+ All Categories
Home > Documents > Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in...

Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in...

Date post: 19-Apr-2020
Category:
Upload: others
View: 9 times
Download: 0 times
Share this document with a friend
22
1 ETH Zurich Ultrafast Laser Physics Prof. Ursula Keller Department of Physics, Insitute of Quantum Electronics, ETH Zurich International Summer School New Frontiers in Optical Technology Tampere, Finland, Aug. 5-9, 2013 Lecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for real world applicationTelecom & Datacom Interconnects Optical Clocking Frequency comb Multi-photon imaging Modelocking by forcing all modes in a laser to operate phase-locked, noiseis turned into ideal ultrashort pulses I (ω) φ(ω) 0 I (t) +π -π ~ ~ φ( t) axial modes in laser not phase- locked noise I (ω) I (t) φ(ω) 0 +π -π τ 1 Δν φ( t) ~ ~ axial modes in laser phase- locked ultrashort pulse inverse proportional to phase- locked spectrum acousto-optic loss modulator needs RF power and water cooling Active Modelocking
Transcript
Page 1: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

1

ETH Zurich Ultrafast Laser Physics

Prof. Ursula Keller

Department of Physics, Insitute of Quantum Electronics, ETH Zurich

International Summer School New Frontiers in Optical Technology

Tampere, Finland, Aug. 5-9, 2013

Lecture 2: SESAM modelocked VECSELs and MIXSELs

Frontiers in ultrafast laser technology

Compact ultrafast lasers for “real world application”

Telecom & Datacom Interconnects Optical Clocking

Frequency comb

Multi-photon imaging

Modelocking

by forcing all modes in a laser to operate phase-locked, “noise” is turned into ideal ultrashort pulses

I (ω)

φ (ω)

0

I (t)

~

~φ ( t)

§  axial modes in laser not phase- locked #

§  noise#

I (ω) I (t)

φ (ω)

0

τ ≈ 1Δν

φ ( t)~

~

§  axial modes in laser phase- locked #

§  ultrashort pulse#

§  inverse proportional to phase- locked spectrum#

acousto-optic loss modulator needs RF power and water cooling

Active Modelocking

Page 2: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

2

Innovation: before and after

acousto-optic modelocker SESAM modelocker needs RF power and water cooling

SESAM technology – ultrafast lasers for industrial application

Gain!

SESAMSEmiconductor Saturable Absorber Mirror

#

##

self-starting, stable, and reliable modelocking of diode-pumped ultrafast solid-state lasers

Outputcoupler!

U. Keller et al. Opt. Lett. 17, 505, 1992IEEE JSTQE 2, 435, 1996#Progress in Optics 46, 1-115, 2004!Nature 424, 831, 2003#

SESAM solved Q-switching problem for diode-pumped solid-state lasers

20 years of SESAM – looking back

20 years of ultrafast solid-state lasers: invited paper

•  Why was it assumed that diode-pumped solid-state lasers cannot be passively modelocked?

•  How was the SESAM invented?

•  State-of-the-art performance and future outlook

Appl. Phys. B 100, 15-28, 2010

Motivation for semiconductor lasers: Wafer scale integration D. Lorenser et al., Appl. Phys. B 79, 927, 2004

MIXSEL modelocked integrated external-cavity surface emitting laser

SESAM

Passively modelocked VECSEL vertical external cavity surface emitting laser Review: Physics Reports 429, 67-120, 2006

D. J. H. C. Maas et al., Appl. Phys. B 88, 493, 2007

Page 3: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

3

MIXSEL wafer scale integration

A. R. Bellancourt et al., “Modelocked integrated external-cavity surface emitting laser” IET Optoelectronics, vol. 3, Iss. 2, pp. 61-72, 2009 (invited paper)

MIXSEL wafer scale integration

A. R. Bellancourt et al., “Modelocked integrated external-cavity surface emitting laser” IET Optoelectronics, vol. 3, Iss. 2, pp. 61-72, 2009 (invited paper)

Development to the MIXSEL

Quantum-Well SESAM 4 GHz, 2.1 W, 4.7 ps A. Aschwanden et al., Opt. Lett. 30, 272 (2005)

Quantum-Dot SESAM 50 GHz, 102 mW, 3.3 ps D. Lorenser et al., IEEE JQE, 42, 838 (2006)

integration of absorber

MIXSEL Modelocked Integrated External-Cavity Surface Emitting Laser

VECSEL VECSEL

QD-SESAM QW-SESAM

1997

first MIXSEL

(resonant)

2000 2007

first OP-VECSEL

(CW)

first VECSEL-SESAM

modelocking

2009

first 1:1 modelocking with

antiresonant QD-SESAM

first 1:1 modelocking with

resonant QD SESAM

2005

first MIXSEL with antiresonant

design and high power

2010

power and repetition rate

scaling

focusing on SESAM

no focusing required stronger saturation 1:1 modelocking

(Antiresonant) MIXSEL 2.5 GHz, 6.4 W, 28 ps March 2010 B. Rudin et al., Opt. Express in prep.

VECSEL CW >0.5 W M. Kuznetsov et al., IEEE PTL 9, 1063 (1997) not ETH Zurich

Optically pumped ultrafast VECSELs / MIXSELs

1 mW

10 mW

100 mW

1 W

10 W

aver

age

outp

ut p

ower

10 fs 100 fs 1 ps 10 ps 100 pspulse duration

QW-VECSEL QD-VECSEL MIXSEL

More updates also on webpage of Prof. Keller: www.ulp.ethz.ch/research/VecselMixsel

most recent MIXSEL results

100 mW, 620 fs, 4.8 GHz

1.3 W, 3.9 ps, 10 GHz 1 W, 2.4 ps, 5 GHz 0.61 W, 2.4 ps, 21 GHz

Page 4: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

4

Review article for VECSELs: U. Keller and A. C. Tropper, Physics Reports, vol. 429, Nr. 2, pp. 67-120, 2006

Comparison of Ultrafast GHz Lasers 10 - 160 GHz Nd:YVO4 laser: quasi-monolithic cavity

•  Crystal lengths: 440 µm - 2.3 mm (FSR ~ 160 - 29 GHz) •  Nd:YVO4 doping: 3 % (90 µm absoption length)

L. Krainer et al., Electron. Lett. 35, 1160, 1999 (29 GHz)!APL 77, 2104, 2000 (up to 59 GHz), Electron. Lett. 36, 1846, 2000 (77 GHz)

IEEE J. Quant. Electron. 38, 1331, 2002 (10 to 160 GHz)!

4!

100 GHz Er:Yb:glass laser

1 mm

SESAM

Folding mirror

Er:Yb:glass crystal with output coupler

A. E. H. Oehler, T. Südmeyer, K. J. Weingarten, U. Keller, Opt. Express 16, 21930, 2008

101 GHz

35 mW

2.6 nm

1.6 ps

Autocorrelation

Optical spectrum

Overview on high repetition rate DPSSLs 2011 frep τpulse Paverage material λcenter Ppeak Ep reference

160 GHz 2.7 ps 110 mW Nd:YVO4 1064 nm 0.25 W 0.69 pJ L. Krainer et al., IEEE J. Quant. Electron. 38, 1331 (2002)

100 GHz 1.1 ps 35 mW Er:Yb:glass 1550 nm 0.32 W 0.35 pJ A. E. Oehler et al., Appl. Phys. B 99, 53 (2010)

1 GHz 55 fs 110 mW Cr:LiSAF 865 nm 1.8 kW 0.11 nJ D. Li et al., Opt. Lett. 35, 1446 (2010)

2.8 GHz 162 fs 680 mW Yb:KYW 1045 nm 1.5 kW 0.23 nJ S. Yamazoe et al., Opt. Lett. 35, 748 (2010)

1 GHz 290 fs 2.2 W Yb:KGW 1042 nm 6.7 kW 2.2 nJ

Pekarek, Fiebig, Stumpf, Oehler, Paschke, Erbert, Südmeyer, Keller, Opt. Exp. 18, 16320 (2010)

Improved laser performance and frequency comb generation: Optics Express 19, 16491, 2011

Page 5: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

5

1020 1040 1060 10800

0.2

0.4

0.6

0.8

1.0

spe

ctra

l int

ensi

ty (a

.u.)

wavelength (nm)

!" = 11.3 nm

!0.6 !0.3 0 0.3 0.60

0.2

0.4

0.6

0.8

1.0

time (ps)

measuredsech2!fit

#p = 125 fs

AC in

tens

ity (a

.u.)

0 0.2 0.4 0.6 0.8 1.0

!90

!70

!50

!30

!10

frequency (GHz)

spec

tral p

ower

(dB

m) RBW

100 kHz

1.0594 1.0598 1.0602!90!70!50!30 RBW

1 kHz

a) c)b)

measuredsech2!fit

Most recent result from a GHz SEASM ML Yb:KGW Pumping with commercial

fiber coupled multimode diode laser

Reliable & robust pumping

-500 fs2

L1L2

M1M2

SESAM

M3M4

pump

Yb:KGW

-500 fs2

A. Klenner et al., Opt. Express 8, 10351 (2013)

Highest peak power from a GHz DPSSL !

frep = 1.1 GHz tP = 125 fs

Pav = 3.4 W Ppeak = 22.7 kW

l0 = 1046 nm

Continuous wave VECSEL §  Bandgap engineering §  Power scaling

SESAM modelocking §  SESAM-VECSEL modelocking §  1:1 modelocking

MIXSEL Integration challenges

Results

QD-SESAM optimization

Dispersion optimization

Outlook & Conclusion

Outline

CW optically pumped VECSEL

OP-VECSEL = Optically Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Laser

M. Kuznetsov et al., IEEE Photon. Technol. Lett. 9, 1063 (1997)

•  Semiconductor gain structure with reduced thickness IEEE JQE 38, 1268 (2002) •  Pump: high power diode bar •  External cavity

for diffraction-limited output

pump

laser

heat sink

gain structure

output coupler

VECSEL gain structure

pump

laser

heat sink

gain structure

output coupler

gain structure heat sink

pump energy

Page 6: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

6

• 7 In0.13Ga0.87As QWs (8 nm) in anti-nodes of standing-wave pattern, designed for gain at ≈ 960 nm

• GaAs spacer layers

• Strain-compensating GaAs0.94P0.06 layers

• Pump at 808 nm

pump energy

VECSEL gain structure Optically pumped semiconductor laser?

• Maybe a bad idea coming from semiconductor diode lasers? • But for sure a good idea coming from diode-pumped solid-state lasers: - more flexibility in operation wavelengths - broad tunability - efficient mode conversion from low-beam-quality high-power diode lasers - modelocking possible with SESAMs - waferscale integration - cheaper ultrafast lasers in the GHz pulse repetition rate regime

Semiconductor materials: bandgap engineering

1.5 µm

VECSELs: cw spectral coverage (Jennifer Hastie) • 2-­‐2.8  μm  –  GaInAsSb  /  AlGaAsSb    

• 1.5  μm  –  InGaAs  /  InGaAsP  

• 1.2-­‐1.5  μm  –  AlGaInAs  /  InP  (fused)  

• 1.2-­‐1.3  μm  –  GaInNAs  /  GaAs  

• 1-­‐1.3  μm  –  InAs  QDs  

• 0.9-­‐1.18  μm  –  InGaAs  /  GaAs  

• 850-­‐870  nm  –  GaAs  /  AlGaAs  

• 700-­‐750  nm  –  InP  QDs  

• 640-­‐690  nm  –  InGaP  /  AlGaInP  

•  Frequency-­‐doubled  VECSELs  have  been  reported  throughout  the  visible  and  into  the  UV  

Infrared  review:  N.  Schulz  et  al.,  Laser  &  Photonics  Reviews  2,  160  (2008)  Visible  and  UV  review:  S.  Calvez  et  al.,  Laser  &  Photonics  Reviews  3,  407  (2009)  

updated  by  Jennifer  Has:e,  University  of  Strathclyde,  group  of  Prof.  Mar:n  Dawson  

Page 7: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

7

Power scaling in the thin disk geometry

Pump spot (typical diameter >100 µm)

Thin semiconductor structure (≈ 8 µm) 1D heat flow

Copper or diamond heat sink 3D heat flow

Increase output power by increasing pump power and mode size

First room temperature VECSEL: 20 µW average power: J.V. Sandusky et al., IEEE Photon. Technol. Lett. 8, 313 (1996) High-power cw operation: 0.5 W in TEM00 beam: M. Kuznetsov et al., IEEE Photon. Technol. Lett. 9, 1063 (1997) 1.5 W: W. J. Alford et al., J. Opt. Soc. Am. B 19, 663 (2002) 30 W: J. Chilla et al., Proc. SPIE 5332, 143 (2004)

High power TEM00 cw-operation

SESAM diamond

heat spreader

808-nm pump

B. Rudin et al., Opt. Lett. 33, 2719-2721 (2008)

material k [W/Km]

GaAs 55

copper 400

diamond >1800

•  MBE or MOVPE growth of structure in reverse order

•  cleaving of small pieces

•  metalization for soldering

•  flipping over

•  soldering on heat spreader with high thermal conductivity

•  substrate removal by selective wet etching

§  Maximum power P = 20.2 W §  opt.-to-opt. efficiency up to 43% §  M² < 1.1

SESAM diamond

heat spreader 960 nm

808-nm pump

VECSEL pump rad. 240 µm

output coupler (0.7%)

B. Rudin et al., Opt. Lett. 33, 2719-2721 (2008)

High power TEM00 cw-operation OP-VECSEL milestones

•  First room temperature VECSEL: 20 µW average power: J.V. Sandusky et al., IEEE Photon. Technol. Lett. 8, 313 (1996)

•  High-power cw operation: 0.5 W in TEM00 beam: M. Kuznetsov et al., IEEE Photon. Technol. Lett. 9, 1063 (1997) 1.5 W: W. J. Alford et al., J. Opt. Soc. Am. B 19, 663 (2002) 30 W: J. Chilla et al., Proc. SPIE 5332, 143 (2004) - Coherent 20 W in TEM00 beam: B. Rudin et al., Optics Lett. 33, 2719, 2008

Page 8: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

8

2.62 W wafer fused VECSEL at 1550 nm

Opt. Express 16, 21881-21886 (2008)

•  Combine advantages of InP-based active medium with GaAs/AlGaAs reflector

•  Intra-cavity diamond for good heat dissipation

2.62 W cw

Continuous wave VECSEL §  Bandgap engineering §  Power scaling

SESAM modelocking §  SESAM-VECSEL modelocking §  1:1 modelocking

MIXSEL Integration challenges

Results

QD-SESAM optimization

Dispersion optimization

Outlook & Conclusion

Outline

SESAM Semiconductor Saturable Absorber Mirror

Ultrafast VECSELs: Modelocking with SESAMs

pump

modelocked laser

heat sink

gain structure

output coupler

SESAM

cw laser

Review article for VECSELs: U. Keller and A. C. Tropper, Physics Reports, vol. 429, Nr. 2, pp. 67-120, 2006

gain

structure

SESAM

l  Self-starting and reliable modelocking#l  After each roundtrip a pulse is emitted#

l  1 GHz: # #Troundtrip = 1 ns, #Lcavity = 15 cm#l  50 GHz: #Troundtrip = 20 ps,#Lcavity = 3 mm#

SESAM-VECSEL modelocking

DBR

saturable

absorber

incident

field

ΔR

ΔRns

Fsat

Page 9: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

9

gain

structure

SESAM

ð loss has to saturate faster Esat ,a

Esat ,g

=Fsat ,a  AaFsat ,g Ag

< 1

VECSEL gain

SESAM-VECSEL modelocking

l  Self-starting and reliable modelocking#l  After each roundtrip a pulse is emitted#

l  1 GHz: # #Troundtrip = 1 ns, #Lcavity = 15 cm#l  50 GHz: #Troundtrip = 20 ps,#Lcavity = 3 mm#

ΔR

ΔRns

Fsat

Monday, August 19, 13 34 Ultrafast Laser Physics

Dynamic gain saturation in semiconductor lasers

time

loss

gain

pulsetime

loss

gain

pulse

Solid-state lasers No dynamic gain saturation Soliton modelocking F. X. Kärtner, U. Keller, Opt. Lett. 20, 16, 1995

Semiconductor and dye lasers Dynamic gain saturation G.H.C. New, Opt. Com. 6, 188, 1974

gain

structure

SESAM

Important difference between

semiconductor lasers and

diode-pumped solid-state lasers

< 20 GHz

gain

structure

QW-SESAM 1.5 GHz 2.2 W 6 ps

4 GHz 2.1 W 4.7 ps

10 GHz 1.4 W 6.1 ps

Quantum-Well SESAM ML

Esat ,a

Esat ,g

=Fsat ,a  AaFsat ,g Ag

< 1

SESAM-VECSEL modelocking

typically 1/4 – 1/20 for QW-SESAMs

( )( )

2a

2g

π 40µm0.052

π 175µmAA

⋅= =

example: 2.2 W, 6 ps QW-VECSEL

Monday, August 19, 13 36 Ultrafast Laser Physics

•  QW SESAM •  etalon for dispersion management

, ,

, ,

0.1sat a sat a a

sat g sat g g

E F AE F A

= <

mode radius on gain: 175 µm mode radius on SESAM: 40 µm

Aa

Ag

∝40 µm( )2

175 µm( )2 = 0.052

Cavity close to stability limit:

2.2 W in 6.0 ps pulses at 1.5 GHz

Modelocking with quantum well (QW) SESAM

A. Aschwanden et al., Opt. Lett. 30, 272 (2005)

Page 10: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

10

< 20 GHz

gain

structure

QW-SESAM

QD-SESAM gain

structure

With lower saturation fluence ð no focusing needed anymore!

Esat ,a

Esat ,g

=Fsat ,a  AaFsat ,g Ag

< 1

SESAM-VECSEL modelocking

< 20 GHz

gain

structure

QW-SESAM

QD-SESAM gain

structure

up to 50 GHz

demonstrated

SESAM-VECSEL modelocking

Quantum-Dot SESAM •  modulation depth and Fsat decoupled

•  resonant design to decrease Fsat

•  low-T growth for fast recovery

ð ≈10-fold Fsat reduction

< 20 GHz

gain

structure

QW-SESAM

SESAM

output

coupler

etalon

gain structure

3 mm QD-SESAM gain

structure

QD-SESAM modelocking: up to 50 GHz repetition rate D. Lorenser et al., IEEE J. Quantum Electron., vol. 42, pp. 838-847, 2006.

•  102 mW average power, center wavelength 958.5 nm

•  3.3 ps pulse duration

up to 50 GHz

demonstrated

SESAM-VECSEL modelocking

D. Lorenser et al., IEEE J. Quantum Electron. 42, 838-847 (2006)

Modelocking with identical mode sizes on gain and absorber:

Resonant QD SESAM: •  = 1% •  Fsat = 2 µJ/cm2

Laser output: •  Pout = 102 mW •  = 3.3 ps •  frep = 50 GHz

Integration of absorber is now conceptually possible!

Towards Absorber Integration: “1:1 modelocking”

ΔR

τ p

Page 11: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

11

SESAM-VECSEL modelocking and MIXSEL

< 20 GHz

gain

structure

QW-SESAM up to 50 GHz

demonstrated

QD-SESAM gain

structure MIXSEL

QD QW

OP-VECSEL milestones

•  First room temperature VECSEL: 20 µW average power: J.V. Sandusky et al., IEEE Photon. Technol. Lett. 8, 313 (1996)

•  High-power cw operation: 0.5 W in TEM00 beam: M. Kuznetsov et al., IEEE Photon. Technol. Lett. 9, 1063 (1997) 1.5 W: W. J. Alford et al., J. Opt. Soc. Am. B 19, 663 (2002) 30 W: J. Chilla et al., Proc. SPIE 5332, 143 (2004) - Coherent 20 W in TEM00 beam: B. Rudin et al., Optics Lett. 33, 2719, 2008

•  Passive mode locking with SESAM: 20 mW: S. Hoogland et al., IEEE Photon. Technol. Lett. 12, 1135 (2000) 200 mW: R. Häring et al., Electron. Lett. 37, 766 (2001) 950 mW: R. Häring et al., IEEE JQE 38, 1268 (2002) 2.1 W, 4.7 ps, 4 GHz, 957 nm 2.2 W, 6 ps, 1.5 GHz, 957 nm A. Aschwanden et al., Opt. Lett. 30, 272 (2005) Modelocked VECSEL review: Physics Reports 429, 67, 2006

First wafer-fused modelocked VECSEL at 1550 nm

D=34 mmRoC=50 mm

SESAM

D=85mm

D=45mmOutput

Pump 980nm

Gain mirror and diamond heat spreader

RoC=50 mm

•  First wafer-fused passively modelocked VECSEL at 1550 nm!

•  Combine advantages of InP-based active medium with GaAs/AlGaAs reflector

•  Intracavity diamond for good heat dissipation

•  Beam-spot diameters: 210 µm on gain chip; 50 µm on GaInNAs-based SESAM

•  600 mW in 16 ps pulses at 1.29 GHz with 10 W pump power

E. J. Saarinen, J. Puustinen, A. Sirbu, A. Mereuta, A. Caliman, E. Kapon, O. Okhotnikov, Optics Letters, 34, 3139 (2009)

1 mW

10 mW

100 mW

1 W

10 W

aver

age

outp

ut p

ower

10 fs 100 fs 1 ps 10 ps 100 pspulse duration

QW-VECSEL QD-VECSEL MIXSEL

Optically pumped ultrafast VECSELs / MIXSELs

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Kestnikov, D. A. Livshits, T. Südmeyer, U. Keller,

Opt. Express 19, 8108, 2011

Page 12: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

12

Femtosecond all quantum dot VECSEL Separate pump mirror DBR separation tuning for maximum absorption

è higher efficiency Active region chirped QD-layer positions

•  each layer stack resonant for different laser wavelength

•  according to absorption intensity è broader gain

AR section hybrid semiconductor / fused silica

è reduction of the GDD

pump

modelocked laser

CVD-diamond QD-gain structure

output coupler QD-SESAM

heat sink: thinned QD gain structure on CVD substrate

output coupler: 100 mm

output coupler transmission: 2.5%

laser mode radius on QD-VECSEL: 115 µm

laser mode radius on QD-SESAM: 115 µm

heat sink temperature: -20°C

Femtosecond QD-VECSEL

pump

modelocked laser

CVD-diamond QD-gain structure

output coupler QD-SESAM

repetition rate: 5.4 GHz TBP: 1.3 sech2

peak power: 219 W

pulse duration: 784 fs output power: 1.05 W center wavelength: 970 nm

M. Hoffmann, O. D. Sieber, V. J. Wittwer, I. L. Kestnikov, D. A. Livshits, T. Südmeyer, U. Keller, Opt. Express 19, 8108, 2011

Continuous wave VECSEL §  Bandgap engineering §  Power scaling

SESAM modelocking §  SESAM-VECSEL modelocking §  1:1 modelocking

MIXSEL Integration challenges

Results

QD-SESAM optimization

Dispersion optimization

Outlook & Conclusion

Outline MIXSEL Concept

§  gain and absorber in one chip §  same mode size on absorber and

gain (1:1 mode-locking) §  simple linear cavity §  potential for quasi-monolithic

cavity

integration of absorber

MIXSEL Modelocked Integrated External- Cavity Surface Emitting Laser

VECSEL VECSEL

QD-SESAM QW-SESAM focusing on SESAM

no focusing required stronger saturation

First MIXSEL demonstration in 2007 §  40 mW in 35 ps pulses (at -10˚C) and 185 mW in 32 ps pulses (at -50˚C) §  complex growth → limited power

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer, U. Keller, APB 88, 493 (2007)

Page 13: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

13

MIXSEL concept

MIXSEL cavity •  simple linear cavity •  optical pumping: inherit good performance OP-VECSEL (power scaling, good beam quality)

MIXSEL chip

•  gain region with 7 QWs •  QD-saturable absorber layer

Þ  enables modelocking •  intermediate pump mirror

(HR pump, HT laser) Þ  avoid pre-saturation by pump

Integration challenges

•  spot size on absorber and gain is the same

D. J. H. C. Maas, A.-R. Bellancourt, B. Rudin, M. Golling, H. J. Unold, T. Südmeyer and U. Keller, Appl. Phys. B 88, 493, 2007

3

Towards Absorber Integration

, ,

, ,

0.1sat a sat a a

sat g sat g g

E F AE F A

= <Reduction of saturation fluence

Increase field in absorber

Challenge 1 , ,

, ,

0.1sat a sat a a

sat g sat g g

E F AE F A

= <

Problem: increase of modulation depth

No possibility for uncoupled Fsat and for QW SESAMs

What can we do?

Challenge 2

sat const.F R⋅Δ =

antiresonant SESAM resonant SESAM

Towards Absorber Integration

ΔR

QDs absorbers offer more growth parameters than QWs absorbers

QD size and size distribution QD density

•  Stranski-Krastanov growth on MBE •  InAs on GaAs substrate •  In ML coverage determines density

determines modulation depth

Self-assembled QD formation:

can be tuned with dot density, while Fsat stays constant!

QD growth

determine absorption spectrum

Towards Absorber Integration: Quantum Dots (QDs)

ΔR

Page 14: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

14

Resonant design analogue to resonant QD SESAMs

D. J. H. C. Maas et al., Applied Physics B 88, 493-497 (2007)

First MIXSEL demonstration: 35 ps, 40 mW, 2.8 GHz

Sections: •  30 pair bottom mirror for the laser •  1 layer of self-assembled InAs QD •  DBR to increase field in absorber •  9 pair mirror for the pump •  active region with 7 InGaAs QWs •  AR coating

Monday, August 19, 13 54 Ultrafast Laser Physics

mode size on chip: 80 µm optical pumping: 1.5 W @ 45°

average output power: 40 mW pulse duration: 35 ps pulse repetition rate: 2.8 GHz center wavelength: 953.4 nm FWHM spectral width: 0.11 nm

Low output power compared to former VECSEL-SESAM modelocking: structure was used as-grown

First MIXSEL demonstration: 35 ps, 40 mW, 2.8 GHz

D. J. H. C. Maas et al., Applied Physics B 88, 493-497 (2007)

1 mW

10 mW

100 mW

1 W

10 W

aver

age

outp

ut p

ower

10 fs 100 fs 1 ps 10 ps 100 pspulse duration

QW-VECSEL QD-VECSEL MIXSEL

Optically pumped ultrafast VECSELs / MIXSELs

B. Rudin, V. J. Wittwer, D. J. H. C. Maas, M. Hoffmann, O. D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, U. Keller, Opt. Express 18, 27582, 2010

Antiresonant MIXSEL Design

Requirement §  QDs with strong saturation §  study on QD-growth parameters optimization of

growth temperature and post-growth annealing

Advantages §  less variations in absorber enhancement §  reduced GDD for shorter pulses §  less sensitive to growth errors A.-R. Bellancourt, Y. Barbarin, D. J. H. C. Maas, M. Shafiei, M. Hoffmann, M. Golling, T. Südmeyer, U. Keller, OE, 17, 12, (2009) D. J. H. C. Maas, A. R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Südmeyer, U. Keller, OE, 16, 23, (2008)

-10

-5

0

5

10

GD

D (1

000

fs2 )

980970960950940wavelength (nm)

10

8

6

4

2

0abso

rber

enh

ance

men

t

980970960950940wavelength (nm)

10

8

6

4

2

0abso

rber

enh

ance

men

t

-10

-5

0

5

10

GD

D (1

000

fs2 )

growth error: layer thickness variations < 1%

Page 15: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

15

MIXSEL: improved thermal management

Finite Element (FE) temperature simulations

•  exchange the copper with CVD diamond:

reasonable temperatures

•  leads to highest output power from a ultrafast semiconductor laser

heat sink material

thermal conductivity (W m-1K-1)

estimated heating power (pump power)

pump/ laser mode radius

temp. rise (FE sim.)

heat sink temperature

output power

GaAs 45 1.5 W (1.7 W) 80 µm 149 K -15 °C 41.5 mW

copper 400 3.2 W (4.3 W) 80 µm 98 K +10 °C 660 mW

diamond 1800 26.6 W (36.7 W) 215 µm 100 K -15 °C 6400 mW

High Power MIXSEL Structure

•  MBE-grown in FIRST at ETH Zurich (at 580 °C on 600 µm GaAs wafer) •  laser DBR (AlAs/GaAs) at 960 nm •  self-assembled InAs quantum dot absorber embedded in GaAs

•  grown at 420 °C Stranski–Krastanov

•  pump DBR (Al0.2Ga0.8As/AlAs) to reflect the pump at 808 nm •  avoids absorber presaturation by the pump

•  gain section: 7 In0.13Ga0.87As Quantum wells (5 nm) separated by GaAs •  8-µm structure directly soldered

on a CVD diamond heat sink

1 µm

laser DBR

pump DBR

AR coating

gain absorber

CVD-diamond heat sink

inset at absorber and gain: STEM picture by

High Power MIXSEL

1.0

0.8

0.6

0.4

0.2

0

auto

corr

elat

ion

(arb

. u.)

-100 -50 0 50 100delay (ps)

meas. sech2 fit

τp = 28.1 ps

1.0

0.8

0.6

0.4

0.2

0

spec

tral i

nten

sity

(arb

. u.)

959.4959.2959.0958.8958.6wavelength (nm)

meas.

FWHM: 0.148 nm

-40

-30

-20

-10

0

spec

tral i

nten

sity

(dB

c)

2.4752.4702.4652.460frequency (GHz)

span: 20.0 MHzRBW: 100.0 kHz

Average power 6.4 W Center wavelength 959.1 nm Pulse duration 28.1 ps FWHM spectral width 0.15 nm

§  optical pumping 36.7 W at 808 nm §  pump / laser spot radius: ≈215 µm §  cavity length: 60.8 mm ð 2.47 GHz §  fluence on the MIXSEL : 252 µJ/cm2

B. Rudin, V.J. Wittwer, D.J.H.C. Maas, M. Hoffmann, O.D. Sieber, Y. Barbarin, M. Golling, T. Südmeyer, U. Keller, OE 18, 27582 (2010)

highest average power from an ultrafast semiconductor laser

1 mW

10 mW

100 mW

1 W

10 W

aver

age

outp

ut p

ower

10 fs 100 fs 1 ps 10 ps 100 pspulse duration

QW-VECSEL QD-VECSEL MIXSEL

10 GHz – 2.4 W MIXSEL

1.0

0.8

0.6

0.4

0.2

0

auto

corr

elat

ion

(arb

.u.)

-60 -40 -20 0 20 40 60delay (ps)

meas. fit

τp = 17.0 ps

1.0

0.8

0.6

0.4

0.2

0

spec

tral i

nten

sity

(arb

. u.)

962.8962.6962.4wavelength (nm)

meas. fit

FWHM: 0.09 nm

-70

-60

-50

-40

-30

-20

-10

0

spec

tral i

nten

sity

(dB

c)

10.0210.009.989.96frequency (GHz)

span: 100 MHzRBW: 300 kHz

with fused silica etalon (20 µm thick)

Repetition rate 10 GHz Average output power 2.4 W Pulse duration 17.0 ps Center wavelength 963 nm

§  Optical pumping 25.4 W at 808 nm §  Pump / laser spot radius: ≈193 µm §  Cavity length: 15.0 mm ð 10.0 GHz §  Output coupling: 0.5% (ROC 1.0 m)

V. J. Wittwer, M. Mangold, M. Hoffmann, O. D. Sieber, M. Golling, T. Südmeyer, U. Keller, Electronics Letters 48, 1144 (2012)

Page 16: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

16

Continuous wave VECSEL §  Bandgap engineering §  Power scaling

SESAM modelocking §  SESAM-VECSEL modelocking §  1:1 modelocking

MIXSEL Integration challenges

Results

QD-SESAM optimization

Dispersion optimization

Outlook & Conclusion

Outline Quantum Dot (QD) SESAM Reduce saturation fluence of saturable absorber

•  DR Fsat is proportional to the transparency density N0 •  try to reduce the density of states D(E)

• QD growth Stranski-Krastanov growth InAs on GaAs substrate monolayer coverage (ML) determines density

• Macroscopic SESAM parameters saturation fluence ( Fsat ) modulation depth ( DR )

Photoluminescence (PL) shift during annealing

Strong blueshift of the PL peak. The QDs are annealed in the growth of a MIXSEL

Case with 1.6 ML InAs coverage

D.J.H.C. Maas, A.-R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, Optics Express 16, 18646 (2008)

QD-SESAM annealing benefits: lower Fsat

Optics Express 16, 18646 (2008)

Page 17: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

17

QD SESAM annealing benefits: summary

→ Fsat decrease by annealing and DR ≈ constant → A decreases by annealing but tslow ≈ constant

D.J.H.C. Maas, A.-R. Bellancourt, M. Hoffmann, B. Rudin, Y. Barbarin, M. Golling, T. Südmeyer, and U. Keller, Optics Express 16, 18646 (2008)

Continuous wave VECSEL §  Bandgap engineering §  Power scaling

SESAM modelocking §  SESAM-VECSEL modelocking §  1:1 modelocking

MIXSEL Integration challenges

Results

QD-SESAM optimization

Dispersion optimization

Outlook & Conclusion

Outline

Pulse Formation Mechanism solid-state lasers

10

5

0

-5

-10phas

e ch

ange

(mra

d)

-2 0 2time (ps)

pulse (a. u.) SPM

Δϕ(t) = γP(t) 10

8

6

4

2

0

puls

e du

ratio

n (p

s)

-4 -2 0 2 4GDD (1000 fs

2)

SPM coefficient pulse power

γ P(t)

F. X. Kärtner and U. Keller, Optics Letters 20, 16, 1995 F. X. Kärtner, I. D. Jung, U. Keller, IEEE J. Sel. Topics in Quantum Electron. (JSTQE) 2, 540, 1996

soliton modelocking

SPM (n2>0) + negative GDD ➠ solitons

Soliton modelocking: GDD negative, n2 > 0

Master equation:

TR∂∂T

A T , t( ) = iD ∂ 2

∂t 2− iδ A T , t( ) 2⎛

⎝⎜⎞⎠⎟A T , t( ) + g − l + Dg

∂ 2

∂t 2− q t( )⎛

⎝⎜⎞⎠⎟A T , t( ) = 0

Aout T , t( ) = e−q(t )Ain T , t( )Aout T , t( ) = 1− q t( )⎡⎣ ⎤⎦ Ain T , t( )⇒ ΔA T , t( ) = −q t( )A T , t( )

A T , t( ) = A0 sech tτ

⎛⎝⎜

⎞⎠⎟

⎛⎝⎜

⎞⎠⎟

exp iφ0TTR

⎣⎢

⎦⎥ + continuum τ =

4 Dδ ⋅Fp,L

GainSelf-Phase-Modulation

GroupVelocityDispersion

SlowAbsorber

Output-coupler

Group Delay Dispersion (GDD)

Page 18: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

18

Pulse Formation Mechanism solid-state lasers

VECSELs

SPM (n2>0) + negative GDD ➠ solitons

Saturation (“n2<0”) + positive GDD ➠ quasi-solitons

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A.C. Tropper, and U. Keller, Applied Physics B 75 (2002), 445

10

5

0

-5

-10phas

e ch

ange

(mra

d)

-2 0 2time (ps)

pulse (a. u.) SPM

10

5

0

-5

-10phas

e ch

ange

(mra

d)

-2 0 2time (ps)

pulse (a. u.) SESAM gain total

Δϕ(t) = γP(t)

Δϕ(t) = −α

2g(t) 10

8

6

4

2

0

puls

e du

ratio

n (p

s)

-4 -2 0 2 4GDD (1000 fs

2)

with phase shifts without phase shifts

10

8

6

4

2

0

puls

e du

ratio

n (p

s)

-4 -2 0 2 4GDD (1000 fs

2)

with phase shifts

10

8

6

4

2

0

puls

e du

ratio

n (p

s)

-4 -2 0 2 4GDD (1000 fs

2)

SPM coefficient pulse power

γ P(t)

linewidth enhancement factor α power gain g(t)

α g(t)

F. X. Kärtner and U. Keller, Optics Letters 20, 16, 1995 F. X. Kärtner, I. D. Jung, U. Keller, IEEE J. Sel. Topics in Quantum Electron. (JSTQE) 2, 540, 1996

soliton modelocking

Experimental Verification

output coupler

SESAM GTI

25 µm etalon

gain

chi

p

-10

-5

0

5

10

GD

D (1

000

fs2 )

970965960955950945wavelength (nm)

20

15

10

5

0

puls

e du

ratio

n (p

s)

-20 -15 -10 -5 0 5 10GDD (1000 fs

2)

953 nm 954 nm 955 nm 956 nm 957 nm 958 nm

➠  positive GDD supports shorter pulses

➠  minimum achieved with slightly positive GDD

➠  confirms soliton-like pulse shaping mechanism in passively modelocked VECSELs

➠  pulse duration limited to picosecond regime due to etalon

10

8

6

4

2

0

puls

e du

ratio

n (p

s)

-20 -10 0 10 20GDD (1000 fs

2)

measurement simulation

M. Hoffmann, O. D. Sieber, D. J. H. C. Maas, V. J. Wittwer, M. Golling, T. Südmeyer, and U. Keller, Opt Express 18, 10143 (2010)

Low-Dispersion Top Coating

•  top coating optimized for minimal reflection

•  strongly wavelength dependent GDD

•  also high negative GDD of down to -5000 fs2

old VECSEL structures new low-dispersion top coating

•  6 AlAs/AlGaAs pairs with fused silica (quarter-wave layer) top coating

•  Monte Carlo simulation •  local GDD optimization

-6

-4

-2

0

2

4

6

GD

D (f

s2 )

980960940920wavelength (nm)

old structure

-6

-4

-2

0

2

4

6

GD

D (f

s2 )

980960940920wavelength (nm)

old structure new structure

-40

-20

0

20

40

GD

D (f

s2 )

980960940920wavelength (nm)

> 30 nm

±30 fs2

GD

D (1

000

fs2 )

Page 19: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

19

Modelocked QD-VECSEL - Setup

laser

QD gain structure

CVD diamond

QD-SESAM

pump output coupler

output coupler radius: 100 mm output coupler transmission: 2.5% laser mode on QD-VECSEL: 115 µm

laser mode on QD-SESAM: 115 µm heat sink temperature: -20°C

Laser DBR •  30 pairs AlAs/GaAs

saturable absorber •  single InAs QD layer in

GaAs

top coating •  fused silica •  anti-resonant design

GDD below 200 fs2

saturation parameters •  modulation depth ≈ 1.2% •  non-saturable losses < 1% •  saturation fluence ≈ 3.8 µJ/cm2

recombination parameters •  fast relaxation ≈ 0.5 ps •  slow relaxation ≈ 15.9 ps

cavity parameters

SESAM parameters

DBR

QD absorber

FS

-1.0

-0.5

0.0

0.5

1.0

GD

D (1

000

fs2 )

980960940920wavelength (nm)

SESAM resonant

-1.0

-0.5

0.0

0.5

1.0

GD

D (1

000

fs2 )

980960940920wavelength (nm)

SESAM resonant SESAM antiresonant

Continuous wave VECSEL §  Bandgap engineering §  Power scaling

SESAM modelocking §  SESAM-VECSEL modelocking §  1:1 modelocking

MIXSEL Integration challenges

Results

QD-SESAM optimization

Dispersion optimization

Outlook & Conclusion

Outline

Electrically pumped (EP) VECSELs optical pumping: electrical pumping:

p-DBR n-DBR

QW gain

AR

n-doped current

spreading

layer

OC

bottom contact top contact

P. Kreuter, B. Witzigmann, D. J. H. C. Maas, Y. Barbarin, T. Südmeyer, U. Keller, Appl. Phys. B 91, 257 (2008)

Y. Barbarin, M. Hoffmann, W. P. Pallmann, I. Dahhan, P. Kreuter, M. Miller, J. Baier, H. Moench, M. Golling, T. Südmeyer, B. Witzigmann, U. Keller, IEEE J. Selected Topics in Quantum Electronics (JSTQE) 17, 1779 (2011) P. Kreuter et al., Appl. Phys. B, 91, 257, 2008

p

n p

n

Current spreading layer

Electron mobility > hole mobility

Simulations for EP-VECSEL Design

Carriers distribution in the QW layers

Distance from the center (µm)

p-DBR design favorable for large output beam with

fundamental transverse

mode

Page 20: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

20

ETH Zurich EP-VECSEL design

Design guidelines: P. Kreuter, B. Witzigmann, D.J.H.C. Maas, Y. Barbarin, T. Südmeyer and U. Keller, Appl. Phys. B, 91, 257, 2008

Suitable for modelocking •  Relatively low GDD: AR section •  Confined current injection for good beam profile

•  6 µm current spreading layer •  bottom p-doped, top n-doping •  small bottom disk p-contact

Power scalability •  Wafer removal •  Large apertures possible

Trade off between electrical and optical losses •  Optimized doping profile

•  High doping → high free carrier absorption •  Low doping → high resistivity

•  Intermediate n-DBR for increased gain

top contact

bottom contact

CuW wafer

p-DBR

current spreading

layer

AR section

n-DBR

SiNx

SiNx

active region

SEM

14 µm

11

➠  shortest pulse duration from an electrically pumped VECSEL so far

experimental results: pulse duration: 9.5 ps

average output power: 7.6 mW

center wavelength: 975.1 nm FWHM spectral width: 0.43 nm

pump current: 480 mA VECSEL / SESAM temperature: -17.8°C / 37.2°C

transmission OC: 4%

SESAM modelocked EP-VECSELs

W. P. Pallmann, C. A. Zaugg, M. Mangold, V. J. Wittwer, H. Moench, S. Gronenborn, M. Miller, B. W. Tilma, T. Südmeyer, U. Keller, Optics Express, vol. 20, pp. 24791-24802 (2012)

Laser prototype for noise characterization

V. J. Wittwer, C. A. Zaugg, W. P. Pallmann, A. E. H. Oehler, B. Rudin, M. Hoffmann, M. Golling, Y. Barbarin, T. Südmeyer, and U. Keller, IEEE Photonics Journal 3, 658 (2011)

free-running laser 212 fs rms [100 Hz, 1 MHz]

rms amplitude noise 0.45% in [1 Hz, 40 MHz]

timing jitter Laser prototype for noise characterization

V. J. Wittwer, R. van der Linden, B. W. Tilma, B. Resan, K. J. Weingarten, T. Südmeyer, U. Keller IEEE Photonics Journal 5, 1400107 (2013)

free-running laser

stabilized laser 58 fs rms [1 Hz, 100 MHz]

rms amplitude noise 0.45% in [1 Hz, 40 MHz]

timing jitter

Page 21: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

21

S/N in nearly all applications is limited by available power per comb line Increasing repetition rate leads to larger line spacing

Frequency combs: need for high repetition rates

Spectroscopy Information Metrology

Astronomical spectrograph calibration

Molecular spectroscopy

Tunable laser calibration

High speed communication Precision

ranging

Arbitrary waveform generation

Optical clocks Low noise

microwaves

Timing synchronization Frequency

transmission LIDAR

FTIR

frequency

intensity

Frequency comb with larger spacing: •  higher power per mode •  easier to access individual lines •  more compact system

4

S/N in nearly all applications is limited by available power per comb line Increasing repetition rate leads to larger line spacing

Frequency combs: need for high repetition rates

Spectroscopy Information Metrology

Astronomical spectrograph calibration

Molecular spectroscopy

Tunable laser calibration

High speed communication Precision

ranging

Arbitrary waveform generation

Optical clocks Low noise

microwaves

Timing synchronization Frequency

transmission LIDAR

FTIR

5

Passively modelocked laser

•  compact/robust laser system

•  repetition rate >1 GHz

•  pulse width <200 fs

•  peak power >6 kW SC fCEO

N = τ p2 ⋅Ppeak ⋅γ|β 2|

⋅0.322

Coherence requirement for SCG:

J.M. Dudley et al., Rev. of Modern Physics 78, 1135 (2006)

< 10

soliton order N:

GHz oscillators without compression or amplification

6

>1 GHz

<200 fs

>6 kW

N=10

coherent octave possible

GHz oscillators without compression or amplification

>1 GHz

<200 fs

>6 kW

N=10 PCF1

N=10 PCF2

octave SC

octave SC

Page 22: Frontiers in ultrafast laser technologyLecture 2: SESAM modelocked VECSELs and MIXSELs Frontiers in ultrafast laser technology Compact ultrafast lasers for “real world application”

22

GHz oscillators without compression or amplification

7

>1 GHz

<200 fs

>6 kW

N=10

octave-spanning spectrum

N=10 PCF1

octave-spanning spectrum

20-fold better fractional frequency stability

for Diode-Pumped Solid-State Laser (DPSSL)

1 10 100 1000

Er-fiber laserEr:glass DPSSL

10-6

10-8

10-10

10-12

10-13

10-15

10-17

10-19

!(s)

"#f

/ f C

EO(!)

"#f

/ f n(!)

MHz-DPSSL vs. MHz-fiber laser

fCEO = 20 MHz

fn ≈ 200 THz

GOAL: GHz-DPSSL frequency comb

S. Schilt et al., Opt. Express 19, 24171 (2011)

coherent octave possible

Conclusion

18

N=10

22.7 kW 125 fs

First CEO-beat detection of a GHz DPSSL without pulse compression

A. Klenner et al., Opt. Express 8, 10351 (2013)

•  Further investigations on the requirements for stabile frequency comb generation •  Full stabilization of the 1 GHz Yb:KGW laser

Spec

tral p

ower

(dBm

)

Frequency (GHz)

100 kHz RBW unaveraged

b)

0 0.2 0.4 0.6 0.8 1.0 1.2

!70

!60

!50

!40

!30

!20

!10

fCEO frep-fCEO

-500 fs2

L1L2

M1M2

SESAM

M3M4

pump

Yb:KGW

-500 fs2

30 dB

coherent octave possible

Outlook

19

N=10

22.7 kW 125 fs

Promising alternatives:

for more compact and low noise frequency combs

Vertical External

Cavity Surface

Emitting Laser

VECSEL

Modelocked Integrated

External-Cavity Surface

Emitting Laser

MIXSEL

V. W. Wittwer, et al., IEEE Photonics Journal, Vol. 5, No. 1, pp 1400107 (2013)

More info on the web ...

•  Web page of Prof. Ursula Keller at ETH Zurich: http://www.ulp.ethz.ch

•  All papers are available to download as PDFs: http://www.ulp.ethz.ch/publications/paper

•  SESAM milestones: http://www.ulp.ethz.ch/research/Sesam

•  Ultrafast solid-state laser: get started with the book chapter ... http://www.ulp.ethz.ch/research/UltrafastSolidStateLasers

•  VECSEL and MIXSEL: http://www.ulp.ethz.ch/research/VecselMixsel

•  Frequency combs: http://www.ulp.ethz.ch/research/FrequencyComb

•  Attoscience, Attoclock, Attoline:

•  http://www.ulp.ethz.ch/research/Attosecondscience

•  http://www.ulp.ethz.ch/research/Attoline

•  http://www.ulp.ethz.ch/research/Attoclock

•  Viewgraphs to graduate lecture course: Ultrafast Laser Physics http://www.ulp.ethz.ch/education/ultrafastlaserphysics/viewgraphs


Recommended