+ All Categories
Home > Documents > From biological membranes to biomimetic model membranes · B A S E Biotechnol. Agron. Soc. Environ....

From biological membranes to biomimetic model membranes · B A S E Biotechnol. Agron. Soc. Environ....

Date post: 04-Jun-2018
Category:
Upload: dominh
View: 213 times
Download: 0 times
Share this document with a friend
18
BA SE Biotechnol. Agron. Soc. Environ. 2010 14(4), 719-736 Focus on: From biological membranes to biomimetic model membranes Marc Eeman, Magali Deleu Univ. Liege - GemblouxAgro-Bio-Tech. Department of Biological Industrial Chemistry. Passage des Déportés, 2. B-5030 Gembloux (Belgium). E-mail: [email protected] Received on June 4, 2009; accepted on December 9, 2009. Biological membranes play an essential role in the cellular protection as well as in the control and the transport of nutrients. Many mechanisms such as molecular recognition, enzymatic catalysis, cellular adhesion and membrane fusion take place into the biological membranes. In 1972, Singer et al. provided a membrane model, called fluid mosaic model, in which each leaflet of the bilayer is formed by a homogeneous environment of lipids in a fluid state including globular assembling of proteins and glycoproteins. Since its conception in 1972, many developments were brought to this model in terms of composition and molecular organization. The main development of the fluid mosaic model was made by Simons et al. (1997) and Brown et al. (1997) who suggested that membrane lipids are organized into lateral microdomains (or lipid rafts) with a specific composition and a molecular dynamic that are different to the composition and the dynamic of the surrounding liquid crystalline phase. The discovery of a phase separation in the plane of the membrane has induced an explosion in the research efforts related to the biology of cell membranes but also in the development of new technologies for the study of these biological systems. Due to the high complexity of biological membranes and in order to investigate the biological processes that occur on the membrane surface or within the membrane lipid bilayer, a large number of studies are performed using biomimicking model membranes. This paper aims at revisiting the fundamental properties of biological membranes in terms of membrane composition, membrane dynamic and molecular organization, as well as at describing the most common biomimicking models that are frequently used for investigating biological processes such as membrane fusion, membrane trafficking, pore formation as well as membrane interactions at a molecular level. Keywords. Biological membranes, nanoscale membrane organization, model membranes, lipid monolayers, lipid vesicles, supported lipid bilayers. Des membranes biologiques aux modèles membranaires biomimétiques. Les membranes biologiques jouent un rôle essentiel dans la protection cellulaire ainsi que dans le contrôle et le transport des éléments nutritifs. Elles sont le lieu de nombreux mécanismes biologiques tels que la reconnaissance moléculaire, la catalyse enzymatique, l’adhésion cellulaire ou encore la fusion membranaire. En 1972, Singer et al. ont proposé un modèle membranaire, appelé modèle de la mosaïque fluide. Selon ce modèle, les membranes biologiques consistent en des bicouches lipidiques dynamiques renfermant des protéines et des glycoprotéines. Les protéines membranaires forment des icebergs globulaires dans une mer homogène de lipides à l’état fluide. Depuis sa conception, le modèle de la mosaïque fluide a fortement évolué notamment suite aux travaux de Simons et al. (1997) et de Brown et al. (1997). Ces chercheurs ont montré que les lipides membranaires sont en réalité organisés en microdomaines (rafts lipidiques) dont la composition et la dynamique moléculaire sont bien spécifiques et différentes de celles de la phase liquide cristalline formée par les phospholipides environnants. Une telle découverte a entrainé un intérêt sans cesse croissant pour l’étude des membranes biologiques et a provoqué par la même occasion une émergence de nouvelles technologies de pointe pour améliorer nos connaissances sur ces systèmes biologiques extrêmement complexes. Aussi, en raison de la grande complexité des membranes biologiques, la plupart des études ciblant les mécanismes biologiques qui se déroulent à la surface des membranes ou au sein de leur bicouche lipidique sont réalisées en utilisant des modèles membranaires biomimétiques. Cette synthèse a donc pour principaux objectifs de revisiter les propriétés de base des membranes biologiques en termes de composition membranaire, de dynamique membranaire et d’organisation moléculaire, ainsi que de décrire les modèles membranaires les plus couramment utilisés pour étudier des mécanismes biologiques tels que la fusion membranaire, le transport membranaire, la formation de pores membranaires, ainsi que les interactions membranaires à l’échelle moléculaire. Mots-clés. Membranes biologiques, organisation membranaire à l’échelle nanométrique, modèles membranaires, monocouches lipidiques, vésicules lipidiques, bicouches lipidiques supportées.
Transcript
Page 1: From biological membranes to biomimetic model membranes · B A S E Biotechnol. Agron. Soc. Environ. 2010 14(4), 719-736 Focus on: From biological membranes to biomimetic model membranes

BASE Biotechnol. Agron. Soc. Environ.201014(4),719-736 Focus on:

FrombiologicalmembranestobiomimeticmodelmembranesMarcEeman,MagaliDeleuUniv.Liege-GemblouxAgro-Bio-Tech.DepartmentofBiologicalIndustrialChemistry.PassagedesDéportés,2.B-5030Gembloux(Belgium).E-mail:[email protected]

ReceivedonJune4,2009;acceptedonDecember9,2009.

Biologicalmembranesplayanessentialroleinthecellularprotectionaswellasinthecontrolandthetransportofnutrients.Manymechanismssuchasmolecularrecognition,enzymaticcatalysis,cellularadhesionandmembranefusiontakeplaceintothebiologicalmembranes.In1972,Singeretal.providedamembranemodel,calledfluidmosaicmodel,inwhicheachleafletofthebilayerisformedbyahomogeneousenvironmentoflipidsinafluidstateincludingglobularassemblingofproteinsandglycoproteins.Sinceitsconceptionin1972,manydevelopmentswerebroughttothismodelintermsofcompositionandmolecularorganization.ThemaindevelopmentofthefluidmosaicmodelwasmadebySimonsetal.(1997)andBrownetal.(1997)whosuggestedthatmembranelipidsareorganizedintolateralmicrodomains(orlipidrafts)withaspecificcompositionandamoleculardynamicthataredifferenttothecompositionandthedynamicofthesurroundingliquidcrystallinephase.Thediscoveryofaphaseseparationintheplaneofthemembranehasinducedanexplosionintheresearcheffortsrelatedtothebiologyofcellmembranesbutalsointhedevelopmentofnewtechnologiesforthestudyofthesebiologicalsystems.Duetothehighcomplexityofbiologicalmembranesandinordertoinvestigatethebiologicalprocessesthatoccuronthemembranesurfaceorwithinthemembranelipidbilayer,alargenumberofstudiesareperformedusingbiomimickingmodelmembranes.This paper aims at revisiting the fundamental properties of biological membranes in terms of membrane composition,membranedynamicandmolecularorganization,aswellasatdescribing themostcommonbiomimickingmodels thatarefrequentlyusedforinvestigatingbiologicalprocessessuchasmembranefusion,membranetrafficking,poreformationaswellasmembraneinteractionsatamolecularlevel.Keywords.Biologicalmembranes,nanoscalemembraneorganization,modelmembranes, lipidmonolayers, lipidvesicles,supportedlipidbilayers.

Des membranes biologiques aux modèles membranaires biomimétiques. Les membranes biologiques jouent un rôleessentieldans laprotectioncellulaireainsiquedans lecontrôleet le transportdesélémentsnutritifs.Ellessont le lieudenombreuxmécanismesbiologiquestelsquelareconnaissancemoléculaire,lacatalyseenzymatique,l’adhésioncellulaireouencorelafusionmembranaire.En1972,Singeretal.ontproposéunmodèlemembranaire,appelémodèledelamosaïquefluide.Seloncemodèle,lesmembranesbiologiquesconsistentendesbicoucheslipidiquesdynamiquesrenfermantdesprotéinesetdesglycoprotéines.Lesprotéinesmembranairesformentdesicebergsglobulairesdansunemerhomogènedelipidesàl’étatfluide.Depuissaconception,lemodèledelamosaïquefluideafortementévoluénotammentsuiteauxtravauxdeSimonsetal. (1997)etdeBrownetal. (1997).Ceschercheursontmontréque les lipidesmembranairessonten réalitéorganisésenmicrodomaines(raftslipidiques)dontlacompositionetladynamiquemoléculairesontbienspécifiquesetdifférentesdecellesdelaphaseliquidecristallineforméeparlesphospholipidesenvironnants.Unetelledécouverteaentrainéunintérêtsanscessecroissantpourl’étudedesmembranesbiologiquesetaprovoquéparlamêmeoccasionuneémergencedenouvellestechnologiesdepointepouraméliorernosconnaissancessurcessystèmesbiologiquesextrêmementcomplexes.Aussi,enraisondelagrandecomplexitédesmembranesbiologiques,laplupartdesétudesciblantlesmécanismesbiologiquesquisedéroulentàlasurfacedesmembranesouauseindeleurbicouchelipidiquesontréaliséesenutilisantdesmodèlesmembranairesbiomimétiques.Cettesynthèseadoncpourprincipauxobjectifsderevisiterlespropriétésdebasedesmembranesbiologiquesentermesdecompositionmembranaire,dedynamiquemembranaireetd’organisationmoléculaire,ainsiquededécrirelesmodèlesmembranaireslespluscourammentutiliséspourétudierdesmécanismesbiologiquestelsquelafusionmembranaire,letransportmembranaire,laformationdeporesmembranaires,ainsiquelesinteractionsmembranairesàl’échellemoléculaire.Mots-clés.Membranesbiologiques,organisationmembranaireàl’échellenanométrique,modèlesmembranaires,monocoucheslipidiques,vésiculeslipidiques,bicoucheslipidiquessupportées.

Page 2: From biological membranes to biomimetic model membranes · B A S E Biotechnol. Agron. Soc. Environ. 2010 14(4), 719-736 Focus on: From biological membranes to biomimetic model membranes

720 Biotechnol. Agron. Soc. Environ.201014(4),719-736 EemanM.&DeleuM.

1. IntroDuctIon

Biological membranes play an essential role in thecellular protection as well as in the control and thetransport of nutrients. Many mechanisms such asmolecular recognition, enzymatic catalysis, cellularadhesion and membrane fusion take place into thebiological membranes. The detailed organization ofthesemembranesatamolecularleveliscurrentlynotyet fully determined even ifmany experimentswereconductedinthelastcenturytoachievesuchagoal.

The concept that biological membranes arecomposedoftwooppositelayersoflipidswasalreadyfoundoutin1925byGorteretal.whoobservedusingtheLangmuirtroughtechniquethatthemolecularareaoflipidsextractedfromredbloodcellswastwotimestheareaoftheredbloodcellsmeasuredbymicroscopy.The first membrane model including proteins datesfrom1935andwasproposedbyDaniellietal.Theseresearchers postulated that a protein layer is tightlyassociatedtothepolarheadsoflipidscomposingthecellmembranes.Itwasforcedtowaitmorethanthirtyyears tofindout thatproteinsmayalsospanthroughmembranes.Suchdiscoveryledto theso-calledfluidmosaic model proposed by Singer et al. in 1972.According to this model, each leaflet of the bilayeris formed by a homogeneous environment of lipidsin a fluid state incorporating globular assembling ofproteinsandglycoproteins.Singeretal.alsoassumedthat the lipidcompositionwithin thebilayers ismostlikelyasymmetric.Sinceitsconceptionin1972,somedevelopmentsandrefinementswerebroughttothefluidmosaicmodelespeciallyintermsofcompositionandmolecularorganization.Themostimportantevolutionofthismodelwasobtainedin1997withtheworksofSimonsetal.andofBrownetal.TheseauthorsshowedthatbiologicalmembranesdonotformahomogeneousfluidlipidphaseaspredictedbySingeretal.Incontrast,theysuggestedthatmembranelipidsareorganizedintophase-separatedmicrodomains,calledlipidrafts,withbothaspecificcompositionandamoleculardynamicthat are different to the ones of the surroundingliquidcrystallinephase.Thediscoveryofsuchphaseseparation in theplaneof themembranehas inducedinthelastdecadeanexplosionintheresearcheffortsrelatedtothebiologyofthecellmembraneaswellasinthedevelopmentofnewtechnologiesfordetectinglateral heterogeneities in biological membranes.Nowadays,whilethereisnodoubtaboutthepresenceof phase separation in the plane of the membrane,the existence of lipid rafts,which are believed to beenrichedinsphingolipidsandcholesterol,topresentahighmobilityintheplaneofthemembraneandtobeinvolved inmanybiologicalprocessessuchassignaltransduction,membrane transportandproteinsorting(Simons et al., 1997) is still controversial. A more

detailed discussion about this hot and controversialissue is given later in this paper (see “Membranecomplexityatthenanometrescale”,p697).Figure 1depictstheactualviewofbiologicalmembranes,whichexhibit lateral heterogeneities, cluster and domainformationwithinthemembraneplane.

2. LIpID coMposItIon oF MeMbranes

Biological membranes display a very complexcompositionintermsoflipidsandproteins.Membranelipids are amphiphilic, i.e. they are constituted of ahydrophilicheadgroupandahydrophobicregion.Thelatteroneisprincipallycomposedofaliphaticchains,aromatic groups or polycyclic structures (Heleniuset al., 1975; Lichtenberg et al., 1983). Due to theiramphipathicity and to their geometric constraints,membranelipidsself-associateintobilayersinaqueousmedium.Membranelipidsareclassifiedintothreemaingroups,namelyphospholipids,glycolipidsandsterols.

The main phospholipids found in biologicalmembranesareglycerophospholipids(40-60mol%ofthetotallipidfraction)(Figure 2a).Thesecompoundsare composed of a glycerol backbone onwhich twofatty acid chains are esterified in position sn-1 andsn-2,respectively.Thethirdcarbonatomoftheglycerolbackbone (position sn-3) supports the phospholipidpolar head group, which is composed of an alcoholmolecule (choline, ethanolamine, serine, glycerol orinositol) linked to a negatively charged phosphategroup. The phospholipid polar head group can bezwitterionicornegativelycharged.Thefattyacidchaininposition sn-1 is generally saturated and composedof16or18carbonatomswhilethefattyacidchaininpositionsn-2islongerandusuallyunsaturated(oneorseveraldoublebondsincisconfiguration)(McElhaneyetal.,1971).

Figure 1.Modern viewof biologicalmembranes (PicturegeneratedbyH.SeegerfromMonteCarlosimulationsandkindlyprovidedbyT.Heimburg,NBICopenhagen)—Vue actuelle des membranes biologiques (figure générée par H. Seeger à partir de simulations Monte Carlo et aimable-ment fournie par T. Heimburg, NBI Copenhagen).

© Seeger/Heimburg (NBI)

Page 3: From biological membranes to biomimetic model membranes · B A S E Biotechnol. Agron. Soc. Environ. 2010 14(4), 719-736 Focus on: From biological membranes to biomimetic model membranes

Biologicalmembranesandbiomimeticmodels 721

Sphingolipids are another important class ofmembrane lipids and are believed to be involved inthe formation of lateral microdomains in biologicalmembranes.Theselipidsarecomposedofasphingosine(or phytosphingosine) base on which is linked arelativelylong(upto24carbonatoms)saturatedfattyacid chain.Acylated sphingosines are referred to asceramides. Sphingomyelin and glycosphingolipids(Figure 2b) result from the attachment of a cholinemoleculeandanoligosaccharidetothehydroxylgroupofceramides,respectively.

Sterols are a particular class ofmembrane lipids.While thehydrophobicmoietyofmostofmembranelipidsisconstitutedofrelativelylongaliphaticchains,theoneofsterolsiscomposedofpolycyclicstructures.The most abundant sterol in mammal is cholesterol(Figure 2c). This compound is very abundant inerythrocytemembranes,otherplasmamembranesandvarioussub-cellularcompartments ineukaryotes(30-50mol%ofthetotallipidfraction).Itcomprisesfourfusedcyclesin transconfiguration,ahydroxylgroupinposition3,adoublebondbetweenthecarbon5and

6,aswellasaniso-octyl lateralchaininposition17.Thehydroxylgroupisresponsiblefortheamphiphilicnature of cholesterol and consequently for itsorientation inbiologicalmembranes (Tanford,1980).Ergosterolandlanosterolaretwootherrepresentativesofthesterolclass.Thesecompoundsexhibitasimilarstructuretotheoneofcholesterol.Ergosterolisfoundin the membranes of fungi, yeasts and protozoans,(Brennan et al., 1974) while lanosterol is the sterolof prokaryotes and the chemical precursor of bothcholesterolandergosterol(Henriksenetal.,2006).

The shape of a membrane lipid depends on theeffective area of its polar head group compared tothe dimension of its hydrophobic moiety (Cullisetal., 1979; Chernomordik, 1996).Membrane lipidsdisplayacylindrical shape (e.g.phosphatidylcholine,phosphatidylserine), a conical shape (e.g. phospha-tidylethanolamine) or an inverted conical shape (e.g.lysophosphatidylcholine). Such a polymorphisminfluences the localization of lipid molecules withinthe biological membranes. The lipid compositionof biological membranes is qualified as asymmetric

Figure 2. Chemical structure of some lipids found in biological membranes— Structure chimique de certains lipides représentatifs des membranes biologiques.

CH3

CH3

CH3

CH3

CH3

CH3CH3H3C

H3C

H3C

H3C

CH3

CH3

CH2

CH2

CH2OH

OH

OH

OH

OHOH

OH

O

O

O

O

O

O

O

9

10

18

1818

17

3

16 1616

O

OO

O

O

O

PP

O-

O-

OHO

HN

HN

N+

N+

(sn-3)(sn-1) (sn-2)

CH2

Phosphatidylcholine

A: Glycerophospholipids

Cholesterol

C: Sterols

Sphingomyelin Glycosphingolipids

B: Sphingolipids

Page 4: From biological membranes to biomimetic model membranes · B A S E Biotechnol. Agron. Soc. Environ. 2010 14(4), 719-736 Focus on: From biological membranes to biomimetic model membranes

722 Biotechnol. Agron. Soc. Environ.201014(4),719-736 EemanM.&DeleuM.

(Bretscher, 1973;OpdenKamp,1979), i.e. the lipidcomposition is different within the two leaflets ofthe samemembrane. Phosphatidylethanolamines andphosphatidylserinesaremainlyfoundintheinnerleafletof theplasmamembrane,whilephosphatidylcholinesand sphingomyelins are essentially located in theouterleaflet(Rothmanetal.,1977).Duetoitsabilitytoundergoafastflip-flopbetweentheouterandinnerleaflets of the lipid bilayers (Muller et al., 2002),cholesterol is assumed to be equally distributed onthe two leaflets of biological membranes. The lipidasymmetry across the membranes is responsible formembranecurvature,whichisessentialforbiologicalprocesses such as vesicle budding and membranefusion (Zimmerberg et al., 1999), and contributesalso to membrane potential, which is a key playerin many membrane-mediated phenomena such asbinding of drugs or proteins to membrane surface,insertionofintegralproteins,andmembranetransport(McLaughlin,1989).Whileitisgenerallyacceptedthatthetransmembranepotentialdroparisesfromachargeimbalanceofsaltionsacrosstheplasmamembrane,ithasbeenrecentlyshownbyGurtovenkoetal.(2007;2008; 2009) that the electrostatic transmembranepotential can be nonzero even in the absence of saltions,providedthatthelipiddistributionisasymmetric.Theseauthorspointedout that theobservedpotentialoriginatesfromadifferenceinthedipolemomentsofthetwoleafletsoftheasymmetricmembraneandisnotrelated to the transmembrane potential arising fromconcentration differences of ionic substances acrossthemembrane.

Lipid polymorphism not only induces lipidasymmetry between the two leaflets of membranes,but it is also responsible for phase separationwithinone monolayer leaflet. For example, it is assumed

that lipidpolymorphism is involved in the formationoflipidrafts,whichareenrichedinsphingolipidsandcholesterol (Simons et al., 1997). Due to its conicalshape, cholesterol may play the role of molecularspacer to fulfil the free space between sphingolipidmolecules,whichexhibitaninvertedconicalshape.

3. MoLecuLar DynaMIc oF MeMbranes

Biologicalmembranes are highly dynamic structures(Figure 3). Both the position (i.e. lateral order) andtheorientation(i.e. rotationalorder)ofa lipidwithinthe membrane bilayers are continuously changingwith time. Moreover, conformational changes (suchastrans-gaucheisomerisation)withinthehydrocarbonlipid chains may also occur (over time scales of afewpicoseconds)andaffecttheconformationalorderof lipid molecules. Different diffusion coefficientsareused tocharacterize the lipiddynamicwithin themembranes. The lateral diffusion coefficient (CD),rangingtypicallyfrom10-7to10-10cm2.s-1,determinestheabilityofalipidmoleculetolaterallyexchangewithone of its neighbours (this phenomenon occurs overtime scales less than a minute), while the rotationaldiffusion coefficient defines the angular rotation ofa lipidmolecule around its axis perpendicular to theplane of the bilayer (this motion takes place overtimesscaleofnanoseconds).Thetransferofonelipidmoleculefromoneleafletofthebilayertotheotheroneisaspecialcaseofmoleculardynamic.Suchprocess,called transversal diffusion or flip-flop, involves therotationofthelipidmoleculeintheplaneofthebilayerfollowedbyitstranslationperpendicularlytotheplaneofthebilayer.Thetransversaldiffusionisaveryslowprocess (of the order of hours, possibly days) and is

Figure 3.Schemeillustratingthedynamicsofmembranelipids—Schéma illustrant la dynamique des lipides membranaires.a:intramoleculardynamics—dynamique intramoléculaire;b:lipiddiffusioninbiologicalmembranes—diffusion lipidique au sein des membranes biologiques.

Trans-gauche isomerisation

Transversal diffusion

Lateral diffusion

Rotationaldiffusion

H

H

H

H

H

HH

HC1C1

a b

C4

C1C1

C4

C4

C4

Page 5: From biological membranes to biomimetic model membranes · B A S E Biotechnol. Agron. Soc. Environ. 2010 14(4), 719-736 Focus on: From biological membranes to biomimetic model membranes

Biologicalmembranesandbiomimeticmodels 723

energeticallyunfavorableasitforcesthepassageofthepolar lipidheadgroup through thehydrophobic coreof the lipid bilayer. However, some lipid moleculessuchascholesterolareabletoundergoafastflip-flop(<1.s-1) between the two leaflets of the lipid bilayer(Mulleretal.,2002;Stecketal.,2002).Suchpropertymostlikelyarisesfromtheverysmalleffectiveareaofthepolarheadgroupofcholesterol,whichislimitedtoonehydroxylgroup.

Proteins may also diffuse laterally within thebiological membranes, but their diffusion rate istypicallyahundredtimesslowerthanlipiddiffusion.However,proteinsarenotabletodiffusetransversallybetweenthetwoleafletsofthelipidbilayers.

4. therMotropIc phase behavIor oF MeMbranes

In aqueous medium, lipid bilayer constituting thebiologicalmembranes can exist in different physicalstates, which are characterized by the lateralorganization,themolecularorderaswellasthemobilityof the lipidmoleculeswithin the bilayer (Figure 4).

Consequently, physicochemical parameters such astemperature,pH,ionicstrengthandotherfactorssuchasthechemicalstructureofthelipidconstituentsandthe presence of cholesterol strongly influence thenatureofthelamellarphase.

The two extreme lipid phases that occur inbiologicalmembranes are the so-called gel andfluidphases (Figure 4). In the gel phase (Lβ’ or Lβ), alsocalledsolid-ordered(So)phase,thelipidsarearrangedonatwo-dimensionaltriangularlatticeintheplaneofthemembrane(Janiaketal.,1979).Thehydrocarbonlipid chains display an all-trans configuration andare elongated at the maximum, giving rise to anextremely compact lipid network. Consequently, thelateral diffusion of lipids is strongly reduced (CD ~10-11cm2.s-1).Notethat,asafunctionofthehydrationlevel,thehydrocarbonchainsoflipidsinthegelphasemaybetilted(Lβ’)ornottilted(Lβ)withrespecttothemembranenormal,theangleoftiltincreasingwiththeincreaseofwatercontent (Tardieuetal.,1973).Asaresult, the thicknessofa lipidbilayer in thegelstatedecreases as the amount of water increases. Otherparameterssuchasthenatureofthepolarheadgroupand the presence of counterions, which affect theheadgroup conformation,may also influence the tiltof the lipid alkyl chains in the gel phase (McIntosh,1980).Forexample,whilethehydrocarbonchainsofhydratedPCaretiltedwithrespecttothebilayers,thealkylchainsofhydratedPEareapproximatelynormalto theplaneof thebilayers.Suchadifference in thedegreeoftiltarisesfromthesmallerheadgroupofPEcompared to PC and from the fact that hydrated PEbilayersdonotcontainasmuchwaterashydratedPCbilayers(McIntosh,1980).

Inthefluidphase,alsocalledliquid-disordered(LαorLd)phase,trans-gaucheisomerisationoccursgivingrisetomuchlessextendedlipidchains.Moreover,thetwo-dimensional triangular lattice is completely lost.Asaresult,boththelateraldiffusion(CD~10

-8cm2.s-1)and the rotational diffusion of lipids are favored influidlipidbilayers.

The transition between the gel and fluid phasesoccurs at a specific temperature called thermotropicphasetransition(Tm).Thephasetransitiontemperatureofamembranelipid,i.e.thetemperaturethatisrequiredforinducingthelipidmeltingfromasolid-orderedtoa liquid-disorderedphase, isdependingonthenatureof itshydrophobicmoietyandcanbedeterminedbyusingthedifferentialscanningcalorimetrytechnique.

For some membrane lipids, such as phospha-tidylcholines, the lipid disordering occurs in twostepswhenincreasingtemperature.AfirsttransitionisobservedafewdegreesbelowthemaintransitionTm.Thispretransitionmaybeduetochangesinthevicinityofthepolarheadgroupsuchanincreaseoftheinteractionof the lipidheadgroupswith thesolvent (Heimburg,

Figure 4. Scheme illustrating the different physical statesadoptedbya lipidbilayer in aqueousmedium—Schéma illustrant les différents états physiques adoptés par une bicouche lipidique en phase aqueuse.

Tm:mainphasetransition—transition de phase principale.

Ripple phasePß

Tm

Tm

Pretransition

Gel, solid-ordered phaseSo

Fluid, liquid-disordered phaseLd

Fluid, liquid-ordered phaseLo

+ Cholesterol+ Cholesterol

Page 6: From biological membranes to biomimetic model membranes · B A S E Biotechnol. Agron. Soc. Environ. 2010 14(4), 719-736 Focus on: From biological membranes to biomimetic model membranes

724 Biotechnol. Agron. Soc. Environ.201014(4),719-736 EemanM.&DeleuM.

2000). For example, phosphatidylethanolamines thatdiffer from phosphatidylcholines by the nature ofthe polar head group do not display a pretransition(McIntosh, 1980). According to Heimburg (2000;2007),pretransitionandmaintransitionarebothpartof thechainmelting transitionwith the splitting intotwotransitionsbeingtheconsequenceofsimultaneouschanges in the lipid order and membrane curvature.Consequently,forthelipidsthatexhibitapretransitiontemperature,anadditionallamellarphaseexists.Thisphase,calledtheripplephase(Pβ),ischaracterizedbyperiodicone-dimensionalundulationsonthesurfaceofthelipidbilayer(Janiaketal.,1979)(Figure 4).Asthisphaseappearspriortothemainchainmelting,itmustcorrespond to a partially disordered lipid phase. Forthisreason,ithasbeensupposedthattheundulationsobserved on the top of the lipid bilayers arise fromperiodicarrangementsoflinearorderedanddisorderedlipiddomains(Heimburg,2000;2007;deVriesetal.,2005).

Inpresenceofcholesterol,lipidbilayerscanadoptanextralamellarphase,calledtheliquid-ordered(Lo)phase,whichsharesthecharacteristicsofbothgelandfluidphases(Figures 4and5)(Ipsenetal.,1987).Inotherwords,thisphaseresemblestothegelphasewithlesslateralpackingorderandatthesametimetothefluidphasewithmorepackingorder.Theincorporation

of cholesterol into a solid-ordered lamellar phasedisturbsthelateraltriangularlatticeandconsequentlyreduces the ordering of the lipid chains. At theopposite, in a liquid-disordered lamellar phase, therigidhydrophobicmoietyofcholesterolisintercalatedbetween the lipid chains and favors a trans chainconformation(Sankarametal.,1990b).Consequently,theliquid-orderedphasedisplaysbothalateralandarotational diffusion that are close to the ones of theliquid-disorderedphase(Almeidaetal.,1993;Filippovetal.,2003),butaconformationalordersimilartotheoneofthesolid-orderedphase(Gallyetal.,1976).

As shown in figure 5, liquid-disordered andliquid-ordered phases as well as liquid-ordered andsolid-orderedphasescancoexistinasamelipidbilayer(Vist et al., 1990).For example, a phase-coexistencebetween a cholesterol-poor liquid-disordered phaseand a cholesterol-rich liquid-ordered phase has beenexperimentally observed for lipid bilayers composedof phosphatidylcholine/cholesterol (Sankaram et al.,1991) and sphingomyelin/cholesterol (Ahmed et al.,1997)mixtures.

The preferential partitioning of membrane lipidsinto a liquid-disordered or a liquid-ordered phaseis strongly depending on their chemical structure.Most of glycerophospholipids found in biologicalmembranesarecomposedofanunsaturatedfattyacid

Figure 5.Partialphasediagramformixturesofcholesterolandchain-perdeuteriateddipalmitoylphosphatidylcholineinexcesswater(adaptedfromVistetal.,1990.Copyright©1990,AmericanChemicalSociety)—Diagramme de phase partiel obtenu pour des mélanges cholestérol- dipalmitoylphosphatidylcholine en excès d’eau (adapté de Vist al., 1990. Copyright © 1990, American Chemical Society).

Cholesterol (mole %)

30

25150 5 10 20 30

38

32

40

34

42

36

44Pß + Ld

Pß + LoPß

Ld

Ld+Lo

Lo

Tem

per

atur

e (°

C)Fluid, liquid-disordered phase

Ld

Ripple phasePß

Fluid, liquid-ordered phaseLo

Page 7: From biological membranes to biomimetic model membranes · B A S E Biotechnol. Agron. Soc. Environ. 2010 14(4), 719-736 Focus on: From biological membranes to biomimetic model membranes

Biologicalmembranesandbiomimeticmodels 725

chain inposition sn-2of theglycerol backbone.Thepresenceofdoublebondsinconfigurationcisinducesakink in thehydrocarbonchain andhampers averycompact assembling of the lipids. Consequently,this class of membrane lipids has very little affinityfor highly ordered lipid domains. At the opposite,sphingolipidsdisplay longsaturatedalkylchainsandsegregatetogetherviavanderWaalsandhydrophobicinteractions. Moreover, hydrogen bonds betweenthe hydroxyl groups of sphingomyelin polar heads(Ramstedtetal.,2002)orbetweentheoligosaccharidicheadgroupsofglycosphingolipids(Rocketal.,1990)may also accentuate the auto-assembling of theselipids.Therefore,sphingolipidshaveahightendencytoformorderedlipidphases(Wangetal.,2000).

Thelateralorganizationofmembranelipidsisalsoinfluenced by the nature of their polar head group.Membrane lipids displaying a relatively small polarheadgroupsuchasphosphatidylethanolaminesallowa more compact lipid assembling due to a reducedsteric hindrance (Brown et al., 2002; Rappolt et al.,2004). Furthermore, cholesterol differently interactswith glycerophospholipids as a function of theirpolarheadgroup.Forexample,cholesterolexhibitsahigher affinity for negatively charged phospholipidscompared to their zwitterionic analogues (Sankarametal.,1990a).

The existence of phase-separated zones in thelipid bilayers affects also the lateral organization ofmembraneproteins.Proteinscomprisingoneorseveralsaturatedaliphaticchainsdisplayahighertendencytosegregate into ordered lipid phases. It is notably thecaseforglycosyl-phosphatidylinositol(GPI)-anchoredproteins (Brownet al., 1992;Schroeder et al., 1994)and other acylated proteins such as the Src kinases(Shenoy-Scariaetal.,1994).

5. MeMbrane coMpLexIty at the nanoMetre scaLe

The assumption of Singer et al. (1972) that plasmamembranes and organelle membranes in eukaryotesare composed of a unique liquid-disordered lamellarphaseinwhichthelipidsarerandomlydistributedandallowthespanningofmembraneproteinsisnotfullycorrect.Experimentalandtheoreticaldataobtainedinthelasttenyearsinthefieldofmembranebiophysicsareallinfavoroftheexistenceofaphaseseparationintheplaneofthemembrane.

Attheendofthenineties,ithasbeenpostulatedthatmembranes are constituted of small, heterogeneous,and highly dynamic domains which are believed tobe enriched in sphingolipids and sterols and to beinvolved inmanybiologicalprocesses (Brownetal.,1997;Simonsetal.,1997;Rietveldetal.,1998).These

membranemicrodomains,betterknownaslipidrafts,exhibit thephysicalpropertiesofarelativelyorderedliquidcrystalline lamellarphaseandcoexistwithinaliquid-disordered environment.They are supposed tobe responsible for the lateral distribution of proteinsand the concentration of membrane constituents insmallcompartmentsfacilitatingtheirinteraction.

Theexistenceoflipidraftsinmembranesishoweverstill under debate. The raft hypothesis is originallybasedonthedetergentextractionofmembranelipids.As the lipids involved in putative membrane raftsformliquid-ordered(Lo)phases,theypresentalowersolubilityinnon-ionicdetergents(e.g.TritonX-100andBrij58)atlowtemperature(4°C)thanlipidsfromthesurroundingliquid-disorderedphase.Theuseofsuchanextractionprocedureforinvestigatingthepresenceof lipid rafts in membranes is today questionable.Indeed, the extraction of lipid constituents at verylow temperaturemay affect the lipid organization ofthenativemembraneandinducealateralaggregation,which would not occur in physiological conditions(deAlmeidaetal.,2003).Dependingonthenatureandtheconcentrationofthenon-ionicdetergentaswellason the extraction parameters (temperature, duration),changes in terms of lipid/protein composition anddistributionmayalsotakeplacewithinthetwoleafletsoflipidbilayers(Schucketal.,2003;Shogomorietal.,2003). In addition, TritonX-100 has been shown toinduce the formation of liquid-ordered domains inmodel membranes by decreasing the proportions ofsphingolipidsandcholesterol in theliquid-disorderedphase (Heerklotz, 2002). This detergent could bealso responsible for the fusionof rafts entities in themembrane and the formation of large interconnectedmembraneaggregates(Giocondietal.,2000;Simonsetal.,2004).Asaconsequence,itisveryunlikelythatmembranecompartmentsthatcannotbesolubilisedinnon-ionicdetergentreflectboththenativecompositionand organization of lipids within membrane rafts(Lichtenbergetal.,2005).

Thefactthatputativeraftsarethoughttobehighlydynamic structures makes also their characterizationextremelydifficult.Ithasbeenpostulatedthatlipidraftsexist in biologicalmembranes only if they are smallentitieswithashortlifetime(Subczynskietal.,2003).Itisgenerallyacceptedthattheselipidmicrodomainsdisplayasizedistribution(10-200nm)thatisinferiortotheresolutionoftheconventionalopticalmicroscopy(Simonsetal.,1997;Bagatollietal.,1999;Jacobsonetal.,1999;Simonsetal.,2000;Pike,2003).Thesizeoflipidraftsseemstobeinfluencedbythelocallipidcomposition, the incorporation of externalmoleculesthat can act as nucleation sites for the formation oflarger membrane domains (Brown et al., 1998b;Radhakrishnanetal.,2000;Andersonetal.,2002),aswellasbytheproteinconformation,whichcanperturb

Page 8: From biological membranes to biomimetic model membranes · B A S E Biotechnol. Agron. Soc. Environ. 2010 14(4), 719-736 Focus on: From biological membranes to biomimetic model membranes

726 Biotechnol. Agron. Soc. Environ.201014(4),719-736 EemanM.&DeleuM.

thelipidassemblingwithinthesedomains(Heerklotz,2002).Lipid raftsmayalsoauto-associatewithin themembrane leaflets to form larger lipidplatforms thatbecomedetectablebyopticalmicroscopy(Subczynskiet al., 2003; Simons et al., 2004). The aggregationof these small entities may arise from protein-lipidinteraction,proteinoligomerisationorfromthebindingof proteins to specific antibodies at the cell surface(Friedrichsonetal.,1998;Harderetal.,1998).

Alternative theories are nowadays proposed forexplainingthesubmicronlateralheterogeneitiesincellplasmamembranes.Thepresenceofsubmicronlipid-richentitiesintheplaneofbiologicalmembranescouldarise from dynamic submicron critical fluctuations,inhomogeneous lipid mixing, 2-D microemulsions,orsmall-scalestructurewithinasinglegel(So)phase(Veatchet al., 2005;Honerkamp-Smithet al., 2009).Simple ternary lipid mixtures constituted of a steroland two other lipid components (one with a highchain melting temperature Tm and one with a lowchain melting temperature) are good model systemsforinvestigatingthelateralorganizationinbiologicalmembranesastheselipidmixturesphase-separateandform micron-scale liquid domains as a function oftemperature (Veatch et al., 2005). Bymeasuring themiscibilitytransitiontemperatureasafunctionofthelipidcomposition,thermodynamicphasediagramsthatarespecificoftheternarylipidmixturesofinterestcanbemapped(Goñietal.,2008).UsingthecombinationoffluorescencemicroscopyanddeuteriumNMR,ithasbeenobservedthatdynamicsubmicronliquiddomainsexhibiting a large distribution of sizes, compositionsandlifetimesarecreatedinthevicinityofmiscibilitycritical points (Veatch, 2007; Veatch etal., 2007).Critical fluctuations have been also found in giantplasma membrane vesicles, which are sphericalvesiclesisolateddirectlyfromtheplasmamembranesoflivingcells,neartheirtransitiontemperature(Veatchetal.,2008).Suchamanifestationofsubmicroncriticalfluctuations in model lipid systems could explainsomeofthenanometrescalemembraneheterogeneityattributedtoputativelipidraftsinbiologicalmembranes(Veatchetal.,2008).

The coexistence of liquid-ordered and liquid-disordered phases in the plane of themembrane andthe lateral distribution of proteins play certainly animportant role in many biological processes. It iswidelyacceptedthatsuchphasesegregationisinvolvedin the sorting and the transport of both membraneproteinsandlipidsduringendocytosisandexocytosisphenomena, incascade signallingaswell as inothercellularprocessessuchasapoptosis,membranefusion,cell adhesion and migration (Brown et al., 1998a;Simonsetal.,2000).

Ithasbeenassumedthatorderedlipidentitiesmayalsobepreferentialattacksitesforcellularinvasionby

pathogensortoxins(vanderGootetal.,2001;Duncanet al., 2002;Manes et al., 2003).They could indeedconcentratecellularreceptorsthatarenecessaryforthebindingofpathogenstotheplasmamembraneoftargetcellsorfor theoligomerisationof toxinsfavoringbythiswaytheirentryinthecell.Orderedlipiddomainswithin the membrane may also provide preferentialplatforms for the assembling and the budding ofviral particles (such as Ebola, influenza, and humanimmunodeficiency-1 viruses) as well as for theformation of pathological forms of the prion proteinandoftheβ-amyloidpeptide,whichisassociatedwithAlzheimer’s disease (Campbell et al., 2001; Fantinietal.,2002).

Nowadays, while there is no doubt about thepresence of phase separation between liquid-orderedand liquid-disordered phases in the plane of themembrane(Swamyetal.,2006;Senguptaetal.,2007),additional research involving both cell membranesandbiomimeticmodelmembranesisstillrequiredtofurtherinvestigatethenanoscalelateralorganizationoflipidsinbothintracellularandextracellularmembraneleafletsaswellas tobetterunderstand thebiologicalfunctions associated to these phase-separated lipiddomains.

6. bIoMIMetIc MoDeL MeMbranes

Asbiologicalmembranesareverycomplexsystems,many model membranes have been developed overthe last century for studying membrane properties,structure and processes as well as for investigatingthemembraneactivityofdiversenaturalorsyntheticcompounds such as surfactants, peptides, and drugs.The most well-known and common biomimeticsystemsusedforsuchpurposesarelipidmonolayers,lipid vesicles and supported lipid bilayers. Whileeach of these systems exhibits advantages anddisadvantages,theyallmimicthelipidarrangementofnaturalcellmembranes.

6.1. Lipid monolayers

Lipid monolayers provide a simple model formimicking biologicalmembranes and for evaluatingmembrane insertion of amphipathic compounds(Brockman, 1999; Maget-Dana, 1999). Thesemonomolecular insoluble films, also referred to asLangmuir monolayers, are formed by spreadingamphiphilicmolecules at the surface of a liquid andcan be considered as half the bilayer of biologicalmembranes. These two-dimensional systems displaymany advantages compared to the other modelmembranes. Parameters such as the nature and thepackingof the spreadmolecules, the compositionof

Page 9: From biological membranes to biomimetic model membranes · B A S E Biotechnol. Agron. Soc. Environ. 2010 14(4), 719-736 Focus on: From biological membranes to biomimetic model membranes

Biologicalmembranesandbiomimeticmodels 727

thesubphase(pH,ionicstrength)andtemperaturecanbevariedinacontrolledwayandwithoutlimitation.

Lipid monolayers are very useful to characterizedrug-lipid or lipid-lipid interactions at a molecularlevel. Such a characterization can be deduced fromcompression isotherms, which are obtained bymeasuring the surfacepressure (Π) of the interfacialfilm as a function of the mean molecular area (A)of the compounds spread at an air-water interface(Figure 6). Under compression, a two-dimensionalinsoluble monolayer adopts different physical states(typicallygaseous,liquidexpanded,liquidcondensedandsolid-likestates),whicharerelatedtothelevelofconformationalorderofthemoleculesattheinterfaceand to the presence of intermolecular interactionswithinthemonolayer.

During its compression, an insoluble monolayeris also characterized by changes in terms of two-dimensional compressibility (Cs). This parametercorrespondstotheslopeofthecompressionisothermandcanbedeterminedforeachpointoftheΠ-Acurveusingthefollowingequation(Equation1):

Cs =-1dA Equation1

A dΠ

Molecular interactions occurring at an air-waterinterface between molecules of different nature canbeevaluatedbyperforminga simple thermodynamicanalysis.FromtheΠ-Aisothermofpureandofmixedmonolayers, information about the mixing behaviorofspreadmoleculescanbeobtained.Whenthemeanmolecularareaofamixedmonolayer(Am)atadefinedsurfacepressurecorrespondstotherelativesumofthemolecularareasof theseparatedcomponents(A1and

A2)atthesamesurfacepressure,themixingbehaviorisdefinedasideal(Equation2)(Gaines,1966).Inotherwords,thecomponentsareeithertotallyimmiscibleorideallymiscibleattheinterface.Anydeviationfromtheidealbehaviorcanbeattributedtospecificinteractionsbetweenthetwocompounds(Maget-Dana,1999).

Aid=X1A1+(1-X1)A2Equation2

A more detailed analysis of the thermodynamicsof the system, by calculating the excess free energyofmixing∆Gex(Equation3)developedbyGoodrich(1957), can provide further information about themiscibilityprocessandthepossiblespecificinteractionsbetweentheinterfacialcomponents.

ΔGex=∫ AmdΠ-X1∫A1dΠ-(1-X1)∫ A2 dΠ

Equation3

Positive values of ∆Gex signify that mutualinteractionsbetween the twocomponentsareweakerthan interactions between the pure compoundsthemselvesandsuggestphaseseparationbetweenthecomponentsat the interface.Negativevaluesof∆Gexindicate thepresenceofstrongmutual interactionsatthe interface and are in favor of complex formationbetween the monolayer constituents (Maget-Dana,1999).

Lipid monolayers are also excellent modelmembranesforevaluatingtheinsertionofamphipathiccompounds such as antimicrobial peptides,biosurfactantsanddrugs into themembraneof targetcells(Maget-Dana,1999).Forthisspecificpurpose,aninsolublemonolayermimickingthelipidcompositionofthebiologicalmembraneofinterestisformedattheair-waterinterfaceofaLangmuirtrough(Figure 7a).Afterstabilizationofthelipidmonolayeratadefinedinitial surface pressure (Πi), the active compound,solubilised in an appropriate solvent, is injected intothewater subphase.At thispoint, the increaseof thesurfacepressure resulting from the interactionof theactivecompoundwiththelipidmonolayerisrecorded(Figure 7b).

By plotting the maximum surface pressureincrease (ΔΠ) observed as a function of the initialsurfacepressureof the lipidmonolayer,anexclusionsurfacepressure(Πe)isdetermined(Figure 7c).Thisparameter corresponds to the initial surface pressureof the lipid monolayer above which no more activecompound can penetrate the lipid film and increasethe surface pressure. In other words, this parameterreflectsthepenetrationpoweroftheactivecompoundofinterestintoawell-definedtwo-dimensionalmodelmembrane.

Solid-like state

Liquid condensed state(LC)

Liquid expanded state(LE)

LC - LE coexistence

Gaseous state

Mean molecular area (Å.mol-1)

Sur

face

pre

ssur

e (m

N. m

-1)

Figure 6. Theoretical Π-A isotherm obtained bycompressing an insoluble lipid monolayer formed at anair-water interface— Isotherme de compression théorique obtenue en comprimant une monocouche lipidique insoluble étalée à une interface air-eau.

Π

000

Π Π

Page 10: From biological membranes to biomimetic model membranes · B A S E Biotechnol. Agron. Soc. Environ. 2010 14(4), 719-736 Focus on: From biological membranes to biomimetic model membranes

728 Biotechnol. Agron. Soc. Environ.201014(4),719-736 EemanM.&DeleuM.

In order to visualize the interfacial organizationoflipidconstituentsofamonolayerorthechangesinthe interfacial behavior resulting from the insertionof a compound of interest into the monolayer, theLangmuir trough technique can be easily combinedwithfluorescenceorBrewsteranglemicroscopy.Thelattertechniquepresentstheadvantageofnotusingafluorescentprobethatmayresultindomaininstabilityfor highly compressed monolayers (McConlongueet al., 1997). Fluorescence and Brewster anglemicroscopyofferalateralresolutioninthemicrometrerange and are thus not suited to visualize the phasepropertiesoflipidmonolayersathighresolution.Forsuch purpose, atomic forcemicroscopy (AFM) is anexcellentalternativeprobingtechniquesinceitallowsthe visualizationof lipid domains in phase-separatedfilmswithananometrescaleresolution(Dufrêneetal.,1997; Reviakine et al., 2000; Milhiet et al., 2001).However, the use of AFM for imaging monolayersimpliesthetransferoftheinterfacialfilmontoasolidsupport.

The most common technique used to transfer amonolayer is the Langmuir-Blodgett (LB) technique(Motschmann et al., 2001). The solid support canbe either hydrophilic or hydrophobic.When using a

hydrophilic support, the lipid polar heads are facingtowards the support, whereas the transfer onto ahydrophobic support is obtained via hydrophobicinteractions with the lipid hydrocarbon chains. Thetransfer of an interfacial film onto a solid supportis performed at constant surface pressure and ismonitored via the so-called transfer ratio. In orderto maintain a constant surface pressure during thetransfer process, the interfacial film is continuouslycompressed resulting in adecreaseof themonolayersurfacearea.The transfer ratio is thusdefinedas theratioofthedecreaseofthemonolayersurfaceareatotheareaof thesolidsupportwhichhasbeencoveredby the constituents of the interfacial film.A transferratioclosetooneindicatesthatthedepositionprocesshas been successful, i.e. the supportedmonolayer isrepresentativeofthespreadmonolayerattheair-waterinterface. However, it has to be kept in mind that,dependingonboththenatureoftheconstituentsoftheinterfacialfilmand thesurfacepressureatwhich themonolayerhasbeentransferredontothesolidsupport,changes in themolecular organization at the supportsurfacemayoccur.

The Langmuir trough technique can also becombinedwith spectroscopic (e.g. polarized infrared

a

To Π-recording system

b

Drug injection

Exclusion pressure

SurfacepressureΠi

Surfacepressureincrease

ΔΠ

ΔΠ

c

Time

Sur

face

pre

ssur

e Π

i

Πe

Figure 7.a:SchematicrepresentationoftheLangmuirtroughtechniqueusedforevaluatingthepenetrationpowerofabioactivecompoundintoabiomimeticlipidmonolayer—Représentation schématique de la technique de la cuve de Langmuir utilisée pour évaluer la pénétration de molécules actives au sein d’une monocouche lipidique biomimétique;b:Penetrationkineticfollowingtheinjectionofthedrugintothesubphase—Cinétique de pénétration théorique obtenue suite à l’injection d’un composé amphiphile dans la phase aqueuse;c:Surfacepressureincreasevsinitialsurfacepressureplotusedfordeterminingtheexclusionpressureofthelipidmonolayer—Graphique de l’augmentation de la pression de surface vs la pression de surface initiale utilisé pour déterminer la pression d’exclusion d’une monocouche lipidique.

Page 11: From biological membranes to biomimetic model membranes · B A S E Biotechnol. Agron. Soc. Environ. 2010 14(4), 719-736 Focus on: From biological membranes to biomimetic model membranes

Biologicalmembranesandbiomimeticmodels 729

spectroscopy), reflection and scattering (e.g.ellipsometryandgrazing-incidenceX-ray)techniquesin order to obtain direct structural information (i.e.conformation and orientation of the monolayerconstituents) in phase-separated two-dimensionalsystems.

6.2. Lipid vesicles

Lipid vesicles or liposomes are versatile biomimeticmodel membranes commonly used for studyingmembrane phase behavior and membrane processessuch as membrane fusion, molecular recognition,cell adhesion, andmembrane trafficking.These lipidassemblies enclose a small aqueous compartmentand are produced from the aqueous dispersion ofmembrane lipids (single lipid component ormixtureofdifferenttypesoflipids).Whereaslipidmonolayersareconstitutedofonlyone lipid leafletand thereforedonotreflectthecomplexityofbiologicalmembranestructure, lipid vesicles are composed of two lipidleaflets,whicharearrangedinawaythatissimilartothatofbiologicalmembranes.

According to the method of preparation,different types of bilayer structures can be obtained(Gregoriadis,1991;Muietal.,2003;Lorinetal.,2004;Uhumwanghoetal.,2005).Whenadriedlipidfilmisvigorously hydrated at temperatures above the lipidphase transition, multilamellar lipid vesicles (MLV)areformed.Thesevesiclesdisplayasizerangeof0.5-10µmandarecharacterizedbyseveralconcentriclipidbilayers,whichareseparatedbywatermolecules.ThesizeoftheseMLVscanbereducedandhomogenizedbyperformingseveral freeze-thawcycles.Theextrusionof MLVs through a porous membrane gives rise tothe formation of large unilamellar vesicles (LUV)whilesmallunilamellarvesicles(SUV)areformedbysonicatingtheMLVsinaclassicalbath-typesonicatororusingaprobesonicator.LUVsandSUVsarebothcharacterizedbya single lipidbilayer.SUVsusuallyexhibit a mean diameter inferior to 50nm whereasthe size of LUVs varies from 100 to 500nm.Giantunilamellar vesicles (GUV) are liposomes havinga size range of 5-100µm. These model membranescan be obtained by hydrating a dried lipid film attemperaturesabovethelipidphasetransitioneitherforalongperiodoftime(upto36h)(i.e.gentlehydrationmethod)or inpresenceof anexternal electricalfield(i.e.electroformationmethod)(Bagatollietal.,2000;Rodriguezetal.,2005;Wesolowskaetal.,2009).Thesize of these giant vesicles allows their visualizationbyopticalmicroscopysuchasfluorescenceorconfocalmicroscopy, as well as the micromanipulation ofindividual vesicles. Although these techniques havea lower lateral resolution thanAFM, they allow theinvestigation of molecular interactions with lipid

vesiclesinabulksolutionwhereasAFMrequiresthefusionoflipidvesiclesontoasolidsupport.

The main disadvantages of using lipid vesiclesas biomimetic model membranes are that the lipidasymmetry found in native biological membranescannotbemimickedandthatthefinallipidcompositionof the vesicles may be relatively different from theinitial lipid mixture used for vesicle formation. Asdemonstrated by phase diagrams of complex lipidmixtures,smalldifferencesincompositionmaystronglyaffectthephasebehavioroflipidsystems(Goñietal.,2008).Consequently,anappropriatecontrolofthefinallipidcompositionneedstobeperformedbeforeusingthe model for studying membrane properties and/orprocesses.InthecaseofGUVs,ithasbeendemonstratedthat the lipidcompositionof thevesicles is closer totheoneoftheinitiallipidmixturewhenpreparingthevesiclesviathegentlehydrationmethodratherthanviatheelectroformationmethod(Rodriguezetal.,2005).However, the former technique is responsible for ahigherpercentageofdefectsinGUVs,whicharelipidstructures bound to the inner or outer lipid leaflet orencapsulatedinsidethelipidvesicles(Rodriguezetal.,2005).Consequently,dependingontheapplicationoftheGUVs,oneofthetwopreparationtechniqueswillbepreferred.

Itisworthtonotethat,aslipidvesiclesareusuallyformedfromdilutelamellardispersionswiththeinputofmechanical(e.g.sonicationorextrusion),chemical(e.g.changeofsolubilityconditions,incorporationofexternal compounds) or electrochemical (e.g. changeof pH, ionic strength) energy, they are metastablestructures offering poor long-term stability (Lasic,1990; Madani et al., 1990; Marques, 2000). Thismeans that, upon aging, vesicle dispersion mayaggregate(clusteringformation),fuseorevolvetothethermodynamicallystabletwo-phaseregion(consistingofalamellarphasedispersedinlargeexcessofsolvent)fromwhichtheywereformed.However,dependingonthecompositionandthesizeoflipidvesiclesaswellasontheenvironmentalparameters(temperature,pH,ionic strength, presence of external molecules andions),thesethermodynamicallynonstablesystemscanbestableforprolongedperiodsoftime(uptoseveralmonths) and are then suitablemodelmembranes forinvestigating membrane properties and biologicalprocesses.Inparticular,theyareveryinterestingmodelsystems for studying cell adhesion and membranefusionphenomenawhicharemediatedbynon-covalentprotein-protein and protein-carbohydrate interactions(Voskuhletal.,2009).

In addition to be relevant biomimetic modelmembranes for investigating membrane properties,structureandprocesses,lipidvesicleshavebeenprovedto be suitable transport vehicles for drugs, proteins,enzymes, or DNA. The applications of these lipid

Page 12: From biological membranes to biomimetic model membranes · B A S E Biotechnol. Agron. Soc. Environ. 2010 14(4), 719-736 Focus on: From biological membranes to biomimetic model membranes

730 Biotechnol. Agron. Soc. Environ.201014(4),719-736 EemanM.&DeleuM.

systems are abundant in particular in pharmacologyand in dermato-cosmetology where these lipidassemblies are used as drug delivery systems andallowthepredictionofpharmacokineticpropertiesofdrugs such as their transport, their distribution, theiraccumulation,andhence theirefficacy(ElMaghrabyetal.,2008;Peetlaetal.,2009).

6.3. supported lipid bilayers

Supportedlipidbilayers(SLBs)arebiomimeticmodelmembranesconstitutedofaflatlipidbilayersupportedontoasolidsurfacesuchasmica,glassorsiliconoxidewafers.Insuchmodelsystem,thepolarheadgroupsofthefirstlipidmonolayerarefacingtowardsthesupportwhilethehydrocarbonchainsofthislipidmonolayerareincontactwiththelipidchainsofthesecondmonolayer.SLBsoffermanyadvantagesoverlipidvesicles(Looseetal.,2009).Thesemodelmembranescanbepreparedquite easily and are much more stable than lipidvesicles.Besides,boththeoverallcompositionandthelipidasymmetryofSLBscanbecontrolledwhileitisnot thecasewhenusingvesicularmodel systems. Inaddition,asthesemembraneassembliesareconfinedtothesurfaceofasolidsupport,theycanbecharacterizedmuch easier than free-floating vesicles using a largevariety of surface sensitive techniques such asAFM(Linetal.,2007;Mingeot-Leclercqetal.,2008;Goksuetal.,2009),secondaryionmassspectrometry(SIMS)(Chan et al., 2007), fluorescencemicroscopy (Craneet al., 2007), optical ellipsometry (Puu et al., 1997),quartz-crystalmicrobalance(Kelleretal.,1998),X-rayreflectivity(Milleretal.,2006)andneutronreflectivity(Vacklinetal.,2007).

DifferenttechniquesarecommonlyusedtoprepareSLBs. The first one is the LB technique. After thetransfer of a lipidmonolayer spread at the air-waterinterface of aLangmuir trough onto a solid support,thesamesupport is immersedasecond time throughtheinterfaceinordertoobtainasupportedlipidbilayer(Figure 8a).

AsecondmethodforpreparingSLBsisthefusionof lipidvesiclesontoasolidsupport.Thismethod isrelativelysimpleandcanbecompletedinfewhours.Thedetailedprotocoltoachievethefusionoflipidvesicleshasbeenrecentlyreviewedintheliterature(Mingeot-Leclercqetal.,2008).Briefly,thefusionisobtainedbyheatingaSUVsuspensionincontactwiththesupportat temperatures above the lipid phase transition.Thefusionprocessisnotyetfullyunderstoodbutinvolvesthe adsorption of the lipid vesicles on the surface,followedbytheirdeformation,theirflatteningandtheirrupture.Thefusionoftheedgesofthebilayerpatchesthrough hydrophobic interactions gives rise in finalto a continuous supported lipid bilayer (Figure 8b)(Jass et al., 2000: Reviakine et al., 2000; Richter et

al., 2005;Anderson et al., 2009).As SLBs preparedfromthefusionoflipidvesiclesrequirestemperaturesabove the lipidphase transition, this technique isnotappropriate when temperature-sensitive membranecomponents such as proteins has to be incorporatedinSLBs.However,itiscurrentlythemostfrequentlyusedmethodforpreparingSLBs.

Supportedmodelmembranescanbealsoobtainedfrom micellar solutions composed of a mixtureof surfactants and phospholipids (Tiberg et al.,2000;Vacklin et al., 2005; Lee et al., 2009). In thismethod, the surfactant (e.g. non-ionic β-D-dodecylmaltoside) is used as a lipid solubilising agent andactsasatransportertodrivethewater-insolublelipidto the surface. When mixed surfactant-phospholipidmicellesadsorbatthesolidsurface,theconcentrationofmixedmicelles at the vicinity of the surface (i.e.within the stagnant layer) is reduced compared totheir concentration in the bulk solution (Figure 8c).The formation of phospholipid-enriched supportedbilayersisfavoredbythesolubilitydifferencebetweenthe phospholipid and the surfactant, and is obtainedby repetitively rinsing the adsorbed layer with bulksolutionsofdecreasingmicelleconcentration.Indoingso,themoresolublesurfactantmonomersadsorbedtothe surface are progressively solubilised while boththesolidsupportandthemixedmicellesaregraduallyenriched in the less soluble component. After eachaddition of more diluted bulk solutions, a rinsingstepisusuallyperformedtoremoveanyexcessofthesolublesurfactant.Asphospholipidsexhibitverylowwater solubility, the progressive solubilisation of thesurfactantfromthesolidsupportisresponsiblefortheformationofapurephospholipidbilayer.

Since their development two decades ago asbiomimetic model membranes (Tamm et al., 1985),supported lipid bilayers have been largely used bythe biophysical community to predict the phasebehaviorandthemolecularorganizationofbiologicalmembranes. Moreover, over the past ten years, ithas been demonstrated that these supported lipidbilayers are also highly relevant model membranesfor investigating the molecular interactions of drugswithcellmembranes.Anoverviewoftheapplicationsof supported lipid bilayers as well as of otherbiomimetic model membranes for investigating thepharmacokineticpropertiesofdrugshasbeenrecentlyreportedbyPeetlaetal.(2009).

One of the main drawbacks of using classicalsupportedlipidbilayersisthattheproximitybetweenthe lipid bilayer and the solid substrate may affectthe membrane properties of the biomimetic system,suchasthemobilityofmembranecomponentsortheincorporationof transmembraneproteins. Inorder tosolvesuchproximityproblem, tethered lipidbilayersmadeupofalipidbilayerspacedfromthesolidsurface

Page 13: From biological membranes to biomimetic model membranes · B A S E Biotechnol. Agron. Soc. Environ. 2010 14(4), 719-736 Focus on: From biological membranes to biomimetic model membranes

Biologicalmembranesandbiomimeticmodels 731

a

c

b

Supportregion

BulkStagnant layer

Micelle-monomerexchange

Figure 8. Preparationmethodsofsupportedlipidbilayers—Méthodes de préparation des bicouches lipidiques supportées.

a:TheLangmuir-Blodgett(LB)technique—La technique de Langmuir-Blodgett (LB);b:Thefusionoflipidvesicles(adaptedfromMingeot-Leclercqetal.,2008.Copyright©2008,MacmillanPublishersLtd:NatureProtocols)—La fusion des vésicules lipidiques (adapté de Mingeot-Leclercq et al., 2008. Copyright © 2008, Macmillan Publishers Ltd: Nature Protocols).c:Theadsorptionofphospholipid-surfactantmicelles(adaptedfromVacklinetal.,2005.Copyright©2005,Elsevier)—L’adsorption de micelles mixtes surfactant-phospholipides (adapté de Vacklin et al., 2005. Copyright © 2005, Elsevier).

Page 14: From biological membranes to biomimetic model membranes · B A S E Biotechnol. Agron. Soc. Environ. 2010 14(4), 719-736 Focus on: From biological membranes to biomimetic model membranes

732 Biotechnol. Agron. Soc. Environ.201014(4),719-736 EemanM.&DeleuM.

byspacermoleculesorlayershavebeendeveloped.Thedifferentstrategiescurrentlyavailableforseparatingalipidbilayerfromasolidsupporthavebeencriticallyreviewed by Rossi et al. (2007). The formation ofthese tethered bilayers is usually achieved via theaddition of a polymer film or the self-assembling ofchemicallymodifiedlipidsonthesolidsurface,orviathedirectfusionofspacerlipidscontainingvesiclesonfunctionalizedsurfaces,andinvolvestheLBtechnique,thefusionoflipidvesicles,orthecombinationofbothtechniques.

Newapplicationsofsuchtetheredsupportedlipidbilayersareconstantlydiscovered(Rossietal.,2007).Asthesebiomimeticsystemsallowproteinincorporationin non-denaturing conditions, they are very suitablemodelmembranesforinvestigatingmembrane-proteininteractionsinafunctionalmanner.Thereconstitutionof membrane receptors in such lipid bilayers opensalsodoorsforthedesignofspecificsensorsthatcouldbeusedinaverynearfutureforavarietyofmedicalapplicationsforexampleaspharmaceuticalscreening.

7. LIMItatIons oF bIoMIMetIc MoDeL MeMbranes

Over the last century, model membranes have beenproved to play a considerable role in the elucidationof the structure and the properties of biologicalmembranesaswellasintheunderstandingofbiologicalprocesses thatoccurat themembranesurfaceor thatareassociatedwithcellmembranes.

However,ithastobekeptinmindthatthesemodelsystemshavesomelimitationsastheydonotcapturethewholecomplexityofbiologicalmembranes.Whilethe simplification of themembrane system is crucialfor the analysis of specificmolecular interactions atthemembrane level, itcanalsobeanobstacle to theaccurateunderstandingofsomemembranefunctions.

Some of the main limitations associated withthe use of model membranes have been highlightedrecentlybyVestergaardetal.(2008)andarepresentedinthispaper.

Thenumberofcomponentsthatcanbeincorporatedin a model system is relatively limited mainly dueto experimental constraints and to the capabilities ofanalysis of the currently available technologies. Forexample,mostofbiophysicalstudiesbasedonmodelmembranesonlyinvolveuptothreeorfourdifferentlipid species, while biological membranes enclosemorethanthousanddifferentlipids(vanMeer,2005).

Anotherlimitationofthesemodelsystemsliesonthefactthatitisrelativelychallengingtoreconstituteproteins in model membranes (Chan et al., 2007).Consequently, proteins are much less considered inmembraneresearch,whilethesemembraneconstituents

affect also themembrane structure and contribute tomembranepropertiesandfunctions.

Uptonow,theremarkablelipidasymmetrybetweenthetwoleafletsofbiologicalmembraneshasnotbeenfullyachievedinmodelsystems,whereasitisknowntoplayvariousfunctionalrolesinplasmamembranes(Mannoetal.,2002).Furthermore,modelmembranesdonotcontaincytoskeletalcomponentswhichstronglyparticipatetothelipidandproteindiffusionacrossthecellsurfaceandconsequentlytothephasebehaviorofcellmembranes.

Other limitationsarealsodirectlyassociatedwiththe preparation technique of these model systems.While lipidmonolayers can be quite easily preparedfrom each type of membrane lipids, the preparationtechnique of lipid vesicles is more complex andselective. For example, it is very challenging toreconstitutemembranelipidswithahighchainmeltingtemperature (such as ceramides) into vesicles as thevesicle formation requires an aqueous dispersion oflipids at temperatures above their phase transitiontemperature.

8. concLuDIng reMarKs

Toconcludeitisworthtonotethatthisarticledoesnothave the pretention to present the last developmentsin membrane research resulting from the use ofbiomimeticmodelmembranes.

While also revisiting the fundamental propertiesof biological membranes in terms of membranecomposition, membrane dynamic and molecularorganization at the nanometre scale, this articleprovides a general and consistent description of themainmodelmembranesusedinmembraneresearch.

This article should be then considered as a firstreference document for scientists who desire to beinitiated into the fascinating world of biologicalmembranes.Afterwards,thereaderisreferredtomorespecialized articles and reviews for more in-depthinformationrelatedtothedifferenttopicsdiscussedinthepresentpaper.

bibliography

AhmedS.N., BrownD.A. & LondonE., 1997. On theorigin of sphingolipid/cholesterol-rich detergent-insolublecellmembranes:physiologicalconcentrationsof cholesterol and sphingolipid induce formation of adetergent-insoluble,liquid-orderedlipidphaseinmodelmembranes.Biochemistry,36,10944-10953.

AlmeidaP.F.,VazW.L.&ThompsonT.E.,1993.Percolationand diffusion in three-component lipid bilayers:effect of cholesterol on an equimolar mixture of twophosphatidylcholines.Biophys. J.,64,399-412.

Page 15: From biological membranes to biomimetic model membranes · B A S E Biotechnol. Agron. Soc. Environ. 2010 14(4), 719-736 Focus on: From biological membranes to biomimetic model membranes

Biologicalmembranesandbiomimeticmodels 733

AndersonR.G.W. & JacobsonK., 2002. A role for lipidshellsintargetingproteinstocaveolae,rafts,andotherlipiddomains.Science,296,1821-1825.

AndersonT.H.etal.,2009.Formationofsupportedbilayersonsilicasubstrates.Langmuir,25,6997-7005.

BagatolliL.A.&GrattonE.,1999.Two-photonfluorescencemicroscopyobservationof shape changes at thephasetransition in phospholipid giant unilamellar vesicles.Biophys. J.,77,2090-2101.

BagatolliL.A., ParasassiT. & GrattonE., 2000. Giantphospholipid vesicles: comparison among the wholelipid sample characteristics using different preparationmethods.Atwophotonfluorescencemicroscopystudy.Chem. Phys. Lipids,105,135-147.

BrennanP.J.,GriffinP.F.S.,LoselD.M.&TyrrellD.,1974.Thelipidsoffungi.Prog. Chem. Fats Other Lipids,14,49-89.

BretscherM.S., 1973. Membrane structure: some generalprinciples.Science,181,622-629.

BrockmanH., 1999. Lipid monolayers: why use halfa membrane to characterize protein-membraneinteractions?Curr. Opin. Struct. Biol.,9,438-443.

BrownD.A.& RoseJ.K., 1992. Sorting of GPI-anchoredproteins to glycolipid-enrichedmembrane subdomainsduringtransporttotheapicalcellsurface.Cell,68,533-544.

BrownD.A. & LondonE., 1997. Structure of detergent-resistant membrane domains: does phase separationoccurinbiologicalmembranes?Biochem. Biophys. Res. Commun.,240,1-7.

BrownD.A. & LondonE., 1998a. Structure and originof ordered lipid domains in biological membranes.J. Membr. Biol.,164,103-114.

BrownD.A.&LondonE.,1998b.Functionoflipidraftsinbiologicalmembranes. Annu. Rev. Cell Dev. Biol.,14,111-136.

BrownM.F.etal.,2002.Elasticdeformationofmembranebilayers probed by deuteriumNMR relaxation. J. Am. Chem. Soc.,124,8471-8484.

CampbellS.M.,CroweS.M.&MakJ.,2001.LipidraftsandHIV-1:fromviralentrytoassemblyofprogenyvirions.J. Clin. Virol.,22,217-227.

ChanY.H.M. & BoxerS.G., 2007. Model membranesystemsandtheirapplications.Curr. Opin.Chem. Biol.,11,581-587.

ChernomordikL., 1996.Non-bilayer lipids and biologicalfusionintermediates.Chem. Phys. Lipids,81,203-213.

CraneJ.M.&TammL.K.,2007.Fluorescencemicroscopyto study domains in supported lipid bilayers.Methods Mol. Biol.,400,481-488.

CullisP.R.&deKruijffB.,1979.Lipidpolymorphismandthe functional rolesof lipids inbiologicalmembranes.Biochim. Biophys. Acta,559,399-420.

DanielliJ.F.&DavsonH.,1935.Acontributiontothetheoryofpermeabilityofthinfilms.J. Cell Comp. Physiol.,5,495-508.

de AlmeidaR.F., FedorovA. & PrietoM., 2003.Sphingomyelin/phosphatidylcholine/cholesterol phasediagram: boundaries and composition of lipid rafts.Biophys. J.,85,2406-2416.

deVriesA.H.,YefimovS.,MarkA.E.&MarrinkS.J.,2005.Molecular structure of the lecithin ripple phase.Proc. Natl Acad. Sci.USA,102,5392-5396.

DufrêneY.F., BargerW.R., GreenJ.-B. D. & LeeG.U.,1997. Nanometer-scale surface properties of mixedphospholipid monolayers and bilayers. Langmuir, 13,4779-4784.

DuncanM.J., ShinJ.S. &AbrahamS.N., 2002.Microbialentry through caveolae: variations on a theme. Cell Microbiol.,4,783-791.

El MaghrabyG.M., BarryB.W. & WilliamsA.C., 2008.Liposomes and skin: from drug delivery to modelmembranes.Eur. J. Pharm. Sci.,34,203-222.

FantiniJ.,GarmyN.,MahfoudR.&YahiN., 2002. Lipidrafts: structure, function and role inHIV,Alzheimer’sand prion diseases. Exp. Rev. Mol. Med., http://www.expertreviews.org/02005392h.htm,(20/12/02).

FilippovA.,OräddG.&LindblomG.,2003.Theeffectofcholesterolon the lateraldiffusionofphospholipids inorientedbilayers.Biophys. J.,84,3079-3086.

FriedrichsonT. & KurzchaliaT.V., 1998. Microdomainsof GPI-anchored proteins in living cells revealed bycrosslinking.Nature,394,802-805.

GainesG.L.Jr., 1966. Insoluble monolayers at liquid-gas interfaces.NewYork,USA:Wiley.

GallyH.U.,SeeligA.&SeeligJ.,1976.Cholesterol-inducedrod-likemotionoffattyacylchains in lipidbilayers:adeuteriummagnetic resonance study.Hopp-Seyler’s Z. Physiol. Chem.,357,1447-1450.

GiocondiM.C. et al., 2000. In situ imaging of detergent-resistant membranes by atomic force microscopy.J. Struct. Biol.,131,38-43.

GoksuE.I.etal.,2009.AFMforstructureanddynamicsofbiomembranes.Biochim. Biophys. Acta,1788,254-266.

GoñiF.M. et al., 2008. Phase diagrams of lipid mixturesrelevant to the study of membrane rafts. Biochim. Biophys. Acta,1781,665-684.

GoodrichF.C., 1957. Molecular interaction in mixedmonolayers. In:SchulmanJ.H.,ed.Proceedings of the 2nd International Congress of Surface Activity.London:Butterworth.

GorterE. & GrendelF., 1925. On bimolecular layers oflipoidson thechromocytesof theblood.J. Exp. Med.,41,439-443.

GregoriadisG.,1991.Overviewofliposomes.J. Antimicrob. Chemother.,28,39-48.

GurtovenkoA.A. & VattulainenI., 2007. Lipidtransmembrane asymmetry and intrinsic membranepotential:twosidesofthesamecoin.J. Am. Chem. Soc.,129,5358-5359.

GurtovenkoA.A. & VattulainenI., 2008. Membranepotential and electrostatics of phospholipid bilayers

Page 16: From biological membranes to biomimetic model membranes · B A S E Biotechnol. Agron. Soc. Environ. 2010 14(4), 719-736 Focus on: From biological membranes to biomimetic model membranes

734 Biotechnol. Agron. Soc. Environ.201014(4),719-736 EemanM.&DeleuM.

withasymmetrictransmembranedistributionofanioniclipids.J. Phys. Chem. B,112,4629-4634.

GurtovenkoA.A. & VattulainenI., 2009. Intrinsicpotential of cell membranes: opposite effects of lipidtransmembrane asymmetry and asymmetric salt iondistribution.J. Phys. Chem. B,113,7194-7198.

HarderT., ScheiffeleP., VerkadeP. & SimonsK., 1998.Lipid domain structure of the plasma membranerevealedbypatchingofmembranecomponents.J. Cell. Biol.,141,929-942.

HeerklotzH.,2002.Tritonpromotesdomain formation inlipidraftmixtures.Biophys. J.,83,2693-2701.

HeimburgT., 2000. A model for the lipid pretransition:coupling of ripple formation with the chain-meltingtransition.Biophys. J.,78,1154-1165.

HeimburgT., 2007. Thermal biophysics of membranes.Weinheim,Germany:Wiley.

HeleniusA. & SimonsK., 1975. Solubilization ofmembranesbydetergents.Biochim. Biophys. Acta,415,29-79.

HenriksenJ.etal.,2006.Universalbehaviourofmembraneswithsterols.Biophys. J.,90,1639-1649.

Honerkamp-SmithA.R.,VeatchS.L.&KellerS.L., 2009.An introduction to critical points for biophysicists;observations of compositional heterogeneity in lipidmembranes.Biochim. Biophys. Acta,1788,53-63.

IpsenJ.H. et al., 1987. Phase equilibria in thephosphatidylcholine-cholesterol system. Biochim.Biophys. Acta,905,162-172.

JacobsonK. & DietrichC., 1999. Looking at lipid rafts.Trends Cell Biol.,9,87-91.

JaniakM.J., SmallD.M. & ShipleyG.G., 1979.Temperature and compositional dependence of thestructure of hydrated dimyristoyl lecithin. J. Biol. Chem.,254,6068-6078.

JassJ., TjämhageT.& PuuG., 2000. From liposomes tosupported, planar bilayer structures on hydrophilicandhydrophobicsurfaces:anatomicforcemicroscopystudy.Biophys. J.,79,3153-3163.

KellerC.A.&KasemoB.,1998.Surfacespecifickineticsof lipid vesicle adsorption measured with a quartzcrystalmicrobalance.Biophys. J.,75,1397-1402.

LasicD.D., 1990. On the thermodynamic stability ofliposomes.J. Colloid Interface Sci.,140,302-304.

LeeC., WacklinH. & BainC.D., 2009. Changes inmolecular composition and packing during lipidmembranereconstitutionfromphospholipid–surfactantmicelles.Soft Matter,5,568-575.

LichtenbergD., RobsonR.J. & DennisE.A., 1983.Solubilizationofphospholipidsbydetergents:structuralandkineticaspects.Biochim. Biophys. Acta,737,285-304.

LichtenbergD., GoñiF.M. & HeerklotzH., 2005.Detergent-resistantmembranesshouldnotbeidentifiedwith membrane rafts. Trends Biochem. Sci., 30, 430-436.

LinW.C.,BlanchetteC.D.,RattoT.V.&LongoM.L.,2007.Lipiddomainsinsupportedlipidbilayerforatomicforcemicroscopy.Methods Mol. Biol.,400,503-513.

LooseM. & SchwilleP., 2009. Biomimetic membranesystems to study cellular organization. J. Struct. Biol.,168,143-151.

LorinA., FloreC., ThomasA. & BrasseurR., 2004. Lesliposomes: description, fabrication et applications.Biotechnol. Agron. Soc. Environ.,8,163-176.

MadaniH. & KalerE.W., 1990. Aging and stability ofvesiculardispersions.Langmuir,6,125-132.

Maget-DanaR., 1999. The monolayer technique: a potenttoolforstudyingtheinterfacialpropertiesofantimicrobialandmembrane-lyticpeptidesandtheirinteractionswithlipidmembranes. Biochim. Biophys. Acta,1462,109-140.

ManesS., del RealG. &MartinezA.C., 2003. Pathogens:rafthijackers.Nat. Rev. Immunol.,3,557-568.

MannoS.,TakakuwaY.&MohandasN.,2002.Identificationof a functional role for lipid asymmetry in biologicalmembranes: phosphatidylserine-skeletal proteininteractions modulate membrane stability. Proc. Natl Acad. Sci. USA,99,1943-1948.

MarquesE.F., 2000. Size and stability of catanionicvesicles:effectsofformationpath,sonication,andaging.Langmuir,16,4798-4807.

McConlongueC.W.&VanderlickT.K.,1997.Acloselookatdomain formation inDPPCmonolayers.Langmuir,13,7158-7164.

McElhaneyR.N.&TourtellotteM.E.,1971.Therelationshipbetweenfattyacidstructureandthepositionaldistributionof esterified fatty acids in phosphatidylglycerol fromMycoplasma laidlawiiB.Biochim. Biophys. Acta,202,120-128.

McIntoshT.J., 1980. Difference in hydrocarbon chaintilt between hydrated phosphatidylethanolamine andphosphatidylcholine bilayers. A molecular packingmodel.Biophys. J.,29,237-246.

McLaughlinS., 1989. The electrostatic properties ofmembranes. Annu. Rev. Biophys. Biophys. Chem., 18,113-136.

MilhietP.E.etal.,2001.Domainformationinmodelsoftherenal brushbordermembraneouter leaflet.Biophys. J.,81,547-555.

MillerC.E.,MajewskiJ.&KuhlT.L.,2006.Characterizationof single biological membranes at the solid-liquidinterfacebyX-rayreflectivity.Colloid Surf. A,284-285,434-439.

Mingeot-LeclercqM.-P., DeleuM., BrasseurR. &DufrêneY.F., 2008. Atomic force microscopy ofsupportedlipidbilayers.Nat. Protoc.,3,1654-1659.

MotschmannH. &MöhwaldH., 2001. Langmuir-Blodgettfilms.In:HolmbergK.,ed.Handbook of applied surface and colloid chemistry.NewYork,USA:Wiley-VCH.

MuiB.,ChowL.&HopeM.J.,2003.Extrusiontechniquetogenerate liposomes of defined size.Methods Enzymol.,367,3-14.

Page 17: From biological membranes to biomimetic model membranes · B A S E Biotechnol. Agron. Soc. Environ. 2010 14(4), 719-736 Focus on: From biological membranes to biomimetic model membranes

Biologicalmembranesandbiomimeticmodels 735

MullerP. & HerrmannA., 2002. Rapid transbilayermovement of spin-labeled steroids in humanerythrocytes and in liposomes.Biophys. J., 82, 1418-1428.

OpdenKampJ.A.F.,1979.Lipidasymmetryinmembranes.Annu. Rev. Biochem.,48,47-71.

PeetlaC., StineA. & LabhasetwarV., 2009. Biophysicalinteractionswithmodellipidmembranes:applicationsindrugdiscoveryanddrugdelivery.Mol. Pharmaceutics,6,1264-1276.

PikeL.J.,2003.Lipidrafts:bringingordertochaos.J. Lipid Res.,44,655-667.

PuuG.&GustafsonI.,1997.Planarlipidbilayersonsolidsupports from liposomes - factors of importance forkinetics and stability. Biochim. Biophys. Acta, 1327,149-161.

RadhakrishnanA., AndersonT.G. & McConnellH.M.,2000. Condensed complexes, rafts, and the chemicalactivityofcholesterol inmembranes.Proc. Natl Acad. Sci. USA,97,12422-12427.

RamstedtB. & SlotteJ.P., 2002. Membrane properties ofsphingomyelins.FEBS Lett.,531,33-37.

RappoltM., LaggnerP. & PabstG., 2004. Structureand elasticity of phospholipid bilayers in the Lαphase: a comparison of phosphatiylcholine andphosphatidylethanolaminemembranes.Recent Res. Dev. Biophys.,3,363-394.

ReviakineI. & BrissonA., 2000. Formation of supportedphospholipid bilayers from unilamellar vesiclesinvestigatedbyatomicforcemicroscopy.Langmuir,16,1806-1815.

RichterR.P.&BrissonA.R.,2005.Followingtheformationofsupportedlipidbilayersonmica:astudycombiningAFM,QCM-D,andellipsometry.Biophys. J.,88,3422-3433.

RietveldA.&SimonsK.,1998.Thedifferentialmiscibilityof lipids as the basis for the formation of functionalmembranerafts.Biochim. Biophys. Acta,1376,467-479.

RockP. et al., 1990. Organization of glycosphingolipidsin phosphatidylcholine bilayers: use of antibodymoleculesandFabfragmentsasmorphologicmarkers.Biochemistry,29,8484-8490.

RodriguezN.,PincetF.&CribierS., 2005.Giant vesiclesformed by gentle hydration and electroformation: acomparison by fluorescencemicroscopy.Colloid Surf. B,42,125-130.

RossiC.&ChopineauJ., 2007.Biomimetic tethered lipidmembranesdesigned formembrane-protein interactionstudies.Eur. Biophys. J.,36,955-965.

RothmanJ.E. & LenardJ., 1977. Membrane asymmetry.Science,195,743-753.

SankaramM.B. & ThompsonT.E., 1990a. Interaction ofcholesterol with various glycerophospholipides andsphingomyelin.Biochemistry,29,10670-10675.

SankaramM.B. & ThompsonT.E., 1990b. Modulation ofphospholipid acyl chain order by cholesterol.A solid-

state2Hnuclearmagneticresonancestudy.Biochemistry,29,10676-10684.

SankaramM.B. & ThompsonT.E., 1991. Cholesterol-inducedfluid-phase immiscibility inmembranes.Proc. Natl Acad. Sci. USA,88,8686-8690.

SchroederR.,LondonE.&BrownD.A.,1994.Interactionsbetweensaturatedacylchainsconferdetergentresistanceon lipids and glycosylphosphatidylinositol (GPI-)anchoredproteins:GPI-anchoredproteinsinliposomesand cells show similar behavior.Proc. Natl Acad. Sci. USA,91,12130-12134.

SchuckS. et al., 2003. Resistance of cell membranes todifferent detergents. Proc. Natl Acad. Sci. USA, 100,5795-5800.

SenguptaP., HolowkaD. & BairdB., 2007. Fluorescenceresonanceenergy transferbetween lipidprobesdetectsnanoscopic heterogeneity in the plasma membrane oflivecells.Biophys. J.,92,3564-3574.

Shenoy-ScariaA.M. et al., 1994. Cysteine3 of Src familyprotein tyrosinekinasesdeterminespalmitoylationandlocalizationincaveolae.J. Cell Biol.,126,353-364.

ShogomoriH.&BrownD.A., 2003.Use of detergents tostudymembranerafts: thegood,thebad,andtheugly.Biol. Chem.,384,1259-1263.

SimonsK. & IkonenE., 1997. Functional rafts in cellmembranes.Nature,397,569-572.

SimonsK. & ToomreD., 2000. Lipid rafts and signaltransduction.Nat. Rev. Mol. Cell Biol.,1,31-41.

SimonsK. & VazW.L.C., 2004. Model systems, lipidrafts,andcellmembranes.Annu. Rev. Biophys. Biomol. Struct.,33,269-295.

SingerS.J.&NicholsonG.L.,1972.Thefluidmosaicmodelof the structureof cellmembranes.Science,175, 720-731.

SteckT.L., YeJ. & LangeY., 2002. Probing red cellmembrane cholesterol movement with cyclodextrin.Biophys. J.,83,2118-2125.

SubczynskiW.K. & KusumiA., 2003. Dynamics ofraft molecules in the cell and artificial membranes:approaches by pulse EPR spin labelling and singlemolecule optical microscopy.Biochim. Biophys. Acta,1610,231-243.

SwamyM.J.etal.,2006.Coexistingdomainsintheplasmamembraneoflivecellscharacterizedbyspin-labelESRspectroscopy.Biophys. J.,90,4452-4465.

TammL.&McConnellH., 1985. Supported phospholipidbilayers.Biophys. J.,47,105-113.

TanfordC., 1980. The hydrophobic effect: formation of micelles and biological membranes. NewYork, USA:JohnWiley&Sons.

TardieuA.,LuzzatiV.&RemanF.C., 1973.Structure andpolymorphism of the hydrocarbon chains of lipids: astudy of lecithin-water phases. J. Mol. Biol., 75, 711-733.

TibergF.,HarwigssonI.&MalmstenM.,2000.Formationofmodellipidbilayersatthesilica-waterinterfacebyco-

Page 18: From biological membranes to biomimetic model membranes · B A S E Biotechnol. Agron. Soc. Environ. 2010 14(4), 719-736 Focus on: From biological membranes to biomimetic model membranes

736 Biotechnol. Agron. Soc. Environ.201014(4),719-736 EemanM.&DeleuM.

adsorptionwithnon-ionicdodecylmaltosidesurfactant.Eur. Biophys. J. Biophys.Lett.,29,196-203.

UhumwanghoM.U.&OkorR.S., 2005.Current trends intheproductionandbiomedicalapplicationsofliposomes:areview.J. Med. Biomed. Res.,4,9-21.

VacklinH.P.,TibergF.&ThomasR.K.,2005.Formationofsupportedphospholipidbilayersviaco-adsorptionwithβ-D-dodecylmaltoside.Biochim. Biophys. Acta,1668,17-24.

VacklinH.P.&ThomasR.K.,2007.Spontaneousformationofasymmetric lipidbilayersbyadsorptionofvesicles.Langmuir,23,7644-7651.

Van der GootF.G. & HarderT., 2001. Raft membranedomains:fromaliquid-orderedmembranephasetoasiteofpathogenattack.Semin. Immunol.,13,89-97.

van MeerG., 2005. Cellular lipidomics. EMBO J., 24,3159-3165.

VeatchS.L., 2007. From small fluctuations to large-scale phase separation: lateral organization in modelmembranes containing cholesterol. Semin. Cell Dev. Biol.,18,573-582.

VeatchS.L. & KellerS.L., 2005. Seeing spots: complexphasebehaviorinsimplemembranes.Biochim. Biophys. Acta,1746,172-185.

VeatchS.L.,SoubiasO.,KellerS.L.&GawrischK.,2007.Critical fluctuations in domain-forming lipidmixtures.Proc. Natl Acad. Sci. USA,104,17650-17655.

VeatchS.L. et al., 2008. Critical fluctuations in plasmamembranevesicles.ACS Chem. Biol.,3,287-293.

VestergaardM., HamadaT. & TakagiM., 2008. Usingmodel membranes for the study of amyloid beta:lipidinteractionsandneurotoxicity.Biotechnol. Bioeng.,99,753-763.

VistM.E. & DavisJ.H., 1990. Phase equilibria ofcholesterol/dipalmitoylphosphatidylcholine mixtures:2Hnuclearmagneticresonanceanddifferentialscanningcalorimetry.Biochemistry,29,451-464.

VoskuhlJ.&RavooB.J., 2009.Molecular recognition ofbilayervesicles.Chem. Soc. Rev.,38,495-505.

WangT.Y., LeventisR.& SilviusJ.R., 2000. Fluorescent-basedevaluationofthepartitioningoflipidsandlipidatedpeptides into liquid-ordered lipid microdomaines:a model for molecular partitioning into lipid rafts.Biophys. J.,79,919-933.

WesolowskaO., MichalakK., ManiewskaJ. &HendrichA.B., 2009. Giant unilamellar vesicles: aperfecttooltovisualizephaseseparationandlipidraftsinmodelsystems.Acta Biochim. Pol.,56,33-39.

ZimmerbergJ. & ChernomordikL., 1999. Membranefusion.Adv. Drug Delivery Rev.,38,197-205.

(121ref)


Recommended