LLr

L

rL

r

L

r

i

i

dt

d

L1/2 L1/2L2/2 L2/2

r1/2 r1/2r2/2 r2/2

8kA

1 2 32

6kA

KEK KEKFermilab Fermilab

IF = I1 + I2 IK = I1

I2

Vcv1

Vcv2

I1

Inductive coupling

Page 9: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

Current sources in parallel

1- Fast internal current source FCLB ~ 10 kHz

2- Global voltage loop FCLB ~ 1 kHz

3- High precision current loop (DCCT) FCLB ~ 0.1 - 1 Hz

2 kA , 8 V

2 kA , 8 V

2 kA , 8 V

2 kA , 8 V

6 kA, 8V

AC connectionWater distribution

Global Electronics

Page 10: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

Converter 1

8kA

Voltage source

Converter 2

6kA

Voltage source

DSP 1

Reg . 1

Reg . 2

Analogdecouplind card

Vconv1 = V1ref + k1v. V2ref +K1i. I2

Vconv2 = V2ref + k2v. V1ref +K2i. i1

Vconv1

DAC

Dcct 1

Vconv2

Dcct 2Digital

Ikref = I1ref

IFref

I2ref-

+

DSP 2

Digital

DAC

ADC

ADC

Vref1

Vref2

Page 11: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

The heaters “must” be fired when there is a FWD water faultThe heaters “must” be fired when there is a FWD water fault

LQ1-Q3 91 mH ; 1 = 220 / 0.6 380 s

LQ2 18.5 mH ; 2 = 37 / 0.8 50 s

LQ1-Q3 91 mH ; 1 = 220 / 0.6 380 s

LQ2 18.5 mH ; 2 = 37 / 0.8 50 s

8kA

1 2 32

6kA

KEK KEKFermilab Fermilab

IF = I1 + I2 IK = I1

I2

Vcv1

Vcv2

600A

Vcv3

I1

8kA/=380s 6kA/=50s

1 kA/=70s

Converter fault : All converters are stopped

ifwd3=0

=400s

1.2ks-1kA

7kA

1000A

Page 12: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

8kA

1 2 3

6kA

IF = I1 + I2 IK = I1

I2

Vcv1

Vcv2

±600A

Vcv3

I1

Magnet quench

im2

im1

im3

8kA/d= 0.5s

Page 13: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

LHC phase 0 : present LHC phase 0 : present statusstatus

As a result of the tests completed to date, the control of the nested power converters seems to fulfil all the performance requirements of the LHC inner triplet system.

Same installation in 1 ,2, 5 and 8. The inner triplet converters are standard LHC

converters but dedicated protection devices are required.

Page 14: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

Point 1

Page 15: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

Point 1

Page 16: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

Point 1

Page 17: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

Point 5

Page 18: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

Point 5

Page 19: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

Point 5

Page 20: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

LHC phase 1

MQXC (from PAC07 paper)Aperture 130 mm122 T/mI = 12’270 AIultimate = ?L1= 67.5 mH(Stored energy: 5.1 MJ per magnet ; 75% of LHC main dipole magnet)

1 2a 32b

MQXC MQXCMQXC MQXC

Page 21: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

1 2a 32b

MQXC MQXCMQXC MQXC

IQ2 = = 12. 3 kA IQ3 = 12.3 kAIQ1 = 12.3 kA

13kA

Vcv1

- Cost - Easy to control- Volumebut- No flexibility (IQ1=IQ2a=IQ2b=IQ3)- Quench protection- String test

Page 22: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

13kA

Vcv2b

1 2a 32b

MQXC MQXCMQXC MQXC

IQ2 = = 12. 3 kA IQ3 = 12.3 kAIQ1 = 12.3 kA

13kA

Vcv1

13kA

Vcv3

13kA

Vcv2a

- Full flexibility (easy to control )- Easy for quench protection (no heater, no extraction)- no string testbut- Cost ( f[voltage] => distance from DFB)- volume

Page 23: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

1 2a 32b

MQXC MQXCMQXC MQXC

13kA13kA

Vcv1

Vcv2

13kA

Vcv3

IQ2 = = 12. 3 kA IQ3 = 12.3 kAIQ1 = 12.3 kA

- Flexibility (easy to control but IQ2a = IQ2b)- Easy for quench protection for Q1 and Q3 (no heater, no extraction)

- Q2? (extraction system? Quench heaters?)

but- Cost- Volume

Page 24: Frédérick BORDRY

Fk

. Bor

dry

LIU

WG

– 1

3-12

-200

7

1 2a 32b

13kA13kA

Vcv1Vcv2

MQXC MQXCMQXC MQXC

IF = = 12. 3 kA IQ3 = 12.3 kAIQ1 = 12.3 kA

- Easy to control - Two identical strings

- quench protection for Q1 and Q3 (heaters ? , extractions ?)

but- IQ1 = IQ3 and IQ2a = IQ2b (Possible to add trims on Q1 or Q3 ? How many % ?)


Recommended