+ All Categories
Home > Documents > FREE CARRIER ABSORPTION TECHNIQUES - MICROWAVE & IR –

FREE CARRIER ABSORPTION TECHNIQUES - MICROWAVE & IR –

Date post: 07-Feb-2016
Category:
Upload: rianne
View: 19 times
Download: 0 times
Share this document with a friend
Description:
FREE CARRIER ABSORPTION TECHNIQUES - MICROWAVE & IR – FOR C HARACTERIZATION OF IRRADIATED SILICON. E.Gaubas, J. Vaitkus. OUTLINE Characteristics of the techniques and instrumentation RT applications to control radiation induced recombination - PowerPoint PPT Presentation
Popular Tags:
16
FREE CARRIER ABSORPTION TECHNIQUES - MICROWAVE & IR – FOR CHARACTERIZATION OF IRRADIATED SILICON E.Gaubas, J. Vaitkus OUTLINE Characteristics of the techniques and instrumentation RT applications to control radiation induced recombination Excess carrier decay temperature variations Evaluation of carrier decay parameters
Transcript
Page 1: FREE CARRIER  ABSORPTION TECHNIQUES -  MICROWAVE  & IR –

FREE CARRIER ABSORPTION TECHNIQUES

- MICROWAVE & IR –

FOR CHARACTERIZATION OF IRRADIATED SILICON

E.Gaubas, J. Vaitkus

OUTLINE

Characteristics of the techniques and instrumentation

RT applications to control radiation induced recombination

Excess carrier decay temperature variations

Evaluation of carrier decay parameters

Page 2: FREE CARRIER  ABSORPTION TECHNIQUES -  MICROWAVE  & IR –

☼ Recombination (fast) and trapping (slow) constituents within transients of microwave absorption by free carriers (MWA) can be distinguished by combining analyses of the excess carrier decays dependent on the excitation intensity and bias illumination (BI).

Carrier recombination and trapping

Variation of MWA decays with excitation intensity (proportional to the initial amplitude) with and without additional cw illumination

0 1000 2000 3000 4000

101

102

103

104

BI off BI on BI off BI on BI off BI on BI off BI off BI on BI off BI off BI on BI off

UM

WA(a

.u.)

t(s)

0 100 200 300 400 500

101

102

103

104

105

U

MW

R (

a.u

.)

t s

Si 1012

e/cm2

Bengt Svensson diode T= 328 K 300 K 268 K 255 K 196 K 175 K

RT Transients at different temperatureselectrons-irradiated Si

0 10 20 30 40 50

0.1

1

Si : - 400 Mrad

T=297K

290K

287K

284K

233K

192K

94K

UM

WA/U

MW

A,O

t (s)

protons-irradiated Si

Page 3: FREE CARRIER  ABSORPTION TECHNIQUES -  MICROWAVE  & IR –

Principle of the transient techniques

IRA =(4/c)dc {/[1+(sc )2]} 2 MWA >100m 0 =(4/c )dc, < 0

Transient:

(t) (t) FC nexFC (t)

Density of free carriers is controlled

Characteristics of the MW & IR techniques and instrumentation

k

E

IR, MW cw probe

laser lightpulsed excitation

R

Page 4: FREE CARRIER  ABSORPTION TECHNIQUES -  MICROWAVE  & IR –

Advantages:

☼ direct control of carrier decay process:

- to separate impact of different recombination and trapping mechanisms,

- to determine type of defects ( ~F(nex/ndop)), parameters of traps ( ~F(T)), etc.

- to reveal complicated systems of defects, barriers, non-linear decay processes etc,

☼ contact-less and fast measurement procedure,

☼ non-destructive and distant measurement techniques:

IR (tens of cm), MW (from tens of m to tens of mm),

☼ wide range of lifetime variations ( 1 ns (NR 102) – 10 ms (NR 10-5), RT),

☼ relatively high spatial resolution (from tens of m to tens of mm integration area),

☼ wide range of injection levels (nex/ndop from 0.01 to 100 - for MW. and 1- 103 for- IR).

Page 5: FREE CARRIER  ABSORPTION TECHNIQUES -  MICROWAVE  & IR –

Limitations:

☼ optically polished surfaces and relatively high excitation levels (nex 1016 cm-3) for IR,

☼ metallised areas are un-acceptable for examination,

☼ MW probing depth depends on material resistivity (decreases with resistivity),

☼ resolution of very short lifetimes ( <1 ns) is limited by oscilloscopic instrumentation and detector (MW / IR) circuits,

☼ examination of thin layered structures is complicated

Page 6: FREE CARRIER  ABSORPTION TECHNIQUES -  MICROWAVE  & IR –

Analyser of the recombination parameters

0 1000 2000 3000 4000 50000,0

0,2

0,4

0,6

0,8

1,0

1,2

3

2

1

1 <n1/n

0> MCz Si IR probe

2 U 3 <n

1/n

0>

d NTD Si fiber spot

<n

1/n

0>,

d

y1 (m)

2

4

6

8

U (

a.u.

)

0 50 100 150 200 250Y

1 (m)

0 200 400 600 80010

-2

10-1

100

5

1

M-Cz Sid=5000 m

1- y1= 0 m

2- 1003- 3004- 6005- 2000

<n

/n0>

t (s)

Rload

MB tiltas

MW oscillator with adjustable power

and frequency

MB cirkulatorius

MB tiltas

MW circulator

f0.5 GHz,U1 mV/pdf0.5 GHz,U1 mV/pd

TDS-5104

Microchip laser STA-01

exc ~700 ps, Eexc 10 J

MW slitantenna

sample

MW bridge

Attenuatorof light density Sliding short

Sliding short

Sliding short

Amplifier (>50)

MW detector

x-

Ge

zLaser-fiber beam-

Coaxial needle-tip MW antenna

Si

d

0 20 40 60 80

10-1

100

A1

d

5

4

32

1

NTD oxidizedfiber = 3 m

1 Y1 = 5 m

2 253 2704 405 140

<n

/n 0>d

t (s)

Main instrument

Supplementary regimes

Fiber excitation

Coaxial MW cable

Coaxial needle-tip antenna together with fiber beam

Ge waferX-Y-Z actuator of 2 µm

localization precision Nd:LSB laser driver

Coaxial MW cable

Coaxial needle-tip antenna together with fiber beam

Ge waferX-Y-Z actuator of 2 µm

localization precision Nd:LSB laser driver

Lifetime-temperature variations Lifetime depth-scans

Page 7: FREE CARRIER  ABSORPTION TECHNIQUES -  MICROWAVE  & IR –

Moderate and high excitation level IR probe

stepper sample holder

collimator

fiber

sample

IR beam

spectral filter

PHD

LED

pulsed laser beam

Page 8: FREE CARRIER  ABSORPTION TECHNIQUES -  MICROWAVE  & IR –

MW techniques for:

0 50 100 150 200 250100

101

102

z=50 m z=300 m

Si

UM

WA (

a.u

.)

t (s)

RDL minmin

- estimation of carrier transport parameters

D 67 cm2/s p-Ge

D 21 cm2/s p-Si

☼Parallel MWR ☼Oblique MWR

x

laser beam

coaxial needle-tip MW antenna

3 mm

d

Ge

x

laser beam

coaxial needle-tip MW antenna

3 mm

d

Ge

☼ Perpendicular MWR

laser beam

d Ge

MW slit antenna

laser beam

d Ge

laser beam

d Ge

MW slit antenna

Si or laser beam

coaxial needle-tip MW antenna

Ged(x)

laser beam

coaxial needle-tip MW antenna

Ged(x)

or SiSi or

x-

dGe

zlaser beam-

Si orGe

Coaxial needle-tip MW antenna

z

0 200 400 600 800 1000 1200

10-2

10-1

100

UM

WA (

a.u

.)

z (m)

Ge LD = 580 m

Si LD = 320 m

Laser beam

60 m

Page 9: FREE CARRIER  ABSORPTION TECHNIQUES -  MICROWAVE  & IR –

RT applications to control radiation induced recombination

Calibrated RT lifetime variations with fluence for definite particles,exploited for the same material and structures, would enable oneto control the density of the radiation induced dominant traps

Proton irradiation

- not covered the range of moderate and the highest fluences,

- samples from different material (sources) exploited

0 5 10 15 2010-1

100

101

102

20 mm

20 mm

0 - 20 mm

25 mm

n-Si (H07) TD

10 MeV 5*1012 cm-2 (

s)

x (mm)

Lateral lifetime variation due to irradiation geometry with proton beam spot of 25 mm.

109 1010 1011 1012 1013 1014 1015

101

102

103

104

MWR technique /low injection level CE24 diodes Hamburg FZ Si CH22 diodes Hamburg protons 10 MeV IMEC Leuven FZ Si MCZ n-Si Helsinki MCZ p-Si Helsinki

high injection level CE24 diodes Hamburg CH22 diodes Hamburg

R (

ns)

Fluence of protons (p/cm2)

N|~10-16 =1017 cm-3

N|~10-14 =81010 cm-3

Page 10: FREE CARRIER  ABSORPTION TECHNIQUES -  MICROWAVE  & IR –

1011

1012

1013

1014

1015

1016

101

102

103

104

105

FZ Si diodes samples: CERN (F.Lemeilleur)

FZ NTD Si samples: BNL (H.Kraner)

(n

s)

neutron irradiation fluence (cm-2)

Detection limit in the low fluence wing – density of the intrinsic recombination centers, thickness, quality of surface preparationResolution in the high fluence range - RC of the MW detector-oscilloscope circuit ~1-2 ns

Neutron irradiation

- too small set of samples examined

Page 11: FREE CARRIER  ABSORPTION TECHNIQUES -  MICROWAVE  & IR –

0 100 200 300 400

100

101

102

T= 300 K

MCZ p-Si A1, A2

, , MCZ Si n-Si B1, B2

, , FZ Si 400 Mrad

R - open signs

tr - solid signs

(

s)

Dose of -rays (Mrad)

- rays irradiation (BNL-Helsinki samples)for n-Si a non-linear dependence can be implied

0 100 200 300 400

0,0

0,5

1,0

T= 300 KMCZ p-Si A1, A2 , MCZ n-Si B1, B2 , FZ Si (400 Mrad)

R

-1 (s

-1)

Dose of -rays, Mrad

1/R = 1/* + vthN = 1/* + vth(N0 + D),

* - carrier capture lifetime attributed to the intrinsic centers;

N0 –concentration of radiation defects at low dose;

D – irradiation dose;

= 5.7 108 1/Mrad [Z Li]; > 4 10-19 cm2

Page 12: FREE CARRIER  ABSORPTION TECHNIQUES -  MICROWAVE  & IR –

Excess carrier decay temperature variations

-irradiated MCZ Sie-irradiated FZ Si

150 200 250 300 3500

300

600

FZ Si 3 1012 e/cm2

tr

R

(s

)

T (K)

DLTS

0.17 eV

DLTS

0.24 eV DLTS

0.42 eV

100 150 200 250 300 350 400 45010

-2

10-1

100

101

102

103

T (K)

-rays irradiation dose 210 Mrad p-Si n-Si

tr (s

)DLTS

DLTS

Page 13: FREE CARRIER  ABSORPTION TECHNIQUES -  MICROWAVE  & IR –

Excess carrier decay temperature variations

MWR proton-irradiated Si

100 150 200 250 300

10-1

100

101

102

0.23 eV

2

1

MCz n-Si

1 10 MeV protons 1013

cm-2

2 50 MeV protons 9x1012

cm-2

(

s)

T (K)

Page 14: FREE CARRIER  ABSORPTION TECHNIQUES -  MICROWAVE  & IR –

Evaluation of carrier decay (trap) parameters

1) Separation of traps from the transient decay shape and variation with external factors;

2) Estimation of the parameters for a dominant recombination center:

NR 1/vth,Tminority from absolute values of minority if S-R-H approximation holds,

- estimation of the ratio e/h from the dependency on excitation level,

- evaluation of ER from -T slope if no additional traps compete;

Detection limitations: ex<< R; simple system of the dominating traps; for radiation defects (NRD>NR, intrinsic)

3) Evaluation of the parameters of trapping centers from temperature peaks/slopes in -T dependence

(variations of the trapping caused -T as usually prevails in T<TRT, when density of trapping centers is high enough)

Hole thermal release lifetime

Recombination center, e h

Generation lifetime

Electron capture lifetime

Hole capture lifetime

Recombination lifetime

Hole capture lifetime

Trapping center, e << h

Trapping lifetime

Generation lifetime

Page 15: FREE CARRIER  ABSORPTION TECHNIQUES -  MICROWAVE  & IR –

Precise simulation of the temperature dependent lifetime variations correlating with DLTS peaks – J.Vaitkus’ method

Common DLTS peaks

MWR decay as peak

Single act of capture/thermal releaseMulti-trapping

process

V-O

V2-/oV2

=/-

Page 16: FREE CARRIER  ABSORPTION TECHNIQUES -  MICROWAVE  & IR –

Summary

☼ Calibrated RT lifetime variations with fluence for definite particles, exploited for the same material and structures, would enable one to control radiation induced density of the dominant traps. However, calibration curves are not determined.

☼ Tentative examination of recombination characteristics dependent on fluence and particle species, by MWR using (T), Iexc, exc, BI are carried out; as(T) variations are correlated with those determined by DLTS technique in the range of relatively low fluences.

Thank You for attention!


Recommended