+ All Categories
Home > Documents > Fuel Cell Anode

Fuel Cell Anode

Date post: 07-Apr-2018
Category:
Upload: tjnagaraj123
View: 232 times
Download: 0 times
Share this document with a friend

of 45

Transcript
  • 8/3/2019 Fuel Cell Anode

    1/45

    Fabrication of SOFC Electrodes byImpregnation Methods

    R. J. GorteChemical & Biomolecular EngineeringUniversity of Pennsylvania

    Collaborators: J. M. Vohs, M. D. Gross, S.W. Jung,and W. Wang

    Support: ONR, DOE-BES (H 2 program)

  • 8/3/2019 Fuel Cell Anode

    2/45

    Solid Oxide Fuel Cell

    Solid Oxide Fuel Cell

    O 2 + 4e - 2O 2-

    H 2 + O 2- H 2O + 2e -

    e-e-

    e-e-Anode

    Electrolyte

    Cathode

    Air

    H2O

    Fuel

    O 2- O 2-

    Porous Ni/YSZ cermet

    Porous YSZ/Sr-LaMnO 3

    YSZ (Y-stabilized ZrO 2)

    YSZ is a conductor for O2-

    but an insulator for electrons.

    Operating temperature:600 to 800C

  • 8/3/2019 Fuel Cell Anode

    3/45

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6Z', (ohm*cm 2)

    Z " , ( o h

    m * c m

    2 )

    1 kHz

    4 Hz

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 0.2 0.4 0.6 0.8 1Current Density (A/cm 2)

    V o

    l t a g e

    ( V )

    0

    50

    100

    150

    200

    250

    300

    350

    P o w e r

    D e n s i

    t y ( m W / c m

    2 )Performance Analysis:

    Open Circuit:V = Nernst Potential

    = G/nF

    Power output:P = V* i

    Electrolyte Losses:V = i*R electrolyte Electrode Losses:

    V = overpotential= i*R electrode

    R electrode is composed of diffusion, surface kinetics, etc.

    Electrolyte

    Electrodes

    R electrolyte

    (R electrolyte +R electrode )

  • 8/3/2019 Fuel Cell Anode

    4/45

    Research Goals at Penn:1) Anodes for direct utilization of hydrocarbons

    Reforming leads to system complexity and to energy lossesat high temperatures:

    2) High-performance cathodesLSM-based cathodes used today limit SOFC performance.

    Consider: C 4H 10 + 2O 2 = 4CO + 5H 2 At 700C H (kJ/mol) G #electrons

    C 4H 10 + 6 O 2 = 4CO 2 + 5H 2O -2,660 -2,810 264CO + 5H 2 + 4 O 2 = 4CO 2 + 5H 2O -2,370 -1,760 18

    -11% -37% -31%

  • 8/3/2019 Fuel Cell Anode

    5/45

    Ni-based anodes cannot be exposed to hydrocarbons:

    Ni catalyzes carbon formation

    This can be avoided with other metals

    Ni in toluenefor 3 hrs, 700C

    Ni in methanefor 3 hrs, 800C

    Cu in methane

    for 3 hrs, 800C

    Cu in toluene

    for 3 hrs, 700C

  • 8/3/2019 Fuel Cell Anode

    6/45

    Carbon formation is in , not just on, Ni:

    (M. L. Toebes, et al., Catalysis Today, 2002)

    20% CO/7% H 2550 C.

    Ni Particles

    Note: Fe, Co, and Ru will all form catalyze carbon formation

  • 8/3/2019 Fuel Cell Anode

    7/45

    Traditional electrode fabrication limits materials that

    can be used because of high-temperature processing

    YSZ Powder

    Pressed NiO/YSZ powder

    NiO/YSZ compositeReduce in H 2

    800C

    Porous Ni/YSZ cermet

    in air Dense YSZDense YSZYSZ Powder

    Cathodes: (Sr-doped LaMnO 3/YSZ)

    Dense YSZ Dense YSZ

    Screen print LSM-YSZ and fire to 1200C

    1400C

  • 8/3/2019 Fuel Cell Anode

    8/45

    High temperatures restrict choices of materials:

    1) Cannot use materials that will melt at sintering temp.(Ex: CuO melts at 1235C)

    2) High-temperatures can cause solid-state reactions(Ex: LaCoO 3 reacts rapidly with YSZ above 1000C.)

    3) Must be able to form the correct phase(Ex: Alloys and layered structures are not possible.)

  • 8/3/2019 Fuel Cell Anode

    9/45

    YSZ+pore formers

    Electrolyte

    Cathode

    Anode

    YSZ+pore formers

    YSZ70 C, 8 MPa

    Firing1400 1550 C

    Lamination

    Porous YSZ

    Impregnation &

    Calcination at 450 ~ 700 C

    Electrode Fabrication by Impregnation:

    Both Anodes & Cathodes formed by impregnation.

  • 8/3/2019 Fuel Cell Anode

    10/45

    Structure near electrolyte interface:

    Electrode I

    electrolyte

    Electrode II

  • 8/3/2019 Fuel Cell Anode

    11/45

    Add active phase separately:

    Ex: La 0.8Sr 0.2FeO 3-YSZ

    40 wt% LSF-YSZ by impregnationPorous YSZ

  • 8/3/2019 Fuel Cell Anode

    12/45

    Advantages:

    1. Separate firing temperatures for YSZ and active phase.- Avoids solid-state reactions between LSF & YSZ.- Can use low-melting solids (CuO).

    2. Composite is non-random structure.

    Mixed powdersImpregnated

    LSM

    Percolation thresholdfor random media

    12.612.611.710.3CTE (10 -6/K), 300 to 1073 K

    55%45%35%0%LSCo Weight Fraction in YSZb) CTE of LSCo-YSZ

    a) Electrical conductivity of LSM-YSZ

    CTE of LSCo is 23x10 -6/K

    700 C in air, compositescalcined at 1523 K.

  • 8/3/2019 Fuel Cell Anode

    13/45

    YSZO2-

    CeO 2

    Cu Cu

    C2H6

    e-

    CO 2H2O

    Our past focus: Cu-ceria anodes

    a) Cu for electronic conductivityb) Ceria for catalysis

  • 8/3/2019 Fuel Cell Anode

    14/45

    Cu-ceria composites perform in real fuels!

    15%CeO2 25%Cu, 24um electrolyte, laminated cell, LSF, Heavy Naph 700 oC

    0

    0.2

    0.4

    0.60.8

    1

    1.2

    0 5 10 15 20 25 30 35 40 45

    Time, hour

    V o l

    t a g e , V

    0

    0.2

    0.4

    0.60.8

    1

    1.2

    P o w e r

    d e n s

    i t y ,

    W / c m

    2Voltage

    Power density

    Operation on Heavy Naphtha, 700C; fuel was undiluted.

  • 8/3/2019 Fuel Cell Anode

    15/45

    0

    100

    200

    300

    400

    500

    0 200 400 600 800 1000 1200 1400

    700 C, 30% conversion at peak power725 C, 40% conversion at peak power750 C, 44% conversion at peak power775C, 47% conversion at peak power800C, 50% conversion at peak power

    P o w e r

    D e n s i

    t y ( m W / c m

    2 )

    Current Density (mA/cm2

    )

    700 C

    725 C

    750 C

    775 C

    800 C

    0

    200

    400

    600

    800

    1000

    1200

    0 200 400 600 800 1000 1200 1400

    700 C, 1.2 ml/h decane725 C, 1.2 ml/h decane750 C, 1.2 ml/h decane775C, 1.4 ml/h decane800C, 1.7 ml/h decane

    P o t e n

    t i a l ( m

    V )

    Current(mA/cm2)

    700 C725 C 750 C

    775 C

    800 C

    Power densities can be good with optimized cells:Fuel: pure n-decane

    Data from SRI InternationalCell area 6.4 cm 2

  • 8/3/2019 Fuel Cell Anode

    16/45

    0 50 100 150 200 250 300 3500.0

    0.1

    0.2

    0.3

    0.4

    800 0C, Keep at ~0.6V

    H2 with 10vol% H 2Oand

    50ppm H 2S100ppm H 2S200ppm H 2S300ppm450ppm

    600ppm900ppm

    P o w e r

    d e n s

    i t y ( W / c m

    2 )

    Time (h) -22.0 -21.5 -21.0 -20.5 -20.0-14

    -13

    -12

    -11

    -10

    -9

    800 0C

    Ce 2O2S

    log P O 2 (P O 2 in atm)

    l o g

    P S 2

    ( P S 2

    i n a t m

    )

    CeO 1.83

    Cu-ceria-YSZ electrodes stable in sulfur:

    Measure performance in H 2-H 2O-H 2S mixtures

    900 ppm600 ppm450 ppm300 ppm200 ppm

    100 ppm

    50 ppm

    Sulfur poisoning occurs when Ce 2O 2S is formed.

    Note: Ni-anodes are poisoned at surface monolayer, ~ 5 ppm.

  • 8/3/2019 Fuel Cell Anode

    17/45

    Cu-based anodes have limitations:

    Low catalytic activity (ceria is the catalyst)Limited to use at lower temperatures.

    700C 900CB

    Cu

    B

    Cu

  • 8/3/2019 Fuel Cell Anode

    18/45

    -0.5

    0

    0.5

    1

    1.5

    2

    0 0.5 1 1.5 2 2.5 3 3.5 4

    Z re cm 2

    - Z

    i m

    c m

    2

    Effect of thermal treatment on cell performance:

    After heating to 800C After heating to 900C

    Sintering of Cu:1) Loss of anode conduction2) Increased ohmic resistance

    Cu-ceria-YSZ YSZ LSM-YSZ

    3% H2O-97% H

    2at 700C

  • 8/3/2019 Fuel Cell Anode

    19/45

    Solution 1: Electroplate Co onto Cu cermets

    Idea: Coat thermally stable Cowith chemically stable Cu:

    Co

    Cu

    Cu and Co do not form alloys

    Cu Anode Ni Cermet

    CuSO 4 + H 2S0 4Solution

    DC

    Cu 2+

    e

    e

    V

    Cu Anode Ni Cermet

    CuSO 4 + H 2S0 4Solution

    DC

    Cu 2+

    e

    e

    Cu Anode Ni Cermet

    CuSO 4 + H 2S0 4Solution

    DC

    Cu Anode Ni Cermet

    CuSO 4 + H 2S0 4Solution

    DCC

    Cu 2+

    e

    e

    V

    Co

  • 8/3/2019 Fuel Cell Anode

    20/45

    Key is to deposit evenly

    throughout the pores; Co platingis much easier than Cu.

    But Cu segregates to Co surface

    XPS of 250-nm Co filmon Cu with heating

    Co plated Cu stable inCH 4 at 800C for 3 h

    Cu-Co Co only

  • 8/3/2019 Fuel Cell Anode

    21/45

    Enhanced thermal stability achieved:

    Ohmic Resistances of Cells at 900C

    (o) Co-Cu-ceria-YSZ(5-vol% Co electroplated;13-vol% Cu)

    () Cu-ceria-YSZ(18-vol% Cu)

    ( ) Co-ceria-YSZ(18-vol% Co)

  • 8/3/2019 Fuel Cell Anode

    22/45

    0

    0. 2

    0. 4

    0. 6

    0. 8

    1

    1. 2

    0 50 100 150 200 250 300 350 400 450 500

    Time, hour

    V o l

    t a g e , V

    0

    0. 1

    0. 2

    0. 3

    0. 4

    0. 5

    0. 6

    P o w e r

    d e n s

    i t y , W / c m

    2voltage

    power denisityDry CH 4, 800C50:50 Co-Cu

    Cu-Co composites stable for long times

  • 8/3/2019 Fuel Cell Anode

    23/45

    Solution 2: Ceramic anodes (the Holy Grail?)

    Problem: Oxides have either poor conductivityat low P(O 2) or poor catalytic activity

    Concept: Separate the two required functions

    YSZ electrolyte

    Anode current collector

    Porous ceramic, optimized for conductivity.

    Anode functional layer

    Optimized for catalytic performance.Thin to avoid need for high conductivity.

    Key point:If = 10 m and R ohmic must be < 0.1 .cm 2, need only be 0.01 S/cm!

  • 8/3/2019 Fuel Cell Anode

    24/45

    Concept works:1. Functional layer can provide high performance when

    Ag used for current collection.

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    0.0 0.5 1.0 1.5 2.0 2.5

    Current Density, A/cm2

    V o l t a g e ,

    V

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    P o w e r

    D e n s i

    t y , W

    / c m

    2

    650C700C

    750C800C

    LSF-YSZ cathode (300 m)

    YSZ electrolyte (75 m)Anode, Ceria-YSZ (10 m)Current collector, Ag paint

    10 m

    H 2 (3% H 2O)

    800C 750C 700C 650C

    (Pd doped)

  • 8/3/2019 Fuel Cell Anode

    25/45

    2. Ag can be replaced by La 0.3Sr 0.7TiO 3:

    20 mP

    or o u s Y

    S Z - a

    c t i v e

    r e gi on

    La0.3 Sr 0.7 TiO 3 current collector

    Y S Z

    el e

    c t r ol y

    t e

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 0.4 0.8 1.2 1.6

    Current Density / A cm -2

    V o

    l t a g e

    / V

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    P o w e r

    D e n s i

    t y / W c m

    - 2

    650C

    800C750C

    H 2 (3% H 2O)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    0 0.4 0.8 1.2 1.6

    Current Density / A cm -2

    V o l

    t a g e

    / V

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    P o w e r

    D e n s i t y

    / W c m

    - 2

    CH 4 (3% H 2O)

    800C

    750C

    700C

  • 8/3/2019 Fuel Cell Anode

    26/45

    Cathode Research: Background

    Standard Material: LSM (La 0.8Sr 0.2MnO 3)-YSZ compositeLSM is used because- it has good electronic conductivity.- low reactivity with YSZ, even at 1200C.- good long-term stability.- good CTE match with YSZ.

    But,- it has poor ionic conductivity, so that performance poor below 800C.- activated by cathodic polarization (implications for electrolysis.).

    LSCo ((La 0.8Sr 0.2CoO 3):- good electronic and ionic conductivity- can provide outstanding electrode performance at below 700C.

    But,- electrode performance is not stable.- it reacts with YSZ, even at 700C (forms La 2Zr 2O 7).- poor CTE match with YSZ.

  • 8/3/2019 Fuel Cell Anode

    27/45

    Performance independent of LSM precursorPerformance independent of LSM precursor

    Fewest steps required by Molten SaltFewest steps required by Molten Salt

    Impregnated LSM indistinguishable from screenImpregnated LSM indistinguishable from screen --printedprinted

    LSM/YSZLSM/YSZ

    ObservationsObservations

    We need a minimum of 30 to 40 wt% of LSM.We need a minimum of 30 to 40 wt% of LSM.

    a) Nano-particles ( )20 wt% in butandiol

    b) Aqueous solutions ( )1.6 molar, nitrate solution

    c) Molten salts ( )

    ESSL, 9 (2006) A237ESSL, 9 (2006) A237 --240240

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 0.2 0.4 0.6 0.8 1Current Density (A/cm 2)

    V o l

    t a g e

    ( V )

    0

    50

    100

    150

    200

    250

    300

    350

    P o w e r

    D e n s i

    t y ( m W / c m

    2 )

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    0 0.2 0.4 0.6 0.8 1Current Density (A/cm 2)

    V o l

    t a g e

    ( V )

    0

    50

    100

    150

    200

    250

    300

    350

    P o w e r

    D e n s i

    t y ( m W / c m

    2 )

    700700 CC

    CoCo --ceriaceria |YSZ|LSM|YSZ|LSM --YSZYSZ

    LSM by impregnation:

  • 8/3/2019 Fuel Cell Anode

    28/45

    -1

    -0.5

    0

    0.5

    1

    1.5

    2

    0 0.5 1 1.5 2 2.5 3 3.5

    Z Re, .cm 2

    - Z I m , . c

    m 2

    2 kHz

    0.8 Hz

    1.6 Hz

    3 Hz4 Hz

    Understanding LSMUnderstanding LSM --YSZ cathodes: PolarizationYSZ cathodes: Polarization activationactivation

    LSM-YSZ

    CeO 2 Pd- C - YSZ

    700C, H 2/3%H 2O, OCV after applying current

    - 850 mA/cm 2- 60 mA/cm 2- 0 mA/cm 2 - 150 mA/cm 2

    Note: These changes are reversible.Note: These changes are reversible. ~ 120 minutes.~ 120 minutes.

    ESSL, 7 (2004) A111ESSL, 7 (2004) A111 --A114.A114.

  • 8/3/2019 Fuel Cell Anode

    29/45

    What we believe is happening:

    YSZ

    1) Dense LSM covers YSZ Gaps in LSM film caused by reduction

    2) Performance limited by Gas can get to YSZ interface.oxygen diffusion.

    Process driven by surface interactions between LSM & YSZ

    YSZ

    LSM

    Electrode before activation Activated Electrode

  • 8/3/2019 Fuel Cell Anode

    30/45

    LSM Particles on YSZ (100): Effect of LSM Particles on YSZ (100): Effect of calcinationcalcination temperaturetemperature

    850C 1050C 1150C

    ESSL, 9 (2006) A237ESSL, 9 (2006) A237 --240240

  • 8/3/2019 Fuel Cell Anode

    31/45

    2 m x 2 mCalcination at 1150C Reduced in H 2 (10%H 2O) at 700C

    Movement of particles is reversible:Movement of particles is reversible:

    1)1) LSM is stable in 10%HLSM is stable in 10%H 22OO --90% H90% H 22 at 700at 700 C.C.

    2)2) Reducing LSMReducing LSM --YSZ electrode activate it.YSZ electrode activate it.

  • 8/3/2019 Fuel Cell Anode

    32/45

    Consequences for electrolysis (anode environment is oxidizing):Consequences for electrolysis (anode environment is oxidizing):

    0 50 100 150 200 250 3000.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.21.4

    C e l

    l p o t e n t

    i a l ( V )

    Time (min)

    1.25

    1.3

    1.35

    1.4

    1.45

    -20 10 40 70 100 130 160 190

    Time (min)

    C e l l p

    o t e n

    t i a l ( V )

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    E l e c t r o

    d e i m

    p e d a n c e

    ( - c m

    2 )

    285285 mAmA /cm/cm 22; 700; 700 C; 85%HC; 85%H 22--15%H15%H 22OO | air| air

    LSMLSM --YSZ anodeYSZ anode LSFLSF --YSZ anodeYSZ anode

    JECS, in press.JECS, in press.

  • 8/3/2019 Fuel Cell Anode

    33/45

    LSFLSF --YSZ (this cannot be made by screen printing)YSZ (this cannot be made by screen printing)

    2)2) Formation of Formation of ZrZr --doped LaFeOdoped LaFeO 33only above 1200only above 1200 CC

    3)3) ZrZr doping is not a deactivationdoping is not a deactivation

    process.process.

    -0.15

    -0.1

    -0.05

    00 0.05 0.1 0.15 0.2 0.25

    Z' (ohm.cm 2)

    Z ' ' ( o h m . c

    m 2 )

    10%Zr-LSF+YSZ

    LSF+YSZ

    700700 C, symmetric cellC, symmetric cell

    Observations:Observations:1)1) See no additional phases withSee no additional phases withcalcinationcalcination temperature (Verytemperature (Verydifferent from LaCoOdifferent from LaCoO 33))

  • 8/3/2019 Fuel Cell Anode

    34/45

    Time &Time & calcinationcalcination temperature have similar effect:temperature have similar effect:

    Symmetric CellsSymmetric CellsCalcineCalcine @ 850@ 850 CC

    t = 0 h @700t = 0 h @700 CC

    CalcineCalcine @ 850@ 850 CC

    t = 2500 h @700t = 2500 h @700 CC

    CalcineCalcine @ 1100@ 1100 CC

    t = 0 ht = 0 h

    R R = expected value for= expected value forYSZ electrolyteYSZ electrolyte

    R R PP = 0.12= 0.12 cmcm 22 @ 700@ 700 CCindependent of independent of ii

    R R = expected value for= expected value forYSZ electrolyteYSZ electrolyte

    R R PP = 0.6 to 0.1= 0.6 to 0.1 cmcm 22 ,, depends strongly depends strongly onon ii

    NoNo hysteresishysteresis ! Not like LSM.! Not like LSM.

    R R = expected value for= expected value for

    YSZ electrolyteYSZ electrolyte

    R R PP = 2.5 to 0.1= 2.5 to 0.1 cmcm 22 ,, depends strongly depends strongly onon ii

    NoNo hysteresishysteresis ..

  • 8/3/2019 Fuel Cell Anode

    35/45

    Effect of Effect of CalcinationCalcination Temperature, Performance @ 700Temperature, Performance @ 700 CC

    CalcineCalcine

    @ 850@ 850 CC

    t = 0 ht = 0 h

    CalcineCalcine

    @ 1100@ 1100 CC

    0

    0.1

    0.2

    0.3

    0.3 0.4 0.5 0.6 0.7 0.8Z Re, ohm*cm2

    - Z I m

    , o h m

    * c m

    2

    450 mA/cm2OCV- 450 mA/cm2

    0

    0.2

    0.4

    0.6

    0.8

    1

    0.3 0.5 0.7 0.9 1.1 1.3 1.5

    Z Re, ohm*cm2

    - Z I m

    , o h m * c m

    2

    450 mA/cm2100 mA/cm2OCV- 100 mA/cm2- 450 mA/cm2

    Anode: metalAnode: metal --doped ceriadoped ceria --YSZYSZ Ag, 50Ag, 50 m YSZ electrolytem YSZ electrolyte

  • 8/3/2019 Fuel Cell Anode

    36/45

    Proposed deactivation mechanism:

    Implications:Implications:1.1. Deactivation is structural, not associated with interfacial reacDeactivation is structural, not associated with interfacial reac tionstions2.2. InterlayersInterlayers will probably not be effectivewill probably not be effective3.3. With LSM, activation of very good electrodes less importantWith LSM, activation of very good electrodes less important use sameuse same

    concepts for stabilizing LSF?concepts for stabilizing LSF?

    YSZYSZLSF

    850C calcination 1100C

    11 mm 11 mm

  • 8/3/2019 Fuel Cell Anode

    37/45

    SummaryElectrode fabrication by impregnation allows great

    flexibility in preparing anodes.

    Direct utilization of hydrocarbon fuels is possible inCu-ceria based anodes.

    The thermal stability of Cu-based anodes can beimproved by:

    1. Co electrodeposition2. Using ceramic anodes.

    High-performance LSF-YSZ cathodes may be possible.

    http://www.franklinfuelcells.com/http://www.seas.upenn.edu/cbe/Fuel_Cell_index.htm

  • 8/3/2019 Fuel Cell Anode

    38/45

    -0.1

    0

    0.1

    0.2

    0.3

    0 0.1 0.2 0.3 0.4 0.5

    Zre .cm 2

    - Z i m

    . c m

    2500 Hz

    LSM(850C)

    -1

    0

    1

    2

    3

    4

    5

    0 1 2 3 4 5 6 7Zre .cm 2

    - Z i m

    . c m

    20.2 Hz

    0.2 Hz

    LSM(1250C)

    ( ) Initial spectrum.() After applying 250 mA/cm 2 for 10 minutes.

    ( ) 5 h after applying current.

    4040 --wt% impregnated LSMwt% impregnated LSM --YSZ, fired to 850YSZ, fired to 850 C or 1250C or 1250 CCMeasurement at 700Measurement at 700 C in air at OCV.C in air at OCV. LSM/YSZ

    LSM/YSZ

    CalcinationCalcination temperature affects activation:temperature affects activation:

    R = 0.5 cm 2 R = 6.5 cm 2

    Not activated Activated by polarization

    JECS, 152 (2005) A1347JECS, 152 (2005) A1347 --53.53.

  • 8/3/2019 Fuel Cell Anode

    39/45

    BET Surface Areas (40 wt% LSM in YSZ)BET Surface Areas (40 wt% LSM in YSZ)

    0.380.38 0.020.02LSM(1250LSM(1250 C)C) --YSZYSZ

    2.532.53LSM(850LSM(850 C)C) --YSZYSZ

    0.770.77 0.020.02Porous YSZ without LSMPorous YSZ without LSM

    Surface Area (mSurface Area (m 2 2 /g) /g)

    4 [ (1-) ]

    =

    = porosity= surface area= YSZ density

    = 0.77 m 2/g = 1.6 microns = 0.38 m 2/g = 0.58 microns

    dense LSM film ondense LSM film onYSZ poresYSZ pores

    0.780.78 0.030.03LSM(1250LSM(1250 ooC)C) --YSZ w/ 700YSZ w/ 700 C reductionC reduction

  • 8/3/2019 Fuel Cell Anode

    40/45

    Gas-phase pyrolysis.

    Tony Dean, CO School of Mines

    Control requires consideration of flow geometries and coating of surfaces.

  • 8/3/2019 Fuel Cell Anode

    41/45

    10 15 20 25 30 35 40 45 50 55

    2500e3

    5000e3

    7500e3

    10.0e6

    12.5e6

    15.0e6

    17.5e6

    20.0e6

    TIC

    1

    2

    3

    4

    56

    7

    8

    9

    10

    11

    12 13

    10 15 20 25 30 35 40 45 50 55

    Time (min)

    0

    1

    2

    3

    4

    5

    6

    7

    8

    925 950 975 1000 1025 1050

    Temperature (K)

    W e i g h

    t G a i n P e r c e n t a g e

    ( % )

    Wt change of YSZ slab after 4 h in butane:

    0.3 ml/s

    1.0 m/s

    S:C=1.5

    Tar formation on a YSZ Slab:

    1) Rate depends on flow rate2) Steam does not affect rate3) For CH 4, negligible tar

  • 8/3/2019 Fuel Cell Anode

    42/45

    Time (hr)

    0 5 10 15 20 25

    P o w e r

    d e n s

    i t y ( m W / c m

    2 )

    0

    100

    200

    300

    400

    Perform decreases as anode pores fill with tar:

    Performance on un-diluted light naphtha, Saudi-Aramco:

    800C

    750C

    700C

  • 8/3/2019 Fuel Cell Anode

    43/45

    Most hydrocarbons behave similarly:

    Time (hr)

    0 5 10 15 20 25

    P o w e r

    d e n s

    i t y

    ( m W / c m

    2 )

    0

    100

    200

    300

    400

    500

    Time (hr)

    0 5 10 15 20 25

    P o w e r

    d e n s i

    t y ( m W / c m

    2 )

    0

    50

    100

    150

    200

    250

    300

    350

    Heavy naphtha n-Decane with 20% toluene

    800C

    700C

    800C

    700C

    Butane and low-sulfur diesel are also similar

    P ibl S l i

  • 8/3/2019 Fuel Cell Anode

    44/45

    Possible Solutions:1) Prevent gas-phase reactions (radical termination)2) Remove tar faster than it forms

    TPO using 10% H 2O in He; tar on YSZ

    YSZ

    Temperature (K)

    800 900 1000 1100 1200 1300

    I n t e n s

    i t y

    ( a . u . )

    CeO 2 /YSZ

    H 2

    H 2

    CO 2

    CO

    CO 2

    CO

  • 8/3/2019 Fuel Cell Anode

    45/45

    Support Layers can be added for strength:

    Laminated cellDense YSZ

    Porous YSZ

    Dense YSZ

    Porous YSZ

    Final Product

    FFC, Inc.


Recommended