+ All Categories
Home > Documents > Frequency Analysis Probability Plots - MTUvlweb/CE 3710 Materials/CEE3710_Lec14_Fall...

Frequency Analysis Probability Plots - MTUvlweb/CE 3710 Materials/CEE3710_Lec14_Fall...

Date post: 14-Jul-2018
Category:
Upload: phamliem
View: 218 times
Download: 0 times
Share this document with a friend
11
10/23/2017 1 Note Packet #14 Frequency Analysis & Probability Plots CEE 3710 October 20, 2017 Frequency Analysis Process by which engineers formulate magnitude of design events (i.e. 100year flood) or assess risk associated with various outcomes/events Based on use of sample data to hypothesize probability model and infer characteristics of the population of interest Works with any probability distribution
Transcript

10/23/2017

1

Note Packet #14

Frequency Analysis & Probability Plots

CEE 3710

October 20, 2017

Frequency Analysis

• Process by which engineers formulate magnitude of design 

events (i.e. 100‐year flood) or assess risk associated with 

various outcomes/events

• Based on use of sample data to hypothesize probability model 

and infer characteristics of the population of interest

• Works with any probability distribution

10/23/2017

2

Motivation:

You need to design a levee to withstand the 100‐year flood (X0.99).  

Given the sample data {x1, x2, …, xn} below corresponding to the 

magnitude of n = 50 annual maximum flood flows, what is          ?

0

500

1000

1500

2000

2500

3000

3500

4000

1960 1970 1980 1990 2000 2010

Annual M

aximum Discharge (cfs)

Year

0.99X̂

(1) Compute sample moments, descriptive statistics

(2) Select an appropriate model (probability distribution) of 

annual maximum flood flows

Considerations:

‐ What does data look like? Is data skewed?

‐ Are variables strictly positive?  Continuous or Discrete?

0

2

4

6

8

10

12

14

410 860 1310 1760 2210 2660 3110 More

Freq

uen

cy

Annual Maximum Discharge (cfs)

Histogram

1

11503.9 cfs

n

ii

x xn

2 22

1

1821.0 cfs

1

n

x ii

s x xn

10/23/2017

3

(3)  Fit selected model to data using MOM to estimate distribution 

parameters       (Point estimates of parameters)

0

2

4

6

8

10

12

14

16

410 860 1310 1760 2210 2660 3110 More

Frequency

Annual Maximum Discharge (cfs)

Histogram

( ) 1503.9 cfsx xxf x dx x

22 2 2( ) ( ) 821.0 cfsx x x xx f x dx s

1/22 2

Y X Xln 1 0.577

2Y X Y

1ln[ ] 7.161

2

If X ~ Lognormal 2Y

X 22YY

ln( )1 1( ) exp

22

xf x

xfor x > 0; 0 otherwise

(4) Assess goodness‐of‐fit: How well does model represent data

How good are our parameter estimates?

(How good is our estimate of 100‐year event?)

Compute confidence intervals

Construct Quantile‐Quantile Plot

(5)  Compute            (or other values of interest)0.99X̂

10/23/2017

4

General Procedure:

1. Obtain a sample of size n, compute sample moments and 

descriptive statistics

2. Hypothesize underlying probability density function (pdf) of 

the population

3. Apply method of moments and compute parameters of the 

assumed pdf (i.e. fit probability model to the data)

4. Assess fit of probability model by graphing the fitted 

cumulative distribution function (cdf) relative to sample data 

(empirical cdf, probability plot, or quantile‐quantile plot)

5. Use the fitted cdf to obtain percentiles (design events) or 

probabilities associated with outcomes of interest

• Smooth line/curve corresponds to probability model (representation of population)

• Dots/points correspond to observed sample data

10/23/2017

5

Empirical Cumulative Distribution Function (CDF)

• Representation of the cumulative distribution function based 

on the relative magnitude of observations in a sample of size n

• Obtained by graphing the plotting positions versus the ranked 

observations

• Plotting Position (pi): provides an estimate of the cumulative 

probability associated with the observation of rank i (x(i))

pi = i/(n+1)

In other words, pi = P[X ≤ x(i)] and thus, x(i) represents an 

empirical percentile (or quantile)

Example: Construct an empirical CDF for the following sample data:

{90, 105, 65, 135, 95, 115, 80, 73, 76, 88} 

i x(i) pi

1 65 0.091

2 73 0.182

3 76 0.273

4 80 0.364

5 88 0.455

6 90 0.545

7 95 0.636

8 105 0.727

9 115 0.818

10 135 0.909

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150

pi

x

Empirical CDF

Note: Construction of the empirical CDF does not require consideration of the form of the underlying probability distribution for the random variable/population; however, we can assess the goodness‐of‐fit of a probability distribution by plotting the assumed/fitted cdf (model) on the same figure as the empirical cdf (observed).

10/23/2017

6

Example: Use the method of moments to fit a normal distribution 

to the data above, and then assess how well it represents the 

data by plotting the fitted CDF relative to the empirical CDF.

i x(i) pi zpi ( )ˆ ˆi pix x

1 65 0.091 -1.335 63.8

2 73 0.182 -0.908 72.9

3 76 0.273 -0.605 79.4

4 80 0.364 -0.349 84.8

5 88 0.455 -0.114 89.8

6 90 0.545 0.114 94.6

7 95 0.636 0.349 99.6

8 105 0.727 0.605 105.0

9 115 0.818 0.908 111.5

10 135 0.909 1.335 120.6

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150

pi

x

Empirical CDF vs. Fitted Normal CDF

Sample Data

Fitted Normal

Example: Use the method of moments to fit a lognormal

distribution to the data, and then assess how well it represents 

the data by plotting the fitted CDF relative to the empirical CDF.

i x(i) pi zpi ( )ˆ ˆi pix x

1 65 0.091 -1.335 66.3

2 73 0.182 -0.908 73.1

3 76 0.273 -0.605 78.3

4 80 0.364 -0.349 83.0

5 88 0.455 -0.114 87.5

6 90 0.545 0.114 92.2

7 95 0.636 0.349 97.3

8 105 0.727 0.605 103.1

9 115 0.818 0.908 110.5

10 135 0.909 1.335 121.7

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150

pi

x

Empirical CDF vs. Fitted Lognormal CDF

Sample Data

Fitted LN

10/23/2017

7

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150

pi

x

Empirical CDF vs. Fitted Normal CDF

Sample Data

Fitted Normal

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150

pi

x

Empirical CDF vs. Fitted Lognormal CDF

Sample Data

Fitted LN

Example: Use the method of moments to fit a Gumbeldistribution to the data, and then assess how well it represents the data by plotting the fitted CDF relative to the empirical CDF.

i x(i) pi ( )ˆ ˆi pix x

1 65 0.091 68.1

2 73 0.182 73.8

3 76 0.273 78.3

4 80 0.364 82.4

5 88 0.455 86.6

6 90 0.545 90.9

7 95 0.636 95.8

8 105 0.727 101.6

9 115 0.818 109.3

10 135 0.909 121.6

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150

pi

x

Empirical CDF vs. Fitted Gumbel CDF

Sample Data

Fitted Gumbel

10/23/2017

8

Quantile‐Quantile (Q‐Q) Plots

• Constructed by plotting ranked observations (      ) against the 

fitted percentiles, or quantiles  (       )

Observed or Empirical Quantiles vs. Modeled or Fitted Quantiles

• Sample data should fall approximately on a straight line (1:1) if 

the fitted distribution adequately describes the true population

)i(x̂(i)x

10/23/2017

9

)i(x̂

)i(x̂

)i(x̂

10/23/2017

10

Probability Plots

• Sample data is plotted so that the observations should fall 

approximately on a straight line if a selected distribution describes 

the true population

– however, unlike Q‐Q plots, assessment of the selected 

distribution (model) does not depend on estimated parameters

• Can be created with special commercially available probability 

papers for some distributions (normal, lognormal, Gumbel), or the 

general technique developed here (easy with a spreadsheet)

• Constructed by plotting ranked observations ( x(i) ) against 

standardized percentiles

i x(i) pi zpi

1 65 0.091 -1.335

2 73 0.182 -0.908

3 76 0.273 -0.605

4 80 0.364 -0.349

5 88 0.455 -0.114

6 90 0.545 0.114

7 95 0.636 0.349

8 105 0.727 0.605

9 115 0.818 0.908

10 135 0.909 1.335

Example: Reconsider the sample data above. Use a probability plot to assess how well the normal distribution fit using the method of moments represents the sample data.

10/23/2017

11

Example: Reconsider the sample data above. Use a probability plot to assess how well the lognormal distribution fit using the method of moments represents the sample data.

i x(i) ln( x(i)) pi zpi

1 65 4.174 0.091 -1.335

2 73 4.290 0.182 -0.908

3 76 4.330 0.273 -0.605

4 80 4.382 0.364 -0.349

5 88 4.477 0.455 -0.114

6 90 4.500 0.545 0.114

7 95 4.554 0.636 0.349

8 105 4.654 0.727 0.605

9 115 4.745 0.818 0.908

10 135 4.905 0.909 1.335

i x(i) pi -ln(-ln(pi))

1 65 0.091 -0.875

2 73 0.182 -0.533

3 76 0.273 -0.262

4 80 0.364 -0.012

5 88 0.455 0.238

6 90 0.545 0.501

7 95 0.636 0.794

8 105 0.727 1.144

9 115 0.818 1.606

10 135 0.909 2.351

Example: Reconsider the sample data above. Use a probability plot to assess how well the Gumbel distribution fit using the method of moments represents the sample data.


Recommended