+ All Categories
Home > Documents > F.#Schlachetzki# Klinik#für#Neurologie,# ... · Hyperacute Stroke Diagnosis and treatment in the...

F.#Schlachetzki# Klinik#für#Neurologie,# ... · Hyperacute Stroke Diagnosis and treatment in the...

Date post: 16-Jun-2019
Category:
Upload: doananh
View: 217 times
Download: 0 times
Share this document with a friend
29
F. Schlachetzki Klinik für Neurologie, Universität Regensburg und Bezirksklinikum Regensburg, [email protected] Jubiläumssymposium Berlin, 8.November, 2014 30 Jahre Notarzt Berlin e.V.
Transcript

F.  Schlachetzki  Klinik  für  Neurologie,  Universität  Regensburg  und  Bezirksklinikum  Regensburg,  

[email protected]  

 

Jubiläumssymposium Berlin, 8.November, 2014 30 Jahre Notarzt Berlin e.V.

das  sollte  vermieden  werden  

Stroke  unit/  CT        

Prähospital  Schlaganfallversorgung  ...  

Ziele  von  Prähospitalprojekten:  •  Gezielter  Transport  in  ein  Schlaganfallzentrum  

•  Verkürzung  innerhospitaler  Abläufe  (DTN  !)  •  ?  Unterstützung  nicht-­‐ärztlichen  ReJungspersonals?  •  ?  Prähospitale  Schlaganfalltherapie  ?  

Sonothrombolyse – Rekanalisation durch Ultraschall

Hyperacute Stroke Diagnosis and treatment in the field using transcranial ultrasound

Ø   Mobiles  Farbduplexgerät  (Micromaxx,  Sonosite,  Erlangen)  mit  2MHz  Sektor-­‐schallkopf  Ø   Untersuchung  der  miNleren  Hirnarterie  von  NoOallpaPenten  (konsekuPve  Einsätze  bei  Hubschrauber-­‐alarmierung)  Ø   Untersuchung  im  ReNungshubschrauber  Ergebnisse:    

ü In  20  von  25  Fällen  konnten  beide  ACM  untersucht  werden,  5  haNen  kein  geeignetes  Knochfenster  

ü   MiNlere  Untersuchungszeit  2  min.  

Christoph Regensburg

Einsatzauswertung Medat 2012 Version 01 vom 22. April 2012 Seite 69 von 94

Christoph Regensburg

Einsatzauswertung Medat 2012 Version 01 vom 22. April 2012 Seite 63 von 94

Einsatzcluster mit Tracer „Apoplex“ sowie Transportstrecken Ihrer Station

10km  

Christoph Regensburg

Einsatzauswertung Medat 2012 Version 01 vom 22. April 2012 Seite 62 von 94

5 „Apoplex“ Tracerdiagnose – betrachtet werden nur Primäreinsätze; alle NACA.

Christoph Regensburg

Einsatzauswertung Medat 2012 Version 01 vom 22. April 2012 Seite 62 von 94

5 „Apoplex“ Tracerdiagnose – betrachtet werden nur Primäreinsätze; alle NACA.

Tracerdiagnose  „Apoplex“  2012  

Regensburger Schlaganfallmobil - praktischer Ablauf

112  

Untersuchung  auf  dem  Weg  zur  STROKE  UNIT  

Einsatzgebiet des Schlaganfallmobils (Regensburg Stadt und Landkreis)

Auswertungen Schlaganfallmobil 2.0

n=102  (5/10-­‐1/11)  

Fehleinsätze   56%  

Untersuchung  kompleNer  Circulus  wilisii  

44%  

Verwendung  US-­‐KM   36%  

Falsch  posiPve  Ergebnisse  

15%  

Falsch  negaPve  Ergebnisse  

4%  

Systemische  Thrombolyse  

13%  

Mechanische  Thrombektomie  

1,5%  

n=86  (7/11-­‐12/11)  

36%  

71%  

78%  

12%  

0%  

25%  

7%  

5/2010-­‐1/2011   7/2011-­‐12/2011  

Ø Was ist der legale Hintergrund? Ø Gibt es Daten bzgl. prähospitaler Ultraschall-gestützte

Schlaganfalltherapie? Ø Was sind die Vorrausetzungen für prähospitale Thrombolyse

gestützt durch diagnostischen Ultraschall?

Ø Was ist der Gold-Standard in der Prähospitaldiagnostik?

Ø  Ist es die Mühe und das Risiko wert?

5  Fragen  zu  prähospitaler  Ultraschalldiagnos?k/  Therapie  

Rechtlicher  Hintergrund  rtPA-­‐Thrombolyse    Zulassung  von  IV  rtPA  nach  Ausschluss  einer  Hirnblutung  durch  angemessene  zerebrale  Bildgebung  innerhalb  4.5h  nach  Symptombeginn  (1).    

Sonothrombolyse  ±  rtPA  ±  Mikrobläschen    Sonothrombolysis  using  diagnosPc  and  therapeuPc  level  ultrasound  has  experimental  status.  Further  studies  are  needed  (2).  

5  min.  

105  min.  

1.)  EMEA  informaeon  on  Acelyse®  2.)  Ricci  S,  et  al.  Sonothrombolysis  for  acute  ischaemic  stroke  (Review).  The  Cochrane  Library  2012,  Issue  10    

Bisherige  Daten  

Keine  Studies  über  rtPA-­‐Thrombolyse/  Sonothrombolyse  ±  rtPA  ±  Mikrobläschen    (Stand  Oktober  2014)  

Fallbeispiel    Gabe  von  Aspirin  beim  akuten  Schlaganfall  nach  transkranieller  Duplexsonographie    (Finale  Diagnose:  kleiner  embolischer  thalamic  ischaemia)    Wilson  MH,  et  al.  Stroke  at  high  alPtude  diagnosed  in  the  field  using  portable  ultrasound.  Wilderness  Environ  Med.  2011  Mar;22(1):54-­‐7    

5  min.  

105  min.  

Voraussetzungen  für  US-­‐assis?erte  Stroke-­‐Therapie  -­‐  1  

Klinische  Schlaganfalldiagnose  mit  hoher  Sensievität  /  Spezifität  (59  –  92%  /  74  –  92%)  

Sensievität   Spezifität   Klinische  Parameter  FAST   89  %   n.n.   Lähmung  Gesicht  u.  Arm,  Sprachstörung  

LAPPS   59  %  -­‐  68  %   85  %   Lähmung  Gesicht  u.  Arm,  Händedruck,  Ausschluss  DD  (Alter  <45;  bek.  Epilepsie,  PaPent  kann  nicht  gehen,  BZ  <60  u.  >400mg/dL)  

CPSS   66  %  -­‐  88  %   87  %  -­‐  95  %   Lähmung  Gesicht  u.  Arm,  Satz  nachsprechen  

3I-­‐SS   67  %   92  %   Grad  des  Bewusstseins,  Kopf-­‐  und  Blickwendung,  graduierte  Hemiparese  

ROSIER   92  %   86  %   Asymmetrie  im  Gesicht,  Arm,  Bein,  Sprachstörung,  Gesichtsfeldausfall,  Ausschluss  Synkope/  Bewusstseinsverlust  und  Epilepsie  

MASS   90  %   74  %   Lähmung  Gesicht  u.  Arm,  Satz  nachsprechen,  Händedruck,  BZ  

Klinische  Schlaganfalldiagnose  mit  hoher  Sensievität  /  Spezifität  (59  –  92%  /  74  –  92%)  

1.)  Schlachetzki  F,  et  al.  'Transcranial  Ultrasound  from  Diagnosis  to  Early  Stroke  Treatment.  Part  II:  Prehospital  neurosonography  in  paeents  with  acute  stroke  –  the  Regensburg  Stroke  Mobile  Project.'  Cerebrovasc  Dis  2012;  33(3):  262-­‐271  2.)  Herzberg  M,  et  al.  'Prehospital  stroke  diagnosecs  based  on  neurological  examinaeon  and  transcranial  ultrasound.'  Cri?cal  Ultrasound  Journal  2014;  6:  3.  Doi:  10.1186/2036-­‐7902-­‐6-­‐3    

264 classified as stroke mimics. In the field, 4 patients were265 given the misdiagnosis of a non-stroke event (4%), whereas266 15 patients (15%) received the misdiagnosis of stroke267 when their symptoms merely mimicked those of a268 stroke. In summary, the initial working diagnosis prior269 to patient admission to the hospital showed a sensitivity270 of 95% (95% CI 86 to 98) and a specificity of 48% (29 to 67)271 in the hospital workup (TablesT2 2,T3 3, andT4 4). Two examples272 of stroke mimics with interesting neurosonographic find-273 ings (normal flow but indications for subdural hematoma274 or midline shift) were found in a patient with a subdural275 hematoma (FigureF2 2) and a brain tumor (FigureF3 3). In 68%276 of the patients, stroke-like symptoms were caused by ische-277 mic stroke/TIA with suspected etiology of large artery ath-278 erosclerosis in 50% followed by cardioembolism and small279 vessel disease (TableT5 5). Only 5% of symptoms were caused280 by any intracranial hemorrhage. During the study period, 9281 of 50 patients (18%) received IV thrombolysis and 1 patient282 underwent mechanical thrombectomy.

283 Transcranial color-coded duplex sonography in the field284 Ultrasound contrast agents were administered in 41 pa-285 tients (40%), and no adverse event was noted. Despite286 the use of UCA, inferior temporal bone windows were287 found in 11 of the 102 patients (11%) (in 5 patients bilat-288 erally, in 6 patients unilaterally), and these were excluded289 from further analysis testing sensitivity and specificity of290 prehospital TCCS. An additional patient was excluded291 who presented with MCA occlusion with related hemipar-292 esis and spontaneous thrombolysis during transport. One293 patient with a non-stroke diagnosis (temporal arteritis)

294and three patients with unremarkable neuroimaging find-295ings yet stroke diagnosis at discharge were also excluded.296The flow diagram (Figure F44) shows the diagnostic path-297way and the neurovascular imaging reference methods298obtained as ‘gold standard in hospital’. In 4% of patients,299diagnosis of stroke was first detected by non-contrast300CT (cerebral computed tomography (CCT)). In 7% of301patients, CTA imaging first led to the final diagnosis.302Preclinical TCCS demonstrated 12 occlusions or high-303grade stenoses of major brain-supplying arteries (MCA and304ICA) including 10 M1-MCA occlusions. Internal carotid305artery (ICA) occlusions were diagnosed when reversed flow306(‘cross-filling’) occurred in the ipsilateral ACA; this finding307is indicative of >80% stenosis or total occlusion of the ICA308according to the ECST criteria [24]. Standard imaging309studies (CTA, MRA, and CCT) showed 14 major cerebral310artery occlusions: 10 involving the MCA and 4 involving311the ICA (Table T66). In the early days of the study, a PCA312was mistaken to be a patent MCA in one patient when the313UCA was incorrectly injected through a filter system,314resulting in the destruction of microbubbles and inferior315image quality. Also, TCCS resulted in the misdiagnosis of316distal MCA occlusion in one patient, according to the317Zanette index [22]. In this patient, an atypical parieto-318occipital intracerebral hemorrhage (ICH) caused disloca-319tion of the MCA, which led to a near-perpendicular angle320of insonation. In retrospect, considering the lack of resist-321ance in the low-flow profile and use of the UCA may have322helped avoid the misdiagnosis (an example of a correct323diagnosis of distal MCA occlusion is shown in Figure F55).324Two >80% stenoses or total occlusions of the ICA were325not detected; in those cases, the examiner investigated326both MCA arteries according to the study protocol but327did not examine the ACA and, therefore, missed a cross-328filling phenomenon (Figure F66). In summary, we found a329sensitivity of 90% and specificity of 98% (positive predict-330ive value 90%, negative predictive value 98%) in achieving331a correct diagnosis of MCA occlusion.

t2:1 Table 2 Initial working diagnostict2:2 Stroke (n = 102) Stroke mimics

t2:3 Proved right (n = 69) n = 3 exsiccosis

t2:4 n = 2 hypoglycemia

t2:5 n = 2 syncope

t2:6 n = 1 pneumonia

t2:7 n = 1 migraine

t2:8 n = 1 slipping

t2:9 n = 1 persisting atrial fibrillation

t2:10 n = 1 functional brachiofacial hemiparesis

t2:11 n = 1 hypertensive rise

t2:12 n = 1 epileptic seizure

t2:13 Proved wrong (n = 4) n = 5 epileptic seizure

t2:14 n = 4 tumor

t2:15 n = 2 subdural hematoma

t2:16 n = 1 exsiccosis

t2:17 n = 1 MI + brain concussion

t2:18 n = 1 metabolic encephalopathy

t2:19 n = 1 peripheral nerve compression (C7)t2:20

t3:1Table 3 Preclinical working and discharge diagnosticst3:2Discharge diagnostic

t3:3Stroke Stroke mimic Total

t3:4Preclinical workingt3:5diagnostic

Stroke 69 15 84

t3:6Stroke mimic 4 14 18

t3:7Total 73 29 102

t4:1Table 4 Sensitivity, specificity, positive predictive value,t4:2and negative predictive valuet4:3SE

(95% CI)Sp

(95% CI)PPW

(95% CI)NPW

(95% CI)

t4:4Stroke vs. mimic 94%(86 to 98)

48%(29 to 67)

82%(72 to 89)

77%(52 to 93)

t4:5SE, sensitivity; Sp, specificity; PPW, positive predictive value; NPW, negativet4:6predictive value.

Herzberg et al. Critical Ultrasound Journal 2014, 6:3 Page 5 of 13http://www.criticalultrasoundjournal.com/content/6/1/3

Transkranielle  Farbduplexsonographie  mit  Sensievität  /  Spezifität  (78  –  94%  /  48  -­‐  98%)  für  Verschlüsse  im  vorderen  Kreislauf:    

Voraussetzungen  für  US-­‐assis?erte  Stroke-­‐Therapie  -­‐  2  

Foerch  C,  et  al.  ‘Diagnosec  accuracy  for  glial  fibrillary  acidic  protein  for  differeneon  of  brain  hemorrhage  and  cerebral  ischemia  in  paeents  with    symptoms  of  acute  stroke  .’  Clinical  chemistry  2012;  51:  237-­‐245  

Blut  Serum  Test  zur  Idenefikaeon  intrazerebraler  Blutungen  mit  hoher  Sensievität  /Spezifität:    Cut  off  0,28μg/ml:  84,2%  /  96,3%  Cut  off  1,0μg/ml  60,5%  /  100%  

ischemic stroke, including stroke mimic [AUC 0.915(95% CI 0.847– 0.982), P ! 0.001]. Diagnostic accu-racy remained stable when we analyzd only those pa-tients who were admitted very early (i.e., !60 min, n "52, AUC 0.904) (Fig. 2B). Diagnostic accuracy wasslightly lower in patients with a less severe clinical def-icit (i.e., NIHSS score !14, n " 104, AUC 0.873) (Fig.2C) compared with those patients having a more severefunctional deficit (i.e., NIHSS score above the medianscore of 14, n " 97, AUC 0.944) (Fig. 2D).

When we applied the predefined cutoff of 0.29"g/L for discriminatory analysis, the diagnostic sensi-

tivity and specificity of plasma GFAP for the differen-tiation between ischemic stroke and ICH were 84.2%and 96.3%, respectively (positive and negative predic-tive value 84.2% and 96.3%, respectively). The diag-nostic specificity of the GFAP test increased to 98.8%when 0.5 "g/L was selected as the cutoff (diagnosticsensitivity 73.7%), and to 100% when 1.0 "g/L wasselected as the cutoff (diagnostic sensitivity 60.5%). Apost hoc analysis revealed that the optimal cutoff of0.28 "g/L for differentiating ICH from ischemic strokein our dataset was nearly identical with our predefinedcutoff.

In ICH patients, the median hematoma volume,calculated on the basis of first available brain imaging,was 39.8 mL (interquartile range 6.1–97.7 mL, mini-mum 2.4 mL, maximum 179.0 mL). Hematoma vol-ume was positively correlated with plasma GFAP val-ues (P " 0.046). The 2 ICH patients with the lowesthematoma volumes (2.4 and 2.7 mL) did not show anincrease in GFAP. However, all 5 ICH patients withhematoma volumes between 3 and 10 mL did showpositive GFAP signals (median 1.3 "g/L). A significantcorrelation was found between NIHSS values andGFAP plasma concentrations in ICH patients (P "0.022), whereas no relationship between these 2 pa-rameters was found in ischemic stroke patients (P "0.472) (Fig. 3A and 3B).

Based on the entire dataset including patients withICH, ischemic stroke, and stroke mimic, a binary logis-tic regression analysis did not reveal age, arterial hyper-tension, or diabetes mellitus to independently influ-ence GFAP plasma concentrations (Table 2).

Discussion

Our study was based on a plausible pathophysiologicalconcept. GFAP, a highly brain-specific astroglial pro-tein, is detectable in very low concentrations in the

Table 1. Baseline characteristics of the study population.

Ischemicstroke ICH

Strokemimic Alla

n (%) 163 (79.5) 39 (19.0) 3 (1.5) 205 (100.0)

Mean age, years (SD) 75.3 (13.4) 70.7 (17.4) 44.3 (23.5) 73.9 (14.8)

Men, n (%) 79 (48.5) 21 (55.3) 2 (66.7) 102 (50.0)

Patients with hypertension, n (%) 121 (74.2) 22 (57.9) 0 (0.0) 143 (70.1)

Patients with diabetes, n (%) 35 (21.5) 4 (10.5) 1 (33.3) 40 (19.6)

Median NIHSS, (interquartile range) 12 (8–18) 16 (13–20) 5 14 (8–18)

Mean time from symptom onset to hospitaladmission, min (SD)

122.7 (65.2) 134.0 (63.7) 140.0 (45.8) 125.0 (64.4)

a Because of a few missing values, sums do not always equal 100%.

Fig. 1. Box plots illustrating the distribution of GFAPplasma concentrations in patients with ischemicstroke, ICH, and stroke mimics.The boundaries of the box indicate the 25th and 75thpercentile, and the line within the box marks the median.Whiskers above and below the box indicate the 90th and10th percentiles. The y axis is log transformed.

240 Clinical Chemistry 58:1 (2012)

Voraussetzungen  für  US-­‐assis?erte  Stroke-­‐Therapie  -­‐  2  Klinische  Schlaganfalldiagnose  mit  hoher  Sensievität  /  Spezifität  (59  –  92%  /  74  –  92%)  

Transkranielle  Farbduplexsonographie  mit  Sensievität  /  Spezifität  (78  –  94%  /  48  -­‐  98%)  für  Verschlüsse  im  vorderen  Kreislauf:    

Zusätzliche  biometrische  Informaeon  zur  Schlaganfallwahrscheinlichkeit  -­‐  Medizinisch:  Vorhandensein  von  

Vorhofflimmern,  Blutdruck,  Temperatur  -­‐  Medikamente:  insbes.  Anekoagulaeon,  

PläJchenhemmer,  ane-­‐epilepesche  Meds.  -­‐  Anamnese:  insbes.  KHK,  pAVK,  Stroke  

Voraussetzungen  für  US-­‐assis?erte  Stroke-­‐Therapie  -­‐  4  

Blut  Serum  Test  zur  Idenefikaeon  intrazerebraler  Blutungen  mit  hoher  Sensievität  /Spezifität:    Cut  off  0,28μg/ml:  84,2%  /  96,3%;  Cut  off  1,0μg/ml  60,5%  /  100%  

Klinische  Schlaganfalldiagnose  mit  hoher  Sensievität  /  Spezifität  (59  –  92%  /  74  –  92%)  

Transkranielle  Farbduplexsonographie  mit  Sensievität  /  Spezifität  (78  –  94%  /  48  -­‐  98%)  für  Verschlüsse  im  vorderen  Kreislauf:    

Stroke Bayesian Network (SBN)

Stroke Bayes Network (SBN) – Schlaganfallwahrscheinlichkeit

S.Theiss,  personal  communicaPon  

Patientin mit akuter Hemiparese links vor 5 Tagen Schulter-OP, intermitt. VHF, 100mg ASS

25“  

60“  

Ein  Beispiel  aus  der  Praxis  

•   TIA  5“  mit  Beinparese  re.  mit  Sturz  •   Während  Transport  kurz  AP-­‐Beschwerden  bei  RR  200/100  •   Entscheidung  zur  Stroke  unit  staJ  Kardiologie    

Leichte  Gesichtslähmung  links  und  Schwäche  linker  Arm  seit  5  Stunden,      Verdachtsdiagnose:  Kardioembolie  bei  Tachyarrhythmia  absoluta  

noch  bevor  EKG  angelegt  war    

Wäre  es  doch  ein  Schlaganfall  gewesen.....  

Paeenen,  morgens  leichte  Gesichtslähmung  links.  NachmiJags  Armlähmung.    

Subduralhämatom

Die Vision... Pat. mit akuter schwerer Halbseitensymptomatik

Neurosonographie-­‐Diagnose:    Mediaverschluss  

GFAP-­‐POC:    Normal  

Neurosonographie-­‐Diagnose:    Kein  Verschluss  

GFAP-­‐POC:    Pathologisch  erhöht  

-­‐  Neurologie:  cCT/  Thrombolysis  -­‐  ?  Prähospitale  Thrombolyse  -­‐  ?  rtPA  +  Vorbereitung  Embolektomie  -­‐  ?  NeuroprotekPon  

-­‐  ?  Aggressive  Blutdrucksenkung  -­‐  ?  NeuroprotekPon  -­‐  ?  Neurochirurgie-­‐Alarmierung  

Goldstandard  ‚prähospitale  Schlaganfalldiagnos?k  

Post-­‐hoc  Stroke  Diagnose  im  Krankenhaus  –  Grade  der  Sicherheit    -­‐  definiPv  Schlaganfallnachweis  durch  cCT/MRI    -­‐  wahrscheinlicher  Stroke  (z.B.  bei  Stenosen,  Verschlüssen)    -­‐  möglicher  Stroke  (concurrent  diagnosis)    -­‐  kein  Stroke  (andere  Diagnose)  

Hemiplegie  li.,  Blickwendung  –  MCA  Stumpfsignal   8  min.  später:  vollständigeErholung  

Das  Problem:  schnelle  mögliche  Änderungen  des  Gefäß-­‐/Neurostatus  

newly designed ambulance, the so-called strokeemergency mobile unit (STEMO), which is de-ployed when patients suspected of having strokeare identified at the dispatch center with a spe-cialized stroke identification interview algo-rithm.16 We report the results of the pilotstudy of an ongoing project to show a relevantreduction in time from emergency call to treat-ment.17 This study was focused on feasibility andtechnical reliability but also assessed preliminarysafety and call-to-needle times in patients whoreceived tPA treatment in the prehospital setting.

METHODS Details of the PHANTOM-S study (NCT01382862)have been described previously.17 The pilot study of thePHANTOM-S was conducted in the emergency medical serv-ices system of the city of Berlin during the period from February8, 2011 to April 30, 2011.

Stroke emergency mobile unit. STEMO (see figure 1) isdesigned as a mobile intensive care unit additionally equipped witha CT scanner (CereTom® 8-slice mobile CT scanner; NeuroLogica®,Danvers, MA), a point-of-care laboratory (Micros 60, ABX Diag-nostics; CoaguChek XS Plus, Roche Diagnostics Germany;and i-STAT Portable Clinical Analyzer, American ScreeningCorporation, Shreveport, LA), and the telemedicine infrastructurefor remote imaging reading as well as video-conferencing support(MEYTEC GmbH, Seefeld, Germany) for evaluating patients withsuspected AIS. The CT scanner is locked in a resting position whenthe vehicle is moving and unlocked for scanning during examination.The CT scanner is run from a small lead-shielded compartment insidethe vehicle. Radiation shielding had been calculated beforehand, andtechnical procedures were tested during a 2-week simulation period

before starting patient examinations. STEMO is staffed by a teamconsisting of a physician with at least 4 years of training in clinicalneurology and additional qualification in emergency medicine(neurologist), a paramedic of the fire brigade (similar to Emer-gency Medical Technician–Paramedic),18 and a radiographer(radiology technician with at least 2.5 years of clinical experienceand specially trained in the use of the CereTom scanner) withadditional paramedic qualification (similar to Emergency MedicalTechnician–Intermediate).18 The radiographer and the physician(who both stay inside the protected compartment in the vehicleduring CT examination) were provided with a dosimeter to rec-ord the radiation exposure caused by the CT scanner. The STE-MO is based at a fire brigade station close to the center of Berlin.The operating range was defined by a previously calculated 75%probability to arrive at the scene within 16 minutes and coversmore than 1,000,000 inhabitants. In the pilot study, STEMOwas supposed to operate from 7:00 AM to 6:30 PM from Mondayto Friday every week (11.5 hours daily). The only exception wastime required for maintenance, technical upgrades, and severalofficial engagements and presentations.

Dispatcher. The dispatch center of the fire brigade used a pre-viously validated interview algorithm16 to identify patients with ahigh probability of stroke within 4 hours after symptom onset orwith unknown time of onset. In this case, STEMO was deployedif available. STEMO was assisted by a regular ambulance at alltimes to avoid delays in the treatment of patients in case a tech-nical problem associated with STEMO occurred.

Patients and procedures. Basic medical care including specificneurologic expertise was offered to all patients who were managedby the STEMO team. Exclusion criteria for STEMO-specific pro-cedures (CT scan and point-of-care laboratory) were age youngerthan 18 years and possible or known pregnancy. Prehospital diag-nostics were started on-site or in the STEMO ambulance. Strokediagnosis was made clinically by the neurologist. In case of a sus-pected acute stroke, a brain CT was conducted (with the STEMOin the parking position) after phone consultation with a radiolo-gist. CT was performed only if it was considered to be helpfulfor a therapeutic decision in the STEMO. After completion ofthe scan, image data were sent to the radiologist on call via a tele-radiology system using bundled 3G standard (universal mobile tel-ecommunications system bandwidth: high-speed packet access).Additional analyses of blood glucose concentration, blood count,international normalized ratio, and electrolytes were performedsimultaneously. The radiologist conveyed the CT results to theneurologist on board the STEMO by mobile phone. The finaldecision for tPA treatment was made by the STEMO physicianafter a short telephone consultation with the project’s senior neu-rologist. Decision about eligibility for tPA was made on the basis ofthe drug license except for exclusion of patients older than 80 years(for detailed information, see http://www.strokeforum.com). Incase of AIS, patients were admitted to the closest “appropriatehospital” equipped with a stroke unit.

Data collection including follow-up documentation andstatistics. Data were collected from prehospital sources (data-base of the dispatch center and STEMO operation protocols),from hospital sources (medical reports), as well as from a 3-monthfollow-up telephone survey including a structured interviewregarding the modified Rankin scale and living conditions. Datawere analyzed only when patients had given informed consent forthe use and publication of individual data.

If patients were unavailable at the 3-month follow-up, theregistration office was contacted to ascertain whether the patienthad survived. All data are presented in a descriptive manner and

Figure 1 The stroke emergency mobile unit with CT scanner on board

Note the CT scanner in the back of the cabin and the separated shielded workstation on theright behind the door.

164 Neurology 80 January 8, 2013

ª 2013 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

Walter  S,  et  al.  ‚Diagnosis  and  treatment  of  paPents  with  stroke  in  a  mobile  stroke  unit  versus  in  hospital:  a  

randomised  controlled  trial.‘  Lancet  Neurol  2012;11:397–404.    

The ‚mobile stroke unit‘ Konzept

Ebinger  JE,  et  al.  ‚Effect  of  the  Use  of  Ambulance-­‐Based  Thrombolysis  on  Time  to  Thrombolysis  in  Acute  Ischemic  Stroke.  A  Randomized  Clinical  Trial.‘  JAMA  2014;  311(16):1621-­‐32  -­‐  Mobiles  CT  -­‐  ‚point-­‐of-­‐care‘  Labor  -­‐  Röntgen-­‐MTA  -­‐  Neurologe  mit  Notarztausbildung  -­‐  Telemedizinische  Unterstützung  

5  Antworten  Ø Was ist der legale Hintergrund?

EXPERIMENTELLE THERAPIE Ø Gibt es Daten bzgl. prähospitaler Ultraschall-gestützte

Schlaganfalltherapie? KEINE

Ø Was sind die Vorrausetzungen für prähospitale Thrombolyse gestützt durch diagnostischen Ultraschall?

Voraussetzung ist ein sensitive/-spezifische Diagnostik Wahrscheinlich nur bei großen Gefäßverschlüsen

Ø Was ist der Gold-Standard in der Prähospitaldiagnostik? Krankenhausdiagnose (retrospektiv)

Ø  Ist es die Mühe und das Risiko wert? in verzweifelten Situationen, JA

Notarzt/Sanitäter  

Die Vision des Regensburger Schlaganfallmobil Entwicklung einer mobilen Telemedizinplatform inkl. Ultraschall

auch für Herzinfarkt, Politrauma, etc. für Rettungssanitäter u. Notärzte

Spezialist  

Herzlichen  Dank  an  alle  Beteiligten!  

Neurologie  am  Bezirksklinikikum  Regensburg:  S.  Boy,  F.  Schlachetzki,  M.  Herzberg,  S.  Theiss,  M.  Ertl,  A.  Komenkho,  D.  Baldaranov,  U.  Bogdahn  Interdisziplinäre  Notaufnahme  Universitätsklinikum  Regensburg:  M.Zimmermann  Anästhesie  Universitätsklinikum  Regensburg:  K.P.  IJner  University  of  California  San  Diego:  T.Hölscher    Neurologie  KH  Barmherzige  Brüder  Regensburg:  H.  Pels  Integrierte  ReJungsleitstelle  Regensburg  Hochschule  für  angewandte  Wissenscha{en  Regensburg:  K.  Pflug,  M.  Kucera,  T.  Waas,  A.  Leis  Allen  Notärzten  und  ReJungsdienstmitarbeitern  in  und  um  Regensburg  

n  =  14  

„was  alle  angeht,  können  nur  alle  lösen“  Friedrich  DürrenmaJ  (1921-­‐1990)  


Recommended