+ All Categories
Home > Documents > Free Brownian motion - Texas A&M University

Free Brownian motion - Texas A&M University

Date post: 24-Feb-2022
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
44
Free Brownian motion Michael Anshelevich Texas A&M University October 8, 2009 Michael Anshelevich Free Brownian motion
Transcript
Page 1: Free Brownian motion - Texas A&M University

Free Brownian motion

Michael Anshelevich

Texas A&M University

October 8, 2009

Michael Anshelevich Free Brownian motion

Page 2: Free Brownian motion - Texas A&M University

Definition I: Combinatorics.

Catalan numbers

ck =1

k + 1

(2kk

): 1, 1, 2, 5, 14, . . .

Count many things (Stanley Exercise 6.19(a-nnn) +109).

Count lattice paths: , , ,

, , , ,

How many with k steps?

m2k+1 = 0.

m2k = ck = Catalan number.

Michael Anshelevich Free Brownian motion

Page 3: Free Brownian motion - Texas A&M University

Definition I: Combinatorics.

Catalan numbers

ck =1

k + 1

(2kk

): 1, 1, 2, 5, 14, . . .

Count many things (Stanley Exercise 6.19(a-nnn) +109).

Count lattice paths: , , ,

, , , ,

How many with k steps?

m2k+1 = 0.

m2k = ck = Catalan number.

Michael Anshelevich Free Brownian motion

Page 4: Free Brownian motion - Texas A&M University

Definition I: Combinatorics.

Catalan numbers

ck =1

k + 1

(2kk

): 1, 1, 2, 5, 14, . . .

Count many things (Stanley Exercise 6.19(a-nnn) +109).

Count lattice paths: ,

, ,

, , , ,

How many with k steps?

m2k+1 = 0.

m2k = ck = Catalan number.

Michael Anshelevich Free Brownian motion

Page 5: Free Brownian motion - Texas A&M University

Definition I: Combinatorics.

Catalan numbers

ck =1

k + 1

(2kk

): 1, 1, 2, 5, 14, . . .

Count many things (Stanley Exercise 6.19(a-nnn) +109).

Count lattice paths: , , ,

, , , ,

How many with k steps?

m2k+1 = 0.

m2k = ck = Catalan number.

Michael Anshelevich Free Brownian motion

Page 6: Free Brownian motion - Texas A&M University

Definition I: Combinatorics.

Catalan numbers

ck =1

k + 1

(2kk

): 1, 1, 2, 5, 14, . . .

Count many things (Stanley Exercise 6.19(a-nnn) +109).

Count lattice paths: , , ,

, , , ,

How many with k steps?

m2k+1 = 0.

m2k = ck = Catalan number.

Michael Anshelevich Free Brownian motion

Page 7: Free Brownian motion - Texas A&M University

Definition I: Combinatorics.

Catalan numbers

ck =1

k + 1

(2kk

): 1, 1, 2, 5, 14, . . .

Count many things (Stanley Exercise 6.19(a-nnn) +109).

Count lattice paths: , , ,

, , , ,

How many with k steps?

m2k+1 = 0.

m2k = ck = Catalan number.

Michael Anshelevich Free Brownian motion

Page 8: Free Brownian motion - Texas A&M University

Numbers→combinatorialstructures→ measures.

Interpret {mk} as moments. More precisely,{mk t

k/2}

.

Want a measure µt on R such that

mk tk/2 =

∫ ∞−∞

xk dµt(x)

Combinatorics⇒ µt =1

2πt

√4t− x2 dx = semicircle laws.

Michael Anshelevich Free Brownian motion

Page 9: Free Brownian motion - Texas A&M University

Numbers→combinatorialstructures→ measures.

Interpret {mk} as moments. More precisely,{mk t

k/2}

.

Want a measure µt on R such that

mk tk/2 =

∫ ∞−∞

xk dµt(x)

Combinatorics⇒ µt =1

2πt

√4t− x2 dx = semicircle laws.

Michael Anshelevich Free Brownian motion

Page 10: Free Brownian motion - Texas A&M University

Definition II: Operators.

a+ = right shift.

2 3 4 5 61

a− = left shift.

a−a+ = Id, a+a− 6= Id

Matrices

a+ ∼

0 0 0 0

. . .

1 0 0 0. . .

0 1 0 0. . .

0 0 1 0. . .

. . . . . . . . . . . . . . .

, a− ∼

0 1 0 0

. . .

0 0 1 0. . .

0 0 0 1. . .

0 0 0 0. . .

. . . . . . . . . . . . . . .

Michael Anshelevich Free Brownian motion

Page 11: Free Brownian motion - Texas A&M University

Definition II: Operators.

a+ = right shift.

0 2 3 4 5 61

a− = left shift.

a−a+ = Id, a+a− 6= Id

Matrices

a+ ∼

0 0 0 0

. . .

1 0 0 0. . .

0 1 0 0. . .

0 0 1 0. . .

. . . . . . . . . . . . . . .

, a− ∼

0 1 0 0

. . .

0 0 1 0. . .

0 0 0 1. . .

0 0 0 0. . .

. . . . . . . . . . . . . . .

Michael Anshelevich Free Brownian motion

Page 12: Free Brownian motion - Texas A&M University

Definition II: Operators.

a+ = right shift.

0 2 3 4 5 61

a− = left shift.

a−a+ = Id, a+a− 6= Id

Matrices

a+ ∼

0 0 0 0

. . .

1 0 0 0. . .

0 1 0 0. . .

0 0 1 0. . .

. . . . . . . . . . . . . . .

, a− ∼

0 1 0 0

. . .

0 0 1 0. . .

0 0 0 1. . .

0 0 0 0. . .

. . . . . . . . . . . . . . .

Michael Anshelevich Free Brownian motion

Page 13: Free Brownian motion - Texas A&M University

Definition II: Operators.

a+ = right shift.

0 2 3 4 5 61

a− = left shift.

a−a+ = Id, a+a− 6= Id

Matrices

a+ ∼

0 0 0 0

. . .

1 0 0 0. . .

0 1 0 0. . .

0 0 1 0. . .

. . . . . . . . . . . . . . .

, a− ∼

0 1 0 0

. . .

0 0 1 0. . .

0 0 0 1. . .

0 0 0 0. . .

. . . . . . . . . . . . . . .

Michael Anshelevich Free Brownian motion

Page 14: Free Brownian motion - Texas A&M University

Operators.

X ∼ a+ + a− ∼

0 1 0 0

. . .

1 0 1 0. . .

0 1 0 1. . .

0 0 1 0. . .

. . . . . . . . . . . . . . .

.

Symmetric matrix; in fact a self-adjoint operator.

Tri-diagonal (orthogonal polynomials).

Michael Anshelevich Free Brownian motion

Page 15: Free Brownian motion - Texas A&M University

Operators.

X ∼ a+ + a− ∼

0 1 0 0

. . .

1 0 1 0. . .

0 1 0 1. . .

0 0 1 0. . .

. . . . . . . . . . . . . . .

.

Symmetric matrix; in fact a self-adjoint operator.

Tri-diagonal (orthogonal polynomials).

Michael Anshelevich Free Brownian motion

Page 16: Free Brownian motion - Texas A&M University

Operators.

Can realize (more complicated) operators{a+(t), a−(t) : t ≥ 0

}with

a−(s)a+(t) = min(s, t) Id

andX(t) = a+(t) + a−(t).

Each X(t) = self-adjoint operator.

Proposition. ⟨X(t)ke1, e1

⟩= mk t

k/2,

so X(t) ∼ µt, X(t) has distribution µt.

Michael Anshelevich Free Brownian motion

Page 17: Free Brownian motion - Texas A&M University

Operators.

Can realize (more complicated) operators{a+(t), a−(t) : t ≥ 0

}with

a−(s)a+(t) = min(s, t) Id

andX(t) = a+(t) + a−(t).

Each X(t) = self-adjoint operator.

Proposition. ⟨X(t)ke1, e1

⟩= mk t

k/2,

so X(t) ∼ µt, X(t) has distribution µt.

Michael Anshelevich Free Brownian motion

Page 18: Free Brownian motion - Texas A&M University

Operators.

Why?

⟨X(t)4e1, e1

⟩=⟨(a+ + a−)(a+ + a−)(a+ + a−)(a+ + a−)e1, e1

⟩Using a−(t)e1 = 0 and a−(t)a+(t) = t Id, only left with

−−++ = t2 ,

−+−+ = t2 .

Michael Anshelevich Free Brownian motion

Page 19: Free Brownian motion - Texas A&M University

Operators.

Why?

⟨X(t)4e1, e1

⟩=⟨(a+ + a−)(a+ + a−)(a+ + a−)(a+ + a−)e1, e1

Using a−(t)e1 = 0 and a−(t)a+(t) = t Id, only left with

−−++ = t2 ,

−+−+ = t2 .

Michael Anshelevich Free Brownian motion

Page 20: Free Brownian motion - Texas A&M University

Operators.

Why?

⟨X(t)4e1, e1

⟩=⟨(a+ + a−)(a+ + a−)(a+ + a−)(a+ + a−)e1, e1

⟩Using a−(t)e1 = 0 and a−(t)a+(t) = t Id, only left with

−−++ = t2 ,

−+−+ = t2 .

Michael Anshelevich Free Brownian motion

Page 21: Free Brownian motion - Texas A&M University

Free Brownian motion.

{Xt} not just individual operators with these distributions.

{X(t) : t ≥ 0} form a process.

{X(t)} = free Brownian motion.

Each X(t) ∼ µt. Increments

X(t1)−X(t0), X(t2)−X(t1), . . . , X(tk)−X(tk−1)

freely independent.

Xt0 · · · · · · · · · · · ·Xt1 · · · · · ·Xt2 · · · · · · · · · · · · · · · · · ·Xt3 .

Have other processes, other types of increments.

Michael Anshelevich Free Brownian motion

Page 22: Free Brownian motion - Texas A&M University

Free Brownian motion.

{Xt} not just individual operators with these distributions.

{X(t) : t ≥ 0} form a process.

{X(t)} = free Brownian motion.

Each X(t) ∼ µt. Increments

X(t1)−X(t0), X(t2)−X(t1), . . . , X(tk)−X(tk−1)

freely independent.

Xt0 · · · · · · · · · · · ·Xt1 · · · · · ·Xt2 · · · · · · · · · · · · · · · · · ·Xt3 .

Have other processes, other types of increments.

Michael Anshelevich Free Brownian motion

Page 23: Free Brownian motion - Texas A&M University

Free Brownian motion.

{Xt} not just individual operators with these distributions.

{X(t) : t ≥ 0} form a process.

{X(t)} = free Brownian motion.

Each X(t) ∼ µt.

Increments

X(t1)−X(t0), X(t2)−X(t1), . . . , X(tk)−X(tk−1)

freely independent.

Xt0 · · · · · · · · · · · ·Xt1 · · · · · ·Xt2 · · · · · · · · · · · · · · · · · ·Xt3 .

Have other processes, other types of increments.

Michael Anshelevich Free Brownian motion

Page 24: Free Brownian motion - Texas A&M University

Free Brownian motion.

{Xt} not just individual operators with these distributions.

{X(t) : t ≥ 0} form a process.

{X(t)} = free Brownian motion.

Each X(t) ∼ µt. Increments

X(t1)−X(t0), X(t2)−X(t1), . . . , X(tk)−X(tk−1)

freely independent.

Xt0 · · · · · · · · · · · ·Xt1 · · · · · ·Xt2 · · · · · · · · · · · · · · · · · ·Xt3 .

Have other processes, other types of increments.

Michael Anshelevich Free Brownian motion

Page 25: Free Brownian motion - Texas A&M University

Free Brownian motion.

{Xt} not just individual operators with these distributions.

{X(t) : t ≥ 0} form a process.

{X(t)} = free Brownian motion.

Each X(t) ∼ µt. Increments

X(t1)−X(t0), X(t2)−X(t1), . . . , X(tk)−X(tk−1)

freely independent.

Xt0 · · · · · · · · · · · ·Xt1 · · · · · ·Xt2 · · · · · · · · · · · · · · · · · ·Xt3 .

Have other processes, other types of increments.

Michael Anshelevich Free Brownian motion

Page 26: Free Brownian motion - Texas A&M University

Definition III: Random matrices.

Mn(t) = n× n symmetric random matrix,

Mn(t) =

1√nB2t

1√nBt

1√nBt ...

1√nBt

1√nB2t

1√nBt ...

1√nBt

1√nBt

1√nB2t ...

......

.... . .

.Bt = (usual) Brownian motion.

1n

Tr(Mn(t)k) = (random) number.

Michael Anshelevich Free Brownian motion

Page 27: Free Brownian motion - Texas A&M University

Definition III: Random matrices.

Mn(t) = n× n symmetric random matrix,

Mn(t) =

1√nB2t

1√nBt

1√nBt ...

1√nBt

1√nB2t

1√nBt ...

1√nBt

1√nBt

1√nB2t ...

......

.... . .

.Bt = (usual) Brownian motion.

1n

Tr(Mn(t)k) = (random) number.

Michael Anshelevich Free Brownian motion

Page 28: Free Brownian motion - Texas A&M University

Random matrices.

Proposition.As the size of the matrix n→∞,

1n

Tr(Mn(t1)Mn(t2) . . .Mn(tk)

)−→ 〈X(t1)X(t2) . . . X(tk)e1, e1〉.

In particular, 1n Tr

(Mn(t)k

)→ mnt

k/2.

{Mn(t) : t ≥ 0} = asymptotically free Brownian motion.

Michael Anshelevich Free Brownian motion

Page 29: Free Brownian motion - Texas A&M University

Random matrices.

Proposition.As the size of the matrix n→∞,

1n

Tr(Mn(t1)Mn(t2) . . .Mn(tk)

)−→ 〈X(t1)X(t2) . . . X(tk)e1, e1〉.

In particular, 1n Tr

(Mn(t)k

)→ mnt

k/2.

{Mn(t) : t ≥ 0} = asymptotically free Brownian motion.

Michael Anshelevich Free Brownian motion

Page 30: Free Brownian motion - Texas A&M University

Random matrices.

Proposition.As the size of the matrix n→∞,

1n

Tr(Mn(t1)Mn(t2) . . .Mn(tk)

)−→ 〈X(t1)X(t2) . . . X(tk)e1, e1〉.

In particular, 1n Tr

(Mn(t)k

)→ mnt

k/2.

{Mn(t) : t ≥ 0} = asymptotically free Brownian motion.

Michael Anshelevich Free Brownian motion

Page 31: Free Brownian motion - Texas A&M University

Random matrices.

Proof I. (Wigner 1958, L. Arnold 1967)

1n

Tr(Mn(t1)Mn(t2) . . .Mn(tn)

)=∞∑k=0

1nk/2

paths.

Proof II. (Trotter 1984)

Mntridiagonalization−→

1√nN 1√

nχn 0

. . .

1√nχn

1√nN 1√

nχn

. . .

0 1√nχn

1√nN

. . .. . . . . . . . . . . .

n→∞−→

0 1 0

. . .

1 0 1. . .

0 1 0. . .

. . . . . . . . . . . . . . .

.

Michael Anshelevich Free Brownian motion

Page 32: Free Brownian motion - Texas A&M University

Random matrices.

Proof I. (Wigner 1958, L. Arnold 1967)

1n

Tr(Mn(t1)Mn(t2) . . .Mn(tn)

)=∞∑k=0

1nk/2

paths.

Proof II. (Trotter 1984)

Mntridiagonalization−→

1√nN 1√

nχn 0

. . .

1√nχn

1√nN 1√

nχn

. . .

0 1√nχn

1√nN

. . .. . . . . . . . . . . .

n→∞−→

0 1 0

. . .

1 0 1. . .

0 1 0. . .

. . . . . . . . . . . . . . .

.

Michael Anshelevich Free Brownian motion

Page 33: Free Brownian motion - Texas A&M University

Random matrices.

Proof I. (Wigner 1958, L. Arnold 1967)

1n

Tr(Mn(t1)Mn(t2) . . .Mn(tn)

)=∞∑k=0

1nk/2

paths.

Proof II. (Trotter 1984)

Mntridiagonalization−→

1√nN 1√

nχn 0

. . .

1√nχn

1√nN 1√

nχn

. . .

0 1√nχn

1√nN

. . .. . . . . . . . . . . .

n→∞−→

0 1 0

. . .

1 0 1. . .

0 1 0. . .

. . . . . . . . . . . . . . .

.

Michael Anshelevich Free Brownian motion

Page 34: Free Brownian motion - Texas A&M University

Definition IV: Permutations.

S = infinite symmetric group.

C[S] = its group algebra= formal linear combinations of permutations.

ϕ[w] = constant term= coefficient of the identity permutation in w.

(0a) transposition.

Denote

L(n, t) =1√n

[nt]∑i=1

(0i) ∈ C[S].

Michael Anshelevich Free Brownian motion

Page 35: Free Brownian motion - Texas A&M University

Definition IV: Permutations.

S = infinite symmetric group.

C[S] = its group algebra= formal linear combinations of permutations.

ϕ[w] = constant term= coefficient of the identity permutation in w.

(0a) transposition.

Denote

L(n, t) =1√n

[nt]∑i=1

(0i) ∈ C[S].

Michael Anshelevich Free Brownian motion

Page 36: Free Brownian motion - Texas A&M University

Definition IV: Permutations.

S = infinite symmetric group.

C[S] = its group algebra= formal linear combinations of permutations.

ϕ[w] = constant term= coefficient of the identity permutation in w.

(0a) transposition.

Denote

L(n, t) =1√n

[nt]∑i=1

(0i) ∈ C[S].

Michael Anshelevich Free Brownian motion

Page 37: Free Brownian motion - Texas A&M University

Definition IV: Permutations.

S = infinite symmetric group.

C[S] = its group algebra= formal linear combinations of permutations.

ϕ[w] = constant term= coefficient of the identity permutation in w.

(0a) transposition.

Denote

L(n, t) =1√n

[nt]∑i=1

(0i) ∈ C[S].

Michael Anshelevich Free Brownian motion

Page 38: Free Brownian motion - Texas A&M University

Definition IV: Permutations.

S = infinite symmetric group.

C[S] = its group algebra= formal linear combinations of permutations.

ϕ[w] = constant term= coefficient of the identity permutation in w.

(0a) transposition.

Denote

L(n, t) =1√n

[nt]∑i=1

(0i) ∈ C[S].

Michael Anshelevich Free Brownian motion

Page 39: Free Brownian motion - Texas A&M University

Permutations.

Proposition.As n→∞,

ϕ[L(n, t1)L(n, t2) . . . L(n, tk)

]−→ 〈X(t1)X(t2) . . . X(tk)e1, e1〉.

In particularϕ[L(n, t)k

]→ mk t

k/2.

Michael Anshelevich Free Brownian motion

Page 40: Free Brownian motion - Texas A&M University

Permutations.

Why?

L(n, t) =1√n

[nt]∑i=1

(0i) no e

so ϕ [L(n, t)] = 0.

L(n, t)2=1n

[nt]∑i1,i2=1

(0i1)(0i2)

=1n

∑i1 6=i2

(0i1i2) + [nt]e

≈ . . .+ te

so ϕ[L(n, t)2

]= t. Etc.

Michael Anshelevich Free Brownian motion

Page 41: Free Brownian motion - Texas A&M University

Permutations.

Why?

L(n, t) =1√n

[nt]∑i=1

(0i) no e

so ϕ [L(n, t)] = 0.

L(n, t)2=1n

[nt]∑i1,i2=1

(0i1)(0i2)

=1n

∑i1 6=i2

(0i1i2) + [nt]e

≈ . . .+ te

so ϕ[L(n, t)2

]= t. Etc.

Michael Anshelevich Free Brownian motion

Page 42: Free Brownian motion - Texas A&M University

Free Probability Theory.

Combinatorics.Operator representations.Random matrix theory.Group algebras (symmetric and free).

Other approaches:

Orthogonal polynomials.Asymptotic representation theory (Young diagrams).Operator algebras applications.Complex analysis techniques.

Michael Anshelevich Free Brownian motion

Page 43: Free Brownian motion - Texas A&M University

Free Probability Theory.

Combinatorics.Operator representations.Random matrix theory.Group algebras (symmetric and free).

Other approaches:

Orthogonal polynomials.Asymptotic representation theory (Young diagrams).Operator algebras applications.Complex analysis techniques.

Michael Anshelevich Free Brownian motion

Page 44: Free Brownian motion - Texas A&M University

Free Probability Theory.

Upshot:

Do not need to know all of this.

Can enter the field by knowing one of these.

Helps to learn the rest as time goes on.

Michael Anshelevich Free Brownian motion


Recommended