+ All Categories
Home > Documents > Fuel Moisture, Seasonal Severity and Fire Growth Analysis ...

Fuel Moisture, Seasonal Severity and Fire Growth Analysis ...

Date post: 05-Oct-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
13
1 Fuel Moisture, Seasonal Severity and Fire Growth Analysis in the US Fire Behavior Analysis Tools: Using Fire Weather Index (FWI) Codes and Indices as Guides in Alaska 1 Introduction Efforts to conduct, interpret, and apply findings from fire growth analysis using the Wildland Fire Decision Support System (WFDSS) and Interagency Fuel Treatment Decision Support System (IFTDSS) tools are heavily dependent on weather observations and forecasts from local weather stations and landscape fuel classifications from LANDFIRE. Additionally, analysts apply a considerable number of subjective inputs to their analyses, such as Initial Fuel Moisture values for live and dead fuels, best weather station to use for wind and fuel moisture assessments, crown fire potential and manifestation, and spotting frequency. The typical approach utilized by analysts when initializing their first analyses is to use default inputs as much as possible and “calibrate” the model to know fire growth events. This method can be time consuming, assumes that the fire has already experienced one or more significant growth events, and sometimes leads analysts to adjust factors that may not be responsible for changes observed on the ground. This guide offers recommendations for using Canadian Forest Fire Danger Rating System (CFFDRS) fuel moisture codes and fire behavior indices from the Fire Weather Index (FWI) system to provide objective guidance for initial settings for many of these analysis inputs. The FWI system has been formally calibrated for northern boreal ecosystems and effectively identifies significant thresholds for the Alaska landscapes as well as important trends in changing fire growth potential. The primary tools considered here include WFDSS and IFTDSS analyses. Included are Short-term Fire Behavior (STFB) that is based on the FLAMMAP fire growth modeling system, Near-Term Fire Behavior (NTFB) based on the FARSITE fire growth modeling system, and Fire Spread Probability (FSPro) based on FLAMMAP and NFDRS inputs using FireFamily Plus within WFDSS. IFTDSS uses primarily FLAMMAP tools for its fire growth analyses. All analyses use fuel moisture scenarios including 1hr, 10hr, 100hr, Woody, and Herbaceous fuel moistures. Analysts are encouraged to edit these settings in general, or for specific fuel classes. FSPro utilizes wind climatology from a selected weather observing location and allows the user to make both coarse and fine adjustments to that distribution. FSPro is heavily dependent on the Energy Release Component for fuel model G (ERCg) to identify daily fuel moisture and spotting scenarios for both deterministic (forecast) and probabilistic (climatology) portions of the analysis. Analysts are finding that they need to edit the ERC classes and streams heavily to reflect expected conditions. At the very least, these daily FWI fuel moisture codes and fire behavior indices are a useful cross-references when considering analysis inputs and outputs. There are two sections that follow. The first is a discussion of the FWI fuel moisture codes, their fuel moisture equivalents, and how they can be used to facilitate edits to fuel moisture scenarios so that they reflect current observed conditions. The second shows how Buildup Index (BUI) and Fine Fuel Moisture Code (FFMC) can be used to inform ERC Class Tables and Streams to reflect current season severity and facilitate local “burn days” climatology to the analysis.
Transcript
Page 1: Fuel Moisture, Seasonal Severity and Fire Growth Analysis ...

1

FuelMoisture,SeasonalSeverityandFireGrowthAnalysisintheUSFireBehaviorAnalysisTools:UsingFireWeatherIndex(FWI)CodesandIndicesasGuidesinAlaska

1 IntroductionEffortstoconduct,interpret,andapplyfindingsfromfiregrowthanalysisusingtheWildlandFireDecisionSupportSystem(WFDSS)andInteragencyFuelTreatmentDecisionSupportSystem(IFTDSS)toolsareheavilydependentonweatherobservationsandforecastsfromlocalweatherstationsandlandscapefuelclassificationsfromLANDFIRE.

Additionally,analystsapplyaconsiderablenumberofsubjectiveinputstotheiranalyses,suchasInitialFuelMoisturevaluesforliveanddeadfuels,bestweatherstationtouseforwindandfuelmoistureassessments,crownfirepotentialandmanifestation,andspottingfrequency.

Thetypicalapproachutilizedbyanalystswheninitializingtheirfirstanalysesistousedefaultinputsasmuchaspossibleand“calibrate”themodeltoknowfiregrowthevents.Thismethodcanbetimeconsuming,assumesthatthefirehasalreadyexperiencedoneormoresignificantgrowthevents,andsometimesleadsanalyststoadjustfactorsthatmaynotberesponsibleforchangesobservedontheground.

ThisguideoffersrecommendationsforusingCanadianForestFireDangerRatingSystem(CFFDRS)fuelmoisturecodesandfirebehaviorindicesfromtheFireWeatherIndex(FWI)systemtoprovideobjectiveguidanceforinitialsettingsformanyoftheseanalysisinputs.TheFWIsystemhasbeenformallycalibratedfornorthernborealecosystemsandeffectivelyidentifiessignificantthresholdsfortheAlaskalandscapesaswellasimportanttrendsinchangingfiregrowthpotential.

TheprimarytoolsconsideredhereincludeWFDSSandIFTDSSanalyses.IncludedareShort-termFireBehavior(STFB)thatisbasedontheFLAMMAPfiregrowthmodelingsystem,Near-TermFireBehavior(NTFB)basedontheFARSITEfiregrowthmodelingsystem,andFireSpreadProbability(FSPro)basedonFLAMMAPandNFDRSinputsusingFireFamilyPluswithinWFDSS.IFTDSSusesprimarilyFLAMMAPtoolsforitsfiregrowthanalyses.

Allanalysesusefuelmoisturescenariosincluding1hr,10hr,100hr,Woody,andHerbaceousfuelmoistures.Analystsareencouragedtoeditthesesettingsingeneral,orforspecificfuelclasses.FSProutilizeswindclimatologyfromaselectedweatherobservinglocationandallowstheusertomakebothcoarseandfineadjustmentstothatdistribution.FSProisheavilydependentontheEnergyReleaseComponentforfuelmodelG(ERCg)toidentifydailyfuelmoistureandspottingscenariosforbothdeterministic(forecast)andprobabilistic(climatology)portionsoftheanalysis.AnalystsarefindingthattheyneedtoedittheERCclassesandstreamsheavilytoreflectexpectedconditions.Attheveryleast,thesedailyFWIfuelmoisturecodesandfirebehaviorindicesareausefulcross-referenceswhenconsideringanalysisinputsandoutputs.

Therearetwosectionsthatfollow.

• ThefirstisadiscussionoftheFWIfuelmoisturecodes,theirfuelmoistureequivalents,andhowtheycanbeusedtofacilitateeditstofuelmoisturescenariossothattheyreflectcurrentobservedconditions.

• ThesecondshowshowBuildupIndex(BUI)andFineFuelMoistureCode(FFMC)canbeusedtoinformERCClassTablesandStreamstoreflectcurrentseasonseverityandfacilitatelocal“burndays”climatologytotheanalysis.

Page 2: Fuel Moisture, Seasonal Severity and Fire Growth Analysis ...

2

2 FuelMoistureInputsandFWIFuelMoistureCodes2.1 FineDead(1-hour)FuelMoistures

Whilelivefuelmoistures(WoodyandHerbaceous)havelargeimpactsonthefirespreadmodels,theyarefixedoverthedurationofbothWFDSSandIFTDSSanalyses.Themostvariablefuelmoistureinputisthe1-hourfuelmoisture.WFDSSSTFBandNTFBusehourlyweatherdataaswellasslope,aspect,andshadingfactorsto“condition”1-hour(and10-hour)fuelmoisturevaluesfrominitialsettings.

Thisdiurnalplotoffinedeadfuelmoistureillustratestheeffectofhourlyweather.IncludedaretheoriginalFosberg(1971)model(1h)inblue,the-Nelson(2000)model(1h)ingreen,andtheWotton(2009)GrassFuelMoisture(GFM%)inorange.Noticethatboth1h-NelsonandGFM%showgreaterresponsivenesstoovernightrecoveryandprecipitationevents.However,the1h-Nelsonestimatereflectsa2-4%increaseintheestimateduringthedryburnperiods.

AssumingtheGFM%estimateismorecompatiblewithexistingfirespreadmodelsandmoreresponsivetoday-to-dayvariationresponsibleforchangingfirespread,theanalystcouldconsideradjustingthe1-hourfuelmoistureestimatebasedononlineevaluationsorthistable.

KeepinmindthatNTFBusesconditioned1-&10-hourfuelmoisturesthroughouttheanalysis.ConsiderusingSTFBwherepossibleandsetting“conditioning”daysto0.

Page 3: Fuel Moisture, Seasonal Severity and Fire Growth Analysis ...

3

2.2 10-hourFuelMoisture

Whilethe10-hourFuelMoistureexertslessinfluenceontheRothermelFireSpreadmodeloutputs,itisestimatedforeachanalysisandisalsosubjecttotheinfluenceoftheNelsonDeadFuelMoisturemodel’stendencytoraisemoistureestimates.

Inaddition,theFWIFineFuelMoistureCode(FFMC)isverylikea10-hourtimelagfuelmoisture,estimatedbyFWIdevelopersassomewherebetweena5-and16-hourtimelag.Thoughproducedasa“unitless”code,itiseasilyconvertedtoafuelmoisture,representinganestimateofshadedlitterfuelsunderforestcanopy.Assuch,itassumesthatslope,aspect,andvariationinshadingislesssignificantthanthedryingeffectsoftemperatureandhumidity.

Infact,while1-hourestimateswerediscussedabove,finedeadlitterfuelsandfeathermossfuelbedsundertheborealforestcanopymayrespondtoweatherconditionsmuchmorelikeFFMCandmaybeappropriatelysetequaltothe10-hourestimatedescribedhere.

ThisgraphandtabledepicttherelationshipbetweentheestimatedFFMCandprospective10-hourfuelmoistureequivalents.Onthegraph,thebluepointsreflecttheformulausedintheFWIsystemtoconvertbetweencodeandfuelmoisturecontent(%).10-hourfuelmoisturesderivedinthiswayrepresentshadedforestlitterdeadfuelmoisture.Inthetableandonthegraph,inorangeistheconversionbetweenmeasurementsoffuelmoistureunshadedNFDRS“sticks”.

Page 4: Fuel Moisture, Seasonal Severity and Fire Growth Analysis ...

4

2.3 SlowlyRespondingFuelMoisturesWFDSSandIFTDSSanalysesbothincludeawiderangeoffuelmoistureestimatesthatrespondmoreslowlyoverweeksandmonthsduringthefireseason.100-hourand1000-hourfuelmoisturesrangefroma4-to40-daytimelaginheavierdeadfuels.Livefuelmoistures,herbaceousandwoody,areusedtoaccountfortheinfluenceoflushgreenvegetationasaheatsinkinthefireenvironment.

Currently,thereislittleobserveddatatoinformtheinputsforfuelmoistureandflammabilityconditionsfortheselivefuelsfoundinAlaska.Despitethis,manyanalystsusetheseinputsastheirprimarytoolincalibratingfiregrowthmodelsagainstobservedfirespread.

TheFWIDuffMoistureCode(DMC),a“unitless”indexofanassumedintermediate“timelag”fuelmoisture,takesadifferentapproach.Itintegratesfuelmoistureconditionsacrossthisbroadrangeofavailablefuelcharacteristics(otherthanfinedeadfuels)andrepresentsavailabilityandflammabilityinthoseclassesmoregenerally.Ithasbeencalibratedtodryinginthedufflayerbelowlitterontheforestfloor.

ThisgraphdepictstherelationshipbetweenthedailyestimateofDMCanditsequivalentdufffuelmoisture,inpercent.Further,itdepictsaconversiontofuelmoistureestimatesofanabove-grounddeadfuelofapproximately5”diameter.DMCestimatesareavailablefornearly200weatherobservinglocationsacrossAlaska.Theserepresentobjectivecharacterizationsthatcanbeusedtoadjustandapplyfuelmoistureinputsforanalysispurposes.

OnlytherelationshipbetweenDMCanditsequivalentdufffuelmoisture%hasbeenrigorouslyevaluated.Recommendationsforestimating100-hrandHerbaceousfuelmoisturecanbeappliedforanalysispurposes,butshouldbeevaluatedcritically.FeedbackconcerningthesemethodsshouldbedirectedtotheAlaskaWildfireCoordinatingGroup’s(AWFCG)FireModelingandAnalysisCommittee(FMAC)ortheAlaskaFireScienceConsortium(AFSC).

Page 5: Fuel Moisture, Seasonal Severity and Fire Growth Analysis ...

5

2.3.1 100-hourFuelMoistureInthegraphabove,DMCcanbeconvertedtoadufffuelmoistureequivalentthatrepresentsa360hourtimelagtrend.Thisshouldbeintermediatebetween100-hourand1000-hrtimelags.

Thisexampleseasonplotfrom2015attheHogatzaRAWSdemonstratestrendsforthesethreefuelmoistures.TheDMCEquivalent“duff”fuelmoisturewasrescaledtooverlaythe100-hourand1000-hourtrends.TheDMCmoisturetrendis,infact,intermediatebetweenthe100-and1000-hrtrends,representinga360hrtimelagfuelmoisturetrend.

Usingthe360-hourfuelmoistureestimatedfromtheDMCconversiongraphabove,the100-hourand1000-hrfuelmoisturescanbeestimatedasslightlylowerandhigher.Inthisexample,onJuly6th,the100-hrcouldbeadjustedtobemoreliketheDMC’s360-hrestimate,between4and5%.

2.3.2 HerbaceousFuelMoistureHerbaceousfuelmoisturehasbecomeacriticalinputforfiregrowthanalysisinWFDSSandIFTDSS.Butinsteadoffaithfullyobtainingandusingestimatesofmoisturecontent,thisinputisusedasacalibrationtoolforadjustmentoffirespreadestimatesinthoseanalyses.Itworksprincipallybytriggeringafuelloadtransferbetweenherbaceousloadsandfinedeadloadsformanyofthefuelmodelscurrentlyused.Transferredloadswouldthentakeonthe1-hrfuelmoistureestimate.However,alongwithwoodyfuelmoisture,theseloadsandtheirelevatedfuelmoisturesalsoimposeimportantheatsinksduringthegrowingseason,mutingsimulatedfirespreadwithinthemodels.

Despitelittleobservationdatatosupportinputvaluesinmanycases,herbaceousfuelmoistureestimatesusedinanalysescanhavealargeinfluenceonresults.Andoncethevalueisset,itsinfluenceisfixedforthedurationofthatanalysis.Assumingthattheherbaceousfuelmoisturewillremainfixedovera1-14-dayanalysisdurationmaybeaccurateorproblematic;wecannotbesure.Evenso,makinglargeadjustmentsinthisvaluetocalibratetoaknowngrowtheventmaynoteffectivelyrepresentthefactorsresponsibleforday-to-dayvariationinfuelavailabilityandflammabilitywithinthemodels.Modeledspreadcalibratedtoobservedfirespreadbasedprimarilyonsensitivitytolivefuelmoistureestimateswillproduceinconsistentresultswhentheassumptionsareappliedtoforecastconditions.

ThemethodsdescribedhereassumethattheDMCequivalentduffmoisture%isagoodproxyforgrowingseasonherbaceousfuelmoistureinputsresponsibleforguidingfuelloadtransfersandestimatingheatsinkfactorsforanalyses.ThiswouldallowanalyststoevaluatecurrentDMCvaluesinthefirearea,viewDMCforecasttrends,andobjectivelyapplyherbaceousfuelmoistureinputs.

0

40

80

120

160

200

240

280

320

360

0

5

10

15

20

25

30

35

40

DMCEq

uivalentFu

elM

oisture,%

Dead

FuelM

oisture,%

DMCEquivalent&DeadFuelMoisture2015Hogatza(AK)RAWS

100h 1000h DMC%

Page 6: Fuel Moisture, Seasonal Severity and Fire Growth Analysis ...

6

UsingtheDMCtofuelmoistureequivalentconversiononpage4,currentand/orforecastDMCsinthefireareacanbeconvertedtoDMCequivalentfuelmoistureforusedirectly(orasaguide)fortheherbaceousfuelmoistureinputtothefiresimulationanalysis.

Intheexampleplotshownhere,DMCequivalentfuelmoisturesbasedonweatherinputsfromtheHogatzaRAWSin2015arecomparedtoLFI-basedand1000-hrbasedherbaceousfuelmoistureestimates.

First,DMCequivalentfuelmoisturescannotbeusedtoestimatepre-greenandcuring/curedstatesinthefall.Theseareasareshadedoutonthegraph.Inthosecases,estimatesofherbaceousfuelmoistureshouldreflectcuring/curedconditions.

FromJune8ththroughJuly6th,DMCequivalentfuelmoistureestimatesfellfromahighof200%to45%.Estimates,suggestedonthegraphrangingfrom45%to75%duringthe15daysbeginningJune22nd,wouldimposesignificantfuelloadtransfersandenhancefirebehaviorpredictionspreciselywhendryfuelconditionswassupportingextremefiregrowthevents.ThroughthemiddleofJuly,therewasalullinsignificantfireeventsinthisareaandDMCfuelmoistureestimateswerebetween90%and130%,reducingandeliminatingfuelloadtransfersandincreasingtheheatsinklivefuelsprovide.ForseveraldaysinearlyAugust,firesintheHughesareabecameactiveandmadeseveralsignificantruns.DMCfuelmoistureestimatesduringthisperiodwouldhavebeenbetween50%and60%.

NoneofthissuggestthatthisisthephenologicaltrendofmoisturecontentinherbaceousfuelsduringthegrowingseasoninAlaska.Butitwouldbedifficulttoobtainsatisfactorysimulationsusingherbaceousfuelmoisturesbetween135%and240%asestimatedbytheLFIbasedmoisturemodel.Infact,mostanalystsheavilyeditthelivefuelmoisturesformostoftheiranalysesduringthegrowingseason.

2.4 FuelMoistureClimatologyforFSPro1-hr 10-hr 100-hr Herbaceous Woody

ERCgclimatologytendstomutetheobservedvariationinfinefuelmoisture.considerlowering1-hrintoptwobins,possiblyto3%or

4%.

Notalargefactorin

spreadmodel.ConsiderFFMCclimatologyasadefault(6-7%,8%,9%,12%,15%.

Again,generallysmallinfluence.

DMCclimatologysuggests

defaultsof6%,7%,8%,12%,and17%.

UsecurrentDMCestimateandforecast/outlooktosuggestrangeofDMCvaluesexpectedover

analysisperiod.UsefuelmoistureconversionandspreadrangeoverERC

classes.

ReviewNFMDrecordsforBlackSpruceneedle

moisture,generally<100%.Othersshrubsgenerallyhigherduring

growingseason.

Pre-Green Curing/CuredGrowingSeason

Page 7: Fuel Moisture, Seasonal Severity and Fire Growth Analysis ...

7

3 FireSeasonSeverityandFSProERCClassesandStreams3.1 EnergyReleaseComponent(ERC)andBuildupIndex(BUI)asSeasonIndicators

Totheleft,thesethreefiredangerratingsgraphsfromWFDSSdepictannualERCgclimatologyforobservinglocationsinthewestern,centralandeasterninterior.Alongwiththese,thesingleBUIseasongraphbelowshowsclimatologyforalltheinteriorwithmedianweeklyMODISdetectionsrepresentingareaburnedduringtheseason.Graydashedlineshighlightthedivisionsbetweenthefire“seasons”(Wind-Driven,DuffDriven,DroughtDriven,DiurnalStage)onallfourgraphs.TheprecisedatesofthedivisionsvaryfromseasontoseasonandarelessimportantthantheERCandBUItrendsthrougheachoftheseseasons.

TheMODISdetectionsconfirmthattheBUItrendscorrectlyrepresentthe“DuffDriven”and“DroughtDriven”seasonsaspeakseasons.Thereislesseroverallareaburnedinthe“WindDriven”and“DiurnalStage”shoulderseasons.

ThecorrespondingERCgseasonaltrendsunder-representseasonalpotentialforthe“DuffDriven”and“DroughtDriven”seasons,withtheaverage(gray)trendpeakingveryearlyinthe“WindDriven”shoulderseasonandshowingsteadydeclinethroughoutthepeakseasons.Thisskewedrepresentationofseasonaltrendistheresultofthefuelloadtransfersfromtheherbaceouscategorytofinedeadfuelsduringtheearly,pre-greenperiodandthelargeheatsinkprovidedbyelevatedherbaceousandwoodyfuelmoisturesduringthegrowingseason.Whilethismodeledheatsinkcharacterizationworkswellformanylandscapes,itinaccuratelydiminishespotentialduringthesepeakseasonsinnorthernconiferforests.

WindDriven

DuffDriven

DroughtDriven

DiurnalStage

Page 8: Fuel Moisture, Seasonal Severity and Fire Growth Analysis ...

8

ERCgperformsseveralcriticalfunctionsintheFSProanalysis.First,asadefault,itprovidesafrequencydistributionof5fuelmoistureandfirebehaviorscenariosbasedonitswholeseasonclimatology.Second,that climatologyprovidesday-to-daystreamsofthosefuelmoistureandfirebehaviorscenariostomodelfirespreadprobabilitiesweeksintothefuture.TheprocessexplainedbelowwilldemonstratehowknowledgeofobservedFWIelementscaninformadjustmentstoboththefrequencydistributionandtheERCgstreamsusedinthoseanalyses.

3.2 EditingtheERCStreamtoReflectFFMCandBUITrendsInFSProanalysis,theERCStreamisdisplayedasasequenceofdaysintherecentpastandtheestimatedERCgvaluesforthosedays.Aforecaststream,basedontheNationalDigitalForecastDatabase(NDFD)weatherforecast,canbeincluded.Andafterthosedays,climatologyapproachingtheaverageERCgtrendprovidesarangeofERCsequencesfurtherintothefuturefortheanalysisperiod.

Inthisexample,withtheminimumburnableERCgvalueat38,alloftheobservedandforecastERCstreamfallsbelowthatthreshold.Giventhat,themapshowstheresult,withaverylowprobabilityofanysignificantfirespread.Thatmaybecorrectinthiscase,butwithERCgexaggeratingtheinfluenceoflivefuels,itmaybeaseriousunderestimate.

AccuratelyportrayingtheobservedandforecastERCstreamarecriticaltotheaccuracyofFSProoutput.ItispossibletouseFFMCandBUIfromtheFWIsystemtoadjusttheERCstreamwhenpreparinginitialanalyses.ThetabletotheleftshowsFFMCandBUIclassesandsuggestshowtheyarecombinedtoidentifywhereintheERCfrequencydistributioneachdayfalls.

AnalystsshouldevaluateERCvaluesusingFFMCandBUIvaluesobservedfromrepresentativelocalweatherstationsandfindthecellthatrepresentsthatcombinationofvalues.ERCglevelscanbederivedfromtheclasslevelthetablesuggests.

Forexample,iftheFFMCis91andtheBUIis80,thecombinationsuggeststhattheERCvalueshouldbeinthethirdERCClass,withavaluebetween49and53.Because91and80arebothintermediatewithintheirclasses,theERCmightbebestrepresentedas51or52.ConsiderestimatingERCvaluesforupto3daysintheobservedERCstreamandalltheforecastedERCvaluesbeforeconductingtheinitialFSProanalysis.

Page 9: Fuel Moisture, Seasonal Severity and Fire Growth Analysis ...

9

3.3 EvaluatingandEditingERCClassTableusing“BurnDays”ClimatologyTocontinuewiththeexampleabove,thisERCClassBurnDaysSummaryshowstheresult.ERCClimatologywiththedefaultERCstreamproducedonlyabout300burnabledaysamong7000totaldays,lessthan5%.Thatamountstooneburndayin3weeks.Thesedaysallcameinthelowesttwoclassesrepresentingmoderatedburningconditions.Infact,therearefrequentinstancesinthehistoricrecordwheredryingconditionsaroundactivefiresincreasedtheriskofspreadinmuchlessthantwoweeks.

ThoughfirespreadpotentialinboreallandscapesmaynotrespondastheERCgsuggestsduringthepeakseasons,thereisanobservedepisodiccharactertofirespreadwithfireslyingdormantfordaysandthengrowingaggressivelyafterashorttransition.Thissuggestsaninfluenceoftheheatsinkinlivefuels.

Thisgraphic,basedonanalysisofFFMCandBUItrendsincombinationwithconcurrentobservedMODISdetectionshighlightsanaveragefrequencyofburndaysunderarangeoffireseasons.Overall,itsuggests1-2daysofactivespreadpotentialperweek,or15-30%ofalldaysinananalysisperiodforpeakseason.Formoreactiveseasons,thatpercentagemayriseto40%(3days)ormoreoverall.

WithverifiedERCStreams,initialFSProanalysesforagivenstartdateanddurationwillsuggestadistributionofburndaysproducedbytheclimatology.Theanalystshouldreviewthatfrequencydistributionandmakeeditstoreflecttheclimatologydemonstratedhereandtheforecastandoutlookguidanceavailable.Methodologiesaresuggestedbelow.

Page 10: Fuel Moisture, Seasonal Severity and Fire Growth Analysis ...

10

3.3.1 DuffDrivenSeason:TooManyBurnDaysInthiscommonexampleduringthepeakseasonsurroundingthesummersolstice,ERCglevelisonlybeginningtofallfromitspre-greenpeaklevels.Overall,theanalysisassumedthat82%ofalldayswereburndays,nearly6daysaweekoverall.Thereislittleevidencetosupportthisfrequencyofsignificantgrowtheveninextremeseasons.Theremaybeindividualperiodswith6-7dayswithdailysignificantspread,butnothingthatsuggestthatforanoverallaverage.

AdjustmentsintheERCstreammayalterthisdistributionofburndayssignificantly,butassumethatthestreamhasalreadybeeneditedasrecommendedabove.ReducingthefrequencyofburndayscanbeaccomplishedeasilybyreducingthenumberofERCclasses.Inthiscase,eliminatingthelowertwoclassesreducedthefrequencyfrom77%to47%.This,ineffect,ismodelingtheresistancefromtheheatsinkinlivefuels.

3.3.2 DroughtDrivenSeason:NotEnoughBurnDays

ThiscorrespondingexamplefromlaterintheseasonhighlightsthedifficultyERCghasinrepresentingfuelavailabilityandflammabilityatthattime.CurrentERCglevelsarewellbelowburndaythresholds,andtheanalysiswillproduceveryfewactiveburndaysasaresult.Giventheguidanceforburndayclimatologyabove,itwouldbeprudenttosuggestatleast15%burndaysover2weeks.Infact,ifasignificantdryingtrendisforecast,frequencyof30-40%maybeanappropriatefrequency.

Addinga6thERCClasswillproduceadditionalburndays.Butifthatisinsufficient,editingtheERCStreamevenfurthermaybenecessary.

Page 11: Fuel Moisture, Seasonal Severity and Fire Growth Analysis ...

11

4 ConclusionTheserecommendationsarepreparedspecificallyforspatialanalysisinAlaska,withemphasisonitsboreallandscapes.TheremaybesufficientapplicabilityintheWesternGreatLakesForestofMichigan,Minnesota,andWisconsintoconsidersimilarapproaches.Theseguidelinesarebasedonfirepotentialreflectedduringthegrowingseasoninnorthernforestswithsignificantlivefueladmixturesbothonthesurfaceandinthecanopy.TheydonothaveapplicabilityforcuringandcuredfuelbedsthatrepresentpeakseasonconditionsthroughoutmuchofthewesternUS.

Thegoaloftheserecommendationsistoemphasizerealobservedconditionsasinputstothemodel,toidentifywhereinthemodelsrealvariationsoffirebehaviorandfirespreadphenomenonarebestreflected,andtominimizetheneedforusingcalibratingfactorsthatmaynotreflectthemostfrequentlychangingfactorsthatdriveday-to-dayvariationinfirebehavior.ManyoftherecommendationsincludeuseofCFFDRSFireWeatherIndexsystemcodesandindices.Recent,current,andforecastvaluesandtrendscanbeexploredathttp://akff.mesowest.org.Upto3forecastdaysarenowavailableforuse.

Further,thisapproachassumesthatnearlyallsignificantgrowthoccursonfewerdayswithmoreflammableconditionsthatencouragefirestoovercometheheatsinkofthelivefuels.UsingthisapproachtoreducethefrequencyofburndaysinFSProandreduceoreliminateindividualburndaysinERCstreamsorinNTFBsequencesrequiresaconcurrentcommitmenttomodelcrownfirepotentialintheconiferfuels,especiallyinBlackSpruce.Analystsusetwoapproachestoaccomplishthis:

• Earlierinthegrowingseasonwhenhardwoodandmixedwoodforestshavegreaterlivefuelheatsinkstodiscouragespread,crownfireinBlackSprucecanbeencouragedbyconvertingthestandardfuelmodels,tu3/163(timber/grass/shrub)and/ortu4/164(dwarfconifer)tosh5/145(chapparal).Fuelloadingsarecomparable,anditeffectivelymodelsindividualgrowtheventswithobservedenvironmentalinputs.

• Laterinthepeakseason(drought-driven),whenlivefuelsmaybemorestressedacrossthelandscape,hardwoodsandmixedwoodforestsmaybemoreavailableandflammablefuelbeds.Inthiscase,selectingtheScott&ReinhardtCrownFiremethodproducescrownfireacrossthewiderspectrumoffuelmodelsdistributedacrossthelandscape.Inthiscase,itmaybeunnecessarytoconverttu3/163and/ortu4/164fueldesignations.

• Asacaution,whenusingtu3/163andtu4/164torepresentblacksprucecommunitiesoravarietyofgrassandgrass/shrubmodelsfortundralandscapes,keepinmindthatmoistureofextinctionisaslowas12%.Undertheinfluenceoffuelmoistureconditioning,therewillbenumerousinstancesthatanalyseswillproduceelevated1hr-and10h-fuelmoisturesthatcomeunderthedampeninginfluenceofthatlowmoistureofextinction.ThisisespeciallyproblematicinNTFBwheretherearenosettingstomitigateitseffect.ThereissomefacilitytodothatinSTFBwheretheanalystcanselect0(zero)conditioningdaysandsimplyuseinitialfuelmoistureinputs.Thiscanproduceacceptableresultsforsurfacefuelsunderforestcanopyandinopenflattundra,whereconditioningfactorsareminimizedontheground.

Theserecommendationsshouldhelpproduceeffectiveanalysesearlyinanincidentwithoutanysignificantcalibration.However,asthefiredevelopsahistoryofgrowthevents,perceivablevariabilityinweatherinfluences,andanaccumulationoffirelineobservationsitisappropriatetocriticallyevaluatetheseguidelines.Yourexperienceusingthemandrecommendationsforchangesareimportant.ContacttheAlaskaWildfireCoordinatingGroup’s(AWFCG)FireModelingandAnalysisCommittee(FMAC)ortheAlaskaFireScienceConsortium(AFSC)iftherearecontributionstooffer.

Page 12: Fuel Moisture, Seasonal Severity and Fire Growth Analysis ...

12

5 ReferencesWildfireAssessmentWebsites:Maps/Imagery/GeospatialServices:https://fire.ak.blm.gov/predsvcs/maps.phpWeather:https://fire.ak.blm.gov/predsvcs/weather.phpFuels/FireDanger:https://fire.ak.blm.gov/predsvcs/fuelfire.phpAirQuality:https://fire.ak.blm.gov/predsvcs/airquality.phpOutlooks:https://fire.ak.blm.gov/predsvcs/outlooks.phpFireWeatherIndex(FWI):http://akff.mesowest.orgNWSAlaskaFireWeather:http://w2.weather.gov/arh/fireNWSNationalFireWeather:http://www.srh.noaa.gov/ridge2/fire/AlaskaClimate:http://climate.gi.alaska.edu/NIFCFireEnterpriseGeospatialPortal(EGP):https://egp.nwcg.gov/egp/default.aspxWildlandFireDecisionSupportSystem:http://wfdss.usgs.govWildlandFireLibrary:https://firelibrary.org/

GuidesAlaskaFuelModelGuide(draftupdate,2016andoriginal,2008):https://www.frames.gov/files/9614/6482/3097/Revised_FuelModelGuide_Draft_May2016_Posted.pdfhttps://www.frames.gov/files/2814/3352/8200/Alaska_Fuel_Model_Guidebook_0620081.pdf

FSProAnalysisinAlaskahttps://www.frames.gov/documents/alaska/docs/FSProAnalysisAK_V1.1_Mar_2012.pdf

FieldGuidestoCFFDRSFireWeatherIndex(FWI)andFireBehaviorPrediction(FBP)Systems:https://www.frames.gov/files/3014/2309/6588/AK_FireWeatherIndex_FieldGuide_2015.pdfhttps://www.frames.gov/files/6914/2309/6585/AK_FireBehaviorPrediction_FieldGuide_2015.pdf

FireEndingEventWorkshop:https://www.frames.gov/files/1513/8749/6485/AWFCG_2008_Fire_Ending_Event_Workshop.pdf

HowtodownloadAKfireperimetersfromAICChttps://drive.google.com/file/d/0Byauxp0C04_femRBVERlWlF6SHc/view?usp=sharing

AnalysisNamingConventioninAnalystinfofolderhttps://drive.google.com/file/d/0Byauxp0C04_fZGJ4d1Rfa2JsLXc/view?usp=sharing

OtherWebResourcesAlaskaFireScienceConsortiumFireModelingResources: https://www.frames.gov/partner-sites/afsc/partner-groups/fire-behavior-modeling-group/

CFFDRSYouTubeLearningResources:https://www.youtube.com/playlist?list=PLriyD21WeCtKRA2TsWwrInsRmuC0j86HG

GrowingSeasonIndexandLiveFuelMoisture: https://www.wfas.net/index.php/growing-season-index-experimental-products-96

AlaskaFireModelingWorkshop(2012): https://www.wfas.net/index.php/growing-season-index-experimental-products-96

Page 13: Fuel Moisture, Seasonal Severity and Fire Growth Analysis ...

13

KMLs:ActiveFireMappingKMLBundle:https://fsapps.nwcg.gov/afm/data/kml/alaska_latest_AFM_bundle.kml

AICCActiveFireBundle:https://afsmaps.blm.gov/imf/sites/help/AlaskaWildfires.kml

AvenzaMapsProductsAFSPDFMaps:https://fire.ak.blm.gov/predsvcs/geopdf.php

DOFPDFMaps:https://sites.google.com/site/alaskafiremaps/home

Reports,PresentationsandPublicationsCarlson,J.D.et.al.2007.ApplicationoftheNelsonmodeltofourtimelagfuelclassesusingOklahomafieldobservations:modelevaluationandcomparisonwithNationalFireDangerRatingSystemalgorithms.InternationalJournalofWildlandFire,2007,16,204–216 Fosberg,M.A.,andJ.E.Deeming.1971.Derivationofthe1-and10-hourtimelagfuelmoisturecalculationsforfire-dangerrating.ResearchNoteRM-207.FortCollins,CO,USDAForestService,RockyMountainForestandRangeExperimentStation.

Jolly,WilliamM.,Nemani,R.andRunning,S.W.2005.Ageneralized,bioclimaticindextopredictfoliarphenologyinresponsetoclimate.GlobalChangeBiology11(4):619–632.

Kidnie,S.K.,Wotton,B.M.andDroog,W.N.2010.FieldguideforpredictingfirebehaviourinOntario'stallgrassprairie.ElginCountyStewardshipCouncilSpecialPublication.OntarioMinistryofNaturalResources,Aylmer,Ontario.65p.

Miller,EricA.2009.FireIndicesforFSProinAlaska:AcomparisonofERCandBUIonthe2009TitnaRiverFire(420).UnpublishedReport.

Nelson,RalphM,Jr.2000.Predictionofdiurnalchangein10-hfuelstickmoisturecontent.CanadianJournalofForestResearch30,1071–1087.doi:10.1139/CJFR-30-7-1071

WottonB.M.2009.AgrassmoisturemodelfortheCanadianForestFireDangerRatingSystem.Paper3-2inProceedings8thFireandForestMeteorologySymposium.Kalispell,MTOct13-15,2009

Ziel,Robert,Wolken,Jane,St.Clair,Thomas,andHenderson,Marsha.2015.ModelingFireGrowthPotentialByEmphasizingSignificantGrowthEvents:CharacterizingAClimatologyOfFireGrowthDaysInAlaska’sBorealForest.ExtendedAbstractforpresentationattheAMS11thSymposiumonFire&ForestMeteorology.May5th,2015(https://ams.confex.com/ams/11FIRE/webprogram/Paper272864.html).


Recommended