+ All Categories
Home > Documents > FrictionStirProcessing (1)

FrictionStirProcessing (1)

Date post: 07-Apr-2018
Category:
Upload: athangarasu
View: 220 times
Download: 0 times
Share this document with a friend
31
8/6/2019 FrictionStirProcessing (1) http://slidepdf.com/reader/full/frictionstirprocessing-1 1/31 Friction Stir R. S. Mishra, K. Krishnamur D. Van Aken Missouri University of S Processing hy, R. Landers, V. Richards, , J. Newkirk cience and Technology
Transcript
Page 1: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 131

Friction Stir

R S Mishra K Krishnamur

D Van AkenMissouri University of S

Processing

hy R Landers V Richards

J Newkirk cience and Technology

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 231

bull Intelligent Control and NDE for def PIs K Krishnamurthy R Landers

Talwar R Lederich J Baumann

ndash FSW runs with mismatches and g

ndash Process control algorithms ndash K Kri

ndash NDE techniques ndash V Richardsbull Corrosion Prevention of FSW joint

Boeing John Baumann

ndash Metallic and Polymeric sealants ndash

ndash Surface modification ndash J Newkirk

ndash Static and Fatigue of T joints expo

bull Friction Stir Lap Weld Joint Proper

Mishra S Madria and J Baumann

CAMT FSW Projects O

ct free complex FSW joints (MSampTV Richards R Mishra Boeing R

ps ndash R Mishra R Landers

shnamurthy R Landers

(MSampT PIs D Van Aken J Newkirk

Van Aken

ed to salt fog ndash D Van Aken

y Characterization of Al Li alloys ndash R

erview

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 331

bull Friction Stir Welding and Pro ndash NSF IUCRC (Boeing GM PNNL

bull Microstructural Modification

bull Robotic thin sheet welding

bull Friction stir spot weldingbull E design tools for FSWP (with

ndash NSF project on FS Channeling

ndash ONR STTR on FSP for Superplast

ndash AFOSR STTR on Ultrafine Graine

ndash PampW FSW project on advanced al

Current Additional Rese

essing ResearchSL)

Virginia Tech)

ic Forming with Friction Stir Link

7XXX with Friction Stir Link

minum

rch Projects Overview

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 431

FSP Machine ndash 3 axisFunded by NSF 2000

FSP Infrastructure at M ampTRobotic FSP Machine ndash 6 axis

Funded by ONR 2004

Friction Stir Spot Welding MachineFunded by AFRL 2004

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 531

Mini Tensile and Mini Fat gue Testing Mini fatigue of 7075 T6

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 631

Friction Stir Welding Basic Process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 731

Friction Stir Attributes

bull Large plastic strainbull High strain rate

bull Elevated temperatures

bull Mechanical mixing

bull Material flow

Microstructural Features

bull Fine grain size

bull Homogenization

bull Primary particle breakd

Friction Stir Proces

Potential flaws

bull Wormholes

wn

es

Channeling

Surface composite

Powder processing

Superplasticity

Casting modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 831

Center for Friction Stir Pro KEY Technological Areas

50 mm

Before After

50 mm

Friction Stir Powder Processing

Before After

Friction Stir CastingModification

Friction Stir Welding

FrictionSurfaci

Parent Technology and TWI Patent

CFS

essing ndash Overview

US Patent 6655575

US Patent 6923362

Friction Stir Superplasticity

Friction Stir

Channeling

Friction Stir

Microformingtir g

US Patent 6712916

US Patent

filed

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 931

0 5 10 15 200

200

400

600

800

1000

1200

1400

1600

H e a t

i n

Coarsened grains

and particles

Worm ho

HOT

R P M

IPM

Process map for butt jo

Process map for the friction

bullMaximum tensile properties at n

values between 65 and 10

25 30 35 40

H e a t i n d

e x = 6

4 e x = 1

0

le defect

COLD

nts

stir welding of Al 2024 (T8)

gget are achieved at heat index

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1031

Problem Description

bull Improper fixturing can cause ga

poor welds

bull Analysis tools are needed when

Project Objectives

bull Create and validate force contr

bull Develop analysis tools for FSW

Implementation of Intellig

s and mismatches which lead to

designing new FSW processes

l strategies

processes

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1131

Boeing Brotje FSW

bullSpecific solutions for produ

Implementation of Intel

Production Machine

ction machines

ligent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1231

Force Modeling (

The static and dynamic force proce

Axial Force Results

0 20 40 60 802

3

4

5

F

z ( k N ) Measured Modeled

0 20 40 60 804

45

5

Time (s)

d(mm)

2002

04

F x

S c e n a r i o 1 ( k N )

M

20

2

3

4

v ( m m s )

Scen

6061 Aluminum)

s characteristics were modeled

40 60

asured Modeled

20 40 6002

04

F x

S c e n a r i o 2 ( k N )

Measured Modeled

40 60Time (s)

rio 1 Scenario 2

20 40 6012

14

16

18

2

22

w ( k

r p m )

Time (s)

Scenario 1 Scenario 2

Path Force Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1331

Axial Force Controlle

m

Top axial force with force control (

Bottom axial force without force c

Results (gap = 0381

)

variation ~ 01 kN)

ontrol (variation ~ 04 kN)

20 40 6029

3

F a

( k N )

20 40 60421

433

d c

( m m

)

Time (s)

20 40291

329

Time (s)

F a

( k N )

Measured

Reference

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1431

Axial Force Controller

0762

Axial force and commanded depth wit

1

Travel Direction

Shim Side View

Top View

End Location Start Location

Shim

esults (gap = 0381 rarr

mm)

h force control (variation ~ 01 kN)

20 40 60

295

3

305

F a

( k N )

Measured Reference

20 40 60

4

405

41

d c

( m m )

Time (s)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1531

Path Force Co

10 20 30 40

05

1

15

F p

( k N ) Measured

Reference

10 20 30 40

1

2

w c

( k r p m )

Cont Onreg

Time (s)

(a) nugget with force control

(b) nugget without force control

troller Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1631

Analysis of 2024 Alumi

To

Frequency analysis process

effects dominate structural effects

100 120 140 160 180 200 2200

200

400

600

F o r c e ( l b

s )

Time (sec)

Run 1

0 500

100

200

300

M a g ( l b 2 )

F1

0 500

100

200

300FMAX

0 500

100

200F2

0 500

100

200FMIN

0 500

1

2

3

M a g ( l b 2 )

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

um with Fixed and RP

ls

Cross section analysis

most runs had no defects

Force analysis path force

mainly affected by travel speed

and pin force is not highly

correlated with process

parameters

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1731

Conclusions

bull FSW processes for 6061 Al hav

bull Control of both axial and path fo

the presence of gaps and mism

bull Analysis tools have been devel

investigate forces in both frequebull Atlas of discontinuities complet

Capabilities

bull Missouri SampT has expertise in a

including dynamic modeling

bull Missouri SampT has expertise in c

when gap and mismatches are

Implementation of Intellig

been successfully modeled

rces have been achieved even in

tches

ped for FSW processes to

ncy and time domainsd

nalyzing FSW processes

ontrolling FSW processes even

present

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1831

Corrosion Prevention o

Example shows corrosion in FSW 7075 of 500h exposure in neutral sa

The current manufacturing

joints to contain a faying

An additional complication is that thsensitivity

FSW Lap Joints result in cre

FSW Joints

73 Al as a result lt fog

approach requires riveted

urface protective sealant

thermal exposure of FSW increaseso corrosion

ices on both sides of the weld

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1931

MSampTrsquos Nylon 11 Approac

The FSW operation melts the nylon which

forms a protective fillet upon solidifying

MSampTrsquos Appro bull Apply a thin (0003rdquo) layer of

thermoplastic sealant) to th

bull Weld through this sealant

This sealant is available from MortonCompany as Corvelreg white 78 1001Melts at 185ordmC salt spray resistant

Costs about $10lb

h to Corrosion Protection

chnylon 11 (polyamide

flange of a lsquoTrsquo prior to welding

Polished cross section of the FSW joint

shows that sealant fills crevices between

faying surfaces but has been expelled

from immediate region of the joint

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2031

Joint Strengths are Deter

lsquoTrsquo Pull off testing causes the skins to ustiffer indicating that this sealant carrie

load Sudden drops correspond to fail

ined by T Pull off Tests

plift The joints sealed with nylon 11 arean appreciable portion of the applied

re in the seals on each side of the T

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2131

Adhesive failure of ano

Sealant

0

500

1000

1500

2000

0 002 004 006 008 0

Anodized

1263 28 sealant1266 28

P o u n d s f o r

c e p e r i n c h o f w e l d

Displacement in inches

Sealant adheres to anodi

aluminum interface with

ized layer

Cast A357

Anodized Layers

1

ed layer and failure initiates at

nodized layer

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 2: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 231

bull Intelligent Control and NDE for def PIs K Krishnamurthy R Landers

Talwar R Lederich J Baumann

ndash FSW runs with mismatches and g

ndash Process control algorithms ndash K Kri

ndash NDE techniques ndash V Richardsbull Corrosion Prevention of FSW joint

Boeing John Baumann

ndash Metallic and Polymeric sealants ndash

ndash Surface modification ndash J Newkirk

ndash Static and Fatigue of T joints expo

bull Friction Stir Lap Weld Joint Proper

Mishra S Madria and J Baumann

CAMT FSW Projects O

ct free complex FSW joints (MSampTV Richards R Mishra Boeing R

ps ndash R Mishra R Landers

shnamurthy R Landers

(MSampT PIs D Van Aken J Newkirk

Van Aken

ed to salt fog ndash D Van Aken

y Characterization of Al Li alloys ndash R

erview

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 331

bull Friction Stir Welding and Pro ndash NSF IUCRC (Boeing GM PNNL

bull Microstructural Modification

bull Robotic thin sheet welding

bull Friction stir spot weldingbull E design tools for FSWP (with

ndash NSF project on FS Channeling

ndash ONR STTR on FSP for Superplast

ndash AFOSR STTR on Ultrafine Graine

ndash PampW FSW project on advanced al

Current Additional Rese

essing ResearchSL)

Virginia Tech)

ic Forming with Friction Stir Link

7XXX with Friction Stir Link

minum

rch Projects Overview

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 431

FSP Machine ndash 3 axisFunded by NSF 2000

FSP Infrastructure at M ampTRobotic FSP Machine ndash 6 axis

Funded by ONR 2004

Friction Stir Spot Welding MachineFunded by AFRL 2004

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 531

Mini Tensile and Mini Fat gue Testing Mini fatigue of 7075 T6

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 631

Friction Stir Welding Basic Process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 731

Friction Stir Attributes

bull Large plastic strainbull High strain rate

bull Elevated temperatures

bull Mechanical mixing

bull Material flow

Microstructural Features

bull Fine grain size

bull Homogenization

bull Primary particle breakd

Friction Stir Proces

Potential flaws

bull Wormholes

wn

es

Channeling

Surface composite

Powder processing

Superplasticity

Casting modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 831

Center for Friction Stir Pro KEY Technological Areas

50 mm

Before After

50 mm

Friction Stir Powder Processing

Before After

Friction Stir CastingModification

Friction Stir Welding

FrictionSurfaci

Parent Technology and TWI Patent

CFS

essing ndash Overview

US Patent 6655575

US Patent 6923362

Friction Stir Superplasticity

Friction Stir

Channeling

Friction Stir

Microformingtir g

US Patent 6712916

US Patent

filed

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 931

0 5 10 15 200

200

400

600

800

1000

1200

1400

1600

H e a t

i n

Coarsened grains

and particles

Worm ho

HOT

R P M

IPM

Process map for butt jo

Process map for the friction

bullMaximum tensile properties at n

values between 65 and 10

25 30 35 40

H e a t i n d

e x = 6

4 e x = 1

0

le defect

COLD

nts

stir welding of Al 2024 (T8)

gget are achieved at heat index

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1031

Problem Description

bull Improper fixturing can cause ga

poor welds

bull Analysis tools are needed when

Project Objectives

bull Create and validate force contr

bull Develop analysis tools for FSW

Implementation of Intellig

s and mismatches which lead to

designing new FSW processes

l strategies

processes

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1131

Boeing Brotje FSW

bullSpecific solutions for produ

Implementation of Intel

Production Machine

ction machines

ligent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1231

Force Modeling (

The static and dynamic force proce

Axial Force Results

0 20 40 60 802

3

4

5

F

z ( k N ) Measured Modeled

0 20 40 60 804

45

5

Time (s)

d(mm)

2002

04

F x

S c e n a r i o 1 ( k N )

M

20

2

3

4

v ( m m s )

Scen

6061 Aluminum)

s characteristics were modeled

40 60

asured Modeled

20 40 6002

04

F x

S c e n a r i o 2 ( k N )

Measured Modeled

40 60Time (s)

rio 1 Scenario 2

20 40 6012

14

16

18

2

22

w ( k

r p m )

Time (s)

Scenario 1 Scenario 2

Path Force Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1331

Axial Force Controlle

m

Top axial force with force control (

Bottom axial force without force c

Results (gap = 0381

)

variation ~ 01 kN)

ontrol (variation ~ 04 kN)

20 40 6029

3

F a

( k N )

20 40 60421

433

d c

( m m

)

Time (s)

20 40291

329

Time (s)

F a

( k N )

Measured

Reference

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1431

Axial Force Controller

0762

Axial force and commanded depth wit

1

Travel Direction

Shim Side View

Top View

End Location Start Location

Shim

esults (gap = 0381 rarr

mm)

h force control (variation ~ 01 kN)

20 40 60

295

3

305

F a

( k N )

Measured Reference

20 40 60

4

405

41

d c

( m m )

Time (s)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1531

Path Force Co

10 20 30 40

05

1

15

F p

( k N ) Measured

Reference

10 20 30 40

1

2

w c

( k r p m )

Cont Onreg

Time (s)

(a) nugget with force control

(b) nugget without force control

troller Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1631

Analysis of 2024 Alumi

To

Frequency analysis process

effects dominate structural effects

100 120 140 160 180 200 2200

200

400

600

F o r c e ( l b

s )

Time (sec)

Run 1

0 500

100

200

300

M a g ( l b 2 )

F1

0 500

100

200

300FMAX

0 500

100

200F2

0 500

100

200FMIN

0 500

1

2

3

M a g ( l b 2 )

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

um with Fixed and RP

ls

Cross section analysis

most runs had no defects

Force analysis path force

mainly affected by travel speed

and pin force is not highly

correlated with process

parameters

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1731

Conclusions

bull FSW processes for 6061 Al hav

bull Control of both axial and path fo

the presence of gaps and mism

bull Analysis tools have been devel

investigate forces in both frequebull Atlas of discontinuities complet

Capabilities

bull Missouri SampT has expertise in a

including dynamic modeling

bull Missouri SampT has expertise in c

when gap and mismatches are

Implementation of Intellig

been successfully modeled

rces have been achieved even in

tches

ped for FSW processes to

ncy and time domainsd

nalyzing FSW processes

ontrolling FSW processes even

present

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1831

Corrosion Prevention o

Example shows corrosion in FSW 7075 of 500h exposure in neutral sa

The current manufacturing

joints to contain a faying

An additional complication is that thsensitivity

FSW Lap Joints result in cre

FSW Joints

73 Al as a result lt fog

approach requires riveted

urface protective sealant

thermal exposure of FSW increaseso corrosion

ices on both sides of the weld

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1931

MSampTrsquos Nylon 11 Approac

The FSW operation melts the nylon which

forms a protective fillet upon solidifying

MSampTrsquos Appro bull Apply a thin (0003rdquo) layer of

thermoplastic sealant) to th

bull Weld through this sealant

This sealant is available from MortonCompany as Corvelreg white 78 1001Melts at 185ordmC salt spray resistant

Costs about $10lb

h to Corrosion Protection

chnylon 11 (polyamide

flange of a lsquoTrsquo prior to welding

Polished cross section of the FSW joint

shows that sealant fills crevices between

faying surfaces but has been expelled

from immediate region of the joint

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2031

Joint Strengths are Deter

lsquoTrsquo Pull off testing causes the skins to ustiffer indicating that this sealant carrie

load Sudden drops correspond to fail

ined by T Pull off Tests

plift The joints sealed with nylon 11 arean appreciable portion of the applied

re in the seals on each side of the T

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2131

Adhesive failure of ano

Sealant

0

500

1000

1500

2000

0 002 004 006 008 0

Anodized

1263 28 sealant1266 28

P o u n d s f o r

c e p e r i n c h o f w e l d

Displacement in inches

Sealant adheres to anodi

aluminum interface with

ized layer

Cast A357

Anodized Layers

1

ed layer and failure initiates at

nodized layer

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 3: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 331

bull Friction Stir Welding and Pro ndash NSF IUCRC (Boeing GM PNNL

bull Microstructural Modification

bull Robotic thin sheet welding

bull Friction stir spot weldingbull E design tools for FSWP (with

ndash NSF project on FS Channeling

ndash ONR STTR on FSP for Superplast

ndash AFOSR STTR on Ultrafine Graine

ndash PampW FSW project on advanced al

Current Additional Rese

essing ResearchSL)

Virginia Tech)

ic Forming with Friction Stir Link

7XXX with Friction Stir Link

minum

rch Projects Overview

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 431

FSP Machine ndash 3 axisFunded by NSF 2000

FSP Infrastructure at M ampTRobotic FSP Machine ndash 6 axis

Funded by ONR 2004

Friction Stir Spot Welding MachineFunded by AFRL 2004

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 531

Mini Tensile and Mini Fat gue Testing Mini fatigue of 7075 T6

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 631

Friction Stir Welding Basic Process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 731

Friction Stir Attributes

bull Large plastic strainbull High strain rate

bull Elevated temperatures

bull Mechanical mixing

bull Material flow

Microstructural Features

bull Fine grain size

bull Homogenization

bull Primary particle breakd

Friction Stir Proces

Potential flaws

bull Wormholes

wn

es

Channeling

Surface composite

Powder processing

Superplasticity

Casting modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 831

Center for Friction Stir Pro KEY Technological Areas

50 mm

Before After

50 mm

Friction Stir Powder Processing

Before After

Friction Stir CastingModification

Friction Stir Welding

FrictionSurfaci

Parent Technology and TWI Patent

CFS

essing ndash Overview

US Patent 6655575

US Patent 6923362

Friction Stir Superplasticity

Friction Stir

Channeling

Friction Stir

Microformingtir g

US Patent 6712916

US Patent

filed

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 931

0 5 10 15 200

200

400

600

800

1000

1200

1400

1600

H e a t

i n

Coarsened grains

and particles

Worm ho

HOT

R P M

IPM

Process map for butt jo

Process map for the friction

bullMaximum tensile properties at n

values between 65 and 10

25 30 35 40

H e a t i n d

e x = 6

4 e x = 1

0

le defect

COLD

nts

stir welding of Al 2024 (T8)

gget are achieved at heat index

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1031

Problem Description

bull Improper fixturing can cause ga

poor welds

bull Analysis tools are needed when

Project Objectives

bull Create and validate force contr

bull Develop analysis tools for FSW

Implementation of Intellig

s and mismatches which lead to

designing new FSW processes

l strategies

processes

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1131

Boeing Brotje FSW

bullSpecific solutions for produ

Implementation of Intel

Production Machine

ction machines

ligent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1231

Force Modeling (

The static and dynamic force proce

Axial Force Results

0 20 40 60 802

3

4

5

F

z ( k N ) Measured Modeled

0 20 40 60 804

45

5

Time (s)

d(mm)

2002

04

F x

S c e n a r i o 1 ( k N )

M

20

2

3

4

v ( m m s )

Scen

6061 Aluminum)

s characteristics were modeled

40 60

asured Modeled

20 40 6002

04

F x

S c e n a r i o 2 ( k N )

Measured Modeled

40 60Time (s)

rio 1 Scenario 2

20 40 6012

14

16

18

2

22

w ( k

r p m )

Time (s)

Scenario 1 Scenario 2

Path Force Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1331

Axial Force Controlle

m

Top axial force with force control (

Bottom axial force without force c

Results (gap = 0381

)

variation ~ 01 kN)

ontrol (variation ~ 04 kN)

20 40 6029

3

F a

( k N )

20 40 60421

433

d c

( m m

)

Time (s)

20 40291

329

Time (s)

F a

( k N )

Measured

Reference

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1431

Axial Force Controller

0762

Axial force and commanded depth wit

1

Travel Direction

Shim Side View

Top View

End Location Start Location

Shim

esults (gap = 0381 rarr

mm)

h force control (variation ~ 01 kN)

20 40 60

295

3

305

F a

( k N )

Measured Reference

20 40 60

4

405

41

d c

( m m )

Time (s)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1531

Path Force Co

10 20 30 40

05

1

15

F p

( k N ) Measured

Reference

10 20 30 40

1

2

w c

( k r p m )

Cont Onreg

Time (s)

(a) nugget with force control

(b) nugget without force control

troller Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1631

Analysis of 2024 Alumi

To

Frequency analysis process

effects dominate structural effects

100 120 140 160 180 200 2200

200

400

600

F o r c e ( l b

s )

Time (sec)

Run 1

0 500

100

200

300

M a g ( l b 2 )

F1

0 500

100

200

300FMAX

0 500

100

200F2

0 500

100

200FMIN

0 500

1

2

3

M a g ( l b 2 )

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

um with Fixed and RP

ls

Cross section analysis

most runs had no defects

Force analysis path force

mainly affected by travel speed

and pin force is not highly

correlated with process

parameters

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1731

Conclusions

bull FSW processes for 6061 Al hav

bull Control of both axial and path fo

the presence of gaps and mism

bull Analysis tools have been devel

investigate forces in both frequebull Atlas of discontinuities complet

Capabilities

bull Missouri SampT has expertise in a

including dynamic modeling

bull Missouri SampT has expertise in c

when gap and mismatches are

Implementation of Intellig

been successfully modeled

rces have been achieved even in

tches

ped for FSW processes to

ncy and time domainsd

nalyzing FSW processes

ontrolling FSW processes even

present

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1831

Corrosion Prevention o

Example shows corrosion in FSW 7075 of 500h exposure in neutral sa

The current manufacturing

joints to contain a faying

An additional complication is that thsensitivity

FSW Lap Joints result in cre

FSW Joints

73 Al as a result lt fog

approach requires riveted

urface protective sealant

thermal exposure of FSW increaseso corrosion

ices on both sides of the weld

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1931

MSampTrsquos Nylon 11 Approac

The FSW operation melts the nylon which

forms a protective fillet upon solidifying

MSampTrsquos Appro bull Apply a thin (0003rdquo) layer of

thermoplastic sealant) to th

bull Weld through this sealant

This sealant is available from MortonCompany as Corvelreg white 78 1001Melts at 185ordmC salt spray resistant

Costs about $10lb

h to Corrosion Protection

chnylon 11 (polyamide

flange of a lsquoTrsquo prior to welding

Polished cross section of the FSW joint

shows that sealant fills crevices between

faying surfaces but has been expelled

from immediate region of the joint

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2031

Joint Strengths are Deter

lsquoTrsquo Pull off testing causes the skins to ustiffer indicating that this sealant carrie

load Sudden drops correspond to fail

ined by T Pull off Tests

plift The joints sealed with nylon 11 arean appreciable portion of the applied

re in the seals on each side of the T

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2131

Adhesive failure of ano

Sealant

0

500

1000

1500

2000

0 002 004 006 008 0

Anodized

1263 28 sealant1266 28

P o u n d s f o r

c e p e r i n c h o f w e l d

Displacement in inches

Sealant adheres to anodi

aluminum interface with

ized layer

Cast A357

Anodized Layers

1

ed layer and failure initiates at

nodized layer

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 4: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 431

FSP Machine ndash 3 axisFunded by NSF 2000

FSP Infrastructure at M ampTRobotic FSP Machine ndash 6 axis

Funded by ONR 2004

Friction Stir Spot Welding MachineFunded by AFRL 2004

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 531

Mini Tensile and Mini Fat gue Testing Mini fatigue of 7075 T6

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 631

Friction Stir Welding Basic Process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 731

Friction Stir Attributes

bull Large plastic strainbull High strain rate

bull Elevated temperatures

bull Mechanical mixing

bull Material flow

Microstructural Features

bull Fine grain size

bull Homogenization

bull Primary particle breakd

Friction Stir Proces

Potential flaws

bull Wormholes

wn

es

Channeling

Surface composite

Powder processing

Superplasticity

Casting modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 831

Center for Friction Stir Pro KEY Technological Areas

50 mm

Before After

50 mm

Friction Stir Powder Processing

Before After

Friction Stir CastingModification

Friction Stir Welding

FrictionSurfaci

Parent Technology and TWI Patent

CFS

essing ndash Overview

US Patent 6655575

US Patent 6923362

Friction Stir Superplasticity

Friction Stir

Channeling

Friction Stir

Microformingtir g

US Patent 6712916

US Patent

filed

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 931

0 5 10 15 200

200

400

600

800

1000

1200

1400

1600

H e a t

i n

Coarsened grains

and particles

Worm ho

HOT

R P M

IPM

Process map for butt jo

Process map for the friction

bullMaximum tensile properties at n

values between 65 and 10

25 30 35 40

H e a t i n d

e x = 6

4 e x = 1

0

le defect

COLD

nts

stir welding of Al 2024 (T8)

gget are achieved at heat index

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1031

Problem Description

bull Improper fixturing can cause ga

poor welds

bull Analysis tools are needed when

Project Objectives

bull Create and validate force contr

bull Develop analysis tools for FSW

Implementation of Intellig

s and mismatches which lead to

designing new FSW processes

l strategies

processes

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1131

Boeing Brotje FSW

bullSpecific solutions for produ

Implementation of Intel

Production Machine

ction machines

ligent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1231

Force Modeling (

The static and dynamic force proce

Axial Force Results

0 20 40 60 802

3

4

5

F

z ( k N ) Measured Modeled

0 20 40 60 804

45

5

Time (s)

d(mm)

2002

04

F x

S c e n a r i o 1 ( k N )

M

20

2

3

4

v ( m m s )

Scen

6061 Aluminum)

s characteristics were modeled

40 60

asured Modeled

20 40 6002

04

F x

S c e n a r i o 2 ( k N )

Measured Modeled

40 60Time (s)

rio 1 Scenario 2

20 40 6012

14

16

18

2

22

w ( k

r p m )

Time (s)

Scenario 1 Scenario 2

Path Force Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1331

Axial Force Controlle

m

Top axial force with force control (

Bottom axial force without force c

Results (gap = 0381

)

variation ~ 01 kN)

ontrol (variation ~ 04 kN)

20 40 6029

3

F a

( k N )

20 40 60421

433

d c

( m m

)

Time (s)

20 40291

329

Time (s)

F a

( k N )

Measured

Reference

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1431

Axial Force Controller

0762

Axial force and commanded depth wit

1

Travel Direction

Shim Side View

Top View

End Location Start Location

Shim

esults (gap = 0381 rarr

mm)

h force control (variation ~ 01 kN)

20 40 60

295

3

305

F a

( k N )

Measured Reference

20 40 60

4

405

41

d c

( m m )

Time (s)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1531

Path Force Co

10 20 30 40

05

1

15

F p

( k N ) Measured

Reference

10 20 30 40

1

2

w c

( k r p m )

Cont Onreg

Time (s)

(a) nugget with force control

(b) nugget without force control

troller Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1631

Analysis of 2024 Alumi

To

Frequency analysis process

effects dominate structural effects

100 120 140 160 180 200 2200

200

400

600

F o r c e ( l b

s )

Time (sec)

Run 1

0 500

100

200

300

M a g ( l b 2 )

F1

0 500

100

200

300FMAX

0 500

100

200F2

0 500

100

200FMIN

0 500

1

2

3

M a g ( l b 2 )

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

um with Fixed and RP

ls

Cross section analysis

most runs had no defects

Force analysis path force

mainly affected by travel speed

and pin force is not highly

correlated with process

parameters

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1731

Conclusions

bull FSW processes for 6061 Al hav

bull Control of both axial and path fo

the presence of gaps and mism

bull Analysis tools have been devel

investigate forces in both frequebull Atlas of discontinuities complet

Capabilities

bull Missouri SampT has expertise in a

including dynamic modeling

bull Missouri SampT has expertise in c

when gap and mismatches are

Implementation of Intellig

been successfully modeled

rces have been achieved even in

tches

ped for FSW processes to

ncy and time domainsd

nalyzing FSW processes

ontrolling FSW processes even

present

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1831

Corrosion Prevention o

Example shows corrosion in FSW 7075 of 500h exposure in neutral sa

The current manufacturing

joints to contain a faying

An additional complication is that thsensitivity

FSW Lap Joints result in cre

FSW Joints

73 Al as a result lt fog

approach requires riveted

urface protective sealant

thermal exposure of FSW increaseso corrosion

ices on both sides of the weld

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1931

MSampTrsquos Nylon 11 Approac

The FSW operation melts the nylon which

forms a protective fillet upon solidifying

MSampTrsquos Appro bull Apply a thin (0003rdquo) layer of

thermoplastic sealant) to th

bull Weld through this sealant

This sealant is available from MortonCompany as Corvelreg white 78 1001Melts at 185ordmC salt spray resistant

Costs about $10lb

h to Corrosion Protection

chnylon 11 (polyamide

flange of a lsquoTrsquo prior to welding

Polished cross section of the FSW joint

shows that sealant fills crevices between

faying surfaces but has been expelled

from immediate region of the joint

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2031

Joint Strengths are Deter

lsquoTrsquo Pull off testing causes the skins to ustiffer indicating that this sealant carrie

load Sudden drops correspond to fail

ined by T Pull off Tests

plift The joints sealed with nylon 11 arean appreciable portion of the applied

re in the seals on each side of the T

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2131

Adhesive failure of ano

Sealant

0

500

1000

1500

2000

0 002 004 006 008 0

Anodized

1263 28 sealant1266 28

P o u n d s f o r

c e p e r i n c h o f w e l d

Displacement in inches

Sealant adheres to anodi

aluminum interface with

ized layer

Cast A357

Anodized Layers

1

ed layer and failure initiates at

nodized layer

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 5: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 531

Mini Tensile and Mini Fat gue Testing Mini fatigue of 7075 T6

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 631

Friction Stir Welding Basic Process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 731

Friction Stir Attributes

bull Large plastic strainbull High strain rate

bull Elevated temperatures

bull Mechanical mixing

bull Material flow

Microstructural Features

bull Fine grain size

bull Homogenization

bull Primary particle breakd

Friction Stir Proces

Potential flaws

bull Wormholes

wn

es

Channeling

Surface composite

Powder processing

Superplasticity

Casting modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 831

Center for Friction Stir Pro KEY Technological Areas

50 mm

Before After

50 mm

Friction Stir Powder Processing

Before After

Friction Stir CastingModification

Friction Stir Welding

FrictionSurfaci

Parent Technology and TWI Patent

CFS

essing ndash Overview

US Patent 6655575

US Patent 6923362

Friction Stir Superplasticity

Friction Stir

Channeling

Friction Stir

Microformingtir g

US Patent 6712916

US Patent

filed

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 931

0 5 10 15 200

200

400

600

800

1000

1200

1400

1600

H e a t

i n

Coarsened grains

and particles

Worm ho

HOT

R P M

IPM

Process map for butt jo

Process map for the friction

bullMaximum tensile properties at n

values between 65 and 10

25 30 35 40

H e a t i n d

e x = 6

4 e x = 1

0

le defect

COLD

nts

stir welding of Al 2024 (T8)

gget are achieved at heat index

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1031

Problem Description

bull Improper fixturing can cause ga

poor welds

bull Analysis tools are needed when

Project Objectives

bull Create and validate force contr

bull Develop analysis tools for FSW

Implementation of Intellig

s and mismatches which lead to

designing new FSW processes

l strategies

processes

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1131

Boeing Brotje FSW

bullSpecific solutions for produ

Implementation of Intel

Production Machine

ction machines

ligent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1231

Force Modeling (

The static and dynamic force proce

Axial Force Results

0 20 40 60 802

3

4

5

F

z ( k N ) Measured Modeled

0 20 40 60 804

45

5

Time (s)

d(mm)

2002

04

F x

S c e n a r i o 1 ( k N )

M

20

2

3

4

v ( m m s )

Scen

6061 Aluminum)

s characteristics were modeled

40 60

asured Modeled

20 40 6002

04

F x

S c e n a r i o 2 ( k N )

Measured Modeled

40 60Time (s)

rio 1 Scenario 2

20 40 6012

14

16

18

2

22

w ( k

r p m )

Time (s)

Scenario 1 Scenario 2

Path Force Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1331

Axial Force Controlle

m

Top axial force with force control (

Bottom axial force without force c

Results (gap = 0381

)

variation ~ 01 kN)

ontrol (variation ~ 04 kN)

20 40 6029

3

F a

( k N )

20 40 60421

433

d c

( m m

)

Time (s)

20 40291

329

Time (s)

F a

( k N )

Measured

Reference

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1431

Axial Force Controller

0762

Axial force and commanded depth wit

1

Travel Direction

Shim Side View

Top View

End Location Start Location

Shim

esults (gap = 0381 rarr

mm)

h force control (variation ~ 01 kN)

20 40 60

295

3

305

F a

( k N )

Measured Reference

20 40 60

4

405

41

d c

( m m )

Time (s)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1531

Path Force Co

10 20 30 40

05

1

15

F p

( k N ) Measured

Reference

10 20 30 40

1

2

w c

( k r p m )

Cont Onreg

Time (s)

(a) nugget with force control

(b) nugget without force control

troller Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1631

Analysis of 2024 Alumi

To

Frequency analysis process

effects dominate structural effects

100 120 140 160 180 200 2200

200

400

600

F o r c e ( l b

s )

Time (sec)

Run 1

0 500

100

200

300

M a g ( l b 2 )

F1

0 500

100

200

300FMAX

0 500

100

200F2

0 500

100

200FMIN

0 500

1

2

3

M a g ( l b 2 )

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

um with Fixed and RP

ls

Cross section analysis

most runs had no defects

Force analysis path force

mainly affected by travel speed

and pin force is not highly

correlated with process

parameters

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1731

Conclusions

bull FSW processes for 6061 Al hav

bull Control of both axial and path fo

the presence of gaps and mism

bull Analysis tools have been devel

investigate forces in both frequebull Atlas of discontinuities complet

Capabilities

bull Missouri SampT has expertise in a

including dynamic modeling

bull Missouri SampT has expertise in c

when gap and mismatches are

Implementation of Intellig

been successfully modeled

rces have been achieved even in

tches

ped for FSW processes to

ncy and time domainsd

nalyzing FSW processes

ontrolling FSW processes even

present

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1831

Corrosion Prevention o

Example shows corrosion in FSW 7075 of 500h exposure in neutral sa

The current manufacturing

joints to contain a faying

An additional complication is that thsensitivity

FSW Lap Joints result in cre

FSW Joints

73 Al as a result lt fog

approach requires riveted

urface protective sealant

thermal exposure of FSW increaseso corrosion

ices on both sides of the weld

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1931

MSampTrsquos Nylon 11 Approac

The FSW operation melts the nylon which

forms a protective fillet upon solidifying

MSampTrsquos Appro bull Apply a thin (0003rdquo) layer of

thermoplastic sealant) to th

bull Weld through this sealant

This sealant is available from MortonCompany as Corvelreg white 78 1001Melts at 185ordmC salt spray resistant

Costs about $10lb

h to Corrosion Protection

chnylon 11 (polyamide

flange of a lsquoTrsquo prior to welding

Polished cross section of the FSW joint

shows that sealant fills crevices between

faying surfaces but has been expelled

from immediate region of the joint

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2031

Joint Strengths are Deter

lsquoTrsquo Pull off testing causes the skins to ustiffer indicating that this sealant carrie

load Sudden drops correspond to fail

ined by T Pull off Tests

plift The joints sealed with nylon 11 arean appreciable portion of the applied

re in the seals on each side of the T

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2131

Adhesive failure of ano

Sealant

0

500

1000

1500

2000

0 002 004 006 008 0

Anodized

1263 28 sealant1266 28

P o u n d s f o r

c e p e r i n c h o f w e l d

Displacement in inches

Sealant adheres to anodi

aluminum interface with

ized layer

Cast A357

Anodized Layers

1

ed layer and failure initiates at

nodized layer

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 6: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 631

Friction Stir Welding Basic Process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 731

Friction Stir Attributes

bull Large plastic strainbull High strain rate

bull Elevated temperatures

bull Mechanical mixing

bull Material flow

Microstructural Features

bull Fine grain size

bull Homogenization

bull Primary particle breakd

Friction Stir Proces

Potential flaws

bull Wormholes

wn

es

Channeling

Surface composite

Powder processing

Superplasticity

Casting modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 831

Center for Friction Stir Pro KEY Technological Areas

50 mm

Before After

50 mm

Friction Stir Powder Processing

Before After

Friction Stir CastingModification

Friction Stir Welding

FrictionSurfaci

Parent Technology and TWI Patent

CFS

essing ndash Overview

US Patent 6655575

US Patent 6923362

Friction Stir Superplasticity

Friction Stir

Channeling

Friction Stir

Microformingtir g

US Patent 6712916

US Patent

filed

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 931

0 5 10 15 200

200

400

600

800

1000

1200

1400

1600

H e a t

i n

Coarsened grains

and particles

Worm ho

HOT

R P M

IPM

Process map for butt jo

Process map for the friction

bullMaximum tensile properties at n

values between 65 and 10

25 30 35 40

H e a t i n d

e x = 6

4 e x = 1

0

le defect

COLD

nts

stir welding of Al 2024 (T8)

gget are achieved at heat index

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1031

Problem Description

bull Improper fixturing can cause ga

poor welds

bull Analysis tools are needed when

Project Objectives

bull Create and validate force contr

bull Develop analysis tools for FSW

Implementation of Intellig

s and mismatches which lead to

designing new FSW processes

l strategies

processes

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1131

Boeing Brotje FSW

bullSpecific solutions for produ

Implementation of Intel

Production Machine

ction machines

ligent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1231

Force Modeling (

The static and dynamic force proce

Axial Force Results

0 20 40 60 802

3

4

5

F

z ( k N ) Measured Modeled

0 20 40 60 804

45

5

Time (s)

d(mm)

2002

04

F x

S c e n a r i o 1 ( k N )

M

20

2

3

4

v ( m m s )

Scen

6061 Aluminum)

s characteristics were modeled

40 60

asured Modeled

20 40 6002

04

F x

S c e n a r i o 2 ( k N )

Measured Modeled

40 60Time (s)

rio 1 Scenario 2

20 40 6012

14

16

18

2

22

w ( k

r p m )

Time (s)

Scenario 1 Scenario 2

Path Force Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1331

Axial Force Controlle

m

Top axial force with force control (

Bottom axial force without force c

Results (gap = 0381

)

variation ~ 01 kN)

ontrol (variation ~ 04 kN)

20 40 6029

3

F a

( k N )

20 40 60421

433

d c

( m m

)

Time (s)

20 40291

329

Time (s)

F a

( k N )

Measured

Reference

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1431

Axial Force Controller

0762

Axial force and commanded depth wit

1

Travel Direction

Shim Side View

Top View

End Location Start Location

Shim

esults (gap = 0381 rarr

mm)

h force control (variation ~ 01 kN)

20 40 60

295

3

305

F a

( k N )

Measured Reference

20 40 60

4

405

41

d c

( m m )

Time (s)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1531

Path Force Co

10 20 30 40

05

1

15

F p

( k N ) Measured

Reference

10 20 30 40

1

2

w c

( k r p m )

Cont Onreg

Time (s)

(a) nugget with force control

(b) nugget without force control

troller Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1631

Analysis of 2024 Alumi

To

Frequency analysis process

effects dominate structural effects

100 120 140 160 180 200 2200

200

400

600

F o r c e ( l b

s )

Time (sec)

Run 1

0 500

100

200

300

M a g ( l b 2 )

F1

0 500

100

200

300FMAX

0 500

100

200F2

0 500

100

200FMIN

0 500

1

2

3

M a g ( l b 2 )

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

um with Fixed and RP

ls

Cross section analysis

most runs had no defects

Force analysis path force

mainly affected by travel speed

and pin force is not highly

correlated with process

parameters

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1731

Conclusions

bull FSW processes for 6061 Al hav

bull Control of both axial and path fo

the presence of gaps and mism

bull Analysis tools have been devel

investigate forces in both frequebull Atlas of discontinuities complet

Capabilities

bull Missouri SampT has expertise in a

including dynamic modeling

bull Missouri SampT has expertise in c

when gap and mismatches are

Implementation of Intellig

been successfully modeled

rces have been achieved even in

tches

ped for FSW processes to

ncy and time domainsd

nalyzing FSW processes

ontrolling FSW processes even

present

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1831

Corrosion Prevention o

Example shows corrosion in FSW 7075 of 500h exposure in neutral sa

The current manufacturing

joints to contain a faying

An additional complication is that thsensitivity

FSW Lap Joints result in cre

FSW Joints

73 Al as a result lt fog

approach requires riveted

urface protective sealant

thermal exposure of FSW increaseso corrosion

ices on both sides of the weld

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1931

MSampTrsquos Nylon 11 Approac

The FSW operation melts the nylon which

forms a protective fillet upon solidifying

MSampTrsquos Appro bull Apply a thin (0003rdquo) layer of

thermoplastic sealant) to th

bull Weld through this sealant

This sealant is available from MortonCompany as Corvelreg white 78 1001Melts at 185ordmC salt spray resistant

Costs about $10lb

h to Corrosion Protection

chnylon 11 (polyamide

flange of a lsquoTrsquo prior to welding

Polished cross section of the FSW joint

shows that sealant fills crevices between

faying surfaces but has been expelled

from immediate region of the joint

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2031

Joint Strengths are Deter

lsquoTrsquo Pull off testing causes the skins to ustiffer indicating that this sealant carrie

load Sudden drops correspond to fail

ined by T Pull off Tests

plift The joints sealed with nylon 11 arean appreciable portion of the applied

re in the seals on each side of the T

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2131

Adhesive failure of ano

Sealant

0

500

1000

1500

2000

0 002 004 006 008 0

Anodized

1263 28 sealant1266 28

P o u n d s f o r

c e p e r i n c h o f w e l d

Displacement in inches

Sealant adheres to anodi

aluminum interface with

ized layer

Cast A357

Anodized Layers

1

ed layer and failure initiates at

nodized layer

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 7: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 731

Friction Stir Attributes

bull Large plastic strainbull High strain rate

bull Elevated temperatures

bull Mechanical mixing

bull Material flow

Microstructural Features

bull Fine grain size

bull Homogenization

bull Primary particle breakd

Friction Stir Proces

Potential flaws

bull Wormholes

wn

es

Channeling

Surface composite

Powder processing

Superplasticity

Casting modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 831

Center for Friction Stir Pro KEY Technological Areas

50 mm

Before After

50 mm

Friction Stir Powder Processing

Before After

Friction Stir CastingModification

Friction Stir Welding

FrictionSurfaci

Parent Technology and TWI Patent

CFS

essing ndash Overview

US Patent 6655575

US Patent 6923362

Friction Stir Superplasticity

Friction Stir

Channeling

Friction Stir

Microformingtir g

US Patent 6712916

US Patent

filed

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 931

0 5 10 15 200

200

400

600

800

1000

1200

1400

1600

H e a t

i n

Coarsened grains

and particles

Worm ho

HOT

R P M

IPM

Process map for butt jo

Process map for the friction

bullMaximum tensile properties at n

values between 65 and 10

25 30 35 40

H e a t i n d

e x = 6

4 e x = 1

0

le defect

COLD

nts

stir welding of Al 2024 (T8)

gget are achieved at heat index

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1031

Problem Description

bull Improper fixturing can cause ga

poor welds

bull Analysis tools are needed when

Project Objectives

bull Create and validate force contr

bull Develop analysis tools for FSW

Implementation of Intellig

s and mismatches which lead to

designing new FSW processes

l strategies

processes

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1131

Boeing Brotje FSW

bullSpecific solutions for produ

Implementation of Intel

Production Machine

ction machines

ligent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1231

Force Modeling (

The static and dynamic force proce

Axial Force Results

0 20 40 60 802

3

4

5

F

z ( k N ) Measured Modeled

0 20 40 60 804

45

5

Time (s)

d(mm)

2002

04

F x

S c e n a r i o 1 ( k N )

M

20

2

3

4

v ( m m s )

Scen

6061 Aluminum)

s characteristics were modeled

40 60

asured Modeled

20 40 6002

04

F x

S c e n a r i o 2 ( k N )

Measured Modeled

40 60Time (s)

rio 1 Scenario 2

20 40 6012

14

16

18

2

22

w ( k

r p m )

Time (s)

Scenario 1 Scenario 2

Path Force Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1331

Axial Force Controlle

m

Top axial force with force control (

Bottom axial force without force c

Results (gap = 0381

)

variation ~ 01 kN)

ontrol (variation ~ 04 kN)

20 40 6029

3

F a

( k N )

20 40 60421

433

d c

( m m

)

Time (s)

20 40291

329

Time (s)

F a

( k N )

Measured

Reference

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1431

Axial Force Controller

0762

Axial force and commanded depth wit

1

Travel Direction

Shim Side View

Top View

End Location Start Location

Shim

esults (gap = 0381 rarr

mm)

h force control (variation ~ 01 kN)

20 40 60

295

3

305

F a

( k N )

Measured Reference

20 40 60

4

405

41

d c

( m m )

Time (s)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1531

Path Force Co

10 20 30 40

05

1

15

F p

( k N ) Measured

Reference

10 20 30 40

1

2

w c

( k r p m )

Cont Onreg

Time (s)

(a) nugget with force control

(b) nugget without force control

troller Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1631

Analysis of 2024 Alumi

To

Frequency analysis process

effects dominate structural effects

100 120 140 160 180 200 2200

200

400

600

F o r c e ( l b

s )

Time (sec)

Run 1

0 500

100

200

300

M a g ( l b 2 )

F1

0 500

100

200

300FMAX

0 500

100

200F2

0 500

100

200FMIN

0 500

1

2

3

M a g ( l b 2 )

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

um with Fixed and RP

ls

Cross section analysis

most runs had no defects

Force analysis path force

mainly affected by travel speed

and pin force is not highly

correlated with process

parameters

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1731

Conclusions

bull FSW processes for 6061 Al hav

bull Control of both axial and path fo

the presence of gaps and mism

bull Analysis tools have been devel

investigate forces in both frequebull Atlas of discontinuities complet

Capabilities

bull Missouri SampT has expertise in a

including dynamic modeling

bull Missouri SampT has expertise in c

when gap and mismatches are

Implementation of Intellig

been successfully modeled

rces have been achieved even in

tches

ped for FSW processes to

ncy and time domainsd

nalyzing FSW processes

ontrolling FSW processes even

present

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1831

Corrosion Prevention o

Example shows corrosion in FSW 7075 of 500h exposure in neutral sa

The current manufacturing

joints to contain a faying

An additional complication is that thsensitivity

FSW Lap Joints result in cre

FSW Joints

73 Al as a result lt fog

approach requires riveted

urface protective sealant

thermal exposure of FSW increaseso corrosion

ices on both sides of the weld

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1931

MSampTrsquos Nylon 11 Approac

The FSW operation melts the nylon which

forms a protective fillet upon solidifying

MSampTrsquos Appro bull Apply a thin (0003rdquo) layer of

thermoplastic sealant) to th

bull Weld through this sealant

This sealant is available from MortonCompany as Corvelreg white 78 1001Melts at 185ordmC salt spray resistant

Costs about $10lb

h to Corrosion Protection

chnylon 11 (polyamide

flange of a lsquoTrsquo prior to welding

Polished cross section of the FSW joint

shows that sealant fills crevices between

faying surfaces but has been expelled

from immediate region of the joint

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2031

Joint Strengths are Deter

lsquoTrsquo Pull off testing causes the skins to ustiffer indicating that this sealant carrie

load Sudden drops correspond to fail

ined by T Pull off Tests

plift The joints sealed with nylon 11 arean appreciable portion of the applied

re in the seals on each side of the T

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2131

Adhesive failure of ano

Sealant

0

500

1000

1500

2000

0 002 004 006 008 0

Anodized

1263 28 sealant1266 28

P o u n d s f o r

c e p e r i n c h o f w e l d

Displacement in inches

Sealant adheres to anodi

aluminum interface with

ized layer

Cast A357

Anodized Layers

1

ed layer and failure initiates at

nodized layer

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 8: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 831

Center for Friction Stir Pro KEY Technological Areas

50 mm

Before After

50 mm

Friction Stir Powder Processing

Before After

Friction Stir CastingModification

Friction Stir Welding

FrictionSurfaci

Parent Technology and TWI Patent

CFS

essing ndash Overview

US Patent 6655575

US Patent 6923362

Friction Stir Superplasticity

Friction Stir

Channeling

Friction Stir

Microformingtir g

US Patent 6712916

US Patent

filed

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 931

0 5 10 15 200

200

400

600

800

1000

1200

1400

1600

H e a t

i n

Coarsened grains

and particles

Worm ho

HOT

R P M

IPM

Process map for butt jo

Process map for the friction

bullMaximum tensile properties at n

values between 65 and 10

25 30 35 40

H e a t i n d

e x = 6

4 e x = 1

0

le defect

COLD

nts

stir welding of Al 2024 (T8)

gget are achieved at heat index

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1031

Problem Description

bull Improper fixturing can cause ga

poor welds

bull Analysis tools are needed when

Project Objectives

bull Create and validate force contr

bull Develop analysis tools for FSW

Implementation of Intellig

s and mismatches which lead to

designing new FSW processes

l strategies

processes

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1131

Boeing Brotje FSW

bullSpecific solutions for produ

Implementation of Intel

Production Machine

ction machines

ligent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1231

Force Modeling (

The static and dynamic force proce

Axial Force Results

0 20 40 60 802

3

4

5

F

z ( k N ) Measured Modeled

0 20 40 60 804

45

5

Time (s)

d(mm)

2002

04

F x

S c e n a r i o 1 ( k N )

M

20

2

3

4

v ( m m s )

Scen

6061 Aluminum)

s characteristics were modeled

40 60

asured Modeled

20 40 6002

04

F x

S c e n a r i o 2 ( k N )

Measured Modeled

40 60Time (s)

rio 1 Scenario 2

20 40 6012

14

16

18

2

22

w ( k

r p m )

Time (s)

Scenario 1 Scenario 2

Path Force Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1331

Axial Force Controlle

m

Top axial force with force control (

Bottom axial force without force c

Results (gap = 0381

)

variation ~ 01 kN)

ontrol (variation ~ 04 kN)

20 40 6029

3

F a

( k N )

20 40 60421

433

d c

( m m

)

Time (s)

20 40291

329

Time (s)

F a

( k N )

Measured

Reference

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1431

Axial Force Controller

0762

Axial force and commanded depth wit

1

Travel Direction

Shim Side View

Top View

End Location Start Location

Shim

esults (gap = 0381 rarr

mm)

h force control (variation ~ 01 kN)

20 40 60

295

3

305

F a

( k N )

Measured Reference

20 40 60

4

405

41

d c

( m m )

Time (s)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1531

Path Force Co

10 20 30 40

05

1

15

F p

( k N ) Measured

Reference

10 20 30 40

1

2

w c

( k r p m )

Cont Onreg

Time (s)

(a) nugget with force control

(b) nugget without force control

troller Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1631

Analysis of 2024 Alumi

To

Frequency analysis process

effects dominate structural effects

100 120 140 160 180 200 2200

200

400

600

F o r c e ( l b

s )

Time (sec)

Run 1

0 500

100

200

300

M a g ( l b 2 )

F1

0 500

100

200

300FMAX

0 500

100

200F2

0 500

100

200FMIN

0 500

1

2

3

M a g ( l b 2 )

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

um with Fixed and RP

ls

Cross section analysis

most runs had no defects

Force analysis path force

mainly affected by travel speed

and pin force is not highly

correlated with process

parameters

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1731

Conclusions

bull FSW processes for 6061 Al hav

bull Control of both axial and path fo

the presence of gaps and mism

bull Analysis tools have been devel

investigate forces in both frequebull Atlas of discontinuities complet

Capabilities

bull Missouri SampT has expertise in a

including dynamic modeling

bull Missouri SampT has expertise in c

when gap and mismatches are

Implementation of Intellig

been successfully modeled

rces have been achieved even in

tches

ped for FSW processes to

ncy and time domainsd

nalyzing FSW processes

ontrolling FSW processes even

present

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1831

Corrosion Prevention o

Example shows corrosion in FSW 7075 of 500h exposure in neutral sa

The current manufacturing

joints to contain a faying

An additional complication is that thsensitivity

FSW Lap Joints result in cre

FSW Joints

73 Al as a result lt fog

approach requires riveted

urface protective sealant

thermal exposure of FSW increaseso corrosion

ices on both sides of the weld

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1931

MSampTrsquos Nylon 11 Approac

The FSW operation melts the nylon which

forms a protective fillet upon solidifying

MSampTrsquos Appro bull Apply a thin (0003rdquo) layer of

thermoplastic sealant) to th

bull Weld through this sealant

This sealant is available from MortonCompany as Corvelreg white 78 1001Melts at 185ordmC salt spray resistant

Costs about $10lb

h to Corrosion Protection

chnylon 11 (polyamide

flange of a lsquoTrsquo prior to welding

Polished cross section of the FSW joint

shows that sealant fills crevices between

faying surfaces but has been expelled

from immediate region of the joint

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2031

Joint Strengths are Deter

lsquoTrsquo Pull off testing causes the skins to ustiffer indicating that this sealant carrie

load Sudden drops correspond to fail

ined by T Pull off Tests

plift The joints sealed with nylon 11 arean appreciable portion of the applied

re in the seals on each side of the T

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2131

Adhesive failure of ano

Sealant

0

500

1000

1500

2000

0 002 004 006 008 0

Anodized

1263 28 sealant1266 28

P o u n d s f o r

c e p e r i n c h o f w e l d

Displacement in inches

Sealant adheres to anodi

aluminum interface with

ized layer

Cast A357

Anodized Layers

1

ed layer and failure initiates at

nodized layer

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 9: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 931

0 5 10 15 200

200

400

600

800

1000

1200

1400

1600

H e a t

i n

Coarsened grains

and particles

Worm ho

HOT

R P M

IPM

Process map for butt jo

Process map for the friction

bullMaximum tensile properties at n

values between 65 and 10

25 30 35 40

H e a t i n d

e x = 6

4 e x = 1

0

le defect

COLD

nts

stir welding of Al 2024 (T8)

gget are achieved at heat index

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1031

Problem Description

bull Improper fixturing can cause ga

poor welds

bull Analysis tools are needed when

Project Objectives

bull Create and validate force contr

bull Develop analysis tools for FSW

Implementation of Intellig

s and mismatches which lead to

designing new FSW processes

l strategies

processes

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1131

Boeing Brotje FSW

bullSpecific solutions for produ

Implementation of Intel

Production Machine

ction machines

ligent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1231

Force Modeling (

The static and dynamic force proce

Axial Force Results

0 20 40 60 802

3

4

5

F

z ( k N ) Measured Modeled

0 20 40 60 804

45

5

Time (s)

d(mm)

2002

04

F x

S c e n a r i o 1 ( k N )

M

20

2

3

4

v ( m m s )

Scen

6061 Aluminum)

s characteristics were modeled

40 60

asured Modeled

20 40 6002

04

F x

S c e n a r i o 2 ( k N )

Measured Modeled

40 60Time (s)

rio 1 Scenario 2

20 40 6012

14

16

18

2

22

w ( k

r p m )

Time (s)

Scenario 1 Scenario 2

Path Force Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1331

Axial Force Controlle

m

Top axial force with force control (

Bottom axial force without force c

Results (gap = 0381

)

variation ~ 01 kN)

ontrol (variation ~ 04 kN)

20 40 6029

3

F a

( k N )

20 40 60421

433

d c

( m m

)

Time (s)

20 40291

329

Time (s)

F a

( k N )

Measured

Reference

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1431

Axial Force Controller

0762

Axial force and commanded depth wit

1

Travel Direction

Shim Side View

Top View

End Location Start Location

Shim

esults (gap = 0381 rarr

mm)

h force control (variation ~ 01 kN)

20 40 60

295

3

305

F a

( k N )

Measured Reference

20 40 60

4

405

41

d c

( m m )

Time (s)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1531

Path Force Co

10 20 30 40

05

1

15

F p

( k N ) Measured

Reference

10 20 30 40

1

2

w c

( k r p m )

Cont Onreg

Time (s)

(a) nugget with force control

(b) nugget without force control

troller Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1631

Analysis of 2024 Alumi

To

Frequency analysis process

effects dominate structural effects

100 120 140 160 180 200 2200

200

400

600

F o r c e ( l b

s )

Time (sec)

Run 1

0 500

100

200

300

M a g ( l b 2 )

F1

0 500

100

200

300FMAX

0 500

100

200F2

0 500

100

200FMIN

0 500

1

2

3

M a g ( l b 2 )

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

um with Fixed and RP

ls

Cross section analysis

most runs had no defects

Force analysis path force

mainly affected by travel speed

and pin force is not highly

correlated with process

parameters

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1731

Conclusions

bull FSW processes for 6061 Al hav

bull Control of both axial and path fo

the presence of gaps and mism

bull Analysis tools have been devel

investigate forces in both frequebull Atlas of discontinuities complet

Capabilities

bull Missouri SampT has expertise in a

including dynamic modeling

bull Missouri SampT has expertise in c

when gap and mismatches are

Implementation of Intellig

been successfully modeled

rces have been achieved even in

tches

ped for FSW processes to

ncy and time domainsd

nalyzing FSW processes

ontrolling FSW processes even

present

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1831

Corrosion Prevention o

Example shows corrosion in FSW 7075 of 500h exposure in neutral sa

The current manufacturing

joints to contain a faying

An additional complication is that thsensitivity

FSW Lap Joints result in cre

FSW Joints

73 Al as a result lt fog

approach requires riveted

urface protective sealant

thermal exposure of FSW increaseso corrosion

ices on both sides of the weld

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1931

MSampTrsquos Nylon 11 Approac

The FSW operation melts the nylon which

forms a protective fillet upon solidifying

MSampTrsquos Appro bull Apply a thin (0003rdquo) layer of

thermoplastic sealant) to th

bull Weld through this sealant

This sealant is available from MortonCompany as Corvelreg white 78 1001Melts at 185ordmC salt spray resistant

Costs about $10lb

h to Corrosion Protection

chnylon 11 (polyamide

flange of a lsquoTrsquo prior to welding

Polished cross section of the FSW joint

shows that sealant fills crevices between

faying surfaces but has been expelled

from immediate region of the joint

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2031

Joint Strengths are Deter

lsquoTrsquo Pull off testing causes the skins to ustiffer indicating that this sealant carrie

load Sudden drops correspond to fail

ined by T Pull off Tests

plift The joints sealed with nylon 11 arean appreciable portion of the applied

re in the seals on each side of the T

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2131

Adhesive failure of ano

Sealant

0

500

1000

1500

2000

0 002 004 006 008 0

Anodized

1263 28 sealant1266 28

P o u n d s f o r

c e p e r i n c h o f w e l d

Displacement in inches

Sealant adheres to anodi

aluminum interface with

ized layer

Cast A357

Anodized Layers

1

ed layer and failure initiates at

nodized layer

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 10: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1031

Problem Description

bull Improper fixturing can cause ga

poor welds

bull Analysis tools are needed when

Project Objectives

bull Create and validate force contr

bull Develop analysis tools for FSW

Implementation of Intellig

s and mismatches which lead to

designing new FSW processes

l strategies

processes

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1131

Boeing Brotje FSW

bullSpecific solutions for produ

Implementation of Intel

Production Machine

ction machines

ligent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1231

Force Modeling (

The static and dynamic force proce

Axial Force Results

0 20 40 60 802

3

4

5

F

z ( k N ) Measured Modeled

0 20 40 60 804

45

5

Time (s)

d(mm)

2002

04

F x

S c e n a r i o 1 ( k N )

M

20

2

3

4

v ( m m s )

Scen

6061 Aluminum)

s characteristics were modeled

40 60

asured Modeled

20 40 6002

04

F x

S c e n a r i o 2 ( k N )

Measured Modeled

40 60Time (s)

rio 1 Scenario 2

20 40 6012

14

16

18

2

22

w ( k

r p m )

Time (s)

Scenario 1 Scenario 2

Path Force Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1331

Axial Force Controlle

m

Top axial force with force control (

Bottom axial force without force c

Results (gap = 0381

)

variation ~ 01 kN)

ontrol (variation ~ 04 kN)

20 40 6029

3

F a

( k N )

20 40 60421

433

d c

( m m

)

Time (s)

20 40291

329

Time (s)

F a

( k N )

Measured

Reference

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1431

Axial Force Controller

0762

Axial force and commanded depth wit

1

Travel Direction

Shim Side View

Top View

End Location Start Location

Shim

esults (gap = 0381 rarr

mm)

h force control (variation ~ 01 kN)

20 40 60

295

3

305

F a

( k N )

Measured Reference

20 40 60

4

405

41

d c

( m m )

Time (s)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1531

Path Force Co

10 20 30 40

05

1

15

F p

( k N ) Measured

Reference

10 20 30 40

1

2

w c

( k r p m )

Cont Onreg

Time (s)

(a) nugget with force control

(b) nugget without force control

troller Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1631

Analysis of 2024 Alumi

To

Frequency analysis process

effects dominate structural effects

100 120 140 160 180 200 2200

200

400

600

F o r c e ( l b

s )

Time (sec)

Run 1

0 500

100

200

300

M a g ( l b 2 )

F1

0 500

100

200

300FMAX

0 500

100

200F2

0 500

100

200FMIN

0 500

1

2

3

M a g ( l b 2 )

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

um with Fixed and RP

ls

Cross section analysis

most runs had no defects

Force analysis path force

mainly affected by travel speed

and pin force is not highly

correlated with process

parameters

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1731

Conclusions

bull FSW processes for 6061 Al hav

bull Control of both axial and path fo

the presence of gaps and mism

bull Analysis tools have been devel

investigate forces in both frequebull Atlas of discontinuities complet

Capabilities

bull Missouri SampT has expertise in a

including dynamic modeling

bull Missouri SampT has expertise in c

when gap and mismatches are

Implementation of Intellig

been successfully modeled

rces have been achieved even in

tches

ped for FSW processes to

ncy and time domainsd

nalyzing FSW processes

ontrolling FSW processes even

present

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1831

Corrosion Prevention o

Example shows corrosion in FSW 7075 of 500h exposure in neutral sa

The current manufacturing

joints to contain a faying

An additional complication is that thsensitivity

FSW Lap Joints result in cre

FSW Joints

73 Al as a result lt fog

approach requires riveted

urface protective sealant

thermal exposure of FSW increaseso corrosion

ices on both sides of the weld

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1931

MSampTrsquos Nylon 11 Approac

The FSW operation melts the nylon which

forms a protective fillet upon solidifying

MSampTrsquos Appro bull Apply a thin (0003rdquo) layer of

thermoplastic sealant) to th

bull Weld through this sealant

This sealant is available from MortonCompany as Corvelreg white 78 1001Melts at 185ordmC salt spray resistant

Costs about $10lb

h to Corrosion Protection

chnylon 11 (polyamide

flange of a lsquoTrsquo prior to welding

Polished cross section of the FSW joint

shows that sealant fills crevices between

faying surfaces but has been expelled

from immediate region of the joint

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2031

Joint Strengths are Deter

lsquoTrsquo Pull off testing causes the skins to ustiffer indicating that this sealant carrie

load Sudden drops correspond to fail

ined by T Pull off Tests

plift The joints sealed with nylon 11 arean appreciable portion of the applied

re in the seals on each side of the T

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2131

Adhesive failure of ano

Sealant

0

500

1000

1500

2000

0 002 004 006 008 0

Anodized

1263 28 sealant1266 28

P o u n d s f o r

c e p e r i n c h o f w e l d

Displacement in inches

Sealant adheres to anodi

aluminum interface with

ized layer

Cast A357

Anodized Layers

1

ed layer and failure initiates at

nodized layer

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 11: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1131

Boeing Brotje FSW

bullSpecific solutions for produ

Implementation of Intel

Production Machine

ction machines

ligent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1231

Force Modeling (

The static and dynamic force proce

Axial Force Results

0 20 40 60 802

3

4

5

F

z ( k N ) Measured Modeled

0 20 40 60 804

45

5

Time (s)

d(mm)

2002

04

F x

S c e n a r i o 1 ( k N )

M

20

2

3

4

v ( m m s )

Scen

6061 Aluminum)

s characteristics were modeled

40 60

asured Modeled

20 40 6002

04

F x

S c e n a r i o 2 ( k N )

Measured Modeled

40 60Time (s)

rio 1 Scenario 2

20 40 6012

14

16

18

2

22

w ( k

r p m )

Time (s)

Scenario 1 Scenario 2

Path Force Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1331

Axial Force Controlle

m

Top axial force with force control (

Bottom axial force without force c

Results (gap = 0381

)

variation ~ 01 kN)

ontrol (variation ~ 04 kN)

20 40 6029

3

F a

( k N )

20 40 60421

433

d c

( m m

)

Time (s)

20 40291

329

Time (s)

F a

( k N )

Measured

Reference

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1431

Axial Force Controller

0762

Axial force and commanded depth wit

1

Travel Direction

Shim Side View

Top View

End Location Start Location

Shim

esults (gap = 0381 rarr

mm)

h force control (variation ~ 01 kN)

20 40 60

295

3

305

F a

( k N )

Measured Reference

20 40 60

4

405

41

d c

( m m )

Time (s)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1531

Path Force Co

10 20 30 40

05

1

15

F p

( k N ) Measured

Reference

10 20 30 40

1

2

w c

( k r p m )

Cont Onreg

Time (s)

(a) nugget with force control

(b) nugget without force control

troller Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1631

Analysis of 2024 Alumi

To

Frequency analysis process

effects dominate structural effects

100 120 140 160 180 200 2200

200

400

600

F o r c e ( l b

s )

Time (sec)

Run 1

0 500

100

200

300

M a g ( l b 2 )

F1

0 500

100

200

300FMAX

0 500

100

200F2

0 500

100

200FMIN

0 500

1

2

3

M a g ( l b 2 )

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

um with Fixed and RP

ls

Cross section analysis

most runs had no defects

Force analysis path force

mainly affected by travel speed

and pin force is not highly

correlated with process

parameters

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1731

Conclusions

bull FSW processes for 6061 Al hav

bull Control of both axial and path fo

the presence of gaps and mism

bull Analysis tools have been devel

investigate forces in both frequebull Atlas of discontinuities complet

Capabilities

bull Missouri SampT has expertise in a

including dynamic modeling

bull Missouri SampT has expertise in c

when gap and mismatches are

Implementation of Intellig

been successfully modeled

rces have been achieved even in

tches

ped for FSW processes to

ncy and time domainsd

nalyzing FSW processes

ontrolling FSW processes even

present

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1831

Corrosion Prevention o

Example shows corrosion in FSW 7075 of 500h exposure in neutral sa

The current manufacturing

joints to contain a faying

An additional complication is that thsensitivity

FSW Lap Joints result in cre

FSW Joints

73 Al as a result lt fog

approach requires riveted

urface protective sealant

thermal exposure of FSW increaseso corrosion

ices on both sides of the weld

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1931

MSampTrsquos Nylon 11 Approac

The FSW operation melts the nylon which

forms a protective fillet upon solidifying

MSampTrsquos Appro bull Apply a thin (0003rdquo) layer of

thermoplastic sealant) to th

bull Weld through this sealant

This sealant is available from MortonCompany as Corvelreg white 78 1001Melts at 185ordmC salt spray resistant

Costs about $10lb

h to Corrosion Protection

chnylon 11 (polyamide

flange of a lsquoTrsquo prior to welding

Polished cross section of the FSW joint

shows that sealant fills crevices between

faying surfaces but has been expelled

from immediate region of the joint

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2031

Joint Strengths are Deter

lsquoTrsquo Pull off testing causes the skins to ustiffer indicating that this sealant carrie

load Sudden drops correspond to fail

ined by T Pull off Tests

plift The joints sealed with nylon 11 arean appreciable portion of the applied

re in the seals on each side of the T

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2131

Adhesive failure of ano

Sealant

0

500

1000

1500

2000

0 002 004 006 008 0

Anodized

1263 28 sealant1266 28

P o u n d s f o r

c e p e r i n c h o f w e l d

Displacement in inches

Sealant adheres to anodi

aluminum interface with

ized layer

Cast A357

Anodized Layers

1

ed layer and failure initiates at

nodized layer

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 12: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1231

Force Modeling (

The static and dynamic force proce

Axial Force Results

0 20 40 60 802

3

4

5

F

z ( k N ) Measured Modeled

0 20 40 60 804

45

5

Time (s)

d(mm)

2002

04

F x

S c e n a r i o 1 ( k N )

M

20

2

3

4

v ( m m s )

Scen

6061 Aluminum)

s characteristics were modeled

40 60

asured Modeled

20 40 6002

04

F x

S c e n a r i o 2 ( k N )

Measured Modeled

40 60Time (s)

rio 1 Scenario 2

20 40 6012

14

16

18

2

22

w ( k

r p m )

Time (s)

Scenario 1 Scenario 2

Path Force Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1331

Axial Force Controlle

m

Top axial force with force control (

Bottom axial force without force c

Results (gap = 0381

)

variation ~ 01 kN)

ontrol (variation ~ 04 kN)

20 40 6029

3

F a

( k N )

20 40 60421

433

d c

( m m

)

Time (s)

20 40291

329

Time (s)

F a

( k N )

Measured

Reference

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1431

Axial Force Controller

0762

Axial force and commanded depth wit

1

Travel Direction

Shim Side View

Top View

End Location Start Location

Shim

esults (gap = 0381 rarr

mm)

h force control (variation ~ 01 kN)

20 40 60

295

3

305

F a

( k N )

Measured Reference

20 40 60

4

405

41

d c

( m m )

Time (s)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1531

Path Force Co

10 20 30 40

05

1

15

F p

( k N ) Measured

Reference

10 20 30 40

1

2

w c

( k r p m )

Cont Onreg

Time (s)

(a) nugget with force control

(b) nugget without force control

troller Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1631

Analysis of 2024 Alumi

To

Frequency analysis process

effects dominate structural effects

100 120 140 160 180 200 2200

200

400

600

F o r c e ( l b

s )

Time (sec)

Run 1

0 500

100

200

300

M a g ( l b 2 )

F1

0 500

100

200

300FMAX

0 500

100

200F2

0 500

100

200FMIN

0 500

1

2

3

M a g ( l b 2 )

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

um with Fixed and RP

ls

Cross section analysis

most runs had no defects

Force analysis path force

mainly affected by travel speed

and pin force is not highly

correlated with process

parameters

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1731

Conclusions

bull FSW processes for 6061 Al hav

bull Control of both axial and path fo

the presence of gaps and mism

bull Analysis tools have been devel

investigate forces in both frequebull Atlas of discontinuities complet

Capabilities

bull Missouri SampT has expertise in a

including dynamic modeling

bull Missouri SampT has expertise in c

when gap and mismatches are

Implementation of Intellig

been successfully modeled

rces have been achieved even in

tches

ped for FSW processes to

ncy and time domainsd

nalyzing FSW processes

ontrolling FSW processes even

present

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1831

Corrosion Prevention o

Example shows corrosion in FSW 7075 of 500h exposure in neutral sa

The current manufacturing

joints to contain a faying

An additional complication is that thsensitivity

FSW Lap Joints result in cre

FSW Joints

73 Al as a result lt fog

approach requires riveted

urface protective sealant

thermal exposure of FSW increaseso corrosion

ices on both sides of the weld

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1931

MSampTrsquos Nylon 11 Approac

The FSW operation melts the nylon which

forms a protective fillet upon solidifying

MSampTrsquos Appro bull Apply a thin (0003rdquo) layer of

thermoplastic sealant) to th

bull Weld through this sealant

This sealant is available from MortonCompany as Corvelreg white 78 1001Melts at 185ordmC salt spray resistant

Costs about $10lb

h to Corrosion Protection

chnylon 11 (polyamide

flange of a lsquoTrsquo prior to welding

Polished cross section of the FSW joint

shows that sealant fills crevices between

faying surfaces but has been expelled

from immediate region of the joint

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2031

Joint Strengths are Deter

lsquoTrsquo Pull off testing causes the skins to ustiffer indicating that this sealant carrie

load Sudden drops correspond to fail

ined by T Pull off Tests

plift The joints sealed with nylon 11 arean appreciable portion of the applied

re in the seals on each side of the T

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2131

Adhesive failure of ano

Sealant

0

500

1000

1500

2000

0 002 004 006 008 0

Anodized

1263 28 sealant1266 28

P o u n d s f o r

c e p e r i n c h o f w e l d

Displacement in inches

Sealant adheres to anodi

aluminum interface with

ized layer

Cast A357

Anodized Layers

1

ed layer and failure initiates at

nodized layer

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 13: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1331

Axial Force Controlle

m

Top axial force with force control (

Bottom axial force without force c

Results (gap = 0381

)

variation ~ 01 kN)

ontrol (variation ~ 04 kN)

20 40 6029

3

F a

( k N )

20 40 60421

433

d c

( m m

)

Time (s)

20 40291

329

Time (s)

F a

( k N )

Measured

Reference

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1431

Axial Force Controller

0762

Axial force and commanded depth wit

1

Travel Direction

Shim Side View

Top View

End Location Start Location

Shim

esults (gap = 0381 rarr

mm)

h force control (variation ~ 01 kN)

20 40 60

295

3

305

F a

( k N )

Measured Reference

20 40 60

4

405

41

d c

( m m )

Time (s)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1531

Path Force Co

10 20 30 40

05

1

15

F p

( k N ) Measured

Reference

10 20 30 40

1

2

w c

( k r p m )

Cont Onreg

Time (s)

(a) nugget with force control

(b) nugget without force control

troller Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1631

Analysis of 2024 Alumi

To

Frequency analysis process

effects dominate structural effects

100 120 140 160 180 200 2200

200

400

600

F o r c e ( l b

s )

Time (sec)

Run 1

0 500

100

200

300

M a g ( l b 2 )

F1

0 500

100

200

300FMAX

0 500

100

200F2

0 500

100

200FMIN

0 500

1

2

3

M a g ( l b 2 )

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

um with Fixed and RP

ls

Cross section analysis

most runs had no defects

Force analysis path force

mainly affected by travel speed

and pin force is not highly

correlated with process

parameters

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1731

Conclusions

bull FSW processes for 6061 Al hav

bull Control of both axial and path fo

the presence of gaps and mism

bull Analysis tools have been devel

investigate forces in both frequebull Atlas of discontinuities complet

Capabilities

bull Missouri SampT has expertise in a

including dynamic modeling

bull Missouri SampT has expertise in c

when gap and mismatches are

Implementation of Intellig

been successfully modeled

rces have been achieved even in

tches

ped for FSW processes to

ncy and time domainsd

nalyzing FSW processes

ontrolling FSW processes even

present

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1831

Corrosion Prevention o

Example shows corrosion in FSW 7075 of 500h exposure in neutral sa

The current manufacturing

joints to contain a faying

An additional complication is that thsensitivity

FSW Lap Joints result in cre

FSW Joints

73 Al as a result lt fog

approach requires riveted

urface protective sealant

thermal exposure of FSW increaseso corrosion

ices on both sides of the weld

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1931

MSampTrsquos Nylon 11 Approac

The FSW operation melts the nylon which

forms a protective fillet upon solidifying

MSampTrsquos Appro bull Apply a thin (0003rdquo) layer of

thermoplastic sealant) to th

bull Weld through this sealant

This sealant is available from MortonCompany as Corvelreg white 78 1001Melts at 185ordmC salt spray resistant

Costs about $10lb

h to Corrosion Protection

chnylon 11 (polyamide

flange of a lsquoTrsquo prior to welding

Polished cross section of the FSW joint

shows that sealant fills crevices between

faying surfaces but has been expelled

from immediate region of the joint

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2031

Joint Strengths are Deter

lsquoTrsquo Pull off testing causes the skins to ustiffer indicating that this sealant carrie

load Sudden drops correspond to fail

ined by T Pull off Tests

plift The joints sealed with nylon 11 arean appreciable portion of the applied

re in the seals on each side of the T

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2131

Adhesive failure of ano

Sealant

0

500

1000

1500

2000

0 002 004 006 008 0

Anodized

1263 28 sealant1266 28

P o u n d s f o r

c e p e r i n c h o f w e l d

Displacement in inches

Sealant adheres to anodi

aluminum interface with

ized layer

Cast A357

Anodized Layers

1

ed layer and failure initiates at

nodized layer

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 14: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1431

Axial Force Controller

0762

Axial force and commanded depth wit

1

Travel Direction

Shim Side View

Top View

End Location Start Location

Shim

esults (gap = 0381 rarr

mm)

h force control (variation ~ 01 kN)

20 40 60

295

3

305

F a

( k N )

Measured Reference

20 40 60

4

405

41

d c

( m m )

Time (s)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1531

Path Force Co

10 20 30 40

05

1

15

F p

( k N ) Measured

Reference

10 20 30 40

1

2

w c

( k r p m )

Cont Onreg

Time (s)

(a) nugget with force control

(b) nugget without force control

troller Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1631

Analysis of 2024 Alumi

To

Frequency analysis process

effects dominate structural effects

100 120 140 160 180 200 2200

200

400

600

F o r c e ( l b

s )

Time (sec)

Run 1

0 500

100

200

300

M a g ( l b 2 )

F1

0 500

100

200

300FMAX

0 500

100

200F2

0 500

100

200FMIN

0 500

1

2

3

M a g ( l b 2 )

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

um with Fixed and RP

ls

Cross section analysis

most runs had no defects

Force analysis path force

mainly affected by travel speed

and pin force is not highly

correlated with process

parameters

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1731

Conclusions

bull FSW processes for 6061 Al hav

bull Control of both axial and path fo

the presence of gaps and mism

bull Analysis tools have been devel

investigate forces in both frequebull Atlas of discontinuities complet

Capabilities

bull Missouri SampT has expertise in a

including dynamic modeling

bull Missouri SampT has expertise in c

when gap and mismatches are

Implementation of Intellig

been successfully modeled

rces have been achieved even in

tches

ped for FSW processes to

ncy and time domainsd

nalyzing FSW processes

ontrolling FSW processes even

present

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1831

Corrosion Prevention o

Example shows corrosion in FSW 7075 of 500h exposure in neutral sa

The current manufacturing

joints to contain a faying

An additional complication is that thsensitivity

FSW Lap Joints result in cre

FSW Joints

73 Al as a result lt fog

approach requires riveted

urface protective sealant

thermal exposure of FSW increaseso corrosion

ices on both sides of the weld

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1931

MSampTrsquos Nylon 11 Approac

The FSW operation melts the nylon which

forms a protective fillet upon solidifying

MSampTrsquos Appro bull Apply a thin (0003rdquo) layer of

thermoplastic sealant) to th

bull Weld through this sealant

This sealant is available from MortonCompany as Corvelreg white 78 1001Melts at 185ordmC salt spray resistant

Costs about $10lb

h to Corrosion Protection

chnylon 11 (polyamide

flange of a lsquoTrsquo prior to welding

Polished cross section of the FSW joint

shows that sealant fills crevices between

faying surfaces but has been expelled

from immediate region of the joint

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2031

Joint Strengths are Deter

lsquoTrsquo Pull off testing causes the skins to ustiffer indicating that this sealant carrie

load Sudden drops correspond to fail

ined by T Pull off Tests

plift The joints sealed with nylon 11 arean appreciable portion of the applied

re in the seals on each side of the T

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2131

Adhesive failure of ano

Sealant

0

500

1000

1500

2000

0 002 004 006 008 0

Anodized

1263 28 sealant1266 28

P o u n d s f o r

c e p e r i n c h o f w e l d

Displacement in inches

Sealant adheres to anodi

aluminum interface with

ized layer

Cast A357

Anodized Layers

1

ed layer and failure initiates at

nodized layer

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 15: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1531

Path Force Co

10 20 30 40

05

1

15

F p

( k N ) Measured

Reference

10 20 30 40

1

2

w c

( k r p m )

Cont Onreg

Time (s)

(a) nugget with force control

(b) nugget without force control

troller Results

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1631

Analysis of 2024 Alumi

To

Frequency analysis process

effects dominate structural effects

100 120 140 160 180 200 2200

200

400

600

F o r c e ( l b

s )

Time (sec)

Run 1

0 500

100

200

300

M a g ( l b 2 )

F1

0 500

100

200

300FMAX

0 500

100

200F2

0 500

100

200FMIN

0 500

1

2

3

M a g ( l b 2 )

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

um with Fixed and RP

ls

Cross section analysis

most runs had no defects

Force analysis path force

mainly affected by travel speed

and pin force is not highly

correlated with process

parameters

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1731

Conclusions

bull FSW processes for 6061 Al hav

bull Control of both axial and path fo

the presence of gaps and mism

bull Analysis tools have been devel

investigate forces in both frequebull Atlas of discontinuities complet

Capabilities

bull Missouri SampT has expertise in a

including dynamic modeling

bull Missouri SampT has expertise in c

when gap and mismatches are

Implementation of Intellig

been successfully modeled

rces have been achieved even in

tches

ped for FSW processes to

ncy and time domainsd

nalyzing FSW processes

ontrolling FSW processes even

present

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1831

Corrosion Prevention o

Example shows corrosion in FSW 7075 of 500h exposure in neutral sa

The current manufacturing

joints to contain a faying

An additional complication is that thsensitivity

FSW Lap Joints result in cre

FSW Joints

73 Al as a result lt fog

approach requires riveted

urface protective sealant

thermal exposure of FSW increaseso corrosion

ices on both sides of the weld

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1931

MSampTrsquos Nylon 11 Approac

The FSW operation melts the nylon which

forms a protective fillet upon solidifying

MSampTrsquos Appro bull Apply a thin (0003rdquo) layer of

thermoplastic sealant) to th

bull Weld through this sealant

This sealant is available from MortonCompany as Corvelreg white 78 1001Melts at 185ordmC salt spray resistant

Costs about $10lb

h to Corrosion Protection

chnylon 11 (polyamide

flange of a lsquoTrsquo prior to welding

Polished cross section of the FSW joint

shows that sealant fills crevices between

faying surfaces but has been expelled

from immediate region of the joint

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2031

Joint Strengths are Deter

lsquoTrsquo Pull off testing causes the skins to ustiffer indicating that this sealant carrie

load Sudden drops correspond to fail

ined by T Pull off Tests

plift The joints sealed with nylon 11 arean appreciable portion of the applied

re in the seals on each side of the T

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2131

Adhesive failure of ano

Sealant

0

500

1000

1500

2000

0 002 004 006 008 0

Anodized

1263 28 sealant1266 28

P o u n d s f o r

c e p e r i n c h o f w e l d

Displacement in inches

Sealant adheres to anodi

aluminum interface with

ized layer

Cast A357

Anodized Layers

1

ed layer and failure initiates at

nodized layer

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 16: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1631

Analysis of 2024 Alumi

To

Frequency analysis process

effects dominate structural effects

100 120 140 160 180 200 2200

200

400

600

F o r c e ( l b

s )

Time (sec)

Run 1

0 500

100

200

300

M a g ( l b 2 )

F1

0 500

100

200

300FMAX

0 500

100

200F2

0 500

100

200FMIN

0 500

1

2

3

M a g ( l b 2 )

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

0 500

1

2

3

Frequency (Hz)

um with Fixed and RP

ls

Cross section analysis

most runs had no defects

Force analysis path force

mainly affected by travel speed

and pin force is not highly

correlated with process

parameters

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1731

Conclusions

bull FSW processes for 6061 Al hav

bull Control of both axial and path fo

the presence of gaps and mism

bull Analysis tools have been devel

investigate forces in both frequebull Atlas of discontinuities complet

Capabilities

bull Missouri SampT has expertise in a

including dynamic modeling

bull Missouri SampT has expertise in c

when gap and mismatches are

Implementation of Intellig

been successfully modeled

rces have been achieved even in

tches

ped for FSW processes to

ncy and time domainsd

nalyzing FSW processes

ontrolling FSW processes even

present

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1831

Corrosion Prevention o

Example shows corrosion in FSW 7075 of 500h exposure in neutral sa

The current manufacturing

joints to contain a faying

An additional complication is that thsensitivity

FSW Lap Joints result in cre

FSW Joints

73 Al as a result lt fog

approach requires riveted

urface protective sealant

thermal exposure of FSW increaseso corrosion

ices on both sides of the weld

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1931

MSampTrsquos Nylon 11 Approac

The FSW operation melts the nylon which

forms a protective fillet upon solidifying

MSampTrsquos Appro bull Apply a thin (0003rdquo) layer of

thermoplastic sealant) to th

bull Weld through this sealant

This sealant is available from MortonCompany as Corvelreg white 78 1001Melts at 185ordmC salt spray resistant

Costs about $10lb

h to Corrosion Protection

chnylon 11 (polyamide

flange of a lsquoTrsquo prior to welding

Polished cross section of the FSW joint

shows that sealant fills crevices between

faying surfaces but has been expelled

from immediate region of the joint

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2031

Joint Strengths are Deter

lsquoTrsquo Pull off testing causes the skins to ustiffer indicating that this sealant carrie

load Sudden drops correspond to fail

ined by T Pull off Tests

plift The joints sealed with nylon 11 arean appreciable portion of the applied

re in the seals on each side of the T

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2131

Adhesive failure of ano

Sealant

0

500

1000

1500

2000

0 002 004 006 008 0

Anodized

1263 28 sealant1266 28

P o u n d s f o r

c e p e r i n c h o f w e l d

Displacement in inches

Sealant adheres to anodi

aluminum interface with

ized layer

Cast A357

Anodized Layers

1

ed layer and failure initiates at

nodized layer

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 17: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1731

Conclusions

bull FSW processes for 6061 Al hav

bull Control of both axial and path fo

the presence of gaps and mism

bull Analysis tools have been devel

investigate forces in both frequebull Atlas of discontinuities complet

Capabilities

bull Missouri SampT has expertise in a

including dynamic modeling

bull Missouri SampT has expertise in c

when gap and mismatches are

Implementation of Intellig

been successfully modeled

rces have been achieved even in

tches

ped for FSW processes to

ncy and time domainsd

nalyzing FSW processes

ontrolling FSW processes even

present

ent Process Control

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1831

Corrosion Prevention o

Example shows corrosion in FSW 7075 of 500h exposure in neutral sa

The current manufacturing

joints to contain a faying

An additional complication is that thsensitivity

FSW Lap Joints result in cre

FSW Joints

73 Al as a result lt fog

approach requires riveted

urface protective sealant

thermal exposure of FSW increaseso corrosion

ices on both sides of the weld

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1931

MSampTrsquos Nylon 11 Approac

The FSW operation melts the nylon which

forms a protective fillet upon solidifying

MSampTrsquos Appro bull Apply a thin (0003rdquo) layer of

thermoplastic sealant) to th

bull Weld through this sealant

This sealant is available from MortonCompany as Corvelreg white 78 1001Melts at 185ordmC salt spray resistant

Costs about $10lb

h to Corrosion Protection

chnylon 11 (polyamide

flange of a lsquoTrsquo prior to welding

Polished cross section of the FSW joint

shows that sealant fills crevices between

faying surfaces but has been expelled

from immediate region of the joint

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2031

Joint Strengths are Deter

lsquoTrsquo Pull off testing causes the skins to ustiffer indicating that this sealant carrie

load Sudden drops correspond to fail

ined by T Pull off Tests

plift The joints sealed with nylon 11 arean appreciable portion of the applied

re in the seals on each side of the T

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2131

Adhesive failure of ano

Sealant

0

500

1000

1500

2000

0 002 004 006 008 0

Anodized

1263 28 sealant1266 28

P o u n d s f o r

c e p e r i n c h o f w e l d

Displacement in inches

Sealant adheres to anodi

aluminum interface with

ized layer

Cast A357

Anodized Layers

1

ed layer and failure initiates at

nodized layer

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 18: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1831

Corrosion Prevention o

Example shows corrosion in FSW 7075 of 500h exposure in neutral sa

The current manufacturing

joints to contain a faying

An additional complication is that thsensitivity

FSW Lap Joints result in cre

FSW Joints

73 Al as a result lt fog

approach requires riveted

urface protective sealant

thermal exposure of FSW increaseso corrosion

ices on both sides of the weld

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1931

MSampTrsquos Nylon 11 Approac

The FSW operation melts the nylon which

forms a protective fillet upon solidifying

MSampTrsquos Appro bull Apply a thin (0003rdquo) layer of

thermoplastic sealant) to th

bull Weld through this sealant

This sealant is available from MortonCompany as Corvelreg white 78 1001Melts at 185ordmC salt spray resistant

Costs about $10lb

h to Corrosion Protection

chnylon 11 (polyamide

flange of a lsquoTrsquo prior to welding

Polished cross section of the FSW joint

shows that sealant fills crevices between

faying surfaces but has been expelled

from immediate region of the joint

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2031

Joint Strengths are Deter

lsquoTrsquo Pull off testing causes the skins to ustiffer indicating that this sealant carrie

load Sudden drops correspond to fail

ined by T Pull off Tests

plift The joints sealed with nylon 11 arean appreciable portion of the applied

re in the seals on each side of the T

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2131

Adhesive failure of ano

Sealant

0

500

1000

1500

2000

0 002 004 006 008 0

Anodized

1263 28 sealant1266 28

P o u n d s f o r

c e p e r i n c h o f w e l d

Displacement in inches

Sealant adheres to anodi

aluminum interface with

ized layer

Cast A357

Anodized Layers

1

ed layer and failure initiates at

nodized layer

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 19: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 1931

MSampTrsquos Nylon 11 Approac

The FSW operation melts the nylon which

forms a protective fillet upon solidifying

MSampTrsquos Appro bull Apply a thin (0003rdquo) layer of

thermoplastic sealant) to th

bull Weld through this sealant

This sealant is available from MortonCompany as Corvelreg white 78 1001Melts at 185ordmC salt spray resistant

Costs about $10lb

h to Corrosion Protection

chnylon 11 (polyamide

flange of a lsquoTrsquo prior to welding

Polished cross section of the FSW joint

shows that sealant fills crevices between

faying surfaces but has been expelled

from immediate region of the joint

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2031

Joint Strengths are Deter

lsquoTrsquo Pull off testing causes the skins to ustiffer indicating that this sealant carrie

load Sudden drops correspond to fail

ined by T Pull off Tests

plift The joints sealed with nylon 11 arean appreciable portion of the applied

re in the seals on each side of the T

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2131

Adhesive failure of ano

Sealant

0

500

1000

1500

2000

0 002 004 006 008 0

Anodized

1263 28 sealant1266 28

P o u n d s f o r

c e p e r i n c h o f w e l d

Displacement in inches

Sealant adheres to anodi

aluminum interface with

ized layer

Cast A357

Anodized Layers

1

ed layer and failure initiates at

nodized layer

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 20: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2031

Joint Strengths are Deter

lsquoTrsquo Pull off testing causes the skins to ustiffer indicating that this sealant carrie

load Sudden drops correspond to fail

ined by T Pull off Tests

plift The joints sealed with nylon 11 arean appreciable portion of the applied

re in the seals on each side of the T

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2131

Adhesive failure of ano

Sealant

0

500

1000

1500

2000

0 002 004 006 008 0

Anodized

1263 28 sealant1266 28

P o u n d s f o r

c e p e r i n c h o f w e l d

Displacement in inches

Sealant adheres to anodi

aluminum interface with

ized layer

Cast A357

Anodized Layers

1

ed layer and failure initiates at

nodized layer

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 21: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2131

Adhesive failure of ano

Sealant

0

500

1000

1500

2000

0 002 004 006 008 0

Anodized

1263 28 sealant1266 28

P o u n d s f o r

c e p e r i n c h o f w e l d

Displacement in inches

Sealant adheres to anodi

aluminum interface with

ized layer

Cast A357

Anodized Layers

1

ed layer and failure initiates at

nodized layer

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 22: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2231

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 23: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2331

Thermoplastic sealants

bull Significant advantage joints

bull thermoplastic bondingduring fatigue loading

bull thermoplastics are eff bull thermoplastics are ea

bull Disadvantages of the

bull FSW is much more of bull initial lift off of top skin

for FSW summar

s of ldquobondedrdquo amp welded lap

shields nugget root weld defects

ctive corrosion sealantsily repairable by reheating

moplastic sealants

a thermal management problemis serious draw back

Metal superplasticity enhan

ement and forming process

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 24: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2431

US Patent 6712916 Mishra

FSP will enable new technologibull Selective superplasticity

bull Superplasticity in thick sheetsbull Superplastic forging

bull High strain rate superplasticity fr

bull Superplasticity in contoured she

FSP

nd Mahoney March 30 2004

s and concepts such as

om cast or hot pressed sheet and

ts

omponent courtesy the Boeing Phantom Works

Large Scale Feasibility Demonstration

Rockwell Scientific and Superform

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 25: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2531

Superplastic ductility i

bull High strain rate superplastiin three commercial alloys

104

103

102

101

100

0

200

400

600

800

1000

1200

1400

16001800

Superplastic Ductility

480oC

430oC

530oC

480oC

FSP 7075 Al

As rolled 7075 Al

FSP 2024 Al

FSP 5083 Al

E l o n g

a t i o n ( )

Strain Rate (s1

)

n FSP Al alloys

ity has been demonstrated7075 2024 and 5083 Al

400 420 440 460 480 500 520 540 5600

200

400

600

800

1000

1200

1400

16001800

Abnormal Grain Growth

Strain Rate 10x102

s1

Temperature (oC)

FSP 7075 Al (38 mm)

FSP 2024 Al (39 mm)

FSP 5083 Al (6 mm)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 26: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2631

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 27: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2731

OslashSi Particle refinement by

OslashStrength improvement by

OslashDuctility improvement by

OslashThe Quality Index improvplates to gt500 after FSP a

Friction Stir Processin

900 rpm8 ipm

factor of 3

more than 5010X

s from ~200 for as castn increase of more than 2X

Casting Modification

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 28: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2831

Friction Stir Casting

Oslash 80 improvement in

103

104

1

0

50

100

150

200

250

300

runout

As cast

FSP

Cast + T6

FSP + T6

M a x i m u m S

t r e s s

M P a

Num

odification

atigue strength

5

106

107

108

R = 01

er of Cycles

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 29: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 2931

Friction Stir Casting

Oslash Toughness impr

1106

105

104

103

102

Cast A356Cast + T6

FSP A356

FSP + T6

R = 01

d a d N

( m m

c y c l e )

D

odification

vement by 50

10 100

MPa m12

Integral channels in metal components

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 30: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3031

US Patent 6923362

Friction stir channeling will enabull Production of integral channels i

bull Incorporation of cooling or heati

a solid component and

bull Design of single piece heat exch

ishra August 2 2005

le concepts such asplates dies and permanent molds

g channels on a curved surfaces of

angers

Internal

Friction

Stirred

Channel

InletOutlet

Connectors

Monolithic

Plate

Integral

channels

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts

Page 31: FrictionStirProcessing (1)

862019 FrictionStirProcessing (1)

httpslidepdfcomreaderfullfrictionstirprocessing-1 3131

FSP is a versatile soli

manufact

Our work includes solutions to

bullFundamental understanding

bullProcess parameter developmbullDevelopment of microstructur

bullProcess control development

bullMetallurgical characterization

state processing and

ring tool

applications

f the friction stir process

ent for industrial implementational modification concepts


Recommended