+ All Categories
Home > Documents > From Molecular Surfaces to Nanomaterials · From Molecular Surfaces to Nanomaterials T. Pradeep...

From Molecular Surfaces to Nanomaterials · From Molecular Surfaces to Nanomaterials T. Pradeep...

Date post: 08-Apr-2018
Category:
Upload: phamthuan
View: 229 times
Download: 8 times
Share this document with a friend
49
From Molecular Surfaces to Nanomaterials T. Pradeep [email protected] 1. Introduction to molecular surfaces 2. Materials through monolayers 3. New approaches for nanomaterials
Transcript

From Molecular Surfaces to Nanomaterials

T. [email protected]

1. Introduction to molecular surfaces 2. Materials through monolayers3. New approaches for nanomaterials

T. Pradeep et al. Anal. Chem. 1999

Research programmes with monolayers

Monolayer structure (SERS)Reactivity

Thermal stability, phase transitionsSubstrate resistance

Ion-surface collisions, reaction dynamics at surfacesProcesses on ices

Monolayer formation changes resistance

Venkataramanan and Pradeep, Chem. Phys. Lett. 20001/τ=(n2e2/M)d∂ρ/∂nana=0

Venkataramanan and Pradeep, Anal. Chem. 2000

Phase transitions of monolayers with surface resistance

1/τ = (2mωFΓ/M)N(EF)< sin2θ >

RS-H + Aun0 RS– -Au+ + ½ H2 + Aun-1

0 (1)RS-H + Aun

0 + oxidant RS– -Au+ + ½ H2O + Aun-10 (2)

RS-H + Au RS-_Au+ + H+ + e- (3)

What happens when thiols adsorb on gold?

Solution: Increased surface areaMass spectrometry

Problem: Number of species and detection

What is new with monolayers?

1

NV MassSpec

DP

RP

2

RP

3

4

Mercurymanometer

Stirrer

Flask w ithAg sol

Thiol intoluene

NV - Needle Valve1,2,3,4 - ValvesDP-Diffusion PumpRP-Rotary Pump

Set-up used to study thiol adsorption

0 500 1000 1500 2000

0.00E+000

1.00E-008

2.00E-008

3.00E-008

4.00E-008

5.00E-008

6.00E-008Io

n Cu

rren

t

Time (sec)

thiolhydstd

Mass spectral intensities upon thiol adsorption

Thiol adsorption on gold films

0 500 1000 1500 20000.00E+000

1.00E-008

2.00E-008

3.00E-008

4.00E-008

5.00E-008

6.00E-008Ion

Cur

rent

Time (sec)

Hydrogen evolution due to adsorption

Hydrogen evolution due to adsorption

Cluster Core

Monolayer

Monolayer protected cluster

TEM of gold clusters protectedwith monolayers

XRD patterns of (a) AgBT, (b) AgPT,(c) AgOT and (d) AgODT

SEM image of AgOT superlattice crystal

(N. Sandhyarani et. al.).

STM morphology of the crystal surface.).

DSC of Au ODT (up to 443 K) (Sandhyarani et. al. Phys. Rev. B. 2000).

Sandhyarani et. al. Phys. Rev. B. 2000.

Temperature dependent FTIR of AgOT

(Sandhyarani et. al. J. Chem. Phys. 2000)

C1

H

H

(b)

SS

(a)

Dynamics of alkyl chains

Mukhopadhyay et al. (J. Phys. Chem. B, 2002)

-1.0 -0.5 0.0 0.5 1.00

50

100

150

Q=0.8 Å-1

Energy Transfer (meV)

0

40

80

120

Q=1.08 Å-1

0

30

60

Q=1.58 Å-1

T=360 K

Q=1.8 Å-1

0

20

40

60

(b)

-1.0 -0.5 0.0 0.5 1.00

50

100 T=300 K

S(Q

, ω) (

arb.

uni

ts)

Energy Transfer (meV)

0

30

60

90

T=340 K

0

25

50

75

T=360 K

0

20

40

60

80

(a) Q=1.32 Å-1

T=380 K

Typical QENS spectra for an isolated nonolayer protected cluster, AuC18, (a) at Q = 1.32 Ǻ-1 and at different temperatures (b) at 360 K, but at different (b) Q values. Dashed and the dotted lines are the quasielastic and elastic(c) components, respectively.

0.0 0.5 1.0 1.5 2.00.0

0.2

0.4

0.6

0.8

1.0 340 K 360 K 380 K

EISF

Q(Å-1)

EISF as obtained for AuC18 at 340 and 360 K and 380 K. The solid line corresponds to a model in which a particle performs random jumpsamong N = 6 equivalent sites on a circle with radius, a equal to 2.1 Ǻ.

0.1 1 100.5

0.6

0.7

0.8

0.9

1.0

1.1

(b)

tran

smitt

ance

input fluence (J/cm2)

0.1 10.8

0.9

1.0(c)

tran

smitt

ance

input fluence (J/cm2)

0.1 10.6

0.7

0.8

0.9

1.0

1.1

(a)

trans

mitt

ance

input fluence (J/cm2)

Reji Philip et. al. Phys. Rev. 2000

Au Clusters

Ag Clusters

AuAg0.75 Clusters

NANOCLUSTER GROUND STATE

(CONDUCTION BAND)

NANOCLUSTER EXCITED STATE

(CONDUCTION BAND)

CHARGED NANOCLUSTER

TRANSIENT STATE

PHOTO

RAGMENTS

Reji Philip et. al. Phys. Rev. 2000

10 - 100 nm

y [ M n + + n e ] X - R - Y M X R Y

X R Y

1 - 1 0 n m M e t a l o x i d e p r e c u r s or

X R Y

X R Y O x i d e

M e t a l c o r e

20-50 nm

Load

E(S+/S*)

(S+/S)

e–

Semiconductor dye electrolyteConducting glass counter electrode

e–

e– e–

e–

e–

∆VR/R–

B. O’Regan and M. Gratzel, Nature 353 (1993) 737.

Ru||

OOP

ON

N

NN N

N

O PO

O

N+

N+

PO(OH)2

PO(OH)2

Conducting Glass

Nanostructured TiO2 Film

TiO2

TiO2-RV

4PF6-

30 nm

Mercaptopropionic acid protected Au cluster

50 nm

XRD upon increase in shell thickness

TG of Ag-MBA-ZrO2

ZrO2 covered Au cluster solutions

a -- AuZrO2 (3.8 mM, 45 min)b -- AuZrO2 (3,8 mM, 1 h 30 min)c -- AuZrO2 (3,8 mM x 2, 45 min)d -- AuZrO2 (3,8 mM x 2, 1 h 30 min)

TiO2 covered Au in various forms

UV-VIS of titania covered gold nanoparticles

.1.003 mM (λ max = 531nm)

.1.504 mM (537 nm)

.1.755 mM (547 nm)

.2.005 mM (554 nm)

.

Bio-clusters!

1000 nm

1000 nm500 nm

Along [111] zone axis

500 nm

500 nm

500 nm

500 nm

Bacterial gold film (111) orientation

Materials through monolayers: a viable approachThiol adsorb on gold with hydrogen evolutionOxide protected metal clusters can be synthesised in bulkProperties can be tuned depending on the dimensions of both oxide and metal

Summary

Acknowledgements

PeopleV. EswaranandRajesh Komban

Renjis TomSreekumaran NairDr. Beena Mathew

Dr. T. K. ManojkumarFundingCSIR, DST

FacilitiesRSIC and IIT

Teachers


Recommended